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Abstract

Efficiently computing Nash Equilibria (NEs) for multiplayer games is still an open chal-

lenge in computational game theory. In fact, it is not only hard to compute NEs in

multiplayer games, but also hard for players independently choosing strategies and then

forming an NE because NEs are not exchangeable. This thesis focuses on computing

Team-Maxmin Equilibria (TMEs), which was introduced as a solution concept for zero-

sum multiplayer games where players in a team having the same utility function play

against an adversary. The Correlated TME (CTME) is a variant of the TME, where

team players can synchronize (correlate) their strategies by exploiting a mediator rec-

ommending actions to them through communication. According to different forms of

communication, the CTME in extensive-form games includes: 1) the TME with Coor-

dination device (TMECor) for the situation where team players can communicate their

actions only before the play of the game; and 2) the TME with Communication device

(TMECom) for the situation where team players can communicate their actions before

the play of the game and during the game’s execution. The TME has some fascinating

properties, e.g., it is unique in general, which can avoid the equilibrium selection prob-

lem. Moreover, TMEs can capture many realistic scenarios, including: 1) a team of

players play against a target player in poker games; and 2) multiple defense resources

schedule and patrol against the adversary in security games. Unfortunately, existing

algorithms are inefficient to compute TMEs in large games. Therefore, in this thesis,

we develop efficient algorithms to compute TMEs in normal-form and extensive-form

games, including general algorithms and domain-specific algorithms for applications.

First, we develop a novel incremental strategy generation algorithm to compute

TMEs in normal-form games efficiently, which is the first incremental strategy genera-

tion algorithm guaranteeing to converge to a TME. Second, we apply the TME to a novel



vii

escape interdiction game model capturing the interaction between an escaping adversary

and a team of multiple defense resources with correlated time-dependent strategies on

transportation networks, and then we efficiently compute CTMEs in normal-form games

for optimal escape interdiction on such networks with a domain-specific incremental s-

trategy generation algorithm. Third, to efficiently solve the non-convex program for

finding TMEs in extensive-form games, we develop a novel global optimization tech-

nique, the associated recursive asynchronous multiparametric disaggregation technique,

to approximate multilinear terms in the non-convex program, and then we develop a

corresponding novel iterative algorithm to compute TMEs within any given accuracy

efficiently. Fourth, to efficiently compute TMEsCor in extensive-form games, we de-

velop an incremental strategy generation algorithm converging within finite iterations

in the infinite strategy space, where we develop a novel global optimization technique,

the associated representation technique, to exactly represent multilinear terms in the

best response oracle. Fifth, we apply the TME to a novel network pursuit game model

capturing the interaction between an escaping adversary and a team of multiple defense

resources who can communicate during the game’s execution on urban networks, and

then we efficiently compute TMEsCom in extensive-form game for optimal interdiction

of urban criminals with the aid of real-time information by a domain-specific incremen-

tal strategy generation algorithm. Finally, experimental results show that our general

algorithms are orders of magnitude faster than prior state-of-the-art algorithms in large

games, and our domain-specific algorithms can scale up to realistic problem sizes with

hundreds of nodes on networks including the real network of Manhattan.
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Chapter 1

Introduction

Game theory is an important tool to model the interaction between agents. Now re-

searchers have achieved many results for two-player games, e.g., computing Nash E-

quilibria (NEs) for zero-sum games [1] via linear programs [2–4] and many scalable

algorithms, e.g., the double oracle algorithm [5] and the counterfactual regret minimiza-

tion algorithm [6], and computing Stackelberg equilibria [7]. Based on these results, re-

searchers have successfully applied game theory to many domains, e.g., improving the

security for people and wildlife in security games [8] and defeating top human profes-

sionals in poker games [9]. However, researchers have achieved fewer results for mul-

tiplayer games except for games having very special structures, e.g., polymatrix games

[10] and congestion games [4] or algorithms having no theoretical guarantee [11]. In

fact, the hardness to compute NEs (it is PPAD-complete even for zero-sum three-player

games [12]) and the equilibrium selection problem [11] (it is hard for players indepen-

dently choosing strategies and then forming an NE because NEs are not exchangeable

(see Figure 1.1)) make them remain open challenges for computing and applying NEs

in multiplayer games.

This thesis focuses on computing Team-Maxmin Equilibria (TMEs) [13–16], which

is an important solution concept for zero-sum multiplayer games where players in a

team having the same utility function play against an adversary. The Correlated TME

(CTME) is a variant of the TME, where team members can synchronize (correlate) their

1
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FIGURE 1.1: The equilibrium selection problem. In zero-sum two-player games, NEs
are exchangeable. For example, if (A,B) and (C,D) are both NEs, so does (A,D).
However, in multiplayer games, NEs are not exchangeable. This property of NEs in
multiplayer games causes the equilibrium selection problem. We can illustrate this
problem by using the Lemonade Stand Game [11], where players simultaneously

select a point on a circle, and every player tries to stay as far away from other players
as possible on the circle. In each NE of this game, players are spaced uniformly

around the circle. Then we can have three different NEs for four players shown on the
left circle: (A,B,C,D), (E,F,G,H), and (I, J,K,L). However, the joint strategy
(A,B,G,L) independently selected by players is not an NE, as shown on the right

circle.

strategies by exploiting a mediator recommending actions to them through communica-

tion. According to different forms of communication, CTMEs in extensive-form games

include: 1) TMEs with Coordination device (TMEsCor) for the situation where team

players can communicate and correlate their actions only before the play (ex ante co-

ordination); and 2) TMEs with Communication device (TMEsCom) for the situation

where team players can communicate and correlate their actions before the play of the

game and during the game’s execution. A TME is an NE maximizing the team’s utility

and always exists. More importantly, the TME is unique in general, and then it avoids

the equilibrium selection problem. In addition, TMEs can capture many realistic sce-

narios. For example, in multiplayer poker games, all except one of them may form a

team and play against the target player, i.e., they share the same goal but take actions

independently (e.g., the setting of poker games in Brown and Sandholm (2019) avoids

that players can communicate to correlate their actions). Especially, in the car game
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Bridge, when the game reaches the phase of the play of the hand, two defenders, form-

ing a team but playing cards independently due to the rule, play against the declarer. In

addition to recreational applications, in security games, the US Coast Guard and other

different police departments schedule and patrol independently against the attacker at

major ports such as the New York port [17]. Specially, to keep the safety of New York,

the Patrol Services Bureau in the New York City Police Department (NYPD) has 77

police precincts [18], and each precinct is divided into four or five fully-staffed sec-

tors by Neighborhood Policing recently [19]. They maintain “sector integrity”: officers

in different sectors work independently to keep the safety of their sectors, except in

precinct-wide emergencies [19]. On the other hand, there are many cases that the de-

fender with multiple resources takes correlated actions against an adversary in security

games, especially in network security games [20–23].

However, it is still challenging to compute a TME, which is FNP-hard [24]. More-

over, a TME is only solved via a non-convex program [13] with global optimization

techniques [14, 15], which makes it hard to solve large games. It is also very hard to

compute CTMEs [14, 15] due to the combinatorial action space, i.e., the Cartesian prod-

uct of the action spaces of team members [14, 15]. Existing algorithms are inefficient

to compute TMEs in large games. Therefore, in this thesis, we develop efficient algo-

rithms to compute TMEs in normal-form and extensive-form games. Our contributions

include general algorithms and applications with domain-specific algorithms. Now we

show the relation between the solution concept TME an its variants and then present a

brief review of the contributions we made in this thesis.

Now we use a scenario to illustrate the difference between the TME and its variants,

as shown in Table 1.1. This scenario is on urban security, where police officers need

to respond quickly to catch the criminal after a crime event happens. Actually, this is

a game between a team of police officers and an adversary, where the adversary picks

one escape path to the outside world while each police officer chooses intersections

to interdict the adversary. To design the optimal interdiction plan in this game, we

may need to consider different situations. If there is no real-time information available

during the play of the game, we can model the game as a normal-form game. If team

players cannot communicate, we can use the TME in normal-form games as the solution
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Move Communication Solution Concept Algorithm
No communication

TME Chapter 3
Simultaneous moves between team players

(Normal-form games) Communication
CTME Chapter 4

between team players
No communication

TME Chapter 5
between team players

Communication
TMECor Chapter 6Sequential moves between team players

(Extensive-form games) before the game play
Communication

TMECom Chapter 7between team players
before and during the game play

TABLE 1.1: The relation between the TME and its variants, and the corresponding
structure of the thesis.

concept. In Chapter 3 of the thesis, we propose an efficient algorithm to compute it for

general games. If team players can communicate and then correlate their actions, we

use the CTME as the solution concept to exploit the coordination among team players.

In Chapter 4 of the thesis, we propose a novel escape interdiction game model for a real-

world problem and then propose an efficient algorithm to compute the corresponding

CTME for this specific game. Nowadays, novel pursuit devices can provide the police

with the real-time location information of the criminal, for example, UAVs and camera

systems. With real-time information, the police can dynamically adjust the moves to

interdict the attacker. To consider this real-time information, we can model the game as

an extensive-form game. If there is no communication between team players, we use

the TME in extensive-form games as the solution concept. In Chapter 5 of the thesis,

we propose an efficient algorithm to compute it for general games. If team players can

communicate before the play of the game, we use the TMECor as the solution concept

to exploit the ex ante coordination among team players. In Chapter 6 of the thesis,

we propose an efficient algorithm to compute it for general games. If team players

can communicate before and during the play of the game, we use the TMECom as the

solution concept to exploit the real-time coordination among team players. In Chapter 7

of the thesis, we propose a novel network pursuit game model for a real-world problem

and propose an efficient algorithm to compute a TMECom for this specific game.

Overall, Chapter 3–4 study the TME computation and its application in normal-form
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games, and Chapter 5–7 study the TME computation and its application in extensive-

form games. In terms of algorithms, this thesis proposes the first incremental strategy

generation algorithm guaranteeing to converge to a TME in Chapter 3. Then this thesis

proposes various novel components for the incremental strategy generation algorithm to

improve scalability: 1) the component on how to initialize the strategies in the restricted

game in Chapter 3; 2) the component on how to efficiently solve the restricted game in

Chapter 5; and 3) several best response oracles on how to efficiently compute the best

response in various scenarios in Chapters 4, 6 and 7. The algorithms of this thesis are

supported by theoretical and experimental results, followed by real-world applications

where more specific restrictions or information is available. That is, the first contribu-

tion proposes general algorithms in normal-form games, while the second contribution

is an application with domain-specific algorithms in normal-form games; and the third

and fourth contributions propose general algorithms in extensive-form games, while the

fifth contribution is an application with domain-specific algorithms in extensive-form

games. Experiments show that our general algorithms are orders of magnitudes faster

than baselines. In addition, our algorithms for applications are tested on real-world

datasets, which shows that our algorithms can scale up to realistic problem sizes with

hundreds of nodes on networks, including the real network of Manhattan.

1.1 Computing Team-Maxmin Equilibria in Normal-

Form Games

The first part of this thesis focuses on computing TMEs in normal-form games. Note

that each extensive-form game can be represented by a normal-form game, so the meth-

ods in this part can also be applied to extensive-form games.

1.1.1 Converging to Team-Maxmin Equilibria

It is challenging to compute a TME, which is FNP-hard [24]. Moreover, a TME is only

solved via a non-convex program [13] with global optimization techniques [16], which
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makes it hard to solve large games. In addition, it is impossible to apply this approach

when we cannot represent the problem via the game matrix due to the large strategy

space. For example, in a network security game on a fully connected network with 190

edges and 20 nodes, the number of possible adversary pure strategies (paths) without

any cycle is about 6.618 [20], which means that the memory cost for enumerating al-

l pure strategies would be prohibitive. In two-player games, the Incremental Strategy

Generation (ISG) algorithm (including the double oracle algorithm, column generation,

and so on) [5, 8, 20] is an efficient approach to avoid enumerating all pure strategies:

It computes an equilibrium in a game with restricted strategy spaces for players, and

then iteratively expands players’ strategy spaces. ISG can converge to an NE in zero-

sum two-player games. However, the study of ISG for computing TMEs is completely

unexplored. We know that ISG terminates when oracles in ISG cannot find better strate-

gies than the equilibrium strategies in the restricted game, which is consistent with the

definition of NEs. Unfortunately, NEs in multiplayer games, unlike those in two-player

games, are not exchangeable and may give different utilities to the team. Therefore, if

ISG is used to compute TMEs, even it can converge to an NE, it may cause a loss to the

team.

To fill this gap, we first study the properties of ISG for multiplayer games, showing

that ISG converges to an NE but may not converge to a TME, and it can cause an

arbitrarily large loss to the team. Second, we design an ISG variant (ISGT) by exploiting

that a TME is an NE maximizing the team’s utility and show that ISGT converges to

a TME and the impossibility of relaxing conditions in ISGT. Third, to further improve

the scalability, we design an ISGT variant (CISGT) by using the strategy space for

computing an equilibrium that is close to TME but is easier to be computed as the

initial strategy space of ISGT. Finally, extensive experimental results show that CISGT

is orders of magnitude faster than ISGT and the state-of-the-art algorithm to compute

TMEs in large games.
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1.1.2 Computing Correlated Team-Maxmin Equilibria

The CTME is a solution concept capturing scenarios where players in a team having

the same utility function play against an adversary by synchronizing their actions. That

is, team members can decide and execute actions jointly. A CTME is an NE in zero-

sum multiplayer games and has the properties of NEs in zero-sum two-player games

(i.e., a CTME is equivalent to an NE in zero-sum two-player games where the team is

treated as a single player). CTMEs can capture many real-world scenarios, especially

in network security games [20, 21]. This work uses the CTME as the solution concept

for the novel escape interdiction game model that captures the interaction between an

escaping adversary (attacker) and a team of multiple defense resources (defender) with

time-dependent strategies on transportation networks.

Preventing crimes or terrorist attacks in urban areas is challenging, since the number

of potential targets in cities and large towns is huge. For example, the large number of

bank branches, especially those offering many escape routes, could be highly profitable

targets for bank robbers. In case of such an event, e.g., bank robbery or terrorist attack

on buildings, it is critical for police officers to respond quickly and catch the attacker on

his escape route. In this work, we aim to help law enforcement agencies (defender) by

efficiently scheduling security resources to interdict the escaping attacker.

It is a significant challenge to develop an effective response plan given the limited

security resources and the attacker’s strategic actions. Given the initial locations of

the security resources, the defender needs to consider traffic-dependent travel time in

planning the schedules. In addition, one defender resource may capture the attacker

at different intersections on his possible escape routes. Therefore, to make the best

use of her limited resources, the defender needs to dynamically relocate them among

potential intersections during the event. Moreover, the attacker may strategically choose

his escape path and dynamically change his driving speed on different roads along the

path to avoid being captured, which makes the attacker’s strategy space continuous.

To conquer this challenge, we introduce a novel Escape Interdiction Game (EIG)

to model time-dependent strategies for both players, where the defender chooses a se-

quence of intersections for each police officer to protect, while the attacker chooses an
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escape path and his travel time on different edges along the path. However, due to these

extensions, both the defender strategy space and the continuous attacker strategy space

suffer an exponential growth. These lead to major challenges in the computation of the

optimal solution, as we will prove this problem is NP-hard. In particular, state-of-the-art

security game solutions, such as the current double oracle type algorithms [25, 26], can

only be applied to our problem at very small scales. To overcome this computational

challenge, we first propose our solution, EIGS, which incorporates the following key

components: 1) a new double oracle structure to avoid calling the hard oracle, i.e., the

best response attacker oracle, frequently; 2) novel mixed-integer linear programming

(MILP) formulations to compute the best response strategies for both players; and 3)

a greedy algorithm and an efficient modified Dijkstra algorithm to efficiently generate

improving strategies. To further improve the scalability to solve large-scale scenarios

with hundreds of intersections, we introduce a novel defender algorithm RedAD that re-

duces the strategy space by deploying each defender resource to protect only one node,

assuming that the attacker travels with maximum speed, and using a novel algorithm

to contract the graph before using the MILP to compute the attacker response strategy.

We conduct extensive experiments showing that EIGS can efficiently obtain a robust

solution significantly outperforming existing approaches in problems of related small

scales and RedAD can scale up to realistic-sized transportation networks of hundreds of

intersections with good solution quality.

1.2 Computing Team-Maxmin Equilibria in Extensive-

Form Games

The second part of this thesis focuses on computing TMEs in extensive-form games.

Note that we exploit game tree structure in extensive-form games to design efficient

algorithms.
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1.2.1 Computing Team-Maxmin Equilibria

It is challenging to compute a TME in extensive-form games, which is FNP-hard and

formulated as a non-convex programming problem [15] even each player’s (sequence-

form) strategy space is linear in the size of extensive-form games. The current approach

[15] to compute this TME is only to solve the non-convex problem directly by using the

state-of-the-art global optimization solver BARON [27]. Unfortunately, BARON does

not scale well [15]. On the other hand, in extensive-form games, some efficient algo-

rithms [15, 28] are proposed to compute Correlated-Team Maxmin Equilibria (CTMEs),

where team players correlate their strategies. However, if team players transform a

CTME into the mixed strategy profile, they may obtain an arbitrarily large loss [14].

Therefore, the study of efficiently finding TMEs within any given accuracy, especial-

ly in extensive-form games, is almost completely unexplored. We then develop very

scalable algorithms to compute TMEs.

We first study the inefficiency caused by computing a CTME and then transforming

it into the mixed strategy profile of the team and theoretically show that this inefficien-

cy can be arbitrarily large in extensive-form games. Second, to efficiently solve the

non-convex program for finding TMEs directly, we develop the Associated Recursive

Asynchronous Multiparametric Disaggregation Technique (ARAMDT) to approximate

multilinear terms in the program by using a digit-wise discretization of one variable in

the term and then transform the program into a mixed-integer linear program (MILP)

with two novel techniques: 1) an asynchronous precision method, where we can use

different precision levels to approximate these terms even they include the same dis-

cretized variable to reduce the number of constraints and variables for approximation;

and 2) an associated constraint method, where we exploit the relation between these

terms to reduce the feasible solution space of the MILP in the ARAMDT. To our best

knowledge, neither of both techniques has been considered in the literature of global

optimization. Third, we develop a novel algorithm to efficiently compute TMEs within

any given accuracy based on the ARAMDT, which uses novel techniques to iteratively

increase the precision levels for part of non-linear terms. Finally, we evaluate our algo-

rithm by experiments showing that our algorithm is dramatically faster than baselines.
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1.2.2 Computing Team-Maxmin Equilibria with Coordination De-

vice

The TMECor [15] is a solution concept capturing scenarios where a team of players

with ex ante coordination and the same utility function play against an adversary. That

is, all team players can communicate only before the play through a coordination de-

vice. More specifically, team members can discuss and agree on tactics before the game

starts, but they cannot communicate anymore during the game. A TMECor is an NE

in zero-sum multiplayer extensive-form games and has the properties of NEs in zero-

sum two-player games (i.e., a TMECor is equivalent to an NE in zero-sum two-player

games). TMEsCor can capture many real-world scenarios, especially in network secu-

rity games [20, 21]. For example, in multiplayer poker games, a team may play against

the adversary player, but they cannot communicate and discuss during the game due

to the rule. Especially, in Bridge, when the game reaches the phase of the play of the

hand, two defenders, forming a team play against the declarer. In addition, in the war,

colluders may not have time or means to communicate during the battle [28].

However, it is challenging to compute a TMECor, which is FNP-hard [15]. A T-

MECor can be computed by solving a linear program [15], where the team plays joint

normal-form strategies for all team members, but each member’s normal-form strategy

space is exponential in the size of the game tree. To compute TMEsCor efficiently, a

column generation algorithm is proposed [15], whose most important component, the

Best Response (BR) oracle computing the best response for the team against the adver-

sary strategy, is formulated as a mixed-integer linear program. In this BR, the number

of integer variables is equal to |L| (L is the set of terminal nodes in a game), which is

extremely large in large games. For example, |L| is about 106 in the three-player Leduc

Hold’em Poker games with four ranks. The large number of integer variables makes

the algorithm inefficient to compute the best response and then makes it inefficient to

compute TMEsCor in large games (it can compute TMEsCor only for very small three-

player Kuhn poker games). Moreover, Farina et al. (2018) develop a realization-form

strategy representation and then propose a fictitious-play based algorithm to compute
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approximate TMEsCor (ε∆u-TMEsCor, and ∆u is the difference between the maxi-

mum and minimum possible utility). However, their algorithm is inefficient to compute

ε-TMEsCor with small ε, let alone exact TMEsCor, e.g., it cannot converge to an ε∆u-

TMECor with ε = 0.0004 within 100 hours for the smallest three-player Kuhn poker

game in our experiments. In addition, their representation focuses on the probabili-

ty distribution on terminal nodes of the game tree, which forbids players to take their

realization-form strategy from the root of the game tree. To make it executable, we need

to reconstruct a normal-form strategy from this realization-form strategy. Unfortunately,

it is not easy to do that in large games. For example, an existing reconstruction algorith-

m (Algorithm 2 in Celli et al. (2019)) runs in time O(|L|2), but, as we mentioned above,

|L| could be 106. To avoid such a cumbersome reconstruction algorithm, we propose a

novel hybrid-form strategy representation for the team and develop a dramatically faster

algorithm to compute TMEsCor based on it.

To compute TMEsCor efficiently, we first propose a novel hybrid-form strategy rep-

resentation for the team, where one team member takes sequence-form strategies while

other team members take normal-form strategies. Second, based on our hybrid-form

strategies, we develop our column generation algorithm with two novel features: 1) we

provide a finite upper bound for the number of iterations where our algorithm termi-

nates even though the strategy space is infinite; and 2) we design a novel BR for the

team, which involves multilinear terms representing reaching probabilities for terminal

nodes to reduce the number of variables. Third, we develop our novel associated rep-

resentation technique for solving our multilinear BR, which has two novel features: 1)

exactly representing multilinear terms by linear constraints and 2) efficiently generat-

ing associated constraints for the equivalence relation between multilinear terms in the

game tree. Finally, extensive experiments show that our algorithm is several orders of

magnitude faster than state-of-the-art algorithms in large games. Thus, this work shows

that, to compute equilibria, the approach formulating the problem as a multilinear pro-

gram with global optimization techniques can be dramatically faster than the approach

immediately formulating it as a linear program.
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1.2.3 Computing Team-Maxmin Equilibria with Communication

Device

The TMECom [15] is a solution concept capturing scenarios where a team of players

with a communication device (similar to a mediator) and the same utility function play

against an adversary. That is, all team players can communicate before and during the

play through a communication device, which receives the information that the team

members observed and sends recommendations related to the action to play at each in-

formation set for each team member. More specifically, team members can discuss and

agree on tactics before the game starts, and they can communicate to receive recommen-

dations during the game. A TMECom is an NE in zero-sum multiplayer extensive-form

games and has the properties of NEs in zero-sum two-player games (i.e., a TMECom

is equivalent to an NE in zero-sum two-player games). TMEsCom can capture many

real-world scenarios, especially in network security games [20–22]. Here, we use the T-

MECom as the solution concept for the novel network pursuit game model that captures

the interaction between an escaping adversary and a team of multiple defense resources

(defender) with real-time information available on urban networks.

In 2016, there were nearly 5.36 million violent crimes across the United States,

most of which happened in the urban and suburban cities [30]. Considering just the

commercial banks, 4,185 robberies happened [31]. When an urban crime occurs, the

top priority of law enforcement officers is to dispatch the limited security resources to

capture the criminal. Nowadays, novel pursuit devices such as the StarChase GPS-based

system [32], UAVs and helicopters can provide the police with the real-time location of

the criminal. Equipped with the up to date information, the police can dynamically

adjust the resource allocation plan to interdict the adversary.

Unfortunately, existing work on resource allocation in network security ignores

the real-time information about the adversary’s location [20, 33, 34]. Specifically, in

existing urban network security games (NSG), the defender usually deploys a time-

independent strategy without considering the dynamic relocation of security resources
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[20]. Although a time-dependent policy is discussed in [22], they do not take the real-

time adversarial information into consideration, which can cause a huge loss of effec-

tiveness as we will show later. Other branches of related work also suffer from similar

myopia, including pursuit-evasion games [35] and patrolling security games [36].

To incorporate such real-time information, we model the urban network security

problem as a zero-sum NEtwork purSuiT game (NEST). In NEST, the adversary picks

one escape path to the outside world, while the defender, tracking the adversary’s pre-

vious moves, decides on the relocation of her security resources (modeled as a finite-

horizon Markov Decision Process (MDP)). Specifically, in the MDP, each state includes

information about the adversary’s previous moves and the locations of defender re-

sources, and each action is the next location of the defender’s resources. This results

in a game with a combinatorial action space of each state in the MDP for the defend-

er, where the defender has multiple resources with several actions each. For example,

for just ten resources with four actions for each, there are more than one million joint

actions of resources in a given state. This large strategy space makes the existing exact

solution approaches unable to solve NEST efficiently. These approaches include: i) the

approach for the imperfect recall game, i.e., normal-form game with sequential strate-

gies (NFGSS), because their incremental strategy generation (ISG) algorithm does not

set bounds to cut branches in its best-response (BR) oracle that uses a depth-first search

through the whole state space to compute the best response [37]; and ii) the approach

for the perfect recall game [3] because it will lead to a significantly larger strategy space

than the imperfect recall approach (see the discussion in [37]), and the bounds are very

loose in their branch-and-bound BR [38].

In this context, after modeling NEST as an imperfect-recall game to reduce the s-

trategy space, this work makes four additional key contributions. First, we show that the

ignorance of real-time information in existing work can lead to an arbitrarily large loss

of efficiency. Second, we show that solving NEST is NP-hard. Third, after transforming

the non-convex program of solving NEST to a linear program (LP), we propose our ISG

with the following novelty: (i) novel pruning techniques in our BR, including: (1) pro-

viding tight lower and upper bounds by exploiting the combinatorial structure of each

state’s action space; and (2) handling imperfect recall by developing an effective lower
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bound transition method that causes an evaluated state to be reevaluated only if a prefix

state with a smaller lower bound transits to it; and (ii) novel techniques to speed up our

ISG to solve extremely large-scale problems, which include: (1) mapping the computed

defender strategy by BR between similar subgames to speed up BR, which also speeds

up LP if this strategy is optimal; and (2) adding multiple best response strategies to the

restricted game at one iteration against different sampled adversary strategies to reduce

the number of iterations for convergence. Finally, experiments show that our approach

can scale up to problem sizes with hundreds of nodes on networks including the real

network of Manhattan. Thus, for the first time, this work shows that ISG techniques can

also be scaled for dynamic games when best-response oracles are tuned with domain-

specific pruning techniques, and other domain-specific improvements are employed.

1.3 Thesis Overview

The organization of this thesis is as follows. Chapter 2 discusses the background materi-

als with the related work of this thesis. Chapter 3 considers the problem of converging to

TMEs in normal-form games by the incremental strategy generation algorithm. Chapter

4 focuses on computing CTMEs in normal-form games for optimal escape interdiction

on transportation networks. Chapter 5 focuses on computing TMEs in extensive-form

games. Chapter 6 focuses on computing TMEsCor in extensive-form games. Chapter

7 focuses on computing TMEsCom in extensive-form games for optimal interdiction of

urban criminals with the aid of real-time information. Chapter 8 summarizes this thesis

and provides possible future directions.



Chapter 2

Background

This chapter reviews the background for this thesis. We discuss solution concepts in

game theory and the general scalable approaches to compute them. Then we review

existing research that is relevant to this thesis

2.1 Game Theory

Game theory is an effective mathematical model in regard to agents’ strategy selection

in the interactive environment [4]. When players move simultaneously, the correspond-

ing game representation is normal-form games, and when players move sequentially, the

corresponding game representation is extensive-form games. Now we introduce some

notations on normal-form games and extensive-form games with some corresponding

solution concepts.

2.1.1 Normal-Form Games

A normal-form game G [4] is a tuple (N,A, u) where: N = {1, . . . , n} is a set of

players, A = ×i∈NAi is a set of joint actions with that Ai is a finite set of player i’s

actions (pure strategies) with ai ∈ Ai, and u = (u1, . . . , un) is a set of players’ utility

functions with that ui : A → R is player i’s utility function. X = ×i∈NXi is the set

of mixed strategy profiles with that Xi = ∆(Ai) is the set of player i’s mixed strategy.

15
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For each xi ∈ Xi and ai ∈ Ai, xi(ai) is the probability that action ai is played, Ai,xi =

{ai | xi(ai) > 0, ai ∈ Ai} is the support of xi. For each x ∈ X , player i’s expected u-

tility is ui(x) =
∑

a∈A ui(a)
∏

j xj(aj) and ui(ai, x−i) =
∑

a∈A ui(a)
∏

j∈N\{i} xj(aj).

Generally, −i denotes the set of all players except player i.

2.1.1.1 Nash Equilibria

The Nash Equilibrium (NE) is an important solution concept for a game, which is a

strategy profile x∗ such that, for each player i, x∗i is a best response to x∗−i (i.e., x∗i =

BR(x∗−i) with ui(x∗i , x
∗
−i) ≥ ui(xi, x

∗
−i),∀xi ∈ Xi). In zero-sum two-player games

with N = {1, 2} and
∑

i∈N ui(a) = 0(∀a ∈ A), an NE can be computed by solving the

following linear program and its dual program:

maxx1 U (2.1a)

U ≤∑a1∈A1
uT (a1, a2)x1(a1) ∀a2 ∈ A2 (2.1b)∑

a1∈A1
x1(a1) = 1, x1(a1) ≥ 0 (2.1c)

For simplicity, we say that an NE is computed by solving Problem (2.1).

2.1.1.2 Team-Maxmin Equilibria

The Team-Maxmin Equilibrium (TME, and TMEs for the plural equilibria) [13, 14] is a

solution concept for zero-sum multiplayer games with that a team T = {1, . . . , n − 1}
with ui(a) = uj(a)(∀i, j ∈ T, a ∈ A) and

∑
i∈T ui(a) = uT (a) = −un(a)(∀a ∈ A)

plays against an adversary n, and each team player takes actions independently. We call

G with such a scenario GT . A TME is an NE with the properties that it is unique except

for degenerate cases1 and a best NE for the team. The utility of the team under the TME

is called the TME value. In an ε-TME, the team and the adversary both cannot gain more

than ε by the unilateral deviation of players, and the gap between the TME value and the

ε-TME value is not greater than ε. The team-maxmin strategy profile xT (i.e., ×i∈T xi)
1The situation of multiple TMEs can only occur in degenerate cases with special entries in the payoff

matrix [13] because a TME gives the team the highest utility among all NEs.
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in a TME (xT , xn) can be computed by the following nonlinear program:

max
x1,...,xn−1

U (2.2a)

U ≤∑aT∈AT uT (aT , an)
∏

i∈T xi(aT (i))∀an ∈ An (2.2b)∑
ai∈Ai xi(ai) = 1, xi(ai) ≥ 0 ∀i ∈ T (2.2c)

where aT is a joint action of the team (i.e., ×i∈Tai), aT (i) is the action of player i in aT ,

and AT = ×i∈TAi is the set of these joint actions. After computing the team-maxmin

strategy profile xT , we can compte the adversary strategy xn by minimizing the team’s

utility and making sure that no team members would like to deviate from their strategies

in xT [13]. Then xn can be computed by solving the following linear program [13]:

min
xn

∑
i∈T

zi (2.3a)

zi −
∑
an∈An

xn(an)uT (ai, xT\{i}, an) ≥ 0 ∀i ∈ T, ai ∈ Ai (2.3b)

∑
an∈An

xn(an) = 1 (2.3c)

xn(an) ≥ 0 ∀an ∈ An (2.3d)

For simplicity, we say that a TME is computed by solving Problem (2.2).

The Correlated Team-Maxmin Equilibrium (CTME) [14] captures the situation

where team players can correlate their actions, i.e., they can synchronize actions in GT .

That is, the team has the set of actionsAT , and the set of mixed strategies (xT ∈ ∆(AT ),

and Ai,xT = {ai | ai ∈ Ai, ∃aT = (ai, aT\{i}), xT (aT ) > 0}. The CTME maintains the

properties of the NE in zero-sum two-player games, i.e., a CTME is equivalent to an NE

in zero-sum two-player games where the team is teated as a single player. For example,

CTMEs are exchangeable and a CTME can be computed by a linear program, i.e., the

multilinear term
∏

i∈T xi(aT (i)) in Eq.(2.2b) is replaced by a single variable xT (aT ):

maxxT U (2.4a)

U ≤∑aT∈AT uT (aT , an)xT (aT ) ∀an ∈ An (2.4b)
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∑
aT∈AT xT (aT ) = 1, xT (aT ) ≥ 0 ∀i ∈ T (2.4c)

In zero-sum multiplayer games with that a team T = {1, . . . , n − 1} with ui(a) =

uj(a)(∀i, j ∈ T, a ∈ A) and
∑

i∈T ui(a) = uT (a) = −un(a)(∀a ∈ A), let ve be the

utility value of the team under an NE, vm be the utility value of the team under a TME,

and vc be the utility value of the team under a CTME. We have ve ≤ vm ≤ vc with that
vm
ve

may be∞, and vc
vm

may be∞ [14].

2.1.2 Extensive-Form Games

An imperfect-information Extensive-Form Game (EFG) [4] is a tuple

(N,A,H,L, χ, ρ, µ, u, I), where: N = {1, . . . , n} is a set of players, A is a set

of actions, H is a set of nonterminal nodes, L is a set of terminal nodes, χ : H → 2A

is the action function assigning a set of possible actions to each nonterminal node,

ρ : H → N is the player function assigning an acting player to each nonterminal node

(Hi = {h | ρ(h) = i, h ∈ H},∀i ∈ N ), µ : H × A← H ∪ L is the successor function,

which maps a nonterminal node and an action to a new node, u = (u1, . . . , un) is the

set of players’ utility functions where ui : L→ R assigns utilities to terminal nodes for

player i, and I = (I1, . . . , In) is the set of information sets where Ii is a partition of Hi

such that, ρ(h1) = ρ(h2) and χ(h1) = χ(h2) for any h1, h2 ∈ Hi whenever there exists

Ii,j ∈ Ii with h1 ∈ Ii,j and h2 ∈ Ii,j . Without loss of generality, we assume, for each

action a ∈ A, there is unique Ii,j such that a ∈ χ(Ii,j). In games with perfect recall,

for each player i and each Ii,j ∈ Ii, nodes in Ii,j share the same sequence of moves of

player i on the paths from the root.

A behavioral strategy βi defines a probability distribution over χ(Ii,j) for each in-

formation set of player i. A sequence (σi) of actions of player i, defined by a node

h ∈ H ∪ L of the game tree, is the ordered set of player i’s actions that are on the

path from the root to h. Let Σi define the set of sequences of player i. Let ∅ denote

the fictitious sequence corresponding to the root. A realization plan ri : Σ → [0, 1]

is a function assigning a probability to be played to each sequence, which satisfies the
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following constraints.

ri(∅) = 1 (2.5a)∑
a∈χ(Ii,j)

ri(σia) = ri(σi) ∀Ii,j ∈ Ii, σi = seqi(Ii,j) (2.5b)

ri(σi) ≥ 0 ∀σi ∈ Σi (2.5c)

where seqi(Ii,j) is the sequence leading to Ii,j . LetRi be the set of all SFSs. We call ri

a pure SFS if ri(σi) ∈ {0, 1}(σi ∈ Σi), andRi the set of pure SFSs andRi ⊆ Ri.

Example 2.1. In the 3-player Kuhn poker game, the information set includes the card

the player has and the observed actions taking by players in turn. For example, J:/ccrc:

is information set of player 2, where player 2 holds card J and she has observed the ac-

tions ‘c,c,r,c’ of all players in turn. Now, in information set J:/ccrc: reached by sequence

J:/c:c of player 2, player 2 has two actions: calling (c) and folding (f). Therefore, by

Eq.(2.5b), we have r2(J:/c:c) = r2(J:/ccrc:c) + r2(J:/ccrc:f).

A pure Normal-Form Strategy (NFS) of player i is a tuple πi ∈ Πi = ×Ii,j∈Iiχ(Ii,j)

specifying an action to each information set of player i, and the size of Πi is exponen-

tial in the size of the game tree. A pure reduced NFS is that it only specifies actions for

reachable information sets due to earlier actions. Henceforth, we focus on reduced NF-

Ss and just call them NFSs. A mixed NFS xi is a probability distribution over Πi, i.e.,

xi ∈ ∆(Πi). A pure NFS can be represented by a (unique) pure SFS, and a mixed NFS

can be represented by an SFS (a convex combination of pure SFSs) [3]. Two strate-

gies of player i are realization-equivalent (i.e., ∼) if both define the same probabilities

for reaching nodes given any strategies of the other players, and they are realization-

equivalent if and only if they have the same realization plan [3].

2.1.2.1 Nash Equilibria

In EFGs, an NE is a strategy profile r∗ such that, for each player i, r∗i is a best response

to r∗−i (i.e., r∗i = BR(r∗−i) with ui(r∗i , r
∗
−i) ≥ ui(ri, r

∗
−i),∀ri ∈ Ri). In zero-sum two-

player games with N = {1, 2} and
∑

i∈N ui(σ) = 0(∀a ∈ A), an NE can be computed

by solving the following linear program:
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maxr1 v(I2(∅)) (2.6a)

v(I2(σ2))−∑I2,j∈I2:seq2(I2,j)=σn
v(I2,j)

≤∑σ1∈Σ1
u1(σ1, σ2)r1(σ1) ∀σ1 ∈ Σ1 (2.6b)

Eqs.(2.5a)− (2.5c) ∀i ∈ N (2.6c)

2.1.2.2 Team-Maxmin Equilibria

In zero-sum multiplayer EFGs, a TME is solution concept for cases with ui(σ) =

uj(σ)(∀i, j ∈ T, σ ∈ Σ) and un(σ) = −uT (σ) = −∑i∈T ui(σ)(∀σ ∈ Σ), where

UT denotes the team’s utility with UT (σ) =
∑

l∈L′ uT (l)c(l) if at least a terminal node

l ∈ L′ ⊆ L is reached by the joint plan σ (L′ is the set of those terminal nodes) with the

chance c(l) determined by chance nodes, and UT (σ) = 0 otherwise. A team-maxmin

strategy profile in a TME in EFGs can be computed by the following non-convex pro-

gram [15]:

maxr1,...,rn−1 v(In(∅)) (2.7a)

v(In(σn))−∑In,j∈In:seqn(In,j)=σn
v(In,j)

≤∑σT∈ΣT
UT (σT , σn)

∏
i∈T ri(σT (i)) ∀σn ∈ Σn (2.7b)

Eqs.(2.5a)− (2.5c) ∀i ∈ T (2.7c)

where In(σn) is the information set where player n takes the last action of sequence

σn, v : In → R where v(In,j) is the team’s expected utility in information set In,j , σT

is the team’s joint sequence (i.e., ×i∈Tσi), σT (i) is the sequence of player i in σT , and

ΣT is the set of these joint sequences. By Eq.(2.6b), the adversary chooses the action

minimizing the team’s utility in each information set In(σn).

The Team-Maxmin Equilibrium with Coordination device (TMECor, and TMEsCor

for the plural equilibria) [15, 28] is a solution concept capturing the scenarios where a

single team T = {1, . . . , n − 1} with ex ante coordination play against an adversary n

with ui(l) = uj(l)(∀i, j ∈ T, l ∈ L) and uT (l) =
∑

i∈T ui(l) = −un(l)(∀l ∈ L) in a
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zero-sum EFG. Here, ex ante coordination means that team players can communicate

only before the play through a coordination device. Then the team in a TMECor plays

joint normal-form strategies. A team’s mixed strategy xT (∈ ∆(ΠT )) is a probability

distribution over ×i∈TΠi = ΠT (the set of joint normal-form strategies and πT ∈ ΠT ).

UT denotes the utility of the team with:

UT (xT , σn) =
∑

πT∈ΠT
UT (πT , σn)xT (πT ) (2.8)

where UT (πT , σn) =
∑

l∈LπT ,σn
uT (l)c(l), and l(∈ LπT ,σn ⊆ L) is a terminal node

reached by a strategy profile (πT , σn) (LπT ,σn is the set of those terminal nodes) with

chance c(l) due to chance nodes. Similarly,

UT (xT , rn) =
∑

πT∈ΠT
UT (πT , rn)xT (πT ) (2.9)

where UT (πT , rn) =
∑

l∈LπT ,rn
rn(seqn(l))uT (l)c(l). A TMECor is equivalent to an

NE in zero-sum two-player games where the team is teated as a single player, which

can be computed by solving the following linear program:

maxxT v(In(∅)) (2.10a)

v(In(σn))−∑In,j∈In:seqn(In,j)=σn
v(In,j) ≤ UT (xT , σn) ∀σn ∈ Σn (2.10b)∑

πT∈ΠT
xT (πT ) = 1 (2.10c)

xT (πT ) ≥ 0 ∀πT ∈ ΠT (2.10d)

The Team-Maxmin Equilibrium with Communication device (TMECom, and

TMEsCom for the plural equilibria) [15] is a solution concept capturing scenarios where

a team of players with a communication device (similar to a mediator) and the same util-

ity function play against an adversary. That is, all team players can communicate before

and during the play through a communication device, which receives the information

that the team members observed and sends recommendations related to the action to

play at each information set for each team member. More specifically, team members

can discuss and agree on tactics before the game starts, and they can communicate to
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Algorithm 1: ISG for a two-player game (Vanilla-ISG)
1 Initialize A′.
2 repeat
3 x← CoreLP (A′);
4 a1 ← Best response oracle of player 1 against x2;
5 if a1 /∈ A′1 then
6 A′1 ← A′1 ∪ {a1}
7 a2 ← Best response oracle of player 2 against x1;
8 if a2 /∈ A′2 then
9 A′2 ← A′2 ∪ {a2}

10 until convergence;
11 return x.

receive recommendations during the game. A TMECom is an NE in zero-sum mul-

tiplayer extensive-form games and has the properties of NEs in zero-sum two-player

games (i.e., a TMECom is equivalent to an NE in zero-sum two-player games where

the team is teated as a single player), which means that a TMECom can be computed by

a linear program the same as the one for computing NEs in zero-sum two-player games

(the team can be treated as a single player).

In zero-sum multiplayer EFGs with that ui(σ) = uj(σ)(∀i, j ∈ T, σ ∈ Σ) and

un(σ) = −uT (σ) = −∑i∈T ui(σ)(∀σ ∈ Σ), let vm be the utility value of the team

under a TME, vcor be the utility value of the team under a TMEcor, and vcom be the

utility value of the team under a TMEcom. We have vm ≤ vcor ≤ vcom with that vcom
vm

may be∞, vcom
vcor

may be∞, and vcor
vm

may be∞ [15].

2.2 Scalable Approaches

In addition to the formulation to compute equilibria in the previous section, there are

many scalable approaches to compute equilibria in two-player games efficiently. Here,

we discuss two approaches that will be extended to multiplayer games in this thesis.
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Algorithm 2: Iterative MDT
1 Choose p = P = blog10 y

U
j c;

2 repeat
3 f

0
← Solving Problem (2.12);

4 f 0 ← An upper bound of Problem (2.11), e.g., by using local non-linear
program optimization algorithm to solve Problem (2.11);

5 if f 0 − f 0
> ε then

6 p = p− 1

7 until f 0 − f 0
≤ ε;

8 return x.

2.2.1 Incremental Strategy Generation

The Incremental Strategy Generation (ISG) algorithm (including the double oracle al-

gorithm, column generation, and so on) [5, 8, 20, 26, 38, 39] has shown the advantage

for improving the scalability for computing an NE in two-player zero-sum games. The

algorithm includes the following steps, repeating until convergence: 1) creating a re-

stricted game G′ by limiting the set of actions for each player i, i.e., A′i ⊆ Ai; 2)

computing the equilibrium strategy profile x∗ in this restricted game G′; and 3) comput-

ing a best response ai against x∗−i in the original unrestricted game G for each player i,

and add ai to A′i if ui(ai, x∗−i) > ui(x
∗). The algorithm terminates when no actions are

added to the restricted game for all players (i.e., ui(ai, x∗−i) ≤ ui(x
∗),∀ai ∈ Ai, i ∈ N ).

Algorithm 1 shows an ISG algorithm for a two-player game.

2.2.2 An Iterative Algorithm for Bilinear Optimization

When a program involves bilinear terms, it is a non-convex program, which needs glob-

al optimization techniques to approximate it. It is well-known that the state-of-the-art

global optimization solver is BARON [27]. Here we introduce a global optimization

technique, the Multiparametric Disaggregation Technique (MDT) [40–42] for approxi-

mating bilinear terms by using a digit-wise discretization of one variable in the bilinear

term and then transforming the non-convex program into a mixed-integer linear pro-

gram (MILP), which is a strong competitor of BARON and has been applied to solve
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game-theoretical problems [43, 44] for two-player games. The MDT extends the Mc-

Cormick relaxation [45] and outperforms the piecewise McCormick relaxation [40, 41].

More importantly, it has been applied for solving game-theoretical problems [43, 44].

Now we discuss the MDT shown in Kolodziej et al. (2013). A bilinear program is:

minf0 =
∑

(i,j)∈BL0

ai,j,0yiyj + h0(y) (2.11a)

f1 =
∑

(i,j)∈BLq

ai,j,qyiyj + hq(y) q ∈ Q \ {0} (2.11b)

y ∈ S ∩ Ω ∈ Rn (2.11c)

where hq is linear, ai,j,q is a scalar with i ∈ I, j ∈ J , and q ∈ Q = {0, 1, . . . , n}
representing the set of all functions fq. BLq is a set of bilinear terms yiyj in function

fq with i 6= j. S ∈ Rn is convex and Ω ∈ Rn is an n-dimensional hyperrectangle with

bounds, i.e., Ω = {y ∈ Rn : 0 ≤ yL ≤ y ≤ yU}. By using the MDT, we can transform

the above non-convex program into the following MILP:

minf0 =
∑

(i,j)∈BL0

ai,j,0wi,j + h0(y) (2.12a)

f1 =
∑

(i,j)∈BLq

ai,j,qwi,j + hq(y) q ∈ Q \ {0} (2.12b)

wi,j =
P∑
l=p

9∑
k=0

10l · k · ŷi,j,k,l + ∆wi,j ∀(i, j) ∈ BLq, q ∈ Q (2.12c)

yj =
P∑
l=p

9∑
k=0

10l · k · zj,k,l + ∆yj ∀j ∈ {j | (i, j) ∈ BLq, q ∈ Q} (2.12d)

yi =
9∑

k=0

ŷi,j,k,l ∀(i, j) ∈ BLq, q ∈ Q, l ∈ L (2.12e)

yLi · zj,k,l ≤ ŷi,j,k,l ≤ yUi · zj,k,l ∀(i, j) ∈ BLq, q ∈ Q, l ∈ L, k ∈ K (2.12f)
9∑

k=0

zj,k,l = 1 ∀j ∈ {j | (i, j) ∈ BLq, q ∈ Q}, l ∈ L (2.12g)

yLi ·∆yj ≤ ∆wi,j ≤ yUi · yj ∀(i, j) ∈ BLq, q ∈ Q (2.12h)

∆wi,j ≤ (yi − yLi ) · 10p + yLi ·∆yj ∀(i, j) ∈ BLq, q ∈ Q (2.12i)

∆wi,j ≥ (yi − yUi ) · 10p + yUi ·∆yj ∀(i, j) ∈ BLq, q ∈ Q (2.12j)
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0 ≤ ∆yj ≤ 10p ∀j ∈ {j | (i, j) ∈ BLq, q ∈ Q} (2.12k)

zj,k,l ∈ {0, 1} ∀j ∈ {j | (i, j) ∈ BLq, q ∈ Q}, k ∈ K, l ∈ L (2.12l)

y ∈ S ∩ Ω ∈ Rn (2.12m)

where L = {p, p + 1, . . . , P} is a set of integers, K = {0, . . . , 9} is a base of 10

for discretizing yj (Eqs.(2.12d) and (2.12g)), ∆yi is a slack variable of yi bounded

between 0 and 10p (Eq.(2.12k)), ŷi,j,k,l = yi · zj,k,l (Eq.(2.12f)) with the corresponding

representation of yi in Eq.(2.12e), wi,j = yiyj with its slack variable ∆wi,j = yi ·
∆yj represented by the McCormick relaxation in Eqs.(2.12h)–(2.12j). Due to the slack

variable ofwi,j , the optimal objective value of this MILP is a lower bound of the original

bilinear program.

An iterative MDT algorithm is shown in Algorithm 2, which starts from some coarse

precision level, and then iteratively increases the precision level when the difference

between the lower and upper bounds is not small enough.

2.3 Related Work

In this section, we review existing research relevant to this thesis to highlight the novelty

of our work.

This thesis computes TMEs and the corresponding variants, where more specific re-

strictions or information is available. The TME is introduced by von Stengel and Koller

(1997), where computing a TME in normal-form games is formulated as a nonlinear

program. Hansen et al. (2008) show that computing a TME is FNP-hard. Basilico et al.

(2017) study the relation between the TME and the CTME in terms of efficiency. They

also propose a heuristic algorithm (we will discuss it when we compute TMEs) to com-

pute a TME through transforming the strategy of the team in a CTME, which may cause

a large loss for the team. Celli and Gatti (2018) study the TME with its variants (the T-

MECor and the TMECom) in extensive-form games and the relation between the TME

and its variants in terms of efficiency and show that computing a TME or a TMECor in

extensive-form games is FNP-hard. Celli and Gatti (2018) propose a column generation
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algorithm (an ISG algorithm) to compute a TMECor, and Farina et al. (2018) propose

a learning algorithm based on the fictitious play framework to compute a TMECor (we

will discuss them when we compute TMEsCor), which are still inefficient to solve large

games.

2.3.1 Converging to Team-Maxmin Equilibria

McMahan et al. [5] propose the first ISG (also called the double oracle algorithm) for

zero-sum two-player games, where the robot chooses a path to a goal location while

avoiding being detected by an adversary on the road. Given the adversary strategy, the

robot’s best response oracle (to compute a best response against the adversary strategy)

is modelled as a Markov Decision Process (MDP). Then solving the best response o-

racle is equivalent to solving the corresponding MDP. After that, ISG is used to solve

many similar problems, including the classic network security games [20, 21, 23] and

extensive-form games [38]. The MDP feature of the best response oracle in ISG makes

it possible to deploy deep reinforcement learning [46] and be extended to multiagent

learning [47, 48]. In this paper, we study the problem of extending ISG for converg-

ing to TMEs, which will be a base for developing learning algorithms for TMEs in

multiplayer games.

However, the extension is not straightforward. It is well-known that ISG converges

to an NE in zero-sum two-player games [5], but, which is unclear (to our best knowl-

edge) in multiplayer games. Then we theoretically show that ISG (Vanilla-ISG) con-

verges to an NE in multiplayer games. However, as we will illustrate, the existing ISG

cannot guarantee to converge to a TME. Then we try to extend it to ISGT for converg-

ing to a TME. As we will illustrate, it is difficult to converge to a TME, e.g., we cannot

simply add the team’s best response to the restricted game to converge to a TME. Then

we add our new operations to ISG to guarantee to converge to a TME by exploiting that

a TME is an NE maximizing the team’s utility. We also show that the conditions in our

operations cannot be further relaxed. Finally, we theoretically show that our new ISG

(i.e., ISGT) can guarantee to converge to a TME.
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The Correlated TME (CTME) [14] is a solution concept close to the TME, where

team players with the same utility function can synchronize their actions against the

adversary. That is, team players can jointly plan and execute their strategies, which

means that the team is equivalent to a single player with actions as the joint team action

profiles. Then, a CTME can be found through a linear program similar to finding an

NE in zero-sum two-player games. However, team players in a TME cannot correlate

their actions [15], and then cannot directly use the strategies in a CTME. To compute

a TME, one approach is that the team can compute a CTME first and then transform

the team’s correlated strategy into the team’s mixed strategy profile, where a transfor-

mation algorithm was proposed [14]. However, this transformation cannot theoretically

guarantee to obtain a team-maxmin strategy profile (in a TME) for the team and may

cause a huge loss for the team, as shown in the previous experiments [14]. We study the

limitations of computing TMEs based on CTMEs. We first theoretically show that using

the strategy transformed from a CTEM may cause an arbitrarily large loss to the team.

Second, we show that a TME in a restricted game with the strategies for computing a

CTME may not be an NE in the full game, and it may not be a TME in the full game

even it is an NE in the full game. These results show that it is not straightforward to

compute a TME via computing a CTME. Therefore, we develop our novel operations

to improve the scalability of our algorithm ISGT by computing a CTME to initialize the

strategy space and exploiting the team’s utility in a CTME to terminate earlier. Finally,

we theoretically show that our new CTME based ISG (e.g., CISGT) can guarantee to

converge to a TME.

2.3.2 Optimal Escape Interdiction on Transportation Networks

This type of problems is typically referred to as pursuit-evasion games (PEGs) within

the game theory literature, where the evader tries to minimize the probability of en-

countering the pursuer but the pursuer wants to thwart the evader’s plans by capturing

him [49, 50]. However, PEGs do not consider realistic traffic dynamics, where the travel

time is influenced by the traffic flow. Furthermore, the evader in PEGs cannot escape

to the external world, thus the goal of the pursuer is to minimize the number of rounds



Chapter 2. Background 28

needed to catch the evader. In contrast, our domain consists of a defender who aims

to maximize the probability of capturing the attacker before he escapes. While there

has been a variety of research work on applying game theoretic approaches to security

domains [39, 51–58], most of these unrealistically assume that at most one player takes

paths [59, 60], and the time dynamics are irrelevant [25, 61]. As such, these models are

not suitable for our problem. In particular, the attacker can exploit the fact that traffic is

slower in some places, and then can choose a path, which could have been covered by

the police in current models with no time dynamics, but not in our setting.

2.3.3 Computing Team-Maxmin Equilibria in Extensive-Form

Games

The solution concept similar to the TME is the CTME, where team players correlate

their strategies by exploiting a mediator recommending actions to them through com-

munication [14]. CTMEs in EFGs [15] include: 1) TMEs with Communication device

(TMECom) for the situation where team players can communicate and correlate their

actions before the play of the game and during the game’s execution; and 2) TMEs with

Coordination device (TMECor) for the situation where team players communicate and

correlate their actions only before the play (ex ante coordination [28]). A TMECom

be computed in polynomial time, but computing a TMECor is FNP-hard, where each

team member’s (normal-form) strategy space is exponential in the size of EFGs and

efficient algorithms [15, 28] are proposed. However, team players in a TME have no

communication and then do not correlate their actions [15]. To compute a TME in E-

FGs, one approach is to compute a CTME first and then transform it into the mixed

strategy profile of the team, motivated by the algorithm in normal-form games [14].

Unfortunately, this approach may give the team a huge loss because of the large gap

between the team’s utility obtained by this approach and the TME value as shown in the

previous experiments [14]. We theoretically show that this loss can be arbitrarily large.

In the domain of global optimization, the Multiparametric Disaggregation Tech-

nique (MDT) [40–42] for approximating bilinear terms is a strong competitor of

BARON. The MDT outperforms the piecewise McCormick relaxation [40, 41] and has
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been applied to solve game-theoretical problems [43, 44]. To approximate multilinear

terms, we can recursively transform multilinear terms to bilinear terms and then apply

the MDT inspired by the recursive McCormick relaxation [62]. However, the current

MDT approach cannot compute TMEs efficiently because the number of bilinear terms

in EFGs is large (e.g., there are hundreds of bilinear terms in small Kuhn poker games)

and the MDT will use a large number of constraints and integer variables for approxi-

mating each term. Therefore, instead of applying the MDT directly, we develop novel

techniques.

2.3.4 Computing Team-Maxmin Equilibria with Coordination De-

vice

The Team-Maxmin Equilibrium (TME) [13, 15] is a solution concept close to the T-

MECor, where a team of players with the same utility function independently play

against an adversary. The TME in extensive-form games assumes each team mem-

ber takes behavioral strategies, which comes at a high cost compared to the TMECor

[15, 28]. Firstly, computing a TME, i.e., finding the optimal joint behavioral strategies

of team members, is FNP-hard and a non-convex optimization problem [15]. Secondly,

the team may lose a large utility if they use the TME instead of the TMECor [15, 28].

Moreover, the team as a whole has imperfect recall due to the lack of communication

between team members during the game, where behavioral strategies cannot capture the

correlation between the normal-form strategies of team members [28]. That is, general-

ly, behavioral strategies are not realization-equivalent to normal-form strategies induced

by the coordination device, and then can cause a large loss of utilities to the team [28].

In fact, we cannot even guarantee the existence of NEs in these behavioral strategies

[63]. Therefore, using normal-formal strategies is crucial to a TMECor.

A TMECor can be computed via normal-form strategies for all players, but each

player’s normal-form strategy space is exponential in the size of the game tree. To com-

pute TMEsCor efficiently, Celli and Gatti [15] propose a hybrid representation, where

the team plays joint normal-form strategies while the adversary plays sequence-form

strategies. Farina et al. [28] develop a realization-form strategy representation for all
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players focusing on the probability distribution on terminal nodes of the game tree, and

then use it to derive an auxiliary game representing the original game through a set of

subtrees. Each subtree is a two-player game between one team member and the ad-

versary by playing realization-form strategy1, where the remaining team members fix a

joint pure normal-form strategy. Although the auxiliary game has a hybrid-form struc-

ture for the team, it is not a strategy representation and, most importantly, is based on the

realization-form strategy that is not able to be executed from the root of the game tree.

To make a realization-form strategy executable, they need to reconstruct a normal-form

strategy from it. Unfortunately, it is not easy to do that in large games. For example,

an only known existing reconstruction algorithm (Algorithm 2 in Celli et al. [29]) runs

in time O(|L|2) (L is the set of terminal nodes in a game), which is extremely large in

large games (see Table 6.1). To avoid such a cumbersome reconstruction algorithm, fol-

lowing the above hybrid form, we propose our new strategy representation for the team,

which is able to be executed from the root immediately. That is, in our hybrid-form s-

trategies, one team member takes sequence-form strategies (instead of realization-form

strategies) while other team members take pure normal-form strategies. However, it

is unclear whether our strategy representation with an infinite number of pure strate-

gies (due to the sequence-form strategies of one member) can be used to compute exact

TMEsCor.2 Fortunately, we theoretically show that our Column Generation (CG) al-

gorithm can guarantee to converge to a TMECor within a finite number of iterations in

our infinite strategy space. Therefore, although the similar structure of our hybrid-form

strategy has been mentioned in the literature, we are the first to make it become the

team’s strategy representation without depending on the inexecutable realization-form

strategies and study the theoretical property of using it to compute exact TMEsCor.

BR is an important component in CG to compute TMEsCor. The first proposed

BR for computing TMEsCor [15] focuses on whether or not a leaf is reached by a

1Although this team member’s realization-form strategy can be induced by a behavioral strategy
in the subtree, their theoretical result for the equivalence between the auxiliary game and the original
game is based on the realization-form strategy, and their algorithm Fictitious Team-Play (FTP) [28] also
assumes that this team member takes a realization-form strategy and then still needs to transform it into a
normal-form strategy to execute it from the root. Note that, although this team member’s strategy in the
output of the MILP representing BR of FTP is a sequence-form strategy, which is still transformed into a
realization-form strategy in FTP.

2They [28] do not consider this issue for the continuous realization-form strategy space because they
aim to compute approximate TMEsCor.
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New representation
BR

Integer variables Compatible Reduce space
Celli and Gatti [15] Yes |L| Yes No

Farina et al. [28] Yes
∑

i∈T\{1} |Σi| No No
Ours Yes

∑
i∈T\{1} |Σi| Yes Yes

TABLE 2.1: Comparing with existing approaches to compute TMEsCor in terms of
the new strategy representation, the number of integer variables (|L| is significantly
larger than

∑
i∈T\{1} |Σi| in extensive-form games) in BR, the compatibility of BR

with associated constraints, and reducing the feasible solution space of BR.

pure joint normal-form strategy of all team members, which has |L| integer variables

and then can only solve small games. Farina et al. [28] develop a faster BR focusing

on the utility of the joint pure normal-form strategy of all team members except one

given the realization-form strategy of other players. However, although the number

of integer variables is significantly reduced to the number of sequences of all team

members except one, this BR is still inefficient in large games with a large number of

sequences. To speed up, one possible approach is to add associated constraints [16] to

reduce the feasible solution space of the MILP representing BR.1 Unfortunately, their

BR [28] is not compatible with associated constraints. Therefore, we cannot directly

add associated constraints to this BR. Overall, the main difference between different

BR approaches is about how to represent the team’s reaching probabilities for terminal

nodes with utilities, which affects the number of integer variables and the compatibility

with associated constraints. Our formulation is the first BR that can reduce the number

of integer variables and can be compatible with associated constraints () at the same

time (see Table 2.1).

Associated constraints are used to reduce the feasible solution space of an MILP

for computing a TME in Zhang et al. [16]. These associated constraints are generated

through a global optimization technique, which is based on the recursive McCormick

relaxation [45, 62]. In our case, we can use the recursive McCormick relaxation to

exactly transform the multilinear BR into an MILP. However, we then need to recur-

sively generate associated constraints and then generate associated constraints from the

terminal nodes to the root, which needs to generate new terms for sequences reaching

nonterminal nodes frequently, similar to the algorithm in Zhang et al. [16]. When the

1Adding associated constraints, to our best knowledge, is the only known effective method to do that.
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number of team players is larger, the number of variables in each multilinear term is

larger, which needs much more recursive operations. This recursive generation of asso-

ciated constraints undermines the effort to improve the speed by reducing the feasible

solution space when the number of team players is large. To conquer this challenge,

we develop our global optimization technique ART without depending on the recursive

method, which efficiently generates associated constraints.

2.3.5 Optimal Interdiction of Urban Criminals with the Aid of

Real-Time Information

The pursuit-evasion game (PEG) typically assumes that the evader knows the locations

of the pursuer’s units, but the pursuer does not know the location of the evader [35, 64].

While our model is a variant of PEG, we focus on a realistic setting in our motivating

scenario where the defender has the adversary’s real-time location information. Most

of the work on PEGs cannot capture the special structure of specific problems. For

example, although the partially observable stochastic game [65] is domain-independent,

their model focuses on infinite-horizon games. Similarly, the patrolling security game

(PSG) [36, 66], where the defender defends an environment against an unseen intruder

who needs multiple turns to perform the attack, is typically modeled as a stochastic

game with infinite horizon. Recently, PSGs have been extended to cover the situation

that the defender receives a spatially uncertain signal after being attacked [67, 68], and

has to reach the attacked target to catch the attacker. However, this signal response game

does not consider real-time information after receiving the signal due to the fact that no

more information is available for the defender after receiving the signal.

ISG has been successfully used to exactly solve many games [20, 34, 37, 38], whose

core part is to compute the best response strategy. However, the existing exact solution

approaches for both imperfect recall games and perfect recall games are unable to solve

NEST efficiently. Firstly, NEST is similar to an imperfect recall game NFGSS [37],

but NFGSS does not consider real-time information. Note that the general form of

imperfect recall games cannot be exactly solved by a linear program [44]. Although

NFGSS is solved by combining ISG with the network-flow representation of strategies
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[69], its algorithm is impractical for the large NEST as their ISG’s BR with a depth-

first search does not set bounds to cut branches and then evaluates all related states to

compute the best response. Secondly, if NEST is modeled as a perfect recall game [3],

it will lead to a significantly larger strategy space than the imperfect recall approach

(see the discussion in [37]). Moreover, the branch-and-bound BR in the latest exact

algorithm for perfect recall games [38] is still impractical for the large NEST because

its bounds are very loose. More specifically, in their BR, the upper bound for each node

always equals the maximum possible value of the game, and the lower bound for each

succeeding node of the first node in the information set for the searching player always

equals the minimum possible value of the game. The immediate result is that at least

one succeeding state of each action will be evaluated. However, it is impractical to

evaluate at least one succeeding state for each action in each state in NEST because

NEST has an extremely large state space and a large action space for each state in the

MDP for the defender.



Chapter 3

Converging to Team-Maxmin

Equilibria in Zero-Sum Multiplayer

Games

This chapter1 focuses on computing TMEs [13–16] in normal-form games. Due to the

hardness to solve the nonlinear program to find a TME, we develop our ISG algorith-

m to compute a TME. However, the study of ISG for computing TMEs is completely

unexplored. In this chapter, we first study the properties of ISG for multiplayer games,

showing that ISG converges to an NE but may not converge to a TME, and it can cause

an arbitrarily large loss to the team. Second, we design an ISG variant (ISGT) by

exploiting that a TME is an NE maximizing the team’s utility and show that ISGT con-

verges to a TME and the impossibility of relaxing conditions in ISGT. Third, to further

improve the scalability, we design an ISGT variant (CISGT) by using the strategy space

for computing an equilibrium that is close to TME but is easier to be computed as the

initial strategy space of ISGT. Finally, extensive experimental results show that CISGT

is orders of magnitude faster than ISGT and the state-of-the-art algorithm to compute

TMEs in large games.

1The work in this chapter has been published as Youzhi Zhang and Bo An. Converging to team-
maxmin equilibria in zero-sum multiplayer games. Proceedings of the 37th International Conference on
Machine Learning (ICML), accepted, 2020.

34
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3.1 ISG in Multiplayer Games

In this section, we show that Vanilla-ISG converges to an NE in multiplayer games.

However, we show that Vanilla-ISG cannot guarantee to converge to a TME. Then, we

provide a method (ISGT) to amend it by exploiting the property that a TME is an NE

maximizing the team’s utility.

In this chapter, G is called GT if the TME can be deployed. Without loss of

generality, we assume that G′T with A′ = A′T × A′n is a restricted game of GT with

A′i ⊆ Ai(∀i ∈ N).

3.1.1 Limitations of Vanilla-ISG

We first show that Vanilla-ISG can converge to an NE but cannot guarantee to converge

to a TME (even cannot guarantee to approximate a TME).

Theorem 3.1. Vanilla-ISG converges to an NE in G.

Proof. First, Vanilla-ISG will converge because the action set for each player is finite

in G. Second, when Vanilla-ISG converges to strategy profile x∗, ui(ai, x∗−i) ≤ ui(x
∗)

(∀ai ∈ Ai, i ∈ N ), which means that ui(x∗i , x
∗
−i) ≥ ui(xi, x

∗
−i) (∀xi ∈ Xi, i ∈ N ).

Therefore, x∗ is an NE.

In multiplayer games, there are many different NEs, which are not exchangeable and

give different utilities to players. However, a TME is an NE giving the best utility for the

team, which is not considered by Vanilla-ISG. Indeed, Vanilla-ISG may not converge to

a TME.

Proposition 3.1. Vanilla-ISG may not converge to a TME in GT .

Proof. By Theorem 3.1, Vanilla-ISG converges to an NE in GT . Now we only need to

show that this NE may not be a best NE for the team. Consider GT with three players

(two teammates), two actions ({1,2}) per player, and the following utility function:

uT (a)=

10 if a = (1, 2, 2) or (2, 1, 1)

0 otherwise
(3.1)
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Suppose that the restricted game G′T in Vanilla-ISG is initialized with action sets

A′1 = {1}, A′2 = {2}, A′3 = {2}. In G′T , the single equilibrium is a pure strategy profile

(1, 2, 2). Then, A′3 is expanded to {1, 2} because u3(1, 2, 1) = 0 > −10 = u3(1, 2, 2),

while A′1 and A′2 are not expanded. Now the pure strategy profile (1, 2, 1) is the new

equilibrium in the new G′T with uT (1, 2, 1) = 0. For each player, A′i will not be expand-

ed because players 1 and 2 will gain 0 from the unilateral deviation, while player 3 will

lose utility 10 from the unilateral deviation. That is, pure strategy profile (1, 2, 1) is an

NE in GT , i.e., Vanilla-ISG converges to an NE.

Consider the mixed strategy profile x = (x1, x2, x3) with xi = (0.5, 0.5), which is

an NE with utility 2.5 for the team because each player is indifferent between playing

their actions with their utility under x, e.g., uT (1, x−1) = uT (2, x−1) = 2.5. Therefore,

pure strategy profile (1, 2, 1) is not a best NE for the team, which means that pure

strategy profile (1, 2, 1) is not a TME, concluding the proof.

Vanilla-ISG cannot guarantee to converge to a TME and also may not approximate

a TME by the following result.

Proposition 3.2. Vanilla-ISG can cause an arbitrarily large loss to the team in GT .

Proof. ConsiderGT with utilities shown in Eq.(3.1). As shown in the proof for Theorem

3.1, Vanilla-ISG can converge to the NE (1, 2, 1) (pure strategy profile) with utility 0 for

the team while x = (x1, x2, x3) with xi = (0.5, 0.5) is another NE with utility 2.5 for

the team. Therefore, Vanilla-ISG can cause an arbitrarily large loss to the team because
2.5
0

=∞.

3.1.2 The Difficulty of Converging to a TME

Vanilla-ISG cannot guarantee to converge to a TME, so we need to extend the current

ISG to converge to a TME. This section shows the difficulty of converging to a TME.

Vanilla-ISG’s failure to converge to a TME shows that we cannot simply add each

player’s best response to obtain a TME. One straightforward extension of this idea is

that we add the team’s best response to the restricted game. However, the following

result shows that this extension cannot guarantee to converge to a TME.
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Proposition 3.3. x may not be a TME in GT if x is a TME in G′T and an NE in GT , and

@aT ∈ (AT \ A′T ) such that uT (aT , xn) > uT (x).

Proof. Consider GT with three players (two teammates), A2 = {1, 2, 3}, A1 = A3 =

{1, 2}, and the following utility function:

uT (a)=


10 if a = (1, 1, 1) or (2, 2, 2)

5 if a = (2, 3, 1)

0 otherwise

(3.2)

In G′T , A′1 = A′2 = A′3 = {1, 2}. Let player i’s mixed strategy be xi = (xi(1), xi(2)).

Given x1, x2, and the adversary’s action 1, the team’s utility is:

uT (x1, x2, 1) = 10x1(1)x2(1)

Given x1, x2, and the adversary’s action 2, the team’s utility is:

uT (x1, x2, 2) = 10(1− x1(1))(1− x2(1)) = 10(1− x1(1)− x2(1) + x1(1)x2(1))

To achieve the TME value, we need to maximize the minimum of uT (x1, x2, 1) and

uT (x1, x2, 2) (see Eq.(2.2)). The case that uT (x1, x2, 1) = uT (x1, x2, 2) gives the largest

minimum to the team. Let uT (x1, x2, 1) = uT (x1, x2, 2), we have x1(1) = 1 − x2(1).

Then we have:

uT (x1, x2, 1) = 10x1(1)x2(1) = 10(−(x2(1)− 0.5)2 + 0.25)

which has its maximum 2.5 at (x2(1) = 0.5. Then we have (x1(1) = 0.5. Now we

have the team-maxmin strategy profile xT = (x1, x2) = ((0.5, 0.5), (0.5, 0.5)) with the

team utility 2.5 in G′T . Given this xT , we can achieve x3 = (0.5, 0.5) by the following

equation (see Eq.(2.3)):

uT (x1, 1, x3) = uT (x1, 2, x3)⇒ 0.5× 10× x3(1) = 0.5× 10× (1− x3(1))
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Then x = (x1, x2, x3) is a TME in G′T . Note that uT (x1, 3, x3) = 0.5 × 0.5 × 5 =

1.25 < 0.5. Therefore, strategy profile x = (x1, (0.5, 0.5, 0), x3) is an NE in GT . In

addition, we have uT (2, 3, x3) = 2.5, which is not larger than uT (x) = 2.5. However,

strategy profile x′ = ((0, 1), (0, 1
3
, 2

3
), (2

3
, 1

3
)) is an NE in GT with utility 10

3
(> 2.5) for

the team. The reason is that uT (1, x′2, x
′
3) = 0 < 10

3
, and uT (x′1, 1, x

′
3) = 0 < 10

3
=

uT (x′1, 2, x
′
3) = uT (x′1, 3, x

′
3) = uT (x′1, x

′
2, 1) = uT (x′1, x

′
2, 2). Therefore, x is not a

TME in GT .

The reason for the above failure is that the adversary tries to avoid the strategy

that gives a high utility for the team, which gives a low utility for himself in zero-sum

games. Then we need to add more actions to the restricted game, instead of only adding

the team’s best response (i.e., adding aT such that aT = arg maxa′T∈AT uT (aT , xn) and

uT (aT , xn) > uT (x), where x is a TME in G′T ) or all of the team’s better responses

(i.e., adding aT such that uT (aT , xn) > uT (x)). To do that, we can add the team’s joint

actions with outcomes that are better than the utility of the equilibrium in the restricted

game (i.e., adding aT such that uT (aT , an) > uT (x)). However, there may be too many

joint actions satisfying this condition in the full game, and adding too many actions

to the restricted games will make it hard to compute a TME. In ISG, we compute the

team’s best response against the adversary’s strategy and add it (only one joint action) to

the restricted game at each iteration. To speed up, two straightforward extensions of this

idea are that: 1) we only add joint actions related to the support set of the adversary’s

strategy, i.e., adding (aT , an) ∈ (AT \A′T )×An,xn such that uT (aT , an) > uT (x) toG′T ;

and 2) we only add one joint action that can affect the TME value at each iteration. The

following results show that both extensions cannot guarantee to converge to a TME.

Proposition 3.4. x may not be a TME in GT if x is a TME in G′T and an NE in GT , and

@(aT , an) ∈ (AT \ A′T )× An,xn such that uT (aT , an) > uT (x).
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Proof. Consider GT with three players (two teammates), A1 = A2 = {1, 2, 3}, A3 =

{1, 2}, and the following utility function:

uT (a)=



3 if a = (1, 1, 1) or (1, 1, 2)

21 if a = (2, 2, 1)

3 if a = (2, 3, 1), (3, 2, 1), or (3, 3, 1)

10 if a = (2, 3, 2), (3, 2, 2), or (3, 3, 2)

0 otherwise

(3.3)

In G′T , A′1 = A′2 = A′3 = {1, 2}. Obviously, pure strategy profile a = (1, 1, 1) is an NE

in G′T and GT . Now we check that x is a TME in G′T . Let player i’s mixed strategy be

xi = (xi(1), xi(2)). Given x1, x2, and the adversary’s action 1, the team’s utility is:

uT (x1, x2, 1) = 3x1(1)x2(1) + 21(1− x1(1))(1− x2(1))

Given x1, x2, and the adversary’s action 2, the team’s utility is:

uT (x1, x2, 2) = 3x1(1)x2(1)

We can see that, if x1(1) < 1 and x2(1) < 1, action 1 is strictly dominated by action 2

for the adversary. However, given the adversary action 2 inG′T , the team cannot achieve

the utility that is higher than uT (a) = 3. Now, given any strategy of the adversary, if

player 1’s strategy is x1(1) = 1, player 2’s best response is x1(1) = 1, and vice versa.

In this case, a = (1, 1, 1) (i.e., x = ((1, 0), (1, 0), (1, 0))) is a TME in G′T . Given x,

@(aT , an) ∈ (AT \A′T )×An,xn such that uT (aT , an) > uT (x). However, strategy profile

x′ = ((0, 0.5, 0.5), (0, 0.5, 0.5), ( 5
14
, 9

14
)) is an NE in GT with utility 7.5(> 3) for the

team. The reason is that uT (1, x′2, x
′
3) = 0 < 7.5 = uT (2, x′2, x

′
3) = uT (3, x′2, x

′
3),

and uT (x′1, 1, x
′
3) = 0 < 7.5 = uT (x′1, 2, x

′
3) = uT (x′1, 3, x

′
3) = uT (x′1, x

′
2, 1) =

uT (x′1, x
′
2, 2). Therefore, x is not a TME in GT .

Proposition 3.5. x may not be a TME in GT if x is a TME in G′T and an NE in GT , and

@(aT , an) ∈ (AT \ A′T )× A′n with uT (aT , an) > uT (x) such that the TME value in G′T

changes after adding aT to A′T .
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Proof. Consider GT with three players (two teammates), A1 = A2 = {1, 2, 3}, A3 =

{1, 2}, and the following utility function:

uT (a)=


3 if a = (1, 1, 1) or (1, 1, 2)

100 if a = (2, 2, 1) or (3, 3, 2)

0 otherwise

(3.4)

In G′T , A′1 = A′2 = {1}, A′3 = {1, 2}. Obviously, x = ((1), (1), (0.5, 0.5)) is an

NE in G′T and GT with utility 3 for the team, which is also a TME in G′T . If we

add aT = (2, 2) or (3, 3), according to the analysis on the case in Eq.(3.3), x with

x1(1) = 1 = x2(1) and x3(1) = x3(2) = 0.5 is still a TME in G′T with the TME

value 3. That is, the TME value in G′T does not change. However, strategy profile

x′ = ((0, 0.5, 0.5), (0, 0.5, 0.5), (0.5, 0.5) is an NE in GT with utility 25(> 3) for the

team. The reason is that uT (1, x′2, x
′
3) = 0 < 25 = uT (2, x′2, x

′
3) = uT (3, x′2, x

′
3),

and uT (x′1, 1, x
′
3) = 0 < 25 = uT (x′1, 2, x

′
3) = uT (x′1, 3, x

′
3) = uT (x′1, x

′
2, 1) =

uT (x′1, x
′
2, 2). Therefore, x is not a TME in GT .

3.1.3 Converging to a TME

Based on the discussion in the previous section, this section proposes our ISG algorithm

for converging to a TME (ISGT). In fact, it exploits that a TME is an NE maximizing

the team’s utility. Basically, ISGT makes sure that its output x satisfies three conditions:

1) x is a TME in G′T ; 2) x is an NE in GT ; and 3) @(aT , an) ∈ (AT \ A′T ) × A′n such

that uT (aT , an) > uT (x).

Our ISGT is shown in Algorithm 3.1 Line 5 computes a TME for G′T by solving

Problem (2.2) (i.e., CoreTME), and Line 10 expands A′i for each player i by solving the

best response oracle. If 1) x is a TME inG′T ; and 2) x is an NE inGT (by Theorem 3.1),

the inner loop will terminate. Line 15 looks for aT that gives a better utility to the team

1Another algorithm framework that we can develop is only using one loop. That is, we directly use
the operations in Lines 15 and 16 of Algorithm 3 to replace the best response oracle for the team in Line
10 of Algorithm 3. However, experimental results show that this framework can be significantly slower
than the current framework shown in Algorithm 3, which may be partially due to that this framework
will add too many actions to the restricted game at early iterations. Therefore, we adopt the current
framework.
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Algorithm 3: ISG for a TME (ISGT)
1: Initialize G′T with A′←A′T ×A′n, uT (x∗)←−∞, x∗ ← ∅
2: repeat
3: Iteration← 1
4: repeat
5: x← CoreTME(G′T )
6: if uT (x) = uT (x∗)& Iteration = 1 then
7: return x∗
8: end if
9: for i ∈ N do

10: A′i ← A′i ∪ {ai ← BR(x−i)}
11: end for
12: Iteration← Iteration +1
13: until convergence (A′ does not change)
14: x∗ ← x;
15: A′′T ← {aT | uT (aT , an) > uT (x), (aT , an) ∈ (AT \A′T )×A′n}
16: A′T ← A′T ∪A′′T
17: until convergence (A′T does not change)
18: return x.

outside of G′T and updates A′T (Line 16). If no such aT , the outer loop will terminate.

Moreover, after obtaining an NE, ISGT records it as x∗ in Line 14, and immediately

returns it if there are not better NEs in Line 7.

Now ISGT definitely reduces the strategy space to AT ×A′n to find a TME. To show

that the output x of ISGT is a TME, we first show that if a TME in a restricted game is

an NE in the full game, then it is also a TME in a larger restricted game including all

adversary strategies.

Lemma 3.1. If x is a TME in G′T and an NE in GT , then x is a TME in G′′T with

A′′ = A′T × An.

Proof. Suppose that there is an NE x′(i.e., (x′T , x
′
n)) in G′′T such that uT (x′) >

uT (x) and An,x′n 6⊆ A′n. Then, un(x′) ≥ un(x′T , x
′′
n) (∀x′′n with An,x′′n ⊆

A′n), i.e., minx′′n,An,x′′n⊆A
′
n
uT (x′T , x

′′
n) ≥ uT (x′). Therefore, in G′T , we have

maxxT minx′′n uT (xT , x
′′
n) ≥ minx′′n uT (x′T , x

′′
n) ≥ uT (x′) > uT (x), which means that,

uT (x) is not the TME value in G′T , i.e., x is not a TME in the game G′T , concluding the

proof.
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Based on the above result, now we show that if a TME in a restricted game is an NE

in the full game and there is no pure strategy profile outside the restricted game giving

larger utility than this TME value, then it is also a TME in the full game.

Lemma 3.2. x is a TME in GT if a) x is a TME in G′T , b) x is an NE in GT , and c)

@(aT , an) such that uT (aT , an) > uT (x) with aT ∈ AT \ A′T .

Proof. By Lemma 3.1, x is a TME of G′′T with A′′ = A′T × An. Suppose that there is

a TME x′ = (x′T , x
′
n) in GT such that uT (x′) > uT (x) and AT,x′T 6⊆ A′T . That is, there

is ai /∈ A′i(i ∈ T ) such that x′i(ai) > 0. By the condition c), we have uT (aT , an) ≤
uT (x) for each aT ∈ AT \ A′T . Then, uT (ai, x

′
−i) ≤ uT (x) < uT (x′), and then there

exists some a′i such that uT (a′i, x
′
−i) > uT (x′) (otherwise, uT (x′) will not be larger

than uT (ai, x
′
−i)). Then we construct a new strategy x′′ which is identical to x′, but

x′′i (ai) = 0 and x′′i (a
′
i) = x′i(ai)+x′i(a

′
i). Then uT (x′′)−uT (x′) = x′i(ai)(uT (a′i, x

′
−i)−

uT (ai, x
′
−i)) > 0, which causes a contradiction, concluding the proof.

Theorem 3.2. x is a TME in GT if: 1) x is a TME in G′T ; 2) x is an NE in GT ; and 3)

@(aT , an) ∈ (AT \ A′T )× A′n such that uT (aT , an) > uT (x).

Proof. By Lemma 3.2, x is a TME inG′′T withA′′T = (AT , A
′
n). Then, with the condition

2), x is a TME in GT with A = (AT , An) by Lemma 3.1.

In addition, ISGT (Line 7) indeed can terminate if the TME value does not change

after adding all joint actions that are better than the equilibrium strategy by the following

result.

Theorem 3.3. x is a TME in GT if x is a TME in G′T and an NE in GT , uT (x) is the

TME value in G′′T with @(aT , an) ∈ (AT \A′T )×A′n such that uT (aT , an) > uT (x), and

G′T is a restricted game of G′′T that is a restricted game of GT .

Proof. x is an NE in G′T because x is a TME in G′T . Then, x is an NE in G′′T because

x is an NE in GT , and G′T is a restricted game of G′′T that is a restricted game of GT .

Moreover, x is a TME in G′′T because uT (x) is the TME value in G′′T . By Theorem 3.2,

x is a TME in GT .
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More importantly, Propositions 3.3–3.5 have shown the impossibility of relaxing

these conditions in Theorems 3.2 and 3.3. Now we can have our following conclusion.

Theorem 3.4. ISGT converges to a TME in GT .

Proof. A is finite, so ISGT will terminate. ISGT terminates with output x satisfying

conditions in Theorem 3.2 or 3.3, so x is a TME in GT .

3.2 The CTME Based ISGT (CISGT)

Even though ISGT can guarantee to converge to a TME, it is not efficient enough as

ISGT needs to solve the non-convex Problem (2.2) in G′T at each iteration. To speed up,

we try to reduce the number of iterations by effectively initializing the restricted game

G′T through computing CTMEs. Now we first discuss the limitations of computing

TMEs based on CTMEs.

3.2.1 Limitations of Computing TMEs by CTMEs

A CTME is close to a TME, and CTMEs are used to approximate TMEs [14] by Trans-

forming the correlated strategy in a CTME into the team’s Mixed Strategy Profile (TM-

SP). In this section, we show the limitations of computing TMEs based on CTMEs. We

first show that using TMSPs may cause an arbitrarily large loss to the team. Second, we

show that a TME in G′T with the strategies for computing a CTME may not be an NE

in GT , and it may not be a TME in GT even it is an NE in GT . Moreover, we show that

using the strategy profile in this TME of such G′T may cause an arbitrarily large loss to

the team as well.

To our best knowledge, the best algorithm [14] to obtain a TMSP is: Given

the team’s strategy in a CTME: xT ∈ ∆(AT ), player 1’s mixed strategy x1(a1) =∑
a′∈AT\{1} xT (a1, a

′)(∀a1 ∈ A1); player i’s mixed strategy xi(ai) = 1
|Ai,xT |

if |Ai,xT | >
0, otherwise xi(ai) = 0 (∀i ∈ T \ {1}, ai ∈ Ai). This algorithm returns the team’s best

TMSP among TMSPs obtained by exchanging player 1 with each team member. We



Chapter 3. Converging to Team-Maxmin Equilibria 44

call it TMSP-Alg. To measure the inefficiency of transforming the correlated strategies

in a CTME into a TMSP, we adopt the concept of Price of Correlated strategies (PoC),

introduced in Zhang and An (2020). Formally, PoC = vm
vc

, where vm is the TME value

and vc is the team utility obtained from a TMSP. Unfortunately, PoC can be arbitrarily

large in GT .

Proposition 3.6. PoC can be arbitrarily large in GT .

Proof. Consider GT with three players (two teammates), A1 = A2 = A3 = {1, 2, 3},
and the following utility function:

uT (a1, a2, a3)=



1 if a1 = a2 = a3

1

4
if a1 = 1, a2 = 2

−5

4
if a1 = 2, a2 = 1

0 otherwise

(3.5)

A CTME x is xT (1, 1) = xT (2, 2) = xT (3, 3) = 1
3

(note that, given any adversary

strategy, one of these three pure strategies dominates other strategies, and any of them

should be played with nonzero probability otherwise the adversary’s best response gives

utility 0 to the team) and xn(1) = xn(2) = xn(3) = 1
3
. Now, by TMSP-Alg, x’s unique

TMSP prescribes that x1 = (1
3
, 1

3
, 1

3
) and x2 = (1

3
, 1

3
, 1

3
), while the adversary (player 3)

is indifferent between playing any strategies given this TMSP. Then, vc = 0.

A TME is the pure strategy profile (1, 2, 3) (obtained from solving Problem (2.2)),

where player 1 plays action 1, player 2 plays action 2, while player 3 plays action 3. The

team’s utility is uT (1, 2, 3) = 0.25. The reason is that the team will obtain utility 0 if

any team member unilaterally deviates to other actions, and the adversary is indifferent

among all strategies.

Therefore, PoC = vm
vc

= 0.25
0

=∞.

Another idea is to compute a TME in G′T with strategies for computing a CTME.

There are two cases: 1) G′T including all support sets of all players in a CTME; and 2)

G′T including all strategies for computing a CTME. However, in each case, this TME
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may not be an NE in GT , and it may not be a TME in GT even it is an NE in GT by the

following results.

Proposition 3.7. x may not be an NE in GT if x is a CTME in GT , and x is a TME in

G′T with A′ = (×i∈TAi,xT )× An,xn .

Proof. Consider GT with three players (two teammates), A1 = A2 = {1, 2}, A3 =

{1, 2, 3}, and the following utility function:

uT (a)=



10 if a = (1, 1, 1) or (2, 2, 2)

10 if a = (1, 1, 3) or (2, 2, 3)

−10 if a = (2, 1, 3) or (1, 2, 3)

0 otherwise

(3.6)

A CTME x is xT (1, 1) = xT (2, 2) = 0.5 and x3(1) = x3(2) = 0.5 with utility 5 for

the team (it is easy to verify that no players would like to deviate to other strategies,

e.g., action 3 for the adversary with uT (xT , 3) = 10 > 5 is not better than x3). Then

we have G′T with with A′1 = A′2 = A′3 = {1, 2}. According to the analysis on the case

in Eq.(3.2), x with xi(1) = xi(2) = 0.5 is a TME in G′T with utility 2.5 for the team.

However, for the adversary action 3, uT (xT , 3) = 0.5×0.5(10+10−10−10) = 0 < 2.5.

Therefore, x is not an NE in the original game GT .

Corollary 3.1. x may not be an NE in GT if x is a CTME in GT and is computed in G′T ,

and x is a TME in G′T .

Proof. Suppose a CTME x is computed in G′T and A′ = (×i∈TAi,xT ) × An,xn . By

Proposition 3.7, x may not be an NE in GT , even if x is a TME in G′T .

Proposition 3.8. x may not be a TME in GT if x is a CTME in GT , and x is a TME in

G′T with A′ = (×i∈TAi,xT )× An,xn and an NE in GT .

Proof. Consider the case in Eq.(3.2). A CTME x is xT (1, 1) = xT (2, 2) = 0.5 and

x3(1) = x3(2) = 0.5 with utility 5 for the team (it is easy to verify that no players would

like to deviate to other strategies). Then we haveG′T with withA′1 = A′2 = A′3 = {1, 2}.
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According to the analysis on the case in Eq.(3.2), x with xi(1) = xi(2) = 0.5 is a TME

inG′T with utility 2.5 for the team. x is an NE inGT . However, according to the analysis

on the case in Eq.(3.2), x is not a TME in GT .

Corollary 3.2. x may not be a TME in GT if x is a CTME in GT and is computed in

G′T , and x is a TME in G′T and an NE in GT .

Proof. Suppose a CTME x is computed in G′T and A′ = (×i∈TAi,xT ) × An,xn . By

Proposition 3.8, x may not be a TME in GT , even if x is a TME in G′T and an NE in

GT .

Computing a TME in G′T with strategies for computing a CTME cannot guarantee

to obtain a TME in GT but also can cause an arbitrarily large loss to the team.

Proposition 3.9. If x is a CTME inGT , and x is a TME inG′T withA′ = (×i∈TAi,xT )×
An,xn , then playing xT may cause an arbitrarily large loss to the team.

Proof. Consider GT with utilities shown in Eq.(3.6). As shown in the proof for Propo-

sition 3.7, A CTME x is xT (1, 1) = xT (2, 2) = 0.5 and x3(1) = x3(2) = 0.5 with

utility 5 for the team. Then we have G′T with with A′1 = A′2 = A′3 = {1, 2}, and x with

xi(1) = xi(2) = 0.5 is a TME in G′T with utility 2.5 for the team. Given xT , the adver-

sary best response is action 3 with utility uT (xT , 3) = 0.5×0.5(10 + 10−10−10) = 0

for the team. Now an NE x′ = ((1
3
, 2

3
), (1

3
, 2

3
), (2

3
, 0, 1

3
)) (it is easy to verify that no

players would like to deviate to other strategies, e.g., action 3 for the adversary with

uT (xT , 2) = 40
9
> 10

9
is not better than x′3) will given utility 10

9
to the team. Then,

playing xT may cause an arbitrarily large loss to the team because 10/9
0

=∞.

Corollary 3.3. If x is a CTME in GT , and x is a TME in G′T where x is computed, then

playing xT may cause an arbitrarily large loss to the team.

Proof. Suppose a CTME x is computed in G′T and A′ = (×i∈TAi,xT ) × An,xn . By

Proposition 3.9, playing xT may cause an arbitrarily large loss to the team.
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Algorithm 4: The CTME Based ISGT (CISGT)
1: Initialize G′T with A′ = A′T ×A′n, uT (x∗) = −∞, x∗ ← ∅
2: repeat
3: x← CoreCTME(G′T );
4: A′T ← A′T ∪ {aT ← BR(xn)}
5: A′n ← A′n ∪ {an ← BR(xT )}
6: until convergence (A′ does not change)
7: xT ←TMSP-Alg(xT )
8: if uT (xT , BR(xT )) ≥ uT (x) then
9: return (xT , xn)

10: end if
11: repeat
12: Lines 4–13 in ISGT
13: if uT (x) ≥ uT (x) then
14: return x
15: end if
16: Lines 14–16 in ISGT
17: until convergence (A′T does not change)
18: return x.

3.2.2 CISGT: Efficiently Converging to a TME

Based on our discussion in the previous section, this section proposes our CISGT. In

addition to the operations in ISGT, CISGT has two new operations: 1) it initializes

the restricted game through computing a CTME to reduce the number of iterations for

solving Prolbem (2.2); and 2) it exploits that the team’s utility in a CTME is an upper

bound of the TME value [14] to terminate earlier.

Our CISGT is shown in Algorithm 4.1 CISGT uses Vanilla-ISG to compute a CTME

at Lines 2–6. Then, CISGT computes a TMSP at Line 7 and then checks whether we

have obtained a TME to return it at Lines 8–9. After that, CISGT repeats the operations

in ISGT to compute a TME in G′T and makes sure that it is also an NE in GT at Line

12. CISGT then checks whether we have obtained a TME to return it at Lines 13–14.

At Line 16, CISGT adds actions by repeating the operations in ISGT.

To show the convergence of CISGT, we first show that, a TMSP is part of a TME if

the utility obtained by it is not less than the team’s utility in a CTME.

1When we compute an ε-TME, we only need to set uT (xT , BR(xT )) ≥ uT (x) − ε at Line 8 and
uT (x) ≥ uT (x)− ε at Line 13, and all properties still hold.
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Theorem 3.5. In GT , given a CTME x = (xT , xn) and a mixed strategy profile for the

team xT such that uT (xT , BR(xT )) ≥ uT (x), then (xT , xn) is a TME.

Proof. Let v∗ be the TME value of GT . By the relation between CTMEs

and TMEs discussed by Basilico et al. (2017), we have v∗ ≤ uT (x) =

maxx′T minx′n uT (x′T , x
′
n) = maxx′T uT (x′T , xn). Then, we have uT (xT , BR(xT )) =

minx′n uT (xT , x
′
n) ≤ uT (xT , xn) ≤ maxx′i uT (xT\{i}, x′i, xn) ≤ maxx′T uT (x′T , xn) =

uT (x). Consequently, given xT , for any adversary strategy x′n, we have un(xT , x
′
n) −

un(xT , xn) = −uT (xT , x
′
n) − (−uT (xT , xn)) = uT (xT , xn) − uT (xT , x

′
n) ≤ uT (x) −

uT (xT , BR(xT )) ≤ 0. Similarly, given xn and xT\{i}, for any player i’s strate-

gy x′i, we have uT (xT\{i}, x′i, xn) − uT (xT , xn) ≤ uT (x) − uT (xT , BR(xT )) ≤ 0.

Then, (xT , xn) is an NE. In addition, due to uT (xT , BR(xT )) = minx′n uT (xT , x
′
n) ≤

maxx′T minx′n uT (x′T , x
′
n) = v∗, we have uT (xT , xn)−v∗ ≤ uT (x)−uT (xT , BR(xT )) ≤

0 and v∗ − uT (xT , xn) ≤ uT (x) − uT (xT , BR(xT )) ≤ 0. Therefore, (xT , xn) is a

TME.

Similarly, a TME in G′T is a TME in GT if the utility obtained by it is not less than

the team’s utility in a CTME.

Theorem 3.6. x is a TME in GT if x is a TME in G′T and an NE in GT , x is a CTME in

GT with uT (x) ≥ uT (x).

Proof. Let v∗ be the TME value of GT . By the relation between CTMEs and TMEs

discussed by Basilico et al. (2017), we have uT (x) ≤ v∗ ≤ uT (x). Obviously, x is a

TME in GT .

Finally, based on the above results, we have the following conclusion.

Theorem 3.7. CISGT converges to a TME.

Proof. First, CISGT will converge because the action set for each player is finite in GT .

Second, the output x is a TME by Theorems 3.4–3.6.
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3.3 Experiment Evaluation

We experimentally evaluate CISGT, comparing the performance of CISGT with that of

ISGT and the state-of-the-art algorithm [16] (FullTME) for computing TMEs. FullTME

enumerates all pure strategies and uses global optimization techniques to approximate

multilinear terms in Problem (2.2) by a mixed-integer linear program. We use CPLEX

solver (version 12.9) for solving all linear programs. All experiments are run on a

machine with 6-core 3.6GHz CPU and 32GB memory.

We conduct experiments on the classic network security games1 [20, 21, 70] to

evaluate our approach. In a network security game, the adversary starts at a source node

(he may have many possible source nodes) and travels along the path he chooses to

one of his targets. That is, an action (a pure strategy) of the adversary is a path from

a source to a target, and then the action space includes all possible paths. The police

officers form a team, and each police occupies one of the possible edges on the network

to try to catch the adversary before the target is reached. That is, an action (a pure

strategy) of each team member is an edge. Similar to police officers in the NYPD, who

maintain “sector integrity” [19], the action space of each police officer is disjoint with

others in our setting. The adversary may have different values for different targets, and

the adversary will succeed if his choosing path does not overlap with the edges chosen

by the team; otherwise, the adversary will obtain nothing. All networks are generated by

the grid model with random edges [71], which models the real urban network with some

parameters. That is, it samples a square network with L ×W nodes, and it generates

horizontal/vertical edges between neighbors with probability p, and diagonal ones with

probability q (usually, p ≥ q in real networks [71]). By default, n = 3, and results are

all averaged over 30 instances that are randomly generated.

Vanilla-ISG to compute CTMEs is the double oracle algorithm proposed by Jain

et al. (2011), including the linear program for computing a maximin strategy for the

team, and mixed-integer linear programs of best response oracles for the team and the

adversary, respectively. These best response oracles can be easily extended to CISGT.

1Network security games can be easily extended to other games, including the robot planning prob-
lem in the adversary environment [5], patrolling games with alarm systems [68], and green security games
[46]. Then our results will also hold in these games.
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L×W 5×5 5×5 5×5 5×5 5×5 4×4 6×6 8×8 10×10
(p,q) (0.8,0.6) (0.7,0.5) (0.6,0.4) (0.5,0.3) (0.4,0.2) (0.4,0.2) (0.4,0.2) (0.4,0.2) (0.4,0.2)

FullTME ∞ 448s 50.4s 17.8s 0.3s ∞
ISGT >1000s 4s >1000s

CISGT 9.8s 5.9s 4.7s 3.7s 2.3s 2.2s 8.3s 24s 57s

TABLE 3.1: Computing TMEs: ∞ represents out of memory.

L×W 4×4 4×4 4×4 4×4 4×4 5×5 6×6 7×7 8×8
(p,q) (0.4,0.2) (0.3,0.2) (0.3,0.1) (0.2,0.1) (0.1,0,1) (0.1,0.1) (0.1,0.1) (0.1,0.1) (0.1,0.1)

Vanilla-ISG 35% 38% 38% 30% 26% 53% 47% 56% 55%
TMSP-Alg 61% 50% 51% 44% 38% 75% 54% 79% 87%

TABLE 3.2: Gaps relative to CISGT.

TMEs for restricted games are computed by the algorithm proposed by Zhang and An

(2020), i.e., FullTME computes TMEs in restricted games.

Results in Table 3.1 show that CISGT is orders of magnitude faster than ISGT

and FullTME.1 Specially, when FullTME, enumerating all pure strategies to compute a

TME in a full game, runs out of the memory, CISGT still runs efficiently.

In addition, we compare the solution quality of CISGT with that of Vanilla-ISG and

TMSP-Alg. Table 3.2 shows the possible gaps, which are the relative distance between

the team utility (vm) obtained by CISGT and the team utility v obtained by Vanilla-

ISG or TMSP-Alg, i.e., |v−vm||vm| × 100%. The team will lose more utility if the gap is

larger. We can see that the team may lose a large utility if Vanilla-ISG or TMSP-Alg is

deployed.

3.4 Chapter Summary

This chapter proposes an efficient ISG algorithm (CISGT) to compute TMEs for zero-

sum multiplayer games. We first study the properties of ISG for multiplayer games,

showing that ISG converges to an NE but may not converge to a TME. Second, we

design ISGT by exploiting the property of TMEs and show that ISGT converges to a

TME and the impossibility of relaxing its conditions. Third, to further improve the

scalability, we design CISGT by initializing the strategy space of ISGT via computing

1In addition, ISGT’s another framework we mentioned in Section 3.1.3 needs 898s on the smallest
network with 4×4 and (0.4,0.2).
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a CTME. Finally, experimental results show that CISGT is orders of magnitude faster

than ISGT and the state-of-the-art algorithm in large games.



Chapter 4

Computing Correlated Team-Maxmin

Equilibria for Optimal Escape

Interdiction on Transportation

Networks

This chapter1 focuses on computing CTMEs [14] in normal-form games for optimal

escape interdiction on transportation networks. This chapter uses the CTME as the so-

lution concept for the novel escape interdiction game model that captures the interaction

between an escaping adversary (attacker) and a team of multiple defense resources (de-

fender) with correlated time-dependent strategies on transportation networks. We first

introduce a novel Escape Interdiction Game (EIG) to model time-dependent strategies

for both players, where the defender chooses a sequence of intersections for each police

officer to protect, while the attacker chooses an escape path and his travel time on differ-

ent edges along the path. To overcome the computational challenge, we first propose our

solution, EIGS (an ISG variant for this scenario), which incorporates the following key

components: 1) a new double oracle structure to avoid calling the hard oracle, i.e., the

best response attacker oracle, frequently; 2) novel mixed-integer linear programming
1The work in this chapter has been published as Youzhi Zhang, Bo An, Long Tran-Thanh, Zhen

Wang, Jiarui Gan, Nicholas R. Jennings. Optimal escape interdiction on transportation networks. Pro-
ceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), pp.3936-3944,
2017.

52
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(MILP) formulations to compute the best response strategies for both players; and 3)

a greedy algorithm and an efficient modified Dijkstra algorithm to efficiently generate

improving strategies. To further improve the scalability to solve large-scale scenarios

with hundreds of intersections, we introduce a novel defender algorithm RedAD that re-

duces the strategy space by deploying each defender resource to protect only one node,

assuming that the attacker travels with maximum speed, and using a novel algorithm

to contract the graph before using the MILP to compute the attacker response strategy.

We conduct extensive experiments showing that EIGS can efficiently obtain a robust

solution significantly outperforming existing approaches in problems of related small

scales and RedAD can scale up to realistic-sized transportation networks of hundreds of

intersections with good solution quality.

4.1 Modelling Traffic Network

In this section, we introduce a realistic macroscopic traffic model to illustrate how the

traffic flow influences the travel time in a transportation network [72–75].

Network Structure: The urban road network is modeled as a directed graph G =

(V,E) consisting of a set of directed links E to represent the roads, and a set of nodes

V to represent the intersections. For each link e = (σe, τe), the traffic flows from its

start node σe to its end node τe. An extra node v∞ ∈ V represents the external world,

which is both the source of the flow entering the network and the sink of flow exiting

it. In particular, the sets of entry and exit links are denoted by Eentry = {e|σe = v∞}
and Eexit = {e|τe = v∞}, respectively. Accordingly, the remaining subset of the links

is the set of internal links Einter = {e|σe, τe ∈ V \ {v∞}}. It assumes that there are no

self-loops, i.e., σe 6= τe for each link e ∈ E. For each link e ∈ E, Te is the minimal

travel time when the road is empty, Ce is the link capacity, and the sets of upstream links

and downstream links are denoted by E−e = {e′|τe′ = σe} and E+
e = {e′|σe′ = τe},

respectively.
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Traffic Flow: Each entry link e ∈ Eentry is associated with a constant traffic demand

de ≥ 0 modelling the rate of vehicles entering the node τe from the external world1.

Traffic flows among consecutive links according to a static turning preference matrix

R ∈ RE×E
+ whose entry Ree′ represents the fraction of vehicles flowing out of link

e that are routed to link e′. These turning ratios model the route choice behavior of

drivers, justified by empirical observations [76]. Conservation of mass implies that∑
e′∈E+

e
Ree′ = 1 for all e ∈ E. Moreover, the natural topological constraints imply that

Ree′ = 0 if τe 6= σe′ . To avoid trivial cases, we assume that for every node v, there exists

at least one directed path from v to the node v∞, so that every vehicle will eventually

exit. The rate of vehicles passing link e is denoted by traffic flow fe. According to [75],

there exists a unique equilibrium flow f = {fe, e ∈ E} such that:

fe = de ∀e ∈ Eentry (4.1)

fe =
∑

e′∈E−e
fe′R(e′, e) ∀e ∈ Einter ∪ Eexit (4.2)

For any given demand vector d and turning preference matrix R, the induced equi-

librium flow f is used to calculate the minimal travel time te on link e. This solution can

be easily extended to handle more complex traffic models [72, 73, 77].

Travel Time: te on a link e, strictly increasing with fe, is defined by the commonly

used Bureau of Public Roads (BPR) function [74, 78]:

te = Te(1 + 0.15× (fe/Ce)
4) (4.3)

4.2 The Escape Interdiction Game

The EIG is played between the escapee (attacker), and the police officers (defender).

The attacker tries to escape to the external world v∞ via any exit node d ∈ D ⊂ {v|∃e =

(v, v∞) ∈ E} after conducting some criminal activity at node va0 ∈ V . There are m

defender resources (police officers/teams), initially located at intersections v1
0, . . . , v

m
0 ∈

1This rate is possibly time-varying. For simplicity we consider it as constant during the relatively
short time period of interest.
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V . To only consider nontrivial problems, we assume that va0 6= vr0, for all r ∈ R =

{1, . . . ,m}. W.l.o.g., we assume that the event starts at time 0 and ends at time tmax >

0. The traffic flow on each edge e is likely to affect the corresponding travel time te of

players, which is measured by Eq.(4.3). The traffic network, the initial positions of the

bank and the police officers are common knowledge, but both players cannot see each

other until the attacker gets caught.

Strategies: A pure attacker strategy is a sequence of statesA = 〈a1 = (va0 , 0), . . . , aj =

(vj, t
a
j ), . . . , ak−1 = (d ∈ D, tak−1), ak = (v∞, tak ≤ tmax)〉, where each state aj =

(vj, t
a
j ) represents the situation that the attacker arrives at node vj at time taj . For every

two consecutive states aj = (vj, t
a
j ) and aj+1 = (vj+1, t

a
j+1) in an attacker strategy A,

it is satisfied that vj+1 ∈ N(vj), where N(vj) = {u ∈ V |(vj, u) ∈ E}, and taj+1 ≥
taj + t(vj ,vj+1). This means the attacker can spend any time longer than or equal to the

minimal travel time t(vj ,vj+1) and makes the attacker’s strategy space A continuous. A

mixed attacker strategy is denoted by y = 〈yA〉, with yA representing the probability

that A is played.

A state of defender resource dr is a tuple sr = (vr, tr,in, tr,out), representing the

situation that dr is protecting node vr during [tr,in, tr,out]. We assume that dr can only

stay at a node for a multiple of a constant time interval δ (e.g., 10 seconds), i.e., tr,out −
tr,in = κδ, where κ is a nonnegative integer. To simplify our analysis, we assume

that dr captures the attacker at a node. Thus, for every two consecutive states sri =

(vri , t
r,in
i , tr,outi ) and sri+1 = (vri+1, t

r,in
i+1, t

r,out
i+1 ), tr,ini+1 − tr,outi = dist(vri , v

r
i+1), which is the

minimal travel time between vri and vri+1. This can easily be computed using Dijkstra’s

shortest path algorithm.

A pure strategy for the defender is a set of m schedules, i.e., S = {Sr : r ∈ R}.
The schedule for dr is a sequence of states Sr = 〈sr1, . . . , sri , . . . , srk〉, where sr1 =

(vr0, 0, t
r,out
1 ) and srk = (vrk, t

r,in
k , tmax). Moreover, dr cannot drive to the external world

v∞ to capture the attacker, i.e., vri ∈ V \ {v∞}, ∀sri ∈ Sr. The defender’s pure strategy

space is denoted by S. A defender’s mixed strategy is x = 〈xS〉, with xS representing

the probability that S is played.
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Utility: We are only concerned with whether the attacker can be captured or not, so

we assume a zero-sum game. For aj = (vj, t
a
j ) and sri = (vri , t

r,in
i , tr,outi ), we say the

attacker is captured by dr at node vri if vri = vj and tr,ini ≤ taj ≤ tr,outi . In such a case,

zsri ,aj = 1, otherwise zsri ,aj = 0. If an attacker successfully escapes to the external

world, he gains a utility of 1 and the defender gets −1; otherwise both players get a

utility of 0. Formally, the defender utility is given by:

Ud(S,A)=

0 if ∃zsri ,aj=1, aj∈A, sri∈Sr, r∈R

−1 otherwise
(4.4)

Given x and A, the expected utility of the defender is Ud(x, A) =∑
S∈S Ud(S,A)xS . Accordingly, we can define Ud(x,y) =

∑
A∈A yAUd(x, A). Note

that Ua = −Ud.

Equilibrium: We use the NE (i.e., CTME) as the solution concept of this game as

the defender and the attacker players decide their strategies simultaneously. Thus, the

optimal mixed strategy x of the defender can be computed by solving the following

linear program (LP).

max U∗ (4.5)

s.t. U∗ ≤ Ud(x, A) ∀A ∈ A (4.6)∑
S∈S

xS = 1, xS ≥ 0 ∀S ∈ S (4.7)

4.3 Solution Approach

Solving the LP in Eqs.(4.5)–(4.7) under the exponentially large S and the continuous

A is challenging. To handle this challenge, we develop a novel double oracle algorithm

EIGS (EIG Solver). Now, we first show that solving EIG is NP-hard.

Theorem 4.1. Computing an NE of EIG is NP-hard.

Proof. We reduce 3-SAT to the computation of an NE of EIG. 3-SAT asks if there

exists an assignment of values to a set of boolean variables that satisfies a given boolean
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FIGURE 4.1: Reduce 3-SAT to EIG.

formula in 3CNF (i.e., a conjunctive normal form where each clause is limited to at

most three literals). Let the variables of the 3-SAT be x1, . . . , xn, and the clauses be

C1 ∧ C2 ∧ · · · ∧ Ck. We construct an EIG on a road network shown in Figure 4.1, such

that, as we will show later, the 3CNF is satisfiable if and only if (denoted as⇔1) there

exists a defender pure strategy intercepting all attacker pure strategies if and only if

(denoted as⇔2) the attacker gets caught with probability 1 in an NE (under the mixed

strategy setting). Particularly, we will focus on the proof on “⇔1” as “⇔2” is trivial. If

there exists such a defender pure strategy, then the defender can simply play a mixed

strategy incorporating only this pure strategy regardless of which strategy the attacker

plays. Otherwise, for any defender strategy, the attacker can always find a pure strategy

not being intercepted by at least one pure strategy in the support of the defender strategy,

which gives the attacker a non-zero probability of escaping successfully.

In this graph, the
⊙

on the top represents the source node va0 where the attacker

begins to escape; each of the
⊗

’s on the bottom and in the red boxes represents an

exit node through which the attacker can escape to the external world; each diamond

represents a police station, where one police car is available.

For each variable xi of the 3-SAT problem, we create a gadget shown in the blue

box, in which there is a police station with two outbound roads. The police car from
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this station can choose either to move left or right, corresponding to xi = true or

false, respectively. The choice of directions of all the police cars in these blue boxes

corresponds to an assignment of values to x1, . . . , xn in the 3-SAT problem.

For each clause Cj , we create a gadget consisting of a road, call it the clause road,

from va0 to an exit node and three components each corresponding to a literal of the

clause. In each of the red boxes, there is a police station with two outbound roads. The

one to the right links to the road of the clause, so that choosing this direction, the police

car can intercept attacker pure strategies passing through the clause road. The one to the

left leads to an exit node, and joints in the middle with another road coming from one

of the blue boxes and corresponding to: xi = true if the literal is ¬xi; and xi = false

if the literal is xi. Namely, for example, if in the blue box xi is chosen to be true, the

false direction is left open for the attacker to pass through, so that the police cars in

the red boxes corresponding to ¬xi have to move left to intercept the attacker. In such a

way, attacker pure strategies passing through a clause road can be intercepted (without

missing any attack pure strategy exiting from the red boxes) only when one of its literals

is made true by choices of directions in the blue boxes.

We show that: the 3CNF is satisfiable⇔ there exists a defender pure strategy inter-

cepting all attacker pure strategies.

1. The “⇒” direction. Suppose there exists a satisfying assignment for the 3-SAT

problem. What the defender can do is to let the police car in each blue box move to the

direction that is the same as the value of xi in the satisfying assignment and stay at the

first intersection. The other direction in each blue box is left open, but the roads passing

through it eventually lead to the red boxes and can be intercepted by moving police cars

in the red boxes to the left. Finally, since each clause contains at least one literal which

is made true, the police cars in the corresponding red box do not need to move left to

intercept the attacker as the attacker is already intercepted in the blue boxes; therefore,

letting these police cars move to the clause road, all attacker pure strategies passing

through the clause roads get intercepted as well.

2. The “⇐” direction. If there is not a satisfying assignment, then no matter how the

defender moves the resources, there exists at least one clause such that the police cars
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Algorithm 5: EIGS
1 Initialize S ′, A′.
2 repeat
3 (x,y)← CoreLP (S ′,A′);
4 S∗ ← {betterDO(y)};
5 if S∗ = ∅ then
6 S∗ ← {bestDO(y)};
7 S ′ ← S ′ ∪ S∗;
8 A∗ ← {betterAO(x)};
9 if A∗ = ∅ ∧ S∗ = ∅ then

10 A∗ ← {bestAO(x)};
11 A′ ← A′ ∪ A∗;
12 until convergence;
13 return (x,y).

in the red boxes of its literals all have to move left to intercept the incoming attacker.

The clause road is left open. Then the attacker strategy passing through the clause road

reaches the exit node successfully.

4.3.1 A Novel Double Oracle Framework

Now we develop EIGS, which first computes the equilibrium strategy for a significantly

smaller restricted game, then iteratively computes improving strategies for both players,

and finally converges to a global equilibrium.

EIGS is sketched in Algorithm 5. Line 1 initializes S ′ and A′, which are small sets

of pure strategies for both players. Then, CoreLP computes the maximin strategies x

and y for the restricted game 〈S ′,A′〉 (Line 3) by solving the LP in Eqs.(4.5)–(4.7). To

improve both players’ utilities, the defender oracle (DO) (Lines 4–7) and the attacker

oracle (AO) (Lines 8–11) are repeatedly used to find other strategies out of 〈S ′,A′〉 until

no improving strategy can be found (Line 12). DO first calls efficient betterDO (better

response DO) trying to find an improving strategy that may be suboptimal. If betterDO

fails, it proceeds to bestDO (best response DO) that is optimal. Similarly, AO first calls

efficient betterAO (better response AO), and if betterAO and DO both fail, it proceeds to

bestAO (best response AO). This structure at Line 9 is different from the classic double

oracle employed in security games [25, 26], where the best oracle will be called if the
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Algorithm 6: betterDO (y)
1 A ←A′; ∀r ∈ R : Sr←〈(vr0, 0, 0)〉, Lr←1, tr,out1 ← 0;
2 while A 6= ∅ do
3 for r ∈ R do
4 for v ∈ V \ {v∞} do
5 t[r][v]← tr,outLr + dist(vLr , v), ∆y[r][v]← 0;
6 for A ∈ A do
7 if ∃aj = (v, taj ) ∈ A, t[r][v] ≤ taj then
8 ∆y[r][v]← ∆y[r][v] + yA;

9 vr,∗ ← arg maxv ∆y[r][v];

10 r∗ ← arg maxr ∆y[r][vr,∗];
11 if ∆y[r∗][vr,∗] > 0 then
12 Lr

∗ ← Lr
∗

+ 1, vLr∗ = vr,∗;
13 for A ∈ A do
14 if ∃aj = (vLr∗ , t

a
j ) ∈ A then

15 tr
∗,out
Lr∗
←max{t[r∗][vLr∗ ],taj},A←A\{A};

16 κ←
⌈
(tr
∗,out
Lr∗
− t[r∗][vLr∗ ])/δ

⌉
, tr
∗,out
Lr∗
←t[r∗][vLr∗]+ δ·κ;

17 Sr
∗ ← Sr

∗ ∪ 〈
(
vLr∗ , t[r

∗][vLr∗ ], t
r∗,out
Lr∗

)
〉;

18 else
19 break;

20 return {Sr, r ∈ R}.

corresponding better oracle fails. However, it is not efficient if one runs much slower

than the other between best oracles.

4.3.2 Defender Oracle

The defender needs to find an improving path with a stop time such that it can intercept

as many attacker paths as possible, i.e., increase the probability of catching the attacker.

Formally, given (x,y) provided by CoreLP, S is added to S ′ if Ud(S,y) > Ud(x,y).

This can be formulated as an MILP, i.e., bestDO. It first constructs a path attaching

travel time and stop time, and then checks if it can intercept the given attacker path, i.e.,

both players meet at the same time and the same node. If there are more attacker paths

being intercepted by this new defender path, the defender will get a higher utility. This

procedure is represented by the following MILP:
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max−
∑

A∈A′
(1− zA)yA (4.8)

s.t. sr1,vr0 = 1,
∑

v∈V \{v∞} s
r
i,v = 1 ∀r, i (4.9)

ωr,i,(v,u) ≤ min(sri,v, s
r
i+1,u) ∀r, i, v, u (4.10)

ωr,i,(v,u) ≥ sri,v + sri+1,u − 1 ∀r, i, v, u (4.11)

tr,in1 = 0, tr,out
Ldmax

= tmax, t
r,out
i = tr,ini + κr,iδ ∀r, i (4.12)

tr,ini+1 = tr,outi +
∑

v,u∈V \{v∞} dist(v, u)ωr,i,(v,u) ∀r, i (4.13)

−MαA,jr,i ≤ tr,ini − tAj ≤M(1−αA,jr,i ) ∀r, i, A, j (4.14)

−MβA,jr,i ≤ tAj − tr,outi ≤M(1−βA,jr,i ) ∀r, i, A, j (4.15)

γA,jr,i ≤ (αA,jr,i + βA,jr,i + sri,vAj
)/3 ∀r, i, A, j (4.16)

γA,jr,i ≥ αA,jr,i + βA,jr,i + sri,vAj
− 2 ∀r, i, A, j (4.17)

zA ≤
∑

j,r,i γ
A,j
r,i ∀A (4.18)

sri,v, ωr,i,(v,u), α
A,j
r,i , β

A,j
r,i , γ

A,j
r,i , zA ∈ {0, 1} (4.19)

κr,i ∈ Z≥0, t
r,in
i , tr,outi ∈ [0, tmax] (4.20)

Here, sri,v = 1 indicates that dr arrives at v by the i-th state of Sr. Eq.(4.9) indicates that

dr starts at vr0 and stays on only one node in any state of Sr. In Eqs.(4.10) and (4.11),

the 0/1 variable ωr,i,(v,u) encodes whether there is a path v-u between the i-th state and

(i + 1)-th state of Sr. Eq.(4.12) forces the strategy to start at time 0 and end at tmax,

where Lmax is a sufficiently large number to estimate the maximum length allowed

of the defender strategy sequence, and the time that dr stays on the i-th state is κr,iδ.

Eq.(4.13) ensures that dr travels one stop to another through the shortest path. With

Eqs.(4.14)–(4.18), zA determines whether the attacker using A is caught. Specifically,

(vAj , t
A
j ) represents the attacker’s j-th state in A; γA,jr,i indicates whether the attacker us-

ing A, meets dr at his j-th state’s position while dr is at her i-th stop; αA,jr,i (respectively,

βA,jr,i ) indicates whether the attacker arrives at his j-th state’s position after dr arrives

(respectively, before dr leaves); and M is a very large number.

To speed up the above MILP, we propose a faster oracle betterDO as shown in

Algorithm 6. It is a greedy algorithm, i.e., at each step, the defender goes to the nodes
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Algorithm 7: betterAO (x)
1 ∀ v ∈ V \ {va0}, ∆x[v]←∞, ta[v]←∞;
2 ∆x[va0 ]← 0, ta[va0 ]← 0, Sva0 ← S ′, Q← V ;
3 while Q 6= ∅ do
4 v ← arg minu∈Q ∆x[u];
5 if v = v∞ then
6 break;

7 Q← Q \ {v};
8 for each neighbor u of v do
9 t← arg mint′≥ta[v]+t(v,u)Φ(t′):=

∑
S∈SvxS ·φu(S, t′);

10 if ∆x[v] + Φ(t) < ∆x[u] then
11 ∆x[u]← ∆x[v] + Φ(t);
12 ta[u]← ta[v] + t;
13 prev[u]← v;
14 Su ← Sv \ {S|u ∈ S, ta[u] ∈ [tinS,u, t

out
S,u]};

15 A← 〈(v0, 0), (v1, t
a[v1]), . . . , (vη, t

a[vη])〉 such that v0 = va0 , vη = v∞, and
vi = prev[vi+1]∀ i = 0, . . . , η − 1;

16 return A.

with the highest marginal value. This marginal value on each node is the probability of

intercepting the remaining attacker paths if the defender moves to that node. As shown

in Algorithm 6, A stores the attacker’s paths that are not caught by any Sr. Initially, dr

is at her initial position vr0 (Line 1). Lines 2–19 are the main loop, where we repeatedly

allocate police officers to interdict the attacker’s paths with the highest marginal value.

Specifically, Lines 3–9 enumerate all the combinations 〈r, v〉 ∈ R× V , and check how

much value dr can obtain if she moves to v and stays there as long as possible (therefore,

in Lines 6–8, all attacker paths in which the attacker arrives at v later than t[r][v] are

intercepted, and the corresponding values are added to ∆y[r][u]). dr∗ who can obtain

the highest value among defender resources is chosen (Line 10). The remaining part is

to update the finalized movement (Lines 13–15), where the attacker paths caught by the

movement are removed from A, and tr
∗,out

Lr∗
is updated to the time that this movement

can intercept as many attacker paths as possible. dr∗ stays at a node for κδ (Line 16)

and then updates her new state to the strategy sequence (Line 17).
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4.3.3 Attacker Oracle

The attacker needs to find an improving path with a travel time such that it can minimize

the probability of being caught. Formally, given (x,y) provided by CoreLP, A is added

to A′ if Ua(x, A) > Ua(x,y). This can be formulated as an MILP, i.e., bestAO. It first

constructs a path attaching travel time, and then checks if it is intercepted by the given

defender path, i.e., both players meet at the same time and the same node. If there are

more defender paths intercepting this new attacker path, the attacker will get a lower

utility. This procedure is represented by the following MILP:

max
∑

S∈S′
(1− zS)xS (4.21)

s.t. A1,va0
= 1, ALamax,v∞ = 1,

∑
v∈V Aj,v = 1 ∀j (4.22)

Aj+1,v∞ ≥ Aj,v∞ ∀j (4.23)∑
u∈N(v)Aj+1,u ≥ Aj,v ∀v ∈ V, j (4.24)

ωj,(v,u) ≤ min(Aj,v, Aj+1,u) ∀(v, u) ∈ E, j (4.25)

ωj,(v,u) ≥ Aj,v + Aj+1,u − 1 ∀(v, u) ∈ E, j (4.26)

ta1 = 0 (4.27)

taj+1 ≥ taj +
∑

(v,u)∈E t(v,u)ωj,(v,u) ∀j (4.28)

−MαjS,r,i ≤ tr,ini − taj ≤M(1− αjS,r,i) ∀S, r, i, j (4.29)

−MβjS,r,i ≤ taj − tr,outi ≤M(1− βjS,r,i) ∀S, r, i, j (4.30)

zS ≥ αjS,r,i + βjS,r,i + Aj,vSri − 2 ∀S, r, i, j (4.31)

Aj,v,α
j
S,r,i,β

j
S,r,i,ωj,(v,u), zS∈{0,1},taj ∈ [0, tmax] (4.32)

Here Aj,v indicates whether the attacker arrives at v in the j-th state. Eq.(4.22) ensures

that the attacker starts at va0 , terminates at v∞, and only arrives at one node in each state.

Eqs.(4.23)–(4.24) fix the attacker at the sink node v∞ in the following states after he

reaches v∞ and ensure that the attacker’s strategy is a path; namely, the attacker can

visit some node u in state j+ 1 only if it is a neighbour of the node v in state j recorded

by ωj,(v,u) in Eqs.(4.25)–(4.26). Eqs.(4.27)–(4.28) initialize the time and update it at
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the following states. Finally, with Eqs.(4.29)–(4.31), zS captures whether the attacker

is caught by S.

Now we propose betterAO to efficiently achieve a better response. This algorithm

is similar to Dijkstra’s algorithm (see Algorithm 7). Let’s say the length of an attacker

path is the probability of being caught by the given x. Variable ∆x[v] maintains, for

all v ∈ V , the shortest so-far-known acyclic path from va0 to v. In the main loop,

the node with minimum ∆x is extracted from Q (Line 4). Then in Lines 8–14, ∆x

of each neighbor of v is updated with ∆x[v], where in Line 9 a best time point t is

calculated such that reaching u at t minimizes the probability of attacker being caught

(φu(S, t) = 1 if in S at least one defender resource stays at u at time t, and 0 otherwise).

prev[u] maintains the previous node of u in the so-far-known shortest path, with which

an attacker path is constructed in the end (Line 15).

4.4 Improving the Scalability

EIGS has improved its scalability by deploying efficient better oracles. However, it

cannot efficiently solve the best oracle of large scale games due to the large strategy

spaces. In this section, we further improve scalability without significantly sacrificing

the defender’s utility much. Our approach is motivated by the intuition that the attacker

wants to escape as soon as possible and, correspondingly, each police officer goes to

one certain node with maximum speed and then waits for the attacker.

4.4.1 A Reduced Game of EIG

A is reduced to A, which satisfies the condition that for every two consecutive states

aj = (vj, t
a
j ) and aj+1 = (vj+1, t

a
j+1) of each attacker strategy A ∈ A, taj+1 = taj +

t(vj ,vj+1). That is, the attacker travels with the maximum speed. S is reduced to S, which

satisfies the condition that for each defender strategy S ∈ S , the schedule Sr has the

following form: Sr = 〈(vr0, 0, 0), (vr1, dist(v
r
0, v

r
1), tmax)〉, where vr1 ∈ V \ {v∞}. That

is, the defender goes to some node with maximum speed and waits there. Obviously,

A ⊆ A and S ⊆ S. Now we have the following property about the relation ofA and S .
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Theorem 4.2. Given a defender strategy x with its support set Sx ⊆ S , there is an

attacker optimal strategy A∗ ∈ A.

Proof. Suppose that there is not an optimal strategy A∗ ∈ A. This means that if A is an

optimal strategy, then A ∈ A \ A and Ua(x, A∗) < Ua(x, A).

In any strategy S ∈ S, the schedule Sr has the following form: Sr =

〈(vr0, 0, 0), (vr, tr,in, tmax)〉, where 0 ≤ tr,in = dist(vr0, v
r
1) ≤ tmax. Suppose the op-

timal strategy A = 〈a1 = (va0 , t
a
0 = 0), . . . , aj = (vj, t

a
j ), . . . , ak−1 = (vk−1, t

a
k−1), ak =

(v∞, tak)〉. Keeping the nodes’ sequence order of A , we can obtain A’s strategy

A∗ = 〈a∗1 = (va0 , t
a∗
0 = 0), . . . , a∗j = (vj, t

a∗
j ), . . . , a∗k−1 = (vk−1, t

a∗

k−1), a∗k = (v∞, ta
∗

k )〉,
where ta∗j = t(vj−1,vj) + ta∗j−1(j > 0). Then ta

∗
j ≤ taj (∀a∗j ∈ A∗, aj ∈ A) as

taj ≥ t(vj−1,vj) + taj−1(j > 0).

Moreover, we define z∗Sr,a∗j ∈ {0, 1} and zSr,aj ∈ {0, 1} (a∗j ∈ A∗, aj ∈ A) as:

z∗Sr,a∗j = 1 if vr = vj, t
r,in ≤ ta∗j , otherwise z∗Sr,a∗j = 0; and zSr,aj = 1 if vr = vj, t

r,in ≤
taj , otherwise zSr,aj = 0. Then, z∗Sr,a∗j ≤ zSr,aj as ta∗j ≤ taj (∀a∗j ∈ A∗, aj ∈ A).

Furthermore, we define z∗S ∈ {0, 1} and zS ∈ {0, 1} (S ∈ Sx) as: z∗S = 1 if

∃z∗Sr,a∗j = 1(r ∈ R, a∗j ∈ A∗), otherwise z∗S = 0; and zS = 1 if ∃zSr,aj = 1(r ∈ R, aj ∈
A), otherwise zS = 0. Then, z∗S ≤ zS as z∗Sr,a∗j ≤ zSr,aj (∀a∗j ∈ A∗, aj ∈ A).

So the attacker’s utility Ua(x, A∗) =
∑

S∈Sx(1 − z∗S)xS ≥
∑

S∈Sx(1 − zS)xS =

Ua(x, A), which causes a contradiction.

Therefore, the utility obtained from the optimal defender strategy of the reduced

game (S,A) is the same as the one in the semi-reduced game (S,A) by Theorem 4.2.

This means that bestAO cannot find an improving strategy for the attacker if the defender

strategy is an equilibrium of (S,A).

Theorem 4.3. EIGS within (S,A) converges to an NE.

Proof. EIGS within (S,A) will converge because both S andA are finite. Let (x,y) be

the output of EIGS when EIGS converges. We know that (x,y) is an NE in the restricted

game. In addition, when EIGS converges, both players’ response oracles cannot find

improving strategy outside of the restricted games. Then we have Ud(x,y) ≥ Ud(x
′,y)
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Algorithm 8: advancedAO(x)
1 Vx ← {vri | xS > 0, (vri , t

r,in
i , tr,outi ) ∈ Sr ∈ S};

2 Vf ← DFS(G,Vx, v
a
0), Vx,f ← Vx ∩ Vf ;

3 if v∞ ∈ Vf then
4 A∗ ← {P (dist(Vf ,Vx,f )(v

a
0 , v∞))};

5 else
6 Vb ← DFS((V, {(u, v) | (v, u) ∈ E}), Vx, v∞);
7 Vx,b ← Vx ∩ Vb;
8 E ← E ∪ {(va0 , v) | v ∈ Vx,f} ∪ {(v, v∞) | v ∈ Vx,b};
9 tva0 ,v ← dist(Vf ,Vx,f )(v

a
0 , v),∀v ∈ Vx,f ;

10 tv,v∞ ← dist(Vb,Vx,b)(v, v∞), ∀v ∈ Vx,b;
11 Vc ← (V \ (Vf ∪ Vb)) ∪ (Vx,f ∪ Vx,b ∪ {va0 , v∞});
12 Ec ← {(u, v) | u, v ∈ Vc, (u, v) ∈ E};
13 A ← {RedbestAO(x)};
14 if A 6= ∅ then
15 A∗ ← {P (dist(Vf ,Vx,f )(v

a
0 , v1)) ∪ (va2 , t

a
2),· · · ,(val−2,t

a
l−2) ∪

P (dist(Vb,Vx,b)(v
a
l−1,v∞)) | (va0 , ta0), · · · , (v∞, tal ) ∈ A};

16 return A∗.

(∀x′), and Ua(x,y) ≥ Ua(x,y
′) (∀y′) in the full game. Then, (x,y) is an NE in the

full game.

4.4.2 An Approximate Algorithm of EIG

Based on the reduced game (S,A), we can redesign the oracles in Algorithm 5. Here

the new best DO, RedbestDO, has the same objective function as bestDO and it has the

following constraints:

∑
v∈V \{v∞} s

r
v = 1 ∀r (4.33)∑

r∈R s
r
v ≤ 1 ∀v ∈ V \ {v∞} (4.34)

zA ≤
∑

j,r,dist(vr0 ,v
A
j )≤tAj s

r
vAj
∀A (4.35)

srv, zA ∈ {0, 1} (4.36)

srv = 1 indicates that resource r is deployed to node v. Eq.(4.33) ensures that each

resource will be assigned to one node, which is protected by at most one resource (E-

q.(4.34)). zA indicates whether the attacker’s path is intercepted by the defender. zA = 1
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FIGURE 4.2: A scenario: the defender will only randomly appear at the triangle
nodes to interdict the attacker but will not appear at other nodes; now the attacker

needs to find an optimal strategy considering travel time from his current position (the
square node on the left) to the external world (the hexagon node on the right).

only when there is one node on the path where there is one resource reaching there be-

fore the attacker (reflected by dist(vr0, v
A
j ) ≤ tAj ) enforced by Eq.(4.35).

The new better DO, RedbetterDO, is similar to betterDO, except that RedbetterDO

only deploys each resource to one node. The new best AO, RedbestAO, is obtained

from bestAO by changing the method for updating time in Eq.(4.28) to taj+1 = taj +∑
(v,u)∈E t(v,u)ωj,(v,u) to reflect the fact that the attacker will travel with maximum speed.

Similarly, the new better AO, RedbetterAO, is obtained from betterAO by modifying

Line 9 in Algorithm 7 to: if ∃Srs.t.zsr2,(u,ta[v]+tv,u) = 1,∀S ∈ Sv, then Φ(t) ← Φ(t) +

xS .

In the above new oracles, RedbestAO still has to add |V | variables (i.e., Aj,v) for

each state in A, which will dramatically slow it down. To speed it up, we further reduce

the attacker strategy space by graph contraction.

advancedAO: The advanced AO is based on the following intuition: for the nodes

where no defender will appear, the attacker can travel freely through them without be-

ing caught at any time; but, for the node where the defender will appear, he has to find

an optimal strategy, e.g., the optimal time, to travel through these nodes to avoid being

caught. For example, as shown in Figure 4.2, to reach the external world, the attacker

needs to travel through the circle and triangle nodes. The attacker knows that he will

not be caught at the circle nodes but will probably be caught at the triangle nodes. So

he can freely take any strategy (path) to travel through the circle nodes but wants to take

an optimal strategy (path) to travel through the triangle nodes. To reflect these facts in a

simplified network, the circle nodes and their adjacent edges can be deleted. Then four

new edges from the square node to each blue triangle node and from each red triangle
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node to the hexagon node will be added with the travel time of the corresponding special

shortest path1 in the original network.

This contraction procedure is shown in Algorithm 8. Vx stores nodes in the support

set of x (Line 1). Vf , a set of nodes that can be reached from va0 without traversing

the nodes in Vx, is given by DFS(G, Vx, v
a
0) (Line 2), where DFS(G, Vx, v

a
0) is obtained

from the classic Depth First Search algorithm by ending each path at the nodes in Vx.

That is, a node v is pushed into the stack only if v is unvisited and v /∈ Vx. If v∞ ∈ Vf ,

then P (dist(Vf ,Vx,f )(v
a
0 , v∞)) is an optimal strategy that will not be intercepted by the

defender (Line 4). Here P (dist(Vf ,Vx,f )(v
a
0 , v∞)) is the shortest path from va0 to v∞ on

the network (Vf , {(u, v) | (u, v) ∈ E, u ∈ Vf \Vx,f , v ∈ Vf}) with corresponding travel

time dist(Vf ,Vx,f ) (va0 , v∞). Otherwise, the network G is contracted (Lines 6–12) and

RedbestAO(x) is called for the contracted network (Line 13). Vb stores nodes reached

from v∞ in the backward network of G (Line 6). After that, new edges are added (Line

8) with corresponding travel time (Lines 9 and 10), and then, the contracted network

(Vc, Ec) is generated in Lines 11 and 12. Finally, Line 15 maps the generated strategy

(Line 13) to the original network.

Now we can obtain RedAD, an efficient algorithm based on the reduced game of

EIG, from Algorithm 5 by replacing bestDO, betterDO, bestAO, and betterAO with

RedbestDO, RedbetterDO, advancedAO2, and RedbetterAO, respectively.

4.5 Experimental Evaluation

We evaluate our model and algorithms with numerical experiments. All LPs and MILPs

are solved with CPLEX (version 12.6). All computations are performed on a machine

with a 3.20GHz quad core CPU and 16.00GB memory. All points in the figures are av-

eraged over 30 samples. We use the Grid model with Random Edges (GRE) to generate

1They are not necessary the shortest paths in the network because they do not contain the triangle
nodes, except for the start or end node.

2advancedAO can be applied to the full game (S,A) by replacing RedbestAO with bestAO in Line
13 of Algorithm 8. Actually, we also propose a two-stage approach for the full game (S,A) which uses
RedAD to initialize (S ′,A′) in Line 1 of Algorithm 5 to obtain algorithm EIGS-TS, and then obtain a
heuristic algorithm EIGS-TS-H where bestAO is replaced by advancedAO. However, they cannot improve
much in solution quality and scalability.
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urban road network topologies [71]. GRE is a planar connected graph made of a L×W
square grid of nodes, where horizontal/vertical edges between neighbors are controlled

by probability p, and diagonal ones by q. The values of p spread in [0.3, 0.9] and q in

[0.1, 0.7] to best match realistic road networks. We add a node v∞ that is connected to

all the nodes at the border of the area to generate the entry and exit links.

In the traffic model,Ce = 6, and Te is randomly chosen in [1,10]. The traffic demand

of each entry link is randomly chosen in [0,6], and the turning preference matrix R is

uniformly generated. In EIG, va0 is fixed to the center node of the area, and all the m

defender resources are initially uniformly distributed on the network. The exit nodes D

are randomly chosen from the nodes at the border of the area. The defender travels faster

than the attacker because the police can circumvent traffic constraints unless otherwise

specified. Central parameter values are chosen as L × W = 8 × 8 nodes, (p, q) =

(0.4, 0.2), |D| = 10 exit nodes and m = 4 resources unless otherwise specified.

4.5.1 Solution Quality

We compare the solution quality of our approaches with two baselines. The first base-

line is Rugged [20], where the defender resources are deployed to intercept the attacker’s

path without considering the travel time on paths. Rugged is a representative solution in

the urban network security domain for the following reasons: 1) it is an extension of the

min-cut method that the defender resources are uniformly distributed on the va0 − v∞

min-cut [70] without the travel time constraint; 2) it has the same solution quality as

its variation of Snares [25] because Snares deploys Rugged’s best response oracles, i.e.,

Snares is just an improvement of Rugged in scalability; 3) its performance in solution

quality is better than MiCANS [21], which is an approximate algorithm for urban net-

work security based on multiple cuts. The second baseline is the approximate algorithm

bettAD where EIGS does not call the best response oracles. Comparing bettAD with

RedAD in solution quality will further show the importance of developing RedAD. The

solution quality of strategy x in Rugged, RedAD, and bettAD is assessed in terms of

Ua(x, A), where A is obtained by using bestAO. A lower attacker utility indicates a

higher defender utility given the zero-sum assumption.
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(b) Attacker utility: (p, q)
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(c) Attacker utility: |D|
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(h) Running time: |D|

FIGURE 4.3: Solution quality: (a)–(d); Robustness: (e); Scalability: (f)–(h).

Figures 4.3a–4.3d compare the solution quality obtained from our approaches with

those obtained from baselines varying: the number of intersections, denoted by L×W ,

with |D| = L in Figure 4.3a; edge probabilities in Figure 4.3b; the number of exit nodes

in Figure 4.3c; and the number of resources in Figure 4.3d. Results show that Rugged
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performs the worst in all cases because it is designed without considering players’ travel

time on roads. Meanwhile, EIGS performs the best. bettAD performs significantly

worse than EIGS. However, RedAD achieves good solution quality, which has similar

performance to EIGS and significantly outperforms bettAD in most cases.

In terms of robustness, the defender may face execution uncertainty caused by the

unpredictable delays associated with congestion, traffic signals, etc. To analyze the

performance of EIGS in the presence of uncertainty, we add noise θ to the travel time.

So the actual travel time t̂e = te×(1+θ). Figure 4.3e shows the attacker utility of EIGS

under different degrees of uncertainty. Here we can see that while the performance of

EIGS decreases as θ is increased, it still outperforms Rugged.

4.5.2 Scalability

We compare the scalability of EIGS with a baseline, EIGS-O, which runs EIGS under

the double oracle framework adopted by [25, 26]. This shows the effectiveness of our

new double oracle framework. In addition, we evaluate the efficiency of RedAD with

another baseline, Reduce, where RedAD calls RedbestAO instead of advancedAO.1

Figures 4.3f–4.3h present the runtime in seconds varying different variables similar

to the setting of solution quality. From Figure 4.3f, we can see that EIGS-O does not

scale up to the network with 8×8 intersections, so we do not show the result of EIGS-O

in Figures 4.3g and 4.3h. Results show that: 1) Our new double oracle framework out-

performs the old one by comparing EIGS with EIGS-O; 2) RedAD outperforms EIGS

and Reduce significantly; 3) The running time generally increases with the size of the

network and the edge probabilities, but it reflects the easy-hard-easy pattern in security

games [79]; 4) RedAD can scale up to realistic-sized problems, i.e., an urban road net-

work with 324 intersections. Note that in real world examples, police forces typically

focus on patrolling their own wards, which typically have the size of up to hundreds of

intersections2. Thus, our algorithm can scale up to problems with realistic size.

1We do not show the running time of Snares because it has the same solution quality as Rugged,
which performs significantly worse than our algorithm in solution quality.

2E.g., Singapore Police Force has six divisions, and each division has up to dozens of neighbourhood
police posts or police centers distributed in the city.
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FIGURE 4.4: The real road network

Application on the Real Network: We test the performance of RedAD on the real-

world road network with actual traffic data from Land Transport Authority (LTA) of

Singapore. We extract the information about the road network in the area between

longitudes 103.8181 and 103.8657 and latitudes 1.2668 and 1.3081 as shown in Figure

4.4 from OSM1. In this dataset, there are 371 nodes with 29 exit nodes on the border

and 678 links whose travel time is transferred from the speed data. The positions of

seven police stations are labelled by red pentagrams in Figure 4.4. A total of 30 cases

with different attacker initial positions are tested. For each case, RedAD takes only 14.7

seconds to deploy seven resources.

4.6 Chapter Summary

We present a novel game-theoretic model for interdicting the escaping attacker on ur-

ban traffic networks. We show that finding a CTME is NP-hard. Therefore, we propose

an efficient double oracle framework, EIGS, based on novel MILPs for best response

oracles and heuristic algorithms for better response oracles. To solve large-scale prob-

lems, we develop RedAD to significantly reduce the strategy space for both players.

Experimental results show that our algorithms obtain a robust solution that significantly

outperforms baselines and can scale up to realistic-sized problems.

1www.openstreetmap.org



Chapter 5

Computing Team-Maxmin Equilibria

in Zero-Sum Multiplayer

Extensive-Form Games

This chapter1 focuses on computing TMEs [15] in zero-sum multiplayer Extensive-

Form Games (EFGs). We first study the inefficiency caused by computing a CTME

(i.e., TMECor or TMECom) and then transforming it into the mixed strategy profile

of the team and theoretically show that this inefficiency can be arbitrarily large in E-

FGs. Second, to efficiently solve the non-convex program for finding TMEs directly,

we develop the Associated Recursive Asynchronous Multiparametric Disaggregation

Technique (ARAMDT) to approximate multilinear terms in the program by using a

digit-wise discretization of one variable in the term and then transform the program

into a mixed-integer linear program (MILP) with two novel techniques: 1) an asyn-

chronous precision method, where we can use different precision levels to approximate

these terms even they include the same discretized variable to reduce the number of

constraints and variables for approximation; and 2) an associated constraint method,

where we exploit the relation between these terms to reduce the feasible solution space

of MILP in the ARAMDT. Third, we develop a novel algorithm to efficiently compute

1The work in this chapter has been published as Youzhi Zhang and Bo An. Computing team-maxmin
equilibria in zero-sum multiplayer extensive-form games. Proceedings of the 34th AAAI Conference on
Artificial Intelligence (AAAI), accepted, 2020.
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TMEs within any given accuracy based on the ARAMDT, which uses novel techniques

to iteratively increase the precision levels for part of non-linear terms. Finally, we e-

valuate our algorithm by experiments showing that our algorithm is dramatically faster

than baselines.

5.1 The Inefficiency of Correlated Strategies

It is very difficult to solve the non-convex Problem (2.6) [15] even using the state-of-the-

art global optimization solver BARON [27]. Instead of solving Problem (2.6) to com-

pute a TME, one potential approach is to compute a CTME (i.e., TMECor or TMECom)

first and then transform it into the team’s Mixed Strategy Profile (Transformed-

MSP(TMSP)), as done in normal-form games [14]. This section shows that this ap-

proach can cause an arbitrarily large loss.

To measure the inefficiency of this TMSP, we define the Price of Correlated strate-

gies (PoC)1. That is the inefficiency caused by that team players use this TMSP to

independently play against the adversary. Formally, PoC = vm
vc

, where vm is the TME

value and vc is the team’s utility obtained from the TMSP. The best algorithm [14], to

the best of our knowledge, to obtain a TMSP is: Given a CTME strategy for the team:

x ∈ ∆(ΠT ) (the probability distribution over the set of joint normal-formal strategies),

player 1’s mixed strategy x1(π1) =
∑

π′∈ΠT\{1}
x(π1, π

′)(∀π1 ∈ Π1); player j’s mixed

strategy xj(πj) = 1
|supj |

if |supj| > 0, otherwise xj(πj) = 0 (∀j ∈ T \ {1}, πj ∈ Πj)

where supj = {πj | πj ∈ Πj,∃πT , πj ∈ πT , x(πT ) > 0}, i.e., the set of strategies

player j plays with nonzero probability in x. This algorithm returns the best strategy

for the team among the strategies obtained by exchanging each player of the team with

player 1. From previous experiments [14], we can see the large gap between vm and vc

in normal-form games. Now we theoretically show that PoC can be arbitrarily large.

Proposition 5.1. PoC can be arbitrarily large in EFGs.

1PoC is different from the price of uncorrelation ( v
′
c

vm
) [14], i.e., the inefficiency caused by that team

players do not correlate their strategies when they can (and then obtain utility v′c).
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Proof. Consider an EFG with n players (n − 1 teammates) and m(> 2) actions per

player’s decision node where each level of the game tree forms a unique information set

belonging to one player (see Figure 5.1 for a game tree with n = 3), and the payoffs of

the team at terminal nodes (πi = a(1 ≤ a ≤ m) is a pure normal-form strategy) are:

UT (π1, . . . , πn)=



1 if π1 = π2 = · · · = πn

1

m+ 1
if π1 =1, πi=2(∀i∈T \{1})

−m+ 2

m+ 1
if π1 =2, πi=1(∀i∈T \{1})

0 otherwise

...
1

...

----------------------------

----------------...

...

... m 1 m

1 m

m1 m 1... ...

FIGURE 5.1: Example

To obtain a TMSP, we need to find a CTME first.

A CTME (the TMECom and TMECor are the same

in this case) is the strategy profile prescribing that the

team plays each joint strategy π1 = · · · = πn−1 =

a(1 ≤ a ≤ m) with probability 1
m

.1 Now, by

the aforementioned transformed algorithm [14], the

corresponding (unique) TMSP prescribes that player

i(∈ T ) plays πi = a(1 ≤ a ≤ m) with probability 1
m

, while player n is indifferent

between playing any pure strategies given this TMSP. Then, vc = 0.

Even though it is difficult to determine a TME analytically, we can find a good lower

bound for the TME value through an NE because a TME is an NE maximizing the

team’s utility. This equilibrium strategy (1, 2, . . . , 2, 3) prescribes that player 1 plays

π1 = 1, player i(2 ≤ i ≤ n − 1) plays πi = 2, while player n plays πn = 3. The

team’s utility is UT (1, 2, . . . , 2, 3) = 1
m+1

. Basically, any team member will obtain 0

from unilateral deviation while the adversary is indifferent between playing any pure

strategies.

1First, the team, obtaining utility 1
m in this profile, cannot improve its utility by playing other joint

strategies with nonzero probability because all other joint strategies are weakly dominated as they provide
a utility less than 1

m to the team for every adversary strategy. Second, the team must play each joint
strategy of the form π1 = · · · = πn−1 with nonzero probability because the team will receive utility 0 if
any such a form with a′ is played with probability 0, but the adversary n plays a′. Therefore, each such
a form is played with probability 1

m by symmetry.
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Therefore, PoC = vm
vc
≥

1
m+1

0
=∞.

5.2 Associated Recursive Asynchronous MDT

This section proposes novel techniques to directly solve the non-convex Problem (2.6)

to compute TMEs. Specifically, we develop the Associated Recursive Asynchronous

Multiparametric Disaggregation Technique (ARAMDT) to approximate multilinear

terms in Eq.(2.6b). The ARAMDT is developed based on the MDT [40, 42], which us-

es a digit-wise discretization of one variable in the bilinear term for approximation and

then transforms the bilinear program into a mixed-integer linear program (MILP). The

ARAMDT has three additional important features: 1) the Asynchronous MDT (AMDT)

(i.e., adding the asynchronous precision method to the MDT) to reduce the number of

constraints and new variables for approximating bilinear terms; 2) the Recursive AMDT

(RAMDT) (i.e., recursively deploying the AMDT) to approximate multilinear terms

which cannot be directly approximated by the AMDT; and 3) the Associated RAMDT

(ARAMDT) (i.e., adding associated constraints to the RAMDT) to reduce the feasible

solution space of MILP in the RAMDT.

5.2.1 Asynchronous MDT

To transform the bilinear program into MILP while reducing the number of constraints

and new variables for approximating bilinear terms, we develop the AMDT which can

use different precision levels to approximate bilinear terms even they include the same

discretized variable. The idea is that: If we do not need high precision levels to ap-

proximate some bilinear terms, the AMDT can just use low precision levels to do that,

which reduces the number of constraints and new variables because this number of con-

straints and variables increases with the precision levels. Given a bilinear term w = yiyj

(yi, yj ∈ [0, 1]), we approximate yi by using a binary number with powers (precision

levels) Zyi = {−1, . . . ,−Zyi}:

yi =
∑

z∈Zyi
2zλi,z + ∆yi (5.1)
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where λi,z ∈ {0, 1} and ∆yi ∈ [0, 2−Zyi ] is the slack variable. After that, we approxi-

mate w by using powers Zw = {−1, . . . ,−Zw} with Zw ≤ Zyi:

w =
∑

z∈Zw 2zyi,j,z + ∆w (5.2)

where yi,j,z = λi,zyj can be represented by:

0 ≤ yi,j,z ≤ λi,z ∀z ∈ Zw (5.3a)

0 ≤ yj − yi,j,z ≤ 1− λi,z ∀z ∈ Zw (5.3b)

∆w = (yi −
∑

z∈Zw 2zλi,z)yj (0 ≤ yi −
∑

z∈Zw 2zλi,z = ∆yi +
∑
−Zyi≤z<−Zw

2zλi,z ≤
2−Zw) cannot be represented exactly by linear constraints and then is approximated by

using the McCormick relaxation [45]:

0 ≤ ∆w ≤ yi −
∑

z∈Zw 2zλi,z (5.4a)

2−Zw(yj−1)+yi−
∑

z∈Zw2
zλi,z ≤ ∆w ≤ 2−Zwyj (5.4b)

Here, the AMDT replaces ∆yi in the standard MDT [40] with yi−
∑

z∈Zw 2zλi,z for

representing ∆w because Zw ≤ Zyi . Therefore, the AMDT can use different powers to

approximate bilinear terms even they include the same discretized variable, which will

reduce the number of constraints if we do not need to use more powers to approximate

some bilinear terms, e.g., when w is already equal to yiyj .

5.2.2 Recursive Asynchronous MDT

EFGs with n > 3 will result in multilinear terms in Eq.(2.6b), where the AMDT can-

not be applied directly. Therefore, we develop the RAMDT, which recursively uses a

new variable to replace each bilinear part of the multilinear term in Eq.(2.6b) until the

multilinear term is replaced by a variable (representing a bilinear term), and then the bi-

linear term is approximated by the AMDT. More specifically, for each σT ∈ Σ′T (⊆ ΣT )
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reaching a terminal node with the multilinear term
∏

i∈T ri(σT (i)) in Eq.(2.6b), we re-

cursively define a set of bilinear terms BLσT = {w1(σT1), . . . , wn−2(σTn−2)} such that:

wi(σTi)=ri(σTi(i))wi+1(σTi+1
)=
∏

i≤j≤n−1 rj(σTi(j))

where wi(σTi) ∈ [0, 1](1 ≤ i ≤ n − 2), σTi represents the joint sequence of players

i, . . . , n− 1 as part of σT with σT1 = σT , σTi(j)(i.e., σT (j)) is the sequence of player j

in σTi , and wn−1(σTn−1) = rn−1(σTn−1(n−1)). Therefore, each multilinear term can be

represented by a bilinear term. To be consistent, we discretize the variable on the left

hand side of each bilinear term in BLσT .

Denote BL =
⋃
σT∈Σ′T

BLσT . By using w1(σT ) to replace
∏

i∈T ri(σT (i)) in E-

q.(2.6b) through the RAMDT, an upper bound of Problem (2.6) is computed by:

maxr1,...,rn−1 v(In(∅))RAMDT (5.5a)

v(In(σn))−∑In,j∈In:seqn(In,j)=σn
v(In,j)

≤∑σT∈ΣT
UT (σT , σn)w1(σT ) ∀σn ∈ Σn (5.5b)

Eqs.(2.5a)− (2.5c) ∀i ∈ T (5.5c)

Eq.(5.1) ∀ri(σT (i)), i∈T \{n−1}, σT ∈Σ′T (5.5d)

Eqs.(5.2)− (5.4b) ∀wi(σTi) ∈ BL (5.5e)

Theorem 5.1. The solution of Problem (5.5) yields an upper bound for Problem (2.6),

i.e., v(In(∅))RAMDT ≥ v(In(∅)).

Proof. The variable wi(σTi) in Problem (5.5) may not be exactly equal to

ri(σTi(i))wi+1(σTi+1
) due to the power Zwi(σTi ). In fact, by Eqs.(5.1)–(5.4b), |wi(σTi)−

ri(σTi(i))wi+1(σTi+1
)| ≤ 2−Zwwi+1(σTi+1

). It means that, some assignments for

wi(σTi), ri(σTi(i)), and wi+1(σTi+1
) without satisfying wi(σTi) = ri(σTi(i))wi+1(σTi+1

)

are feasible in Problem (5.5). Thus, Problem (5.5) is a relaxation of Problem (2.6).

Therefore, the solution of Problem (5.5) yields an upper bound for Problem (2.6), i.e.,

v(In(∅))RAMDT ≥ v(In(∅)).
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Theorem 5.2. As Zwi(σTi ) (∀wi(σTi) ∈ BL) in Problem (5.5) approaches ∞,

v(In(∅))RAMDT approaches v(In(∅)).

Proof. As Zwi(σTi ) approaches ∞, we have: limZwi(σTi )
→∞ |wi(σTi) −

ri(σTi(i))wi+1(σTi+1
)| ≤ limZwi(σTi

)→∞ 2
−Zwi(σTi )wi+1(σTi+1

) = 0, which means

that wi(σTi) approaches ri(σTi(i))wi+1(σTi+1
). Then, v(In(∅))RAMDT approaches

v(In(∅)).

Then, v(In(∅)) is reached if Zwi(σTi ) is large enough.

5.2.3 Associated Recursive Asynchronous MDT

By Theorem 5.1, the solution of Problem (5.5) is an upper bound for Problem (2.6) be-

cause wi(σTi) may not be equal to ri(σTi(i))wi+1(σTi+1
), which also makes the feasible

solution space very large and then makes it difficult to solve Problem (5.5). Here we aim

to reduce the feasible solution space in Problem (5.5) and then solve it efficiently. To

do that, we develop the ARAMDT, which adds associated constraints to the RAMDT

by exploiting the relation between bilinear terms.

The relation between bilinear terms is based on the constraints for the realization

plan in Eqs.(2.5a)-(2.5c). Basically, for all sequences with the last action in the same

information set, the sum of probabilities to play these sequences is equal to the prob-

ability to play the sequence reaching that information set. For example, in Example

2.1, for bilinear terms w1(σ1, J:/c:c), w1(σ1, J:/ccrc:c), and w1(σ1, J:/ccrc:f), we have

w1(σ1, J:/c:c) = w1(σ1, J:/ccrc:c) +w1(σ1, J:/ccrc:f). In addition, given w1(σ1, J:/c:r),

we have w1(σ1, J:/c:c) + w1(σ1, J:/c:r) = r1(σ1)r2(∅) = r1(σ1). That is, we look for

the equivalence relation between bilinear terms until these terms are connected to the

played probability of a sequence, which is represented by associated constraints. After

adding these constraints, the solutions which cannot satisfy these constraints will be

ruled out immediately, and then the feasible solution space in Problem (5.5) is smaller.

Algorithm 9 generates associated constraints for the equivalence relation between

bilinear terms. This relation is based on the realization plan, which is also based
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Algorithm 9: Generate associated constraints
1 for wi(σTi) ∈ BL, and j ← i, . . . , n− 1 do
2 BLσTi\{j},Ij(σTi (j))←BLσTi\{j},Ij(σTi (j))∪{wi(σTi)};
3 isContinue← true, BL′ ← BL;
4 while isContinue = true do
5 isContinue← false;
6 for i← n− 2, . . . , 1; j ∈ {i, . . . , n− 1}; each BLσTi\{j},Ij(σTi (j)) do
7 wi(σ

′
Ti

)← ∅, σj ← σTi(j);
8 if i=j∧|BLσTi\{j},Ij(σj)|= |χ(Ij(σj))| then
9 wi(σ

′
Ti

)← wi(seqj(Ij(σj)), σTi\{j});

10 if i 6= j ∧BLσTi\{i} in RM then
11 wi(σ

′
Ti

)← ri(σi)RM [BLσTi\{i} ];

12 if wi(σ′Ti) 6= ∅ then
13 isContinue← true;
14 if wi(σ′Ti) /∈ BL′ then
15 Line 2, j ← i, . . . , n− 1;
16 BL′ ← BL′ ∪ {wi(σ′Ti)};
17 if ri(σ′Ti(i)) = 1 then
18 Add wi(σ′Ti) = wi+1(σ′Ti\{i});

19 if wi+1(σ′Ti\{i}) = 1 then
20 Add wi(σ′Ti) = ri(σ

′
Ti

(i));

21 if ri(σ′Ti(i)) = wi+1(σ′Ti\{i}) = 1 then
22 Add wi(σ′Ti) = 1;

23 Add wi(σ′Ti)=
∑

w′i∈BLσTi\{j},Ij(σTi (j))
w′i;

24 RM [BLσTi\{j},Ij(σTi (j)))]← wi(σ
′
Ti

);

25 Remove BLσTi\{j},Ij(σj);

on information sets of the game tree (see Eq.(2.5b)). Therefore, for a set of bilinear

terms, to check whether one associated constraint of a player based on Eq.(2.5b) can

be created, we can fix other players’ sequences, and then check whether this play-

er has the sequences in this set of bilinear terms involving all actions in the related

information set. To do that, we create subsets of bilinear terms BLσTi\{j},Ij(σTi (j))

for each player j in Lines 1–2, which are indexed by all other involved player-

s’ sequences σTi\{j} and player j’s information set where the last action of his se-

quence σTi(j) is taken. Now we can add associated constraints based on these sub-

sets starting from i = n − 2 (Line 6). For example, in Example 2.1, if we have

BLσ1,J:/ccrc: = {w1(σ1, J:/ccrc:c), w1(σ1, J:/ccrc:f)}, where |BLσ1,J:/ccrc:| = 2 is the
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number of actions in player 2’s information set J:/ccrc:, then there exists an associated

constraint w1(σ1, J:/c:c) = w1(σ1, J:/ccrc:c) + w1(σ1, J:/ccrc:f) (we can generate an

auxiliary variable w1(σ1, J:/c:c) if it does not exist) among these bilinear terms. That is,

if player j’s sequence σTi(j) is on the left hand side of bilinear terms in BLσTi\{j},Ij(σj)

whose number of terms (corresponding to the number of sequences of player j) is equal

to the number of actions in Ij(σj) (Line 8), or BLσTi\{i}(= {wi+1(σTi\{i}) | wi(σTi) ∈
BLσTi\{j}},Ij(σj)} representing the set of terms about the right hand side of each bilinear

term wi(σTi)) is in the domain of the relation mapping RM (Line 10, initialized by

RM [{wn−1(σn−1a) | a ∈ χ(In−1,j)}] = wn−1(σn−1) based on Eq.(2.5b) and updat-

ed at Line 24), we can add an associated constraint for the equivalence relation (Line

23) between this subset of bilinear terms and the bilinear term involving the sequence

reaching this information set (Line 9 or 11). If this term is new, the related subsets and

the set of bilinear terms are updated (Lines 15–16). At Lines 17–22, this new bilinear

term is connected to one variable if the other variable in this term is certainly 1. The

loop (Lines 4–25) will terminate if no new associated constraints are found.

The ARAMDT, remaining to be the upper bound of Problem (2.6), adds associated

constraints for the equivalence relation between bilinear terms to the RAMDT (Problem

(5.5)), i.e.,

maxr1,...,rn−1 v(In(∅))ARAMDT (5.6a)

Eqs.(5.5b)− (5.5e) (5.6b)

Constraints generated by Algorithm 9 (5.6c)

Theorem 5.3. The feasible solution of Problem (2.6) is feasible in Problem (5.6).

Proof. Suppose the realization plan ri of player i is the feasible solution of Problem

(2.6) but is infeasible in Problem (5.6). By Theorem 5.1, ri is feasible in Problem

(5.5). Therefore, ri does not satisfy the constraints generated by Algorithm 9. Given

Zwi(σTi ) (∀wi(σTi) ∈ BL) in Problem (5.6), we have |wi(σTi)−ri(σTi(i))wi+1(σTi+1
)| ≤

2
−Zwi(σTi )wi+1(σTi+1

). Now we consider the feasible solutions when wi(σTi) =

ri(σTi(i))wi+1(σTi+1
) for all bilinear terms. Without loss of generality, we assume∑

a∈χ(Ii,j)
ri(σTi(i)a) = ri(σTi(i)), but

∑
a∈χ(Ii,j)

wi(σTi(i)a, σTi\{i}) 6= wi(σTi). We

have:
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Algorithm 10: Iterative ARAMDT (IARAMDT)
1 Initialize ε0, ε1, ε2, Zw = Zr = Z = 0,∀Zw, Zr;
2 repeat
3 (rT , v)← Problem (5.6) with gap ε1;
4 v← BR, given rT ;
5 Z ← Z + 1, BLI ← ∅;
6 while BLI = ∅ ∧ |v − v| > ε0 do
7 for each wi(σTi) ∈ BL do
8 if |wi(σTi)−ri(σi)wi+1(σTi+1)|>ε2 then
9 BLI ← BLI ∪ {wi(σTi)};

10 Zwi(σTi )
←Z if Zwi(σTi )<d− log2 ε2e;

11 Zri(σi) ← Z if Zri(σi)<d− log2 ε2e;

12 if BLI = ∅ then ε2 ← ε2
10 ;

13 Generate a constraint: v(In(∅))ARAMDT ≥ v;
14 until |v − v| ≤ ε0;
15 return rT

∑
a∈χ(Ii,j)

wi(σTi(i)a, σTi\{i}) 6= wi(σTi)

⇒
∑

a∈χ(Ii,j)

ri(σTi(i)a)wi+1(σTi\{i}) 6=ri(σTi(i))wi+1(σTi\{i})

⇒∑a∈χ(Ii,j)
ri(σTi(i)a) 6= ri(σTi(i))

which causes a contradiction. Therefore, the feasible solution of Problem (2.6) is feasi-

ble in Problem (5.6).

Theorem 5.4. v(In(∅))ARAMDT ≥ v(In(∅)), and v(In(∅))ARAMDT approaches

v(In(∅)) as Zwi(σTi ) (∀wi(σTi) ∈ BL) approaches∞ in Problem (5.6).

Proof. This is immediately obtained from Theorems 5.1–5.3

5.3 An Iterative Algorithm for Computing TMEs

Even though the ARAMDT can compute TMEs, it is difficult to decide which preci-

sion levels for different bilinear terms could achieve the given accuracy (i.e., ε in ‘ε-

TME’). This section develops a novel iterative algorithm to efficiently compute TMEs

within any given accuracy based on the ARAMDT. Specifically, we iteratively increase

the precision levels for part of bilinear terms until the desired accuracy is achieved, as
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shown in Algorithm 10. This is based on the fact that the upper bound of the TME value

in Problem (5.6) will approach the optimal value when the powers for approximating

bilinear terms in the ARAMDT increase by Theorem 5.4. Moreover, given the joint

realization plan rT of the team (i.e., ×i∈T ri) corresponding to the upper bound, we can

obtain the lower bound of the optimal value by computing the Best Response (BR) of

the adversary. Therefore, we can iteratively increase powers for approximating bilinear

terms to make the lower bound and the upper bound tighter to guarantee the accuracy.

Here, the upper bound of the TME value can be computed by solving Problem

(5.6), while the lower bound can be obtained through the BR of the adversary, e.g., by

using the public-state algorithm [80]. For convenience, we use Z = 0 to represent the

McCormick relaxation [45], i.e., approximating a bilinear termw = yiyj (yi, yj ∈ [0, 1])

with loose bounds: max{0, yi + yj − 1} ≤ w ≤ min{yi, yj}. Line 1 initializes the

powers to 0, which means that each bilinear term is approximated by the McCormick

relaxation, i.e., constraints of the AMDT in Problem (5.6) are replaced by constraints of

the McCormick relaxation. In each iteration, the lower and upper bounds are computed

at Lines 3 and 4, respectively. Here, the gap ε1 is set for MILP, i.e., Problem (5.6). After

that, the powers are updated at Lines 5–12. Specifically, we increase the powers for

bilinear terms (in BLI) whose difference values between wi(σTi) and ri(σi)wi+1(σTi+1
)

(here σi = σTi(i)) are larger than ε2 (Lines 8 and 9). The powers for bilinear terms

and the variables are updated separately with the bound d− log2 ε2e (Lines 10 and 11)

because |wi(σTi) − ri(σi)wi+1(σTi+1
)| ≤ 2

−Zwi(σTi )wi+1(σTi+1
) ≤ 2

−Zwi(σTi ) . If no

bilinear terms fulfill the requirements, ε2 will decrease at Line 12 to guarantee that we

can achieve the given accuracy. The lower bound of the objective value of Problem

(5.6) is updated at Line 13. The loop will terminate if the gap between the lower bound

and the upper bound is not larger than ε0 (Line 14) and then the joint realization plan of

team players are returned (Line 15). The following theorem shows that the output rT is

part of an (ε0 + ε1)-TME.

Theorem 5.5. The output rT of Algorithm 10 is part of an (ε0 + ε1)-TME.

Proof. When we obtain the output rT of Algorithm 10, we also obtain the optimal

value v of Problem (5.6). Given the constraints in Problem (5.6) and constraints in
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ε 10−1 10−1

2 10−2 10−3 10−4 10−5 10−6 10−1 10−1

2 10−2 10−3 10−4 10−5 10−6

IARAMDT <1s <1s <1s <1s <1s <1s <1s <1s <1s <1s 19s 319s 649s 2460s
IARMDT-1 <1s <1s <1s <1s <1s <1s <1s <1s <1s <1s >2h
IARMDT+1 <1s <1s <1s <1s <1s <1s <1s <1s <1s <1s 41 492s 964s 4786s

IRAMDT 4s 47s >2h 52s >2h
IARMDT <1s <1s <1s <1s <1s <1s <1s <1s <1s <1s 7s 252 714s 4425s
IRMDT 4s 172s >2h 61s >2h
BARON 30s 690s >10h 30s >10h

IARAMDT <1s <1s 1s 4s 54s 133s 522s <1s <1s <1s 35s 141s 399s 3242s
IARMDT-1 <1s <1s <1s 4s 14s >2h <1s <1s 2s 3082s 5982s >2h
IARMDT+1 <1s <1s 1s 4s 50s 707s 707s <1s <1s 1s 19s 100s 1885s >2h

IRAMDT 319s >2h >2h
IARMDT <1s <1s 2s 5s 65s >2h <1s <1s 1s 39s 320s 919s >2h
IRMDT 436s >2h >2h
BARON 60s >10h 540s >10h

TABLE 5.1: The top left part is 3K4 with |BL| = 120, the top right part is 3K5 with
|BL| = 200, the bottom left part is 3K6 with |BL| = 300, the bottom right part is 3K7

with |BL| = 420, ∆U = 6, and ‘> #h’: algorithms are terminated after # hours.

Eqs.(2.5a)-(2.5c) for the adversary, v is also the optimal objective value in Problem:

maxrT minrn
∑

σn∈Σn

∑
σT∈ΣT

UT (σT ,σn)w1(σT )rn(σn). Let rn be the optimal solu-

tion in this problem. Suppose v? is the team’s utility value under profile (rT , rn). We

know that v ≤ v? ≤ v + ε1. Consequently, given rn, for any strategy r′T by the u-

nilateral deviation from rT with the team’s utility v′, we have v′ ≤ v + ε1 and then

v′ − v? ≤ v + ε1 − v ≤ ε0 + ε1. Given rT , for any adversary strategy r′n with the

adversary’s utility v′, we have v′ ≤ −v and then v′ − (−v?) ≤ −v + v + ε1 ≤ ε0 + ε1.

Then rT is part of an (ε0 + ε1) NE. In addition, v + ε1 is the upper bound of the TME

value v?? and then v??− v? ≤ v+ ε1− v? ≤ v+ ε1− v ≤ ε0 + ε1. Therefore, rT is part

of an (ε0 + ε1)-TME.

5.4 Experimental Evaluation

We evaluate our algorithm (IARAMDT) through experiments. We use CPLEX (version

12.9) to solve the linear program. All the algorithms are performed on a machine with

6-core 3.2GHz CPU and 16GB memory. Because the default gap for MILPs in CPLEX

is 10−6, we set ε1 = 10−6 with ε2 = 5× 10−7 unless otherwise specified.

We use BARON (version 19.3.24) [27] to solve Problem (2.6) directly as a baseline.

Other baselines include: 1) IARAMDT-1: at each iteration, we only select bilinear

terms with the largest difference between wi(σTi) and ri(σi)wi+1(σTi+1
) similar to the
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ε 10−1 10−2 10−3 10−4 10−1 10−2 10−3 10−3

2

1 2s 44s 481s 7047s 3s 218s 1831s 5591s
2 2s >3h 3s >3h
3 2s 274s 1303s >3h 3s 155s 5121s >3h
4 2s 83s 4442s >3h 3s 209s 6924s 6924s

TABLE 5.2: The left part is 4K5 with |BL| = 1840 and ∆U = 8, the right part is 3L3
with |BL| = 1380 and ∆U = 21 (ε1 = ε2 = 0.001), and rows 1–4 are IARAMDT,
IARAMDT-1, IARAMDT+1, IARMDT, respectively, which are terminated after 3

hours.

previous approach [44]; 2) IARAMDT+1: we increase the power with 1 instead of Z

at lines 10 and 11 of Algorithm 10, which is similar to many approaches [42, 44]; 3)

IRAMDT: we use the RAMDT instead of the ARAMDT; 4) IARMDT: we use the MDT

to replace the AMDT; and 5) IRMDT: we increase the powers with 1 for all bilinear

terms starting with Z = 1, which is the original MDT approach [40, 43].

Our experiments run on the standard games, the multiplayer Kuhn poker and the

Leduc Hold’em poker games (see Farina et al. (2018) for their rules), where nKr and

nLr denote an n-player Kuhn instance with r ranks (i.e., r cards) and an n-player Leduc

instance with r ranks (i.e., 2r cards), respectively. ∆U is the difference between the

maximum possible utility and the minimum possible utility of the team. In addition

to the current game rules, the game ends if the adversary takes the action of folding

because the team will certainly win after that. Without loss of generality, player n is the

adversary.

We show the time to compute ε∆U -TMEs for different accuracies. Here ε∆U is

ε0 + ε1 in Algorithm 10 or the difference between the lower bound and the upper bound

in BARON. Results in Table 5.1 show that 1) IARAMDT dramatically outperforms the

exiting MDT approach and BARON; 2) our approximation techniques, especially the

associated constraint method, are extremely important for the scalability of IARAMDT

by comparing it with IRAMDT and IARMDT; and 3) our novel techniques in our itera-

tive algorithm improve the scalability of IARAMDT by comparing it with IARAMDT-1

and IARAMDT+1. Specifically, after using our associated constraint method with the

same initial setting (i.e., using the McCormick relaxation) in the iterative algorithm,

IARAMDT-1, IARAMDT+1, and IARMDT perform similarly to IARAMDT when we
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ε 10−1 10−2 10−3 10−6 10−1 10−2 10−3 10−6

1 74% 0% 0% 0% 60% 60% 10% 0%
5 <1s 3s 6s 6s 5s 38s 169s 169s
5 75% 70% 80% 80% 76% 80% 84% 84%
6 <1s 4s >2h <1s 10s >2h
6 87% 69% 91% 69%

1 86% 20% 17% 0% 77% 67% 12% 0%
5 24s 201s 1305s 2208s 59s 1154s >2h
5 84% 86% 84% 82% 83% 82%
6 <1s 7s >2h <1s 23s >2h
6 88% 76% 93% 77%

TABLE 5.3: The gaps and runtime of IARAMDT (label 1) (see Table 5.1 for its
runtime), HCG (label 5), and FTP (label 6) on 3K4, 3K5, 3K6, and 3K7, respectively.

only need low precision levels to achieve the given accuracy, but they perform signifi-

cantly worse than IARAMDT when we need high precision levels to achieve the given

accuracy, which is further confirmed in larger problems as shown in Table 5.2.

Comparison to TMSP. Table 5.3 shows the comparison to the TMSP obtained from

an ε∆U -TMECor, which is computed by algorithm Hybrid Column Generation (HCG)

[15] or algorithm Fictitious Team-Play (FTP) [28]. The gap is the relative distance

between the team’s best utility (vm) of IARAMDT (the lower bound when ε = 10−6)

and the team’s lower bound (v) under different values of ε, i.e., |v−vm||v| × 100%. The

larger the gap is, the more utility the team will lose. We can see that: 1) the gaps of

IARAMDT monotonically decrease with ε to 0, but the gaps of the TMSP may not

decrease with ε and are always very large; and 2) given the same ε, IARAMDT runs

faster than HCG and FTP in most cases. About the TMSP obtained from a TMECom,

it can be computed within 1s in four games of Table 5.3, but the gaps (i.e., 88%, 94%,

95%, and 92%) are extremely large. Therefore, the TMSP can cause a huge loss, which

is consistent with our theoretical result shown in Proposition 5.1.

5.5 Chapter Summary

This chapter proposes an efficient algorithm to compute TMEs within any given accu-

racy for zero-sum multiplayer EFGs. We first show that the inefficiency of correlated
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strategies can be arbitrarily large in EFGs. To efficiently solve the non-convex program

for finding TMEs directly, we develop novel approximation techniques (i.e., an asyn-

chronous precision method and an associated constraint method) and the novel iterative

algorithm. Our algorithm is dramatically faster than baselines in the experimental eval-

uation.



Chapter 6

Computing Ex Ante Coordinated

Team-Maxmin Equilibria in Zero-Sum

Multiplayer Extensive-Form Games

This chapter1 focuses on computing TMEsCor [15, 28] in zero-sum multiplayer

extensive-form games. To compute TMEsCor efficiently, we first propose a nov-

el hybrid-form strategy representation for the team, where one team member takes

sequence-form strategies while other team members take normal-form strategies. Sec-

ond, based on our hybrid-form strategies, we develop our column generation algorithm

with two novel features: 1) we provide a finite upper bound for the number of iterations

where our algorithm terminates even though the strategy space is infinite; and 2) we

design a novel BR for the team, which involves multilinear terms representing reaching

probabilities for terminal nodes to reduce the number of variables. Third, we develop

our novel associated representation technique for solving our multilinear BR, which has

two novel features: 1) exactly representing multilinear terms by linear constraints and 2)

efficiently generating associated constraints for the equivalence relation between multi-

linear terms in the game tree. Finally, extensive experiments show that our algorithm is

several orders of magnitude faster than state-of-the-art algorithms in large games. Thus,

1The work in this chapter has been submitted as Youzhi Zhang and Bo An. Computing ex ante
coordinated team-maxmin equilibria in zero-sum multiplayer extensive-form games. Under review by
the 34th Conference on Neural Information Processing Systems (NeurIPS), 2020.
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this chapter shows that, to compute equilibria, the approach formulating the problem as

a multilinear program with global optimization techniques can be dramatically faster

than the approach immediately formulating it as a linear program.

6.1 A New Scalable Approach

Even though TMEsCor can be computed via a Linear Program (LP) by enumerating

all strategies in ΠT [15], it is still inefficient to compute TMEsCor because Πi is expo-

nential in the size of the game tree. Column Generation (CG) is a standard approach

to conquer this difficulty [15]. However, the Best Response (BR) oracle for the team

in CG is usually a Mixed-Integer LP (MILP) involving a large number of integer vari-

ables, which makes CG hard to converge to a TMECor in large games. The fundamental

reason for the large number of integer variables in BR is that BR needs to generate a

joint pure NFS as a best response and needs to represent a joint pure NFS’s reaching

probability for each terminal node (e.g., using integer 1 or 0 to represent reaching or

not, and thus having |L| integer variables [15]). To reduce the number of variables, our

key idea is that: 1) we do not generate pure NFSs for all team members; and 2) we

use multilinear terms to represent the team’s reaching probabilities for terminal nodes

in BR. To do that, we provide two novel methods: 1) a novel Hybrid-Form Strategy

(HFS) representation for the team, where one team member takes an SFS (it is in a

continuous space) while other team members take pure NFSs1; and 2) our novel BR

with only
∑

i∈T\{1} |Σi| integer variables based on HFSs2 (using pure SFSs to represent

pure NFSs in an HFS), which involves multilinear terms to represent an HFS’s reaching

probabilities for terminal nodes. Moreover, we provide two novel solutions to make our

approach applicable: 1) we provide a finite upper bound for the number of iterations

where CG terminates, even though the strategy space is infinite; and 2) we develop our

novel Associated Representation Technique (ART) to exactly and efficiently solve our

multilinear BR.
1If all team players take pure NFSs, our algorithm can work as well but can be significantly slower

than the algorithm with HFSs as shown in our experiments later. In addition, if there are two or more
team players taking SFSs, reaching probabilities for terminal nodes cannot be exactly represented by
linear constraints anymore.

2We can choose any team player to take the SFS, and we choose player 1 just for convenience here.
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6.1.1 Hybrid-Form Strategies for the Team

Now we propose a new hybrid-form strategy representation for the team, where one

team member takes the sequence-form strategy while other team members take pure

normal-form strategies. A pure hybrid-form strategy for the team is defined by a tuple:

fT = (r1, πT\{1})

where r1 ∈ R1 and πT\{1} ∈ ΠT\{1} = ×i∈T\{1}Πi. Given a strategy profile (fT , σn),

similar to the definition ofUT (πT , σn) in Eq.(2.8) withLfT ,σn(⊆ L) reached by (fT , σn),

the team’s utility is:

UT (fT , σn) =
∑

l∈LfT ,σn
r1(seq1(l))uT (l)c(l)

LetFT be the set of pure hybrid-form strategies and xT be a mixed hybrid-form strategy

strategy, i.e., a probability distribution over FT (xT ∈ ∆(FT )). The team’s expected

utility is:

UT (xT , σn) =
∑

fT∈FT UT (fT , σn)xT (fT )

Similarly, UT (xT , rn) =
∑

fT∈FT UT (fT , rn)xT (fT ) and

UT (fT , rn) =
∑

l∈LfT ,rn

rn(seqn(l))r1(seq1(l))uT (l)c(l)

We define the support sets in a mixed normal-form strategy and a mixed hybrid-form

strategy:

SxT = {πT | xT (πT ) > 0, πT ∈ ΠT}, SxT = {fT | xT (fT ) > 0, fT ∈ FT}

Two team’s strategies are realization-equivalent if both define the same probabilities

for reaching nodes given any strategies of the adversary. Now we show the realization

equivalence between hybrid-form strategies and normal-form strategies 1.

1xT ∈ ∆(ΠT ) in this chapter.
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Lemma 6.1. ∀xT ∈ ∆(ΠT ), ∃xT ∈ ∆(FT ) such that xT ∼ xT with |SxT | = |SxT |.

Proof. As we mentioned in Section 2.1.2, any pure normal-form strategy π1 ∈ Π1

can be uniquely represented by a pure sequence-form strategy r1 ∈ R1, i.e., any pure

normal-form strategy π1 ∈ Π1 is realization-equivalent to a pure sequence-form strategy

r1 ∈ R1. Obviously, if π1 ∼ r1,

(π1, πT\{1}) ∼ (r1, πT\{1})

where π1 ∈ Π1 and r1 ∈ R1. For any mixed normal-form strategy xT ∈ ∆(ΠT ), we

define a mixed hybrid-form strategy xT ∈ ∆(FT ) such that:

xT (r1, πT\{1}) = xT (π1, πT\{1}) ∀(π1, πT\{1}) ∈ ΠT , π1 ∼ r1, r1 ∈ R1

and xT (fT ) = 0 for other strategies fT ∈ FT \ {(r1, πT\{1}) | r1 ∈ R1}. Given any

adversary strategy rn (or σn) and any node h ∈ H ∪ L, let PπT (h) be πT ’s reaching

probability for h. Then xT ’s reaching probability for h is:

∑
(π1,πT\{1})∈ΠT

xT (π1, πT\{1})P(π1,πT\{1})(h)

=
∑

(r1,πT\{1})∈FT ,r1∼π1

xT (r1, πT\{1})P(π1,πT\{1})(h)

which is xT ’s reaching probability for h. Hence, xT ∼ xT and |SxT | = |SxT |.

Lemma 6.2. ∀xT ∈∆(FT ),∃xT ∈∆(ΠT ) such that xT ∼ xT .

Proof. As we mentioned in Section 2.1.2, any sequence-form strategy r1 ∈ R1 is

realization-equivalent to mixed a normal-form strategy x1 ∈ ∆(Π1). Obviously, if

x1 ∼ r1,

(x1, πT\{1}) ∼ (r1, πT\{1})
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where x1 ∈ ∆(Π1) and r1 ∈ R1. For any mixed hybrid-form strategy xT ∈ ∆(FT ), we

define a mixed normal-form strategy xT ∈ ∆(ΠT ) such that:

xT (π1, πT\{1}) =
∑

(r1,πT\{1})∈FT ,x1∼r1

xT (r1, πT\{1})x1(π1) ∀(π1, πT\{1}) ∈ ΠT

Given any adversary strategy rn (or σn) and any node h ∈ H ∪ L, let PfT (h) be fT ’s

reaching probability for h. We have: if x1 ∼ r1,

P(r1,πT\{1})(h) =
∑
π1∈Π1

x1(π1)P(π1,πT\{1})(h)

Then xT ’s reaching probability for h is:

∑
(r1,πT\{1})∈FT

xT (r1, πT\{1})P(r1,πT\{1})(h)

=
∑

(r1,πT\{1})∈FT ,r1∼x1

xT (r1, πT\{1})
∑
π1∈Π1

x1(π1)P(π1,πT\{1})(h)

=
∑

(π1,πT\{1})∈ΠT

∑
(r1,πT\{1})∈FT ,r1∼x1

xT (r1, πT\{1})x1(π1)P(π1,πT\{1})(h)

=
∑

(π1,πT\{1})∈ΠT

xT (π1, πT\{1})P(π1,πT\{1})(h)

which is xT ’s reaching probability for h. Hence, xT ∼ xT .

Theorem 6.1. ∀xT ∈ ∆(ΠT ), ∃xT ∈ ∆(FT ) such that UT (xT , σn) =

UT (xT , σn)(∀σn ∈ Σn), and vice versa.

Proof. By Lemma 6.1, ∀xT ∈ ∆(ΠT ), ∃xT ∈ ∆(FT ) such that xT ∼ xT . For each

σn ∈ Σn, let pσn(l) be the probability reaching terminal node l by xT or xT . Then,

UT (xT , σn)

=
∑
fT∈FT

UT (fT , σn)xT (fT )

=
∑
l∈L

pσn(l)uT (l)c(l)

=
∑

πT∈ΠT

UT (πT , σn)xT (πT )
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Algorithm 11: CMB
1 Initialize F ′T ← {any strategy}, v ← 0, v ← 1;
2 repeat
3 (v, xT , rn)← solution of Problem (6.1) under (F ′T ,Σn);
4 (v, fT )← BR(rn);
5 F ′T ← F ′T ∪ {fT };
6 until v = v;
7 return (xT , rn).

=UT (xT , σn)

Similarly, by Lemma 6.2, ∀xT ∈ ∆(FT ), ∃xT ∈ ∆(ΠT ) such that UT (xT , σn) =

UT (xT , σn)(∀σn ∈ Σn).

Therefore, the set of TMEsCor will not change if HFSs are played, and a TMECor

can be computed by:

maxx v(In(∅)) (6.1a)

v(In(σn))−∑In,j∈In:seqn(In,j)=σn
v(In,j) ≤ UT (xT , σn) ∀σn ∈ Σn (6.1b)∑

fT∈FT xT (fT ) = 1 (6.1c)

xT (fT ) ≥ 0 ∀πT ∈ FT (6.1d)

where In(σn) defines an information set in which player n takes the last action of se-

quence σn, and v(In,j) defines the expected utility of the team in each information set

In,j . The adversary takes the strategy minimizing the team’s utility in each information

set In(σn), represented by Eq.(6.1b).

6.1.2 CG with a Multilinear BR

It is impractical to enumerate all HFSs for solving Problem (6.1) because FT is con-

tinuous due to one player’s SFS in an HFS. In this section, we develop our CG with

a Multilinear BR (CMB) with two novel features: 1) we provide a finite upper bound

for the number of iterations where CMB terminates, even though the strategy space is

infinite; and 2) we design our novel multilinear BR for the team.
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CMB is shown in Algorithm 11. Starting from the restricted F ′T (initialized at Line

1), Program (6.1) solves the equilibrium (xT , rn) with utility v for the team (Line 3).

CMB then finds the team’s best response fT with utility v for the team by calling BR

(Line 4) and expands F ′T (Line 5). CMB can find an equilibrium due to properties

shown in the following theorems: 1) CMB will terminate within finite iterations; and 2)

its output is a TMECor when it terminates.

Unfortunately, the guarantee of convergence of CMB usually needs to assume that

the strategy space is finite to make sure that CMB can terminate when it needs to enu-

merate pure strategies in the worst case [5, 38]. If CMB needs to enumerate all pure

strategies in an infinite space, then CMB will not converge anymore. To make sure that

we can use our hybrid-form representation to compute exact TMEsCor, we theoretical-

ly show that CMB can guarantee to converge within a finite number of iterations in our

infinite strategy space. That is, we show that this number of iterations can be bounded

as follows:

Theorem 6.2. The number of iterations where CMB terminates is at most

2|Π1|∏
i∈T\{1} |Πi|.

Proof. Given the adversary strategy rn, suppose that fT = (r1, πT\{1}) is a best re-

sponse for the team. Let x1 be a realization-equivalent normal-form strategy of r1 with

its support set Sx1 = {π1 | x1(π1) > 0, π1 ∈ Π1}. Then, (x1, πT\{1}) and fT are

realization-equivalent with:

UT (fT , rn)

=UT ((x1, πT\{1}), rn)

=
∑

π1∈Sx1

x1(π1)UT (π1, πT\{1}, rn)

Note that, if (x1, πT\{1}) is a best response against rn, then (π1, πT\{1})(∀π1 ∈ Sx1) is

also a best response against rn. Then, for any π1 ∈ Sx1 we have UT (π1, πT\{1}, rn) =

UT (fT , rn).1 Therefore, for any r′1 ∈ R1 with a realization-equivalent normal-form

1If there is π1 ∈ Sx1
such that UT (π1, πT\{1}, rn) < UT ((x1, πT\{1}), rn), then there is π′1 ∈ Sx1

such that UT (π′1, πT\{1}, rn) > UT ((x1, πT\{1}), rn), and then higher UT ((x1, πT\{1}), rn) is achieved
by moving the probability for π1 to π′1, which causes a contradiction.
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strategy x′1 such that Sx′1 = Sx1 ,

UT (r′1, πT\{1}, rn)

=
∑

π1∈Sx1

x′1(π1)UT (π1, πT\{1}, rn)

=UT (x1, πT\{1}, rn)

=UT (fT , rn)

For each Π′1 ⊆ Π1, we can define a set of pure hybrid-form strategies:

FT (Π′1, πT\{1}) = {(r1, πT\{1}) ∈ FT | Sx1 = Π′1(⊆ Π1), x1 ∼ r1}

where ∀fT ∈ FT (Π′1, πT\{1}), fT is a best response against rn if ∃ f ′T ∈ FT (Π′1, πT\{1})

is a best response against rn. In CMB, only the best response against rn, which must

be better than any strategy in F ′T against rn, will be added to F ′T . Therefore, only one

strategy f ′T in FT (Π′1, πT\{1}) will be added to F ′T , i.e., the set of pure hybrid-form

strategies FT (Π′1, πT\{1}) is represented by a single strategy f ′T in F ′T . In the worst

case, CMB needs to add strategies involving all these sets (the number of these sets

is up to 2|Π1|∏
i∈T\{1} |Πi|), and then CMB will terminate within 2|Π1|∏

i∈T\{1} |Πi|
iterations.

The above result implies that there always exists a TMECor with a finite-sized sup-

port set for the team, which is rather loose. Now we provide a stronger bound on the

size of the team’s support set.

Theorem 6.3. There is TMECor (xT , rn) with |SxT | ≤ |Σn|.

Proof. There is TMECor (xT , rn) with |SxT | ≤ |Σn| [15]. We know that there is

x ∈ ∆(FT ) with |SxT | = |SxT | such that xT ∼ xT by Lemma 6.1. By Theorem

6.1, UT (xT , σn) = UT (xT , σn)(∀σn ∈ Σn). Then, (xT , rn) is a TMECor, concluding

the proof.

Our experiments show that the actual number of iterations where CMB terminates

is significantly smaller than the bound in Theorem 6.2, which could be due to the fact
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that at least one TMECor has a small support set shown in Theorem 6.3. Now we show

that the output of CMB is a TMECor.

Theorem 6.4. CMB converges to a TMECor.

Proof. By Theorem 6.2, CMB will terminate with v = v within a finite number of iter-

ations. Then, we have, UT (xT , rn) = v = v ≥ UT (x′T , rn)(∀x′T ), and −UT (xT , rn) =

−v ≥ −UT (xT , r
′
n)(∀r′n). Therefore, (xT , rn) is a TMECor.

In addition to exact TMEsCor, CMB converges to an approximate TMECor if we

change the termination condition from v = v to v − v ≤ ε.

Theorem 6.5. If CMB terminates with v − v ≤ ε, then its output (xT , rn) is an ε-

TMECor.

Proof. UT (x′T , rn) − UT (xT , rn) ≤ v − v ≤ ε (∀x′T ), and −UT (xT , r
′
n) −

(−UT (xT , rn)) ≤ −v − (−v) = 0(∀r′n). Therefore, (xT , rn) is an ε-TMECor.

Now we propose our multilinear BR to compute the best response by the following

multilinear program:

max×i∈T ri
∑

l∈LuT (l)c(l)rn(seqn(l))
∏

i∈T ri(seqi(l)) (6.2a)

Eqs.(2.5a)− (2.5c) ∀i ∈ T (6.2b)

ri(σi) ∈ {0, 1} ∀σi ∈ Σi, i ∈ T \ {1} (6.2c)

r1(σ1) ∈ [0, 1] ∀σ1 ∈ Σ1 (6.2d)

where ri ∈ Ri represents its realization-equivalent πi ∈ Πi (i ∈ T \ {1}) in an HFS.

Basically, our BR considers the probability of all players reaching each terminal node,

and then involves multilinear term
∏

i∈T ri(seqi(l)). However, it only has
∑

i∈T\{1} |Σi|
integer variables.
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6.1.3 Associated Representation Technique (ART)

This section proposes our novel technique to solve the multilinear Problem (6.2) effi-

ciently by developing the ART to exactly represent multilinear terms in Problem (6.2)

through linear constraints. The ART is inspired by the recent techniques to approxi-

mate multilinear terms [16], which recursively transforms multilinear terms into bilin-

ear terms and then uses an MILP to approximate each bilinear term while exploiting

the equivalence relation between bilinear terms. Moreover, the ART has two novel

features: 1) exactly representing multilinear terms without using the recursive method,

and 2) efficiently generating associated constraints for the equivalence relation between

multilinear terms in the game tree.

6.1.3.1 Multilinear Representation

To transform Problem (6.2) to an MILP, based on the property of integer variables in

Problem (6.2), we develop our technique, Multilinear Representation (MR), exactly

representing multilinear terms without introducing new integer variables. That is, for

each multilinear term w(σT ) =
∏

i∈T ri(σT (i)), where σT (i) is the sequence of player i

in joint sequence σT ∈ ΣT (i.e.,×i∈TΣi), ri ∈ R(i ∈ T \ {1}), and r1 ∈ R1, we have:

0 ≤ w(σT ) ≤ ri(σT (i)) ∀i ∈ T \ {1} (6.3a)

0≤r1(σT (1))−w(σT)≤n−2−∑i∈T\{1}ri(σT (i)) (6.3b)

Theorem 6.6. w(σT ) is exactly represented by Eqs.(6.3a) and (6.3b).

Proof. w(σT ) = r1(σT (1)) if ri(σT (i)) = 1(∀i ∈ T \{1}), otherwise w(σT ) = 0. First,

by Eq.(6.3b), 0 ≤ r1(σT (1)) − w(σT ) ≤ n − 2 − (n − 2) = 0 if ri(σT (i)) = 1(∀i ∈
T \ {1}), i.e., w(σT ) = r1(σT (1)). Second, by Eq.(6.3a), w(σT ) = 0 if any i ∈ T \ {1}
with ri(σT (i)) = 0. Then, w(σT ) is exactly represented by Eqs.(6.3a) and (6.3b).

By using MR, we can exactly transform Problem (6.2) to an MILP without intro-

ducing new integer variables.
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6.1.3.2 Efficient Associated Constraint Generation

An MILP is generally solved by the branch-and-bound approach with the LP relaxation

[81]. In MR, the relaxation may give us a much larger feasible solution space because

w(σT ) may not be exactly represented by Eqs.(6.3a) and (6.3b) after the relaxation

of ri(σT (i))(i ∈ T \ {1}). Now we aim to reduce this feasible solution space and

solve the MILP efficiently. To do that, we add associated constraints by exploiting the

equivalence relation between multilinear terms.

The equivalence relation between multilinear terms is based on the constraints for

the SFS in Eqs.(2.5a)-(2.5c), as shown in the following example.

Example 6.1. In a four-player Kuhn poker game, the information set for player i in-

cludes the information about the card that player i holds and the observed actions

taken by players in turn. For example, J:/cccr: is an information set of player 1, where

player 1 has card J and has observed the actions ‘c,c,c,r’ of all players in turn. Now,

player 1 has two actions: calling (c) and folding (f) in this information set J:/cccr:

reached by sequence J:/:c of player 1. Therefore, by Eq.(2.5b), we have r1(J:/:c) =

r1(J:/cccr:c) + r1(J:/cccr:f). Moreover, this information set may include many different

nodes because of the uncertainty about the holding cards of other players. Each node in

the information set defines a sequence for each player from the root to this node. For ex-

ample (J:/:c, Q:/c:c, T:/cc:c, K:/ccc:r) and (J:/:c, Q:/c:c, K:/cc:c, T:/ccc:r) are two dif-

ferent nodes in this information set due to different cards for players 3 and 4. Therefore,

there are many different joint sequences for the team involved by an information set,

e.g., (J:/:c, Q:/c:c, T:/cc:c) or (J:/:c, Q:/c:c, K:/cc:c). Player 1 has two actions in this

information set and only Player 1 will take actions in this information set. Then, given a

joint sequence (J:/:c, Q:/c:c, T:/cc:c) in this information set, we certainly have succeed-

ing joint sequences (J:/cccr:c, Q:/c:c, T:/cc:c) and (J:/cccr:f, Q:/c:c, T:/cc:c) reaching

succeeding nodes of this information set. Then, we can have w(J:/:c, Q:/c:c, T:/cc:c) =

w(J:/cccr:c, Q:/c:c, T:/cc:c) + w(J:/cccr:f, Q:/c:c, T:/cc:c) because of r1(J:/c:c) =

r1(J:/cccr:c) + r1(J:/cccr:f). Moreover, given w(J:/:c, Q:/c:c, T:/cc:r), we have

w(J:/:c, Q:/c:c, T:/cc:r) + w(J:/:c, Q:/c:c, T:/cc:c) = w(J:/:c, Q:/c:c, ∅). In addi-

tion, given w(J:/:c, Q:/c:r, ∅), we have w(J:/:c, Q:/c:c, ∅) + w(J:/:c, Q:/c:r, ∅) =

w(J:/:c, ∅, ∅) = r1(J:/:c).
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That is, we look for the equivalence relation between multilinear terms until these

terms are connected to a sequence’s probability in the SFS, which we call associated

constraints. Due to these associated constraints, we can immediately rule out the solu-

tions that cannot satisfy these constraints and then solve the MILP efficiently.

Now we develop a simple and efficient algorithm to generate associated constraints,

which only enumerates joint sequences in ΣT (Ii,j) (the set of joint sequences in Ii,j) by:

w(σT )=
∑

a∈χ(Ii,j)
w(. . . , σT (i−1), σT (i)a, σT (i+1), . . . )

∀σT ∈ ΣT (Ii,j), Ii,j ∈ Ii, i ∈ T (6.4)

Therefore, this new algorithm only runs in time O(
∑

i∈T
∑

Ii,j∈Ii |ΣT (Ii,j)|). Our

algorithm is significantly faster than the existing algorithm [16] because their algo-

rithm conducts too many redundant operations: 1) it generates associated constraints

from the terminate nodes to the root, which needs to generate new terms for se-

quences reaching nonterminal nodes frequently; and 2) it recursively generates as-

sociated constraints: it transforms each multilinear term to a set of bilinear terms

(e.g., the multilinear term w(J:/:c, Q:/c:c, T:/cc:c) is transformed to two bilinear terms

w(J:/:c, w(Q:/c:c, T:/cc:c)) and w(Q:/c:c, T:/cc:c)) and frequently checks whether the

equivalence relation between bilinear terms exists.

After adding constraints in Eqs.(6.3a)-(6.3b) and (6.4), we can exactly transform

Problem (6.2) to the following MILP:

max×i∈T ri
∑

l∈LuT (l)c(l)rn(seqn(l))w(×i∈T seqi(l)) (6.5a)

Eqs.(6.2b)− (6.2d), (6.4) (6.5b)

Eqs.(6.3a)− (6.3b) ∀w(×i∈T seqi(l)), l ∈ L (6.5c)

Theorem 6.7. The feasible solution of Problem (6.2) is feasible in Problem (6.5).

Proof. Suppose that an SFS ri of player i is feasible in Problem (6.2) but is in-

feasible in Problem (6.5). By Theorem 6.6, w(×i∈T seqi(l)) is exactly represented

by Eqs.(6.3a) and (6.3b). Therefore, ri does not satisfy the constraints in Eq.(6.4).



Chapter 6. Computing Ex Ante Coordinated Team-Maxmin Equilibria 100

EFG |L| |Σi| CMB CMB/H CMB/A CMB/ART CMB/ART/H C18 F18
3K4 312 33 0.7s 0.7s 2.1s 4s 6s 6.8s 1.2s
3K6 1560 49 2s 2s 20s 191s 479s >5h 12s
3K8 4368 65 4s 4s 497s 7160s >5h 210s
3K10 9360 81 5s 6s 10530s >5h 3541s
3K12 17160 97 10s 10s >5h >5h
4L31 30600 219 68s 165s
4L32 638064 219 1264s 2155s
3L3 249480 457 4916s 6500s
4K9 99792 145 2.6h 3.8h
3L5∗ 10020 1001 4.4h >6h

TABLE 6.1: Computing TMEsCor: For the top to the bottom, these games are harder
and harder to be solved. ‘> nh’ means that we terminate algorithms after n hours,
which also represents that they do not converge within n hours for the remaining

cases. To solve large games in our machine, 3L5∗ has five cards, and team players do
not take action ‘raising’ in 4L31 (6 cards) and 4L32.

EFG 5K11 5K12 5K13 6K7 6K8 6K9 7K7
CMB 35s 58s 104s 17s 64s 216s 56s

CMBZ20 2802s 6319s >3h 2009s >3h >3h >15h

TABLE 6.2: Computing TMEsCor. Here, team players choose actions in information
sets reaching by sequence ∅ and then take action ’calling’ in other information sets.

Without loss of generality, we assume that
∑

a∈χ(Ii,j)
ri(σT (i)a) = ri(σT (i)), but∑

a∈χ(Ii,j)
w(σT (i)a, σT\{i}) 6= w(σT ). We have:

∑
a∈χ(Ii,j)

w(σT (i)a, σT\{i}) 6= w(σT )

⇒
∑

a∈χ(Ii,j)

ri(σT (i)a)
∏

j∈T\{i}
rj(σT (j)) 6=ri(σT (i))

∏
j∈T\{i}

rj(σT (j))

⇒∑a∈χ(Ii,j)
ri(σT (i)a) 6= ri(σT (i))

which causes a contradiction, concluding the proof.

Corollary 6.1. Given rn, the optimal solution of Problem (6.5) is the best response

against rn.

Proof. This is obtained from Theorems 6.6 and 6.7.

Therefore, our BR can be represented by Problem (6.5).
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ε 0.1 0.08 0.06 0.04 0.02 0.01 0.008
CMB 0.41s 0.41s 0.41s 0.50s 0.50s 0.58s 0.58s
FTP 0.55s 0.71s 0.82s 1.3s 3.8s 8.0s 11.0s
CMB 0.08s 0.08s 0.16s 0.16s 0.29s 0.50s 0.87s
FTP 4.0s 6.6s 8.1s 15.5s 72.3s 181s 243s
CMB 0.23s 0.23s 0.31s 0.31s 0.64s 1.1s 1.1s
FTP 34.6s 34.6s 67.7s 94.9s 171s 382s 458s
CMB 2s 3s 6s 13s 41s 87s 111s
FTP 228s 307s 458s 689s 1574s 4882s >5h
CMB 5s 7s 13s 28s 93s 745s 1533s
FTP 188s 251s 362s 619s >5h
CMB 23s 27s 37s 108s 490s 3357s 8221s
FTP 164s 215s 371s 920s >5h

TABLE 6.3: Computing ε∆u-TMEsCor: Games from top to bottom are 3K4, 3K8,
3K12, 3L3, 3L4, and 3L5, respectively, ∆u = 6 for 3Kr and ∆u = 21 for 3Lr

(|L| ≈ 106 with |Σi| = 801 for 3L4, and |L| ≈ 3 · 106 with |Σi| = 1241 for 3L5).

6.2 Experimental Evaluation

We conduct experiments on standard games to evaluate our approach. LPs are solved by

CPLEX (version 12.9). All algorithms are performed on a machine with 6-core 3.6GHz

CPU and 32GB memory (about 27GB are available).

The standard games that we use are the multiplayer Kuhn poker and Leduc Hold’em

poker games (see their rules in Farina et al. (2018)), where nKr denotes an n-player

Kuhn instance with r ranks (i.e., r cards), and nLr denotes an n-player Leduc Hold’em

instance with r ranks (i.e., 3r cards). ∆u is the difference between the maximum and

minimum possible utility of the team. In addition, |L| is the number of terminal nodes,

and |Σi| is the number of sequences per player. Without loss of generality, the adversary

is player n.

We test our approach on runtimes. To evaluate CMB for computing exact TMEsCor,

we have three prior state-of-the-art baselines: 1) C18: a prior algorithm [15] discussed

in Section 2.3.4; 2) F18: CG uses BR proposed by Farina et al. (2018) discussed in

Section 2.3.4; and 3) CMBZ20: CMB uses the prior algorithm [16] discussed in Sec-

tions 2.3.4 and 6.1.3 to generate associated constraints. For ablations, we choose: 1)

CMB/A: CMB does not use associated constraints; 2) CMB/ART: CMB does not use

the ART and our BR formulation but uses continuous variables to represent reaching
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EFG 3K8 3K9 3K10 3K11 3K12

Runtime
TMECor 4s 4s 5s 10s 10s
TME 4s 5s 84s 437s 118s

Utility
TMECor -0.01928 -0.01786 -0.01569 -0.01456 -0.01401
TME -0.06580 -0.04383 -0.06767 -0.05037 -0.05453
Gap 71% 59% 77% 71% 74%

TABLE 6.4: The runtimes to compute TMEs and TMEsCor and the team’s utilities of
the team in TMEs and TMEsCor. The gap is the relative distance between the team’s

utility (VCor) in a TMECor and the one (VTME) in a TME, i.e., |VTME−VCor|
|VTME | × 100%,

which means that the team will lose more if the lap is larger.

probabilities for terminal nodes; and 3) CMB/H (respectively, CMB/ART/H): BR in

CMB (respectively, CMB/ART) generates pure NFSs for all team members instead of

an HFS. Results in Tables 6.1 and 6.2 (CMB and CMBZ20 have similar results in Table

6.1 (results for CMBZ20 are not shown) and then are further evaluated in larger games

in Table 6.2) show that: 1) CMB is several orders of magnitude faster than baselines

in large games, whose gaps increase with the sizes of games; and 2) CMB significantly

outperforms ablation algorithms in large games, which means that each component in

CMB significantly enhances the performance.

To evaluate CMB for computing ε∆u-TMEsCor, we have a baseline: Fictitious

Team Play (FTP) [28] discussed at the beginning of this chapter. Results in Table 6.3

show that CMB runs significantly faster than FTP and is at least two orders of magni-

tude faster than FTP in large games with small ε (e.g., ε = 0.01). Our experimental

results also show that it is almost impossible for FTP to converge to an ε∆u-TMECor

with very small ε (e.g., ε = 0.0001), let alone an exact TMECor. For example, for

3K4, the smallest game in our experiments, FTP cannot converge to an ε∆u-TMECor

with ε = 0.0004 within 100 hours (ε reaches 0.0005 within 2674s but then fluctuates

around 0.001). Conversely, our CMB, even computing an exact TMECor, only needs

0.7s shown in Table 6.1.

It has been shown [28] that the team will lose a large utility if playing the strategy

in TMEs instead of the one TMEsCor in games 3K3–3K7. Now we show runtimes to

compute TMEs and TMEsCor and the team’s utilities in TMEs and TMEsCor in 3K8–

3K12 in Table 6.4. We use the state-of-the-art algorithm [16] to compute ε∆u-TMEs.

Here, ε = 0.01 due to the difficulty to compute an exact TME, and the team’s utility is
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EFG 3K4 3K6 3K8 3K10 3K12 3L3
Iterations 14 36 47 45 52 1022
Support size 3 5 8 6 10 63

TABLE 6.5: The number of iterations when CMB converges and the size of the
support set of the team’s strategy in the corresponding TMECor.

obtained when the team’s strategy in an ε∆u-TME against the adversary’s best response.

We can see that we need dramatically more time to compute a TME than to compute

a TMECor, where the team’s utility in a TME is significantly lower than the one in a

TMECor.

Table 6.5 shows the number of iterations when CMB converges and the size of the

support set of the team’s strategy in the corresponding TMECor. We can see that the

number of iterations is significantly smaller than the theoretical upper bound in Theorem

6.2 that is larger than 233 × 33 (33 is Σi in 3K4, where Πi is significantly larger than

Σi). In the future, we can explore the tighter theoretical upper bound for the number of

iterations. We also can see that the support set in a TMECor is very small.

6.3 Chapter Summary

In this chapter, we propose an efficient algorithm to compute TMEsCor for zero-sum

multiplayer EFGs. We first propose our novel HFS representation for the team. We then

develop our novel CMB including a novel multilinear BR. In addition, we develop our

novel ART to solve our multilinear BR. Finally, experimental results show that CMB is

orders of magnitude faster than baselines in large games.



Chapter 7

Computing Team-Maxmin Equilibria

with Communication Device for

Optimal Interdiction of Urban

Criminals with the Aid of Real-Time

Information

This chapter1 focuses on computing TMEsCom [15] for optimal interdiction of urban

criminals with the aid of real-time information. This chapter uses the TMECom as the

solution concept for the novel network pursuit game model that captures the interaction

between an escaping adversary and a team of multiple defense resources (defender)

with real-time information available on urban networks. To incorporate such real-time

information, we model the urban network security problem as a zero-sum NEtwork pur-

SuiT game (NEST). In NEST, the adversary picks one escape path to the outside world,

while the defender, tracking the adversary’s previous moves, decides on the relocation

of her security resources (modeled as a finite-horizon Markov Decision Process (MD-

P)). After modeling NEST as an imperfect-recall game to reduce the strategy space,

1The work in this chapter has been published as Youzhi Zhang, Qingyu Guo, Bo An, Long Tran-
Thanh, Nicholas Jennings. Optimal interdiction of urban criminals with the aid of real-time information.
Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI), pp.1262-1269, 2019.

104
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we fist show that the ignorance of real-time information in existing work can lead to

an arbitrarily large loss of efficiency. Second, we show that solving NEST is NP-hard.

Third, after transforming the non-convex program of solving NEST to a linear program

(LP), we propose our ISG with the following novelty: (i) novel pruning techniques in

our BR, including: (1) providing tight lower and upper bounds by exploiting the com-

binatorial structure of each state’s action space; and (2) handling imperfect recall by

developing an effective lower bound transition method that causes an evaluated state to

be reevaluated only if a prefix state with a smaller lower bound transits to it; and (ii)

novel techniques to speed up our ISG to solve extremely large-scale problems, which in-

clude: (1) mapping the computed defender strategy by BR between similar subgames to

speed up BR, which also speeds up LP if this strategy is optimal; and (2) adding multiple

best response strategies to the restricted game at one iteration against different sampled

adversary strategies to reduce the number of iterations for convergence. Finally, experi-

ments show that our approach can scale up to problem sizes with hundreds of nodes on

networks including the real network of Manhattan. Thus, for the first time, this chapter

shows that ISG techniques can also be scaled for dynamic games when best-response

oracles are tuned with domain-specific pruning techniques, and other domain-specific

improvements are employed.

7.1 Motivating Scenario

To illustrate the underlying issues and motivation for our model, we analyze the problem

of police vehicle pursuits. Recently, a new pursuit technology [32, 82] based on GPS has

been tested and deployed in many cities, e.g., New York [83] in America and Delta [84]

in Canada. This technology developed by StarChase (see http://www.starchase.com)

provides police officers with real-time (every 3 to 5 seconds [32]) GPS locations of the

fleeing vehicle. However, it does not mean that the evader will always be captured.

For example, in the urban scenario discussed in [32], even obtaining the real-time in-

formation provided by StarChase GPS-based system, police officers only achieved 61%

apprehension rate. Outside the cities, i.e., in the open area, it may be even harder to cap-

ture the evader. Cities, however, have more advanced facilities and security resources,
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which make it much easier to locate the evader’s location in real time and capture him.

Therefore, we can set the roads to the outside of cities as the exit points. In addition,

based on the data in [85], about 10% of 5,568 pursuits ended because the vehicle crossed

into another jurisdiction. In such a context, we can set the roads to other jurisdictions

as the exit points. Meanwhile, about 50% of cases discussed in [82] lasted more than 5

minutes, and the maximum time is 50 minutes. Therefore, police officers have limited

but sufficient time to deploy security resources to interdict the evader with the aid of the

real-time information about the evader.

Our approach is also suitable for security problems in other domains including inter-

dicting poachers in the field, where UAVs can provide poachers’ location information

in real time [86]; and combating the threat of piracy or fighting against illegal fishing

on the sea, where a new system can track ships or boats in real time [87].

7.2 Problem Description

The NEtwork purSuiT game (NEST) is played between an evader (adversary) and police

officers (defender) on an urban road network G = (V,E) consisting of a set of directed

edgesE representing roads and a set of nodes V representing intersections. W.l.o.g., we

assume that the time it takes to travel through each road segment is one time unit, e.g.,

1 minute, since we can add dummy nodes to separate each road into several segments

with equal length. We denote by Ve the set of exit nodes, through which the adversary

can escape to the external world. The adversary, initially located at node va0 , tries to

escape to the external world, while the defender deploys m identical resources (police

officers/teams), initially located at intersections v1
0, . . . , v

m
0 ∈ V , to catch him. The

adversary is caught if he and one of the defender resources reach the same node at the

same time1. We assume that va0 6= vr0 for all r ∈ R = {1, . . . ,m}. The adversary

cannot see the defender until he gets caught [20, 22]. Motivated by the fact that new

pursuit technology can be used to provide real-time information about the adversary’s

whereabouts, the defender can observe the adversary’s locations in real time. The initial

1Our model can be easily extended to cover the case that both players meet on an edge by extending
this definition of capture.
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positions of both players are common knowledge. For example, police officers are

notified about the location of the crime, while the locations of the police stations are

public information.

Adversary’s Strategies: A pure adversary strategy is a path from his initial node va0 to

an exit node ve ∈ Ve, represented by a sequence of nodes o visited by the adversary with

a length no longer than tmax
1 (time horizon), where any pair of consecutive nodes are

connected by an edge in E. The set of adversary pure strategies is denoted by O. The

mixed strategy is a probability distribution overO, denoted by y = 〈yo〉 where yo repre-

sents the probability of escaping through path o. An observed history h is a sequence of

nodes where the adversary is spotted. We say that h′ is a descendant of h or h@h′ if h is

any strict prefix of h′. We denote by Oh = {o | o∈O, hvo} the set of paths generating

history h, H = {h|∃o ∈ O, hv o} the set of valid histories, and CHh = {h′ | h′ ∈
H,∃v ∈ V, h′ = h · v : v will be reached at the next step after generating history h} the

set of child histories of h.

Defender’s Strategies: The defender’s decision problem is modeled as an MDP. Let

l = (v1
l , ..., v

m
l ) denote the location of m resources, where vrl denotes the location of

resource r. Let L represent the set of all possible locations. We say two locations l

and l′ are adjacent if l′ can be reached from l with a one-step move. That is, for any

r ∈ R, either vrl = vrl′ or (vrl , v
r
l′)∈E. Let l0 = (v1

0, . . . , v
m
0 ) be the initial location of m

resources. A pure strategy for the defender is a deterministic policy π : S→A. Each

state s ∈ S consists of two components, the current location ls ∈ L and the observed

history hs ∈ H of the adversary’s moves from the initial state to state s, i.e., s=(ls, hs).

Let η : H→V return the last node in history h∈H . A state s is called a capture state if

there exists a resource r ∈ R such that vrls = η(hs). We denote by Sc the set of capture

states. On the other hand, if η(hs)∈Ve and there exists no resource allocated on η(hs),

the adversary successfully escapes, and such a state is called an escape state. Let Se

denote the set of all escape states. Let the terminal state set be St = Sc ∪ Se and the

initial state be s0 = (l0, 〈va0〉). Each action a ∈ A corresponds to a one-step move from

the current location l to the adjacent location l′. Thus, we abuse the notation slightly and

1Assume that after tmax, the defender can deploy sufficient police forces (e.g., police from neighbor
cities) to prevent the adversary from escaping.
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let A and L be exchangeable, such that each action is a location to which the defender

plans to transfer her resources. We denote by As the set of actions in s ∈ S \ St.
Specifically, we denote by Ss,l the set of states reached from s by taking action l ∈ As,
i.e., Ss,l = {s′ | s′ = (l, h), h ∈ CHhs}, and we say that s′ ∈ Ss,l is a succeeding state

of s. We denote by x the behavior strategy of the defender, where in each non-terminal

state s, x defines a probability distribution over As.

Utilities: Assume that the game is zero-sum as we are only concerned with whether

the defender can capture the adversary or not. If it is a capture state, the defender

receives a unit reward, and the adversary suffers a unit loss; otherwise, both players

receive a zero payoff. That is, ud(s) = −ua(s) = 1 if s ∈ Sc and ud(s) = ua(s) = 0 if

s ∈ Se. Given strategy profile (x, o), we denote by Px,o(s) the probability that state s is

reached. Notice that: i) if hs 6v o, i.e., the escaping path o does not generate history hs,

Px,o(s) = 0; and ii) otherwise, Px,o(s) only depends on x and hs, and is independent

of the adversary’s moves after hs. Therefore, we can denote by Px(s) the probability

of reaching state s under (x, o) with hs v o. Px(s) is determined by the following

recursive equation:

Px(s0) = 1,

Px(s) =
∑

s′∈S\St:s∈Ss′,ls
Px(s′)xs′,ls ∀s∈S \ {s0},

(7.1)

where the summation is over states that can transit to s.

Given profile (x, o), the defender’s expected utility is: Ud(x, o) =∑
s∈St:hsvo Px(s)ud(s) =

∑
s∈Sc:hsvo Px(s). Accordingly, we have Ud(x,y) =∑

o∈O yoUd(x, o). Since the game is zero-sum, Ua(x,y) = −Ud(x,y).

Equilibrium: We use the NE, (i.e., TMECom) as the solution concept. Generally,

(x?,y?) is NE if and only if: (i) Ud(x?,y?) ≥ Ud(x,y
?),∀x; and (ii) Ua(x?,y?) ≥

Ua(x
?,y),∀y.
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7.3 Theoretical Analysis

This section first shows the cost of ignoring the real-time information, and then proves

that solving NEST is NP-hard.

Cost of Ignoring Information: Here, we denote the strategy that does not consider

the up to date information about the adversary as the non-real-time strategy and its

counterpart as the real-time strategy.

1
2

3 4

5
6

FIGURE 7.1: Example

Consider the example in the left figure, where a unique

defender resource is at node 6, the adversary is at node 1,

and exit nodes are 4 and 5. If the defender ignores the real-

time information, in the worst case (under the NE of the

zero-sum game), the adversary reaches each exit node with probability 0.5, while the

defender’s optimal non-real-time strategy moves the single resource to nodes 4 or 5

with equal probability. That is to say, the defender’s expected utility is 0.5. However,

the defender can ensure the capture of the adversary by doing the following. (i) If the

adversary’s current location is at the starting node, the defender just stays at node 6. (ii)

When the adversary moves to node 2, the defender moves her resource to node 5, and

4 if she observes that the adversary has moved to node 3. As long as the time horizon

is finite, the defender will capture the adversary for sure, and the expected utility is 1,

much higher than 0.5.

Proposition 7.1. The defender’s optimal non-real-time strategy under the NE can be

arbitrarily worse compared with the optimal real-time strategy under the NE.

Proof. We extend the example in Figure 7.1 to a more general form. That is, there

are |O| = n different paths from the adversary’s initial location to the external world

through n different exit nodes with two time steps. Specifically, any two paths do not

intersect. On the other hand, there are n different paths starting from the defender

resource’s initial location v0 to different exit nodes by one time step. Similar to the

toy example in Figure 7.1, the probability of catching the adversary is Ud = 1
n

by

the optimal non-real-time strategy under the NE, while the probability of catching the

adversary is U?
d = 1 by the optimal real-time strategy under the NE. Then, U

?
d

Ud
= n, can

be made arbitrarily large by increasing n.
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Complexity Analysis

Theorem 7.1. Computing an NE of NEST is NP-hard.

Proof. We reduce the Set Cover problem to computing an NE of NEST, which is de-

scribed as follows: given a set U of elements, a collection S ⊆ 2U of subsets of U, and

an integer m, determine whether there exists a set C ⊆ S of size m or less, such that

∪C∈C = U.

... 

... ... 

... ... 

𝒗𝟎
𝒅 

𝒗𝟎
𝒂 

𝒗𝑪 

𝒗𝒊
𝑰 

𝒗𝒊
𝑰𝑰 

starting point (D) 

𝓢 layer 

𝕌 layer I 

𝕌 layer II 

starting point (A) 

Reduction: The network structure in NEST is demonstrat-

ed by the right figure, where va0 and vd0 are starting points for

the adversary and the defender respectively. Between them,

there are three layers of nodes. The S layer is fully connect-

ed to vd0 where each node vC corresponds to the set C in S.

U layers I and II are two identical layers representing all the

elements in the ground set U. These two layers are connected with each other in an

element-wise manner. Each node vIi in layer I is linked with vC in the S layer if i ∈ C.

On the other hand, the adversary can move from va0 to any node in the layer II. More-

over, the defender has m resources, all located at vd0 initially. The time horizon tmax is

set to 2, and the nodes in U layer I are characterized as exit nodes. It is easy to verify

that this is a polynomial-time reduction.

With a horizon of two time steps, suppose that the adversary reaches vIIi at the first

time step, and the defender is aware of exit node vIi chosen by the adversary. If any one

of the defender’s resources reaches vC in the S layer with i ∈ C at the first time step,

the adversary will be captured for sure. On the other hand, if there is no set cover, then

it is easy to show that there is a positive probability that the adversary will move to a

vIIi such that the corresponding vIi is not protected by any defender resources and thus,

the adversary can escape. Thus, an NE of NEST answers the Set Cover problem: there

exists a set C ⊆ S of size m or less covering the ground set U⇔ in an NE, the defender

captures the adversary with probability 1, which requires the defender to move the m

resources to nodes at S layer which fully protect U layer I.
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7.4 Computing the Optimal Solution

This section first transforms the non-convex program of computing an NE to LP, then

develops our ISG algorithm with a novel BR oracle, and finally proposes two additional

techniques to speed up our ISG significantly.

7.4.1 Transformation to the Linear Program

An NE strategy x? of the defender in NEST can be computed by: x? ∈ arg maxx

mino∈O Ud(x, o), i.e.,

max
x

U?
d (7.2a)

s.t. U?
d ≤ Ud(x, o), ∀o ∈ O (7.2b)∑
l∈As xs,l = 1, ∀s ∈ S \ St (7.2c)

xs,l ∈ [0, 1], ∀l ∈ As,∀s ∈ S \ St (7.2d)

Unfortunately, program (7.2) is non-convex, since the probability Px(s) of reaching

state s involves multiplication of various entities in x due to the recursive property de-

fined in Eq.(7.1). To transform it to an LP, based on the propagation of the probability

starting from s0 towards terminal states, we develop a flow representation of the defend-

er’s strategy.

Definition 7.1. f is the flow representation of the defender’s strategy where fs,l specifies

the probability that the defender reaches state s ∈ S \ St and takes the action l ∈ As.

Given f and o, the defender’s expected utility is: Ud(f , o) =∑
s∈Sc:hsvo

∑
s′∈S\St:s∈Ss′,ls

fs′,ls , where,

∑
l∈As0

fs0,l = 1 (7.3a)∑
s′∈S\St:s∈Ss′,ls

fs′,ls =
∑

l∈As fs,l,∀s∈S \({s0}∪St) (7.3b)

fs,l ≥ 0, ∀l ∈ As,∀s ∈ S \ St. (7.3c)
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Eqs.(7.3a)–(7.3c) ensure that f is feasible, which is initialized by Eq.(7.3a), and E-

q.(7.3b) is the flow conservation equality.

We now show how to derive the associated flow representation from the behavior

strategy and vice versa. Given x, its corresponding flow representation f is:

fs,l = Px(s)xs,l, ∀l ∈ As, ∀s ∈ S \ St. (7.4)

Given f , Px(s)=
∑

s′∈S\St:s∈Ss′,ls
fs′,ls if s6=s0, Px(s)=1 if s=s0, and its corresponding

behavior strategy x is:

xs,l=


fs,l
Px(s)

if Px(s) > 0,

1

|As|
otherwise,

∀l ∈ As,∀s ∈ S \ St. (7.5)

We prove that the flow representation is equivalent with the behavior strategy in terms

of expected utility in Theorem 7.2.

Theorem 7.2. For any pair of x and f satisfying Eqs.(7.4) and (7.5), Ud(x, o) =

Ud(f , o) ∀o ∈ O.

Proof. Given x, we first show that conditions (7.3a)-(7.3c) are satisfied. By Eq.(7.4),

we have:

∑
l∈As0

fs0,l =
∑

l∈As0
Px(s0)xs0,l =

∑
l∈As0

xs0,l = 1,

which is Eq.(7.3a). By Eq.(7.2c), Px(s) =
∑

l∈As xs,lPx(s) (∀s ∈ S \ St). Moreover,

by Eq.(7.1), ∀s ∈ S \ ({s0} ∪ St),

∑
s′∈S\St:s∈Ss′,ls

Px(s′)xs′,ls =
∑

l∈As Px(s)xs,l.

Further, by Eq.(7.4), ∀s ∈ S \ ({s0} ∪ St),

∑
s′∈S\St:s∈Ss′,ls

fs′,ls =
∑

l∈As fs,l,
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which is Eq.(7.3b). Obviously, Eq.(7.3c) is obtained from Eqs.(7.1), (7.2d) and (7.4).

For each o ∈ O,

Ud(x, o) =
∑

s∈Sc:hsvo Px(s)

=
∑

s∈Sc:hsvo
∑

s′∈S\St:s∈Ss′,ls
Px(s′)xs′,ls

=
∑

s∈Sc:hsvo
∑

s′∈S\St:s∈Ss′,ls
fs′,ls ,

=Ud(f , o).

Therefore, ∀x, ∃f defined by Eq.(7.4) such that Ud(x, o) = Ud(f , o) (∀o ∈ O).

Given f , we define x in Eq. (7.5). Obviously, Px(s)xs,l = fs,l, and then Ud(f , o) =

Ud(x, o). Therefore, ∀f , ∃x defined by Eq. (7.5) such that Ud(f , o) = Ud(x, o) (∀o ∈
O).

Finally, we obtain the following LP equivalent with (7.2).

max
f

U?
d (7.6a)

s.t. U?
d ≤ Ud(f , o), ∀o ∈ O (7.6b)

Eqs.(7.3a)− (7.3c). (7.6c)

7.4.2 Incremental Strategy Generation

Although we can compute the optimal solution with LP (7.6), it does not scale up due

to the exponentially large state space. To mitigate this issue, we propose the Iteratively

Generated Reachable States (IGRS) algorithm shown in Algorithm 12, which works as

follows. Starting from the restricted NEST G(S ′, A′) where S ′ ⊂ S and A′ ⊂ A, LP

(7.6) solves the equilibrium (x,y) on G(S ′, A′) (Line 3).1 We then solve the defender’s

best response policy π in the original strategy space (S,A) (Line 4) and expand A′ and

S ′ (Lines 5–9).
1Note that, at initialization (Line 1), s0 is temporarily treated as an escape state in order to compute

a solution (x,y).
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Algorithm 12: IGRS
1 Initialize S′ = {s0} and A′ = ∅;
2 repeat
3 (x,y)← solution of Problem (7.6) under (S′, A′);
4 (V, π)← BR(s0, Ud(x,y));
5 for each s reached from s0 by π with V (s) > 0 do
6 if s /∈ S′ then
7 S′ ← S′ ∪ {s}, A′ ← A′ ∪ {π(s)}
8 else
9 if π(s) /∈ A′s then A′s ← A′s ∪ {π(s)};

10 until V (s0) = Ud(x,y);
11 return (x,y).

Defender’s Best Response: Our Best-Response (BR) algorithm shown in Algo-

rithm 13 computes the best deterministic π against the adversary’s strategy y. Due to the

large strategy space, to speed up, BR adopts a branch-and-bound approach in a depth-

first manner. A branch is a state with an expected value representing the probability of

catching the adversary starting from this branch. The lower bound of a branch is the

minimum value that this branch must obtain in order to be part of the best response,

while its upper bound is the maximum value. Using these bounds, BR cuts branches

which will certainly not be part of the best response.

BR works as follows. Given a state s, if BR does not terminate at Lines 1 and 2, BR

estimates bounds and cuts branches if: (1) the upper bound Bl of action l is less than its

lower bound (V (s) + ε) (Line 13); (2) the upper bound B(l,h) of succeeding state (l, h)

is not more than 0 (Line 15) or is less than its lower bound b(l,h) (Line 17); or (3) the

state value V (l, h) is less than b(l,h) (Line 20). Then, BR updates action value Ql and

returns state value V (s)=maxlQl (Lines 21–24).

Specifically, BR estimates tight bounds as follows. Firstly, given the combinatorial

action space, BR estimates tight upper bounds (Lines 3–10 and 14). The idea is that,

given a joint action l, BR can estimate all the possible paths that the defender has a

chance to interdict (i.e., the possibly interdicted path set (PIPS)) by taking l. That is,

given a resource r’s action lr in l and an adversary path o ∈ Ohs , BR can determine if

r taking lr has a chance to interdict o by comparing the time from its current adversary

location η(hs) to exit node ve ∈ o through o and the shortest time from action (location)
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Algorithm 13: BR(s,bs): s−current state, bs−lower bound
1 if s is visited and bs ≥ b(s) then return V (s);
2 if s ∈ St then V (s)← ud(s)×

∑
o∈Ohs yo, return V (s);

3 for r ∈ R do
4 for lr ∈ As(r),o ∈ Ohs(yo > 0) do
5 if dist(lr, Ve ∩ o) + |hs|+ 1 ≤ |o| then
6 Or,lr ← Or,lr ∪ {o}, A′s(r)← A′s(r) ∪ {lr};

7 if A′s(r) = ∅ then A′s(r)← {vrls};
8 A′s ← ×r∈RA′s(r): the best joint action candidate set;
9 for l ∈ A′s do Ol ← ∪r∈ROr,lr ;

10 sort l ∈ A′s descending according to value Bl ←
∑

o∈Ol yo;
11 V (s)← max{bs − 2× ε, 0}, b(s)← −∞, Ql ← 0(∀l∈A′s);
12 for l ∈ A′s do
13 if V (s) + ε ≤ Bl then
14 sort (l, h) (h ∈ CHhs) descending according to value B(l,h) ←

∑
o∈Oh∩Ol yo,

B′ ←∑
h∈CHhs B(l,h);

15 for h ∈ CHhs , B(l,h) > 0 do
16 b(l,h) ← V (s) + ε− (Ql + (B′ −B(l,h)));
17 if b(l,h) > B(l,h) then break;
18 else
19 V (l, h)←BR((l, h), b(l,h));
20 if b(l,h) > V (l, h) then break;
21 else Ql ← Ql + V (l, h), B′ ← B′ −B(l,h);

22 if V (s) < Ql then V (s)← Ql, π(s)← l;

23 if V (s) < bs then b(s)← bs;
24 return V (s).

lr to ve (Line 5). Thus, BR obtains lr’s PIPS (Or,lr (Line 6) initialized as ∅ with the

corresponding best action candidate set A′s(r)), l’s PIPS (Ol (Line 9)), and (l, h)’s PIPS

(Ol ∩ Oh (Line 14)). Secondly, to be the best action, an action’s value must be larger

than the obtained maximum action value, and then the lower bounds for the remaining

actions and succeeding states will adaptively increase. Specifically, V (s) is initialized

at Line 11 to guarantee that the best action is computed if s’s optimal value V ?(s) = bs;

and bl,h is estimated by assuming that all the remaining succeeding states will return the

maximum value (Line 16).

In addition, BR effectively handles imperfect recall of NEST where a state may be

visited by different prefix states. To avoid repeated computation, BR stores the comput-

ed state value for state s as V (s) that is immediately returned if s is visited again (Line
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1). However, while setting tight bounds, only using this method may cause some wrong

cuts. Here, if bs (that is set for s while being visited by its prefix state s1) is tight, and

V (s) is computed such that V (s) < bs, then V (s) may not be optimal because some

cuts may happen. If V (s) is not optimal (i.e., V (s) < V ?(s) < bs) and s is revisited

by another prefix state s2 with b′s such that V (s) < b′s < V ?(s), then the wrong cut

will happen in s2 after V (s) is returned to s2. To avoid these wrong cuts, BR records

the computed state value with the corresponding lower bound (recorded as b(s)) if this

value is less than this bound (Line 23), and this value will be recomputed only if this

state’s prefix state with a smaller lower bound transits to it (Line 1).

Theorem 7.3. IGRS converges to an NE.

Proof. After calling our BR algorithm, we can obtain the best response policy starting

from s0 against y inG(S,A). Note that V (s0) is the defender utility by the best response

against y in G(S,A) by our BR algorithm. Then V (s0) ≥ Ud(x,y) ≥ 0. If V (s0) >

Ud(x,y), π, i.e., the output at Line 4, must contain some states s with V (s) > 0 or

their actions that are not in G(S ′, A′). Consequently, new states and actions will be

added to G(S ′, A′), and then G(S ′, A′) is expanded. In the worst case, G(S ′, A′) =

G(S,A), where IGRS will stop and V (s0) = Ud(x,y). Therefore, IGRS will converge

with V (s0) = Ud(x,y) with a finite number of iterations because the number of states

and actions in G(S,A) is finite. Therefore, Ud(x,y) ≥ Ud(x
′,y) (∀x′). Note that

Ua(x,y) ≥ Ua(x,y
′) (∀y′). Then, (x,y) is an NE.

7.4.3 Improving the Scalability of IGRS

Even though our IGRS is far more efficient than LP, it still cannot handle the very large

NEST. Thus, we further improve the scalability of IGRS by developing two techniques.

7.4.4 Mapping Between Subgames

The first technique is to map the computed defender strategy by BR in a subgame to

its similar subgames to speed up BR. Here, NEST is the full game, and part of NEST
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is the subgame. Moreover, if this computed strategy is optimal in NEST (i.e., part

of the equilibrium in NEST), we can also speed up LP and map this strategy to more

subgames. We formally define this technique and then illustrate it.

Formally, subgame Gs has initial state s, where the defender’s strategy space

(SGs , AGs) includes all states reachable from s (i.e., if s1 in SGs transits to s2, then

s2 ∈ SGs) with the corresponding action space, and the adversary’s strategy space in-

cludes all paths generating hs, i.e.,Ohs .1 Here, the defender has the same action space in

states with the same location for her. Given states s1 and s2, Ohs1
is similar toOhs2

after

η(hs1) if η(hs1) = η(hs2), and a one-to-one correspondence exists between Ohs1
and

Ohs2
such that each such pair o1 ∈ Ohs1

and o2 ∈ Ohs2
satisfies q(hs1 , o1) = q(hs2 , o2)

(q(h1, h2) is a subsequence of h2 after η(h1) such that h1 ∪ q(h1, h2) = h2). That is, the

adversary has the same move space after η(hs1) by both sets.

Two subgames Gs1 and Gs2 are similar if ls1 = ls2 , and Ohs1
is similar to Ohs2

after

η(hs1). Then, states si ∈ Ss1 and sj ∈ Ss2 are similar if lsi = lsj and q(hs1 , hsi) =

q(hs2 , hsj). The best response strategy πs1 in Gs1 against y is defined by: Given the

best response π against y by BR,

πs1(s
′) = π(s′)(∀s′ ∈ SGs1 ). (7.7)

Here, for s′ ∈ SGs1 , if s′ is reached from s1 by πs1 , we define Pπs1 (s′) = 1; otherwise,

Pπs1 (s′) = 0. Therefore, a mapping strategy πs1→s2 from Gs1 to its similar subgame

Gs2 is defined by: Given πs1 defined by Eq.(7.7), ∀sj ∈ SGs2 ,

πs1→s2(sj) = πs1(si), (7.8)

where si in SGs1 and sj are similar. We use this mapping only if the adversary takes

both paths at each pair of the one-to-one correspondence between Ohs1
and Ohs2

with

the same probability. This mapping could happen at the iteration when πs1 is computed

during calling BR or at the future iterations due to the loop in IGRS.

1We define the subgame like this because we only compute the defender’s strategies in subgames
through BR given y over O.
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Theorem 7.4. For any Gs1 with πs1 defined by Eq.(7.7) as the best response in Gs1

against y, if Gs2 is its similar subgame with y′ satisfying yo1 = y′o2 for each pair

o1 ∈ Ohs1
and o2 ∈ Ohs2

with q(hs1 , o1) = q(hs2 , o2) in the one-to-one correspondence

between Ohs1
and Ohs2

, then πs1→s2 defined by Eq.(7.8) is the best response in Gs2

against y′.

Proof. Because Ohs1
in Gs1 is similar to Ohs2

in Gs2 , we have

V πs1→s2 (s2) =
∑

Pπs1→s2 (sc)=1,sc∈Sc∩SGs2 :hscvo∈Ohs2

y′o

=
∑

Pπs1 (sc)=1,sc∈Sc∩SGs1 :hscvo∈Ohs1

yo

= V πs1 (s1).

Suppose πs1→s2 is not the best response in Gs2 against y′. Then, there is a best response

strategy π′s2 against y′ such that V π′s2 (s2) > V πs1→s2 (s2). Let Oy′ be the support set of

y′. If Oy ∩Ohs2
= ∅, then V π′s2 (s2) = V πs1→s2 (s2) = 0, which leads to a contradiction.

If Oy′ ∩ Ohs2
= O∗ 6= ∅, then V π′s2→s1 (s1) = V π′s2 (s2) > V πs1→s2 (s2) = V πs1 (s1), i.e.,

πs1 is not the best response in Gs1 against y, which causes a contradiction. Therefore,

πs1→s2 is the best response in Gs2 against y′.

A defender strategy π?s in Gs is optimal in NEST if given any strategy y over O and

any policy πs in Gs, V πs(s) ≤ V π?s (s), and we say that this π?s is part of the equilibrium

in NEST. π?s is defined by: Given πs defined by Eq.(7.7) as the best response in Gs

against some y over O with yo > 0 (∀o ∈ Ohs) such that V πs(s) =
∑

o∈Ohs yo,

π?s(s
′) = πs(s

′)(∀s′ ∈ SGs). (7.9)

Lemma 7.1. Given any y over O, V π?s (s) =
∑

o∈Ohs yo under π?s defined by Eq.(7.9).

Proof. If there is a strategy y such that V π?s (s) =∑
o∈Ohs yo

∑
sc∈Sc∩SGs :hscvo Pπ?s (sc) <

∑
o∈Ohs yo under π?s , then there is a path

o∗ ∈ Ohs such that
∑

sc∈Sc∩SGs :hscvo∗ Pπ?s (sc) = 0. Therefore, if π?s is played
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against y with yo > 0 (∀o ∈ Ohs), V π?s (s) =
∑

o∈Ohs yo
∑

sc∈Sc∩SGs :hscvo Pπ?s (sc) =∑
o∈Ohs\{o∗} yo

∑
sc∈Sc∩SGs :hscvo Pπ?s (sc) <

∑
o∈Ohs yo, which contradicts the definition

of π?s in Eq.(7.9).

Theorem 7.5. π?s defined by Eq.(7.9) is optimal in NEST.1

Proof. Suppose π?s is not optimal in NEST. Then, there is a strategy y, and πs is the best

response in Gs such that V πs(s) > V π?s (s). Let Oy be y’s support set. If Oy ∩Ohs = ∅,
then V πs(s) = V π?s (s) = 0, which leads to a contradiction. If Oy ∩ Ohs = O∗ 6= ∅,
then, by Lemma 7.1, V π?s (s) =

∑
o∈Ohs yo =

∑
o∈O∗ yo ≥ V πs(s), which also causes a

contradiction.

Given π?s defined by Eq.(7.9), the defender will certainly catch the adversary in Gs.

Therefore, after computing π?s in Gs, if Gs is reached again, the defender’s expected

utility
∑

o∈Ohs yo is returned immediately. Therefore, LP for the restricted game can

exclude constraints and variables for the succeeding states of s; and, for any adversary

strategy, BR does not need to compute the best response starting from s anymore, which

will speed up LP and BR.

We can map π?s1 defined by Eq.(7.9) inGs1 to its similar subgames through Eq.(7.8).

Besides, we can map this π?s1 to more subgames, where the initial location of m re-

sources is not ls1 . In fact, given π?s1 , we can trace the interdiction back to which resource

r starting from s1 contributes to this interdiction by following π?s1 , and we may find that

we only need part of m resources to interdict the adversary. Then, we only need to map

the actions of these key resources to other subgames to capture the adversary certainly.

For example, consider Gs1 and Gs2 , where ls1 = (v1, v2), ls2 = (v1, v3), Ohs1
is similar

to Ohs2
after η(hs1), and only the first resource in Gs1 will contribute to the interdiction

by π?s1 . Then, the adversary will be captured certainly in Gs2 if the resource initially at

v1 in Gs2 takes the action of the resource initially at v1 in Gs1 by π?s1 .

Formally, we define this strategy mapping between semi-similar subgames. Two

subgames Gs1 and Gs2 are semi-similar on l if l ⊆ ls1 , l ⊆ ls2 , and Ohs1
is similar

1Note that, for games with imperfect information, the general subgame solving technique cannot
guarantee optimality [88].
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to Ohs2
after η(hs1). Similar subgames are certainly semi-similar.1 Here, si ∈ Ss1

and sj ∈ Ss2 are semi-similar if l, with l ⊆ lsi and l ⊆ lsj , is reached from l by the

corresponding resources in s1 and s2, respectively, and q(hs1 , hsi) = q(hs2 , hsj).

Given π?s1 defined by Eq.(7.9), if resource r starting from s1 by π?s1 can interdict at

least one of the paths in Os1 (i.e., there exists o ∈ Ohs1
such that there is a capture state

sc with Pπ?s1 (sc) = 1, hsc v o, and vrlsc = η(hsc)), we call r’s location vrls1 in s1 as the

key location. Let l∗s1 ⊆ ls1 be the set of these key locations in s1. If Gs2 and Gs1 are

semi-similar on l∗s1 with π?s1 defined by Eq.(7.9) inGs1 , then its mapping strategy π?s1→s2
in Gs2 is defined by: ∀sj ∈ SGs2 ,

π?s1→s2(sj) = (· · · , lr, · · · ), (7.10)

where if vrls2 ∈ l∗s1 , then lr = π?s1(si)r∗,vr∗ls1 =vrls2
(si in SGs1 is semi-similar to sj with

Pπ?s1 (si) = 1) which means that resource r in sj follows π?s1(si) for resource r∗ in

si whose location vr∗ls1 in s1 overlaps r’s location vrls2 in s2; otherwise, lr = vrlsj
, i.e.,

staying at the current node.

Theorem 7.6. π?s1→s2 defined by Eq.(7.10) is optimal in NEST.

Proof. Suppose π?s1→s2 is not optimal in Gs2 . Then, there is a strategy y, and πs2 is the

best response in Gs2 such that V πs2 (s2) > V π?s1→s2 (s2). Let Oy be y’s support set. If

Oy ∩ Ohs2
= ∅, then V πs2 (s2) = V π?s1→s2 (s2) = 0, which leads to a contradiction. If

Oy ∩ Ohs2
= O∗ 6= ∅, by the assumption V πs2 (s2) > V π?s1→s2 (s2), then there is a path

o′ ∈ Ohs2
which is not interdicted by π?s1→s2 , i.e., Pπ?s1→s2 (sc) = 0 (∀sc ∈ Sc ∩ SGs2

1We still need to consider similar subgames because we cannot have the property similar to Theorem
7.4 between semi-similar subgames. To illustrate this, we consider the scenario shown in Figure 7.3. For
subgameGs1 we know that πs1 (πs1(s1) = (6, 5) transiting to a capture state s11 = ((6, 5), h11) such that
V πs1 (s1) = 0.2) is the best response in Gs1 against the adversary strategy with yo1 = 0.2 and yo2 = 0.1.
Here, only the first resource contributes to the interdiction, i.e., interdicting the adversary in s11 due to
η(h11) = 6. Now we consider subgame Gs6 with initial state s6 = ((11, 8), h2). Obviously, Gs1 and
Gs6 are semi-similar on l = (11) that is also the key location of Gs1 . Let us define the mapping strategy
of πs1 as πs1→s6 by Eq.(7.10). That is, πs1→s6(s6) = (6, 8). However, πs1→s6 is not the best response
in Gs6 against the adversary strategy with yo3 = 0.2 and yo4 = 0.1 because taking action (6, 7) in s6
will result in V (s6) = 0.3 (larger than V πs1→s6 (s6) = 0.2). That is, given a best response (non-optimal)
strategy in Gs1 with the key location set l∗s1 , resources in a semi-similar subgame Gs6 of Gs1 who are
not initially at nodes in l∗s1 may contribute to the interdiction, which results in a better strategy than its
mapping strategy. Therefore, we cannot have the property similar to Theorem 7.4 between semi-similar
subgames. However, Theorem 7.4 holds between similar subgames.
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(b) After using optimal strategies in Gs3 ,
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FIGURE 7.2: The full game before and after using the optimal strategies in subgames.

with hsc v o′). Note that, given a deterministic policy πs in Gs, for each path o ∈ Ohs ,

there is at most one capture state sc such that Pπ?s (sc) = 1 and hsc v o. For each

o1 ∈ Ohs1
, if there is a capture state sc with Pπ?s1 (sc) = 1 and hsc v o1, then for

its similar o2 in Ohs2
such that q(hs1 , o1) = q(hs2 , o2), there is a capture state s′c with

Pπ?s1→s2 (s′c) = 1 and hs′c v o2 because resources at the key locations take the same

actions in semi-similar states in both subgames by Eq.(7.10). Therefore, o∗ ∈ Ohs1

with q(hs1 , o
∗) = q(hs2 , o

′) does not generate the history in any capture state reached

from s1 by π?s1 , i.e., Pπ?s1 (sc) = 0 (∀sc ∈ Sc ∩ SGs1 with hsc v o∗). It means that,

for y′ with y′o > 0(∀o ∈ Ohs1
), V π?s1 (s1) =

∑
o∈Ohs1

y′o
∑

sc∈Sc∩SGs1 :hscvo Pπ?s1 (sc) =∑
o∈Ohs1\{o

∗} y
′
o

∑
sc∈Sc∩SGs1:hscvo Pπ?s1(sc)<

∑
o∈Ohs1

y′o, which contradicts Lemma 7.1

for π?s1 . Therefore, V π?s1→s2 (s2) =
∑

o∈Ohs2
yo for y with yo > 0 (∀o ∈ Ohs2

), and

π?s1→s2 is optimal in NEST by Theorem 7.5.

Now we illustrate this technique. As shown in Figure 7.2a, in the full game, the

defender’s strategy space (S,A) includes all states and actions, while the adversary’s

strategy space O includes all escaping paths. Subgames of Gs1 , Gs2 , Gs3 , Gs4 , and Gs5

are part of the full game starting from states s1, s2, s3, s4, and s5, respectively.
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FIGURE 7.3: Scenario

To illustrate the characteristic of subgames,

we analyze the scenario shown in the right figure.

The adversary arrives at v12 through two different

directions generating history h1 (= 〈va0 , v13, v12〉)
and history h2 (= 〈va0 , v14, v12〉), respectively.

Exit nodes are v1 and v2.

We consider three initial locations for two de-

fender resources: l1 = (v11, v5), l2 = (v3, v4),

and l3 = (v3, v5). By combining the observed

adversary history with the locations of two defender resources, we consider five states

s1 = ((v11, v5), h1), s2 = ((v11, v5), h2), s3 = ((v3, v4), h1), s4 = ((v3, v4), h2), and

s5 = ((v3, v5), h2), which are the initial states of five subgames: Gs1 , Gs2 , Gs3 , Gs4 ,

and Gs5 .

We consider time horizon tmax = 4. Then, the set of paths generating h1 is Oh1 =

{o1, o2} with o1 = h1 ∪ 〈v6, v1〉 = h13 and o2 = h1 ∪ 〈v7, v2〉 = h14, while CHh1 =

{h11, h12} with h11 = h1 · v6 and h12 = h1 · v7, CHh11 = {h13}, and CHh12 = {h14}.
The set of paths generating h2 is Oh2 = {o3, o4} with o3 = h2 ∪ 〈v6, v1〉 = h23 and

o4 = h2 ∪ 〈v7, v2〉= h24, while CHh2 = {h21, h22} with h21 = h2 · v6 and h22 = h2 · v7,

CHh21 = {h23}, and CHh22 = {h24}. Then, Oh1 and Oh2 are similar after v12 because

η(h1)=η(h2)=v12, q(h1, o1)=〈v6, v1〉=q(h2, o3), and q(h1, o2)=〈v7, v2〉=q(h2, o4).

Oh1 is the adversary’s strategy space of Gs1 and Gs3 , and Oh2 is the adversary’s

strategy space of Gs2 , Gs4 , and Gs5 . Thus, Gs1 and Gs2 are similar because (11, 5) =

ls1 = ls2 , and Oh1 and Oh2 are similar after node η(hs1) = v12 (hs1 = h1). After

we compute the best response in Gs1 (i.e., πs1 with πs1(s1) = (v6, v5) transiting to a

capture state ((6, 5), h11) such that V πs1 (s1) = 0.2) against the adversary strategy y

with yo1 = 0.2 and yo2 = 0.1, we can map it to Gs2 against the adversary strategy with

yo3 = 0.2 and yo4 = 0.1 (Theorem 7.4). That is, the best response strategy for state s1 is

taking l = (v6, v5), which is also the best response strategy for its similar state s2 after

the mapping.
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Some computed strategies in subgames are the best response against any adversary

strategy. The defender strategy in Gs3 against the adversary strategy with yo1 = 0.2

and yo2 = 0.1 is πs3 such that V πs3 (s3) = 0.3: πs3(s3) = (v2, v3) transiting to states

s31 = ((v2, v3), h11) and s32 = ((v2, v3), h12), πs3(s31) = (v1, v2) transiting to capture

state s33 = ((v1, v2), h13), and πs3(s32) = (v2, v3) transiting to capture state s34 =

((v2, v3), h14). Indeed, by πs3 in Gs3 , given any adversary strategy, we have V πs3 (s3) =

yo1 +yo2 (Lemma 7.1). That is, starting from s3, the adversary will be captured certainly.

This strategy is denoted as π?s3 , which is optimal in NEST (Theorem 7.5). Then, we

can define the payoff 1 for the defender in state s3 as shown in Figure 7.2b, i.e., the

defender’s expected utility in subgameGs3 is yo1 +yo2 . Then, if this subgame is reached

again, the defender’s expected utility yo1 + yo2 is returned immediately.

π?s3 in Gs3 can also be mapped to its semi-similar subgame Gs5 . In Gs3 and Gs5 ,

the adversary has the same move space and the first defender resource in Gs3 and the

first defender resource in Gs5 has the same initial location (v3) in their initial states s3

and s5, respectively. For strategy π?s3 , the first resource will finally catch the adversary

in state s33 or state s34 by moving to v2 first, then moving to v1 if she observes the

adversary history h11 (i.e., in state s31), or staying at v2 if she observes the adversary

history h12 (i.e., in state s32). That is, v3 is the key location in Gs3 . Therefore, given the

mapping of π?s3 guaranteeing that the first defender resource inGs3 and the first defender

resource in Gs5 take the same action after observing the adversary’s same move in

both subgames, this mapping can guarantee optimality (Theorem 7.6). That is, the first

defender resource in Gs5 will finally catch the adversary in state s53 = ((v1, v5), h23) or

state s54 = ((v2, v5), h24) if she moves to v2 first, then moves to v1 if she observes the

adversary history h21 (i.e., in state s51 = ((v2, v5), h21)), or stays at v2 if she observes

the adversary history h22 (i.e., in state s52 = ((v2, v5), h22)) when the first resource does

not move. More specifically, the optimal strategy for state s31 = ((v2, v3), h11) (note

that Pπ?s31 = 1) is taking l = (v1, v2), i.e., the first resource in s31, locating at the key

location v2 that is reached from v3 in s1, moves to v1; and then the mapping strategy for

its semi-similar state s51 = ((v2, v5), h21) is taking l′ = (v1, v5), i.e., the first resource

in s51, locating at the key location v2 that is reached from v3 in s5, moves to v1 while

the second resource in s51 stays at the current node by Eq.(7.10). This π?s3→s5 defined
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FIGURE 7.4: Adding multiple best response strategies at one iteration.

by Eq.(7.10) in Gs5 is optimal in the full game. By π?s3→s5 , as shown in Figure 7.2b, we

define the payoff 1 for the defender in state s5, i.e., the defender’s expected utility in

subgame Gs5 is yo3 + yo4 . Similarly, Gs3 and Gs4 are semi-similar and π?s3→s4 in Gs4 by

Eq.(7.10) is optimal in NEST.

7.4.5 Adding Multiple Strategies at One Iteration

The second technique is to add multiple defender best response strategies at one iteration

to reduce the number of iterations for the convergence of IGRS. More specifically, we

sample multiple adversary strategies to add the corresponding defender’s best response

strategies to the restricted game G(S ′, A′) by calling BR in IGRS at one iteration.

We sample a uniform strategy over Ohs for each state s in G(S ′, A′) based on the

following intuition. On the one hand, for different adversary strategies, the correspond-

ing best response strategies involve different states and actions that will be added to

G(S ′, A′) before the convergence of IGRS, and the number of iterations will be enor-

mous if the strategy space is large. At each iteration, LP will be solved once to generate

the adversary equilibrium strategy in G(S ′, A′). If we can sample some of these strate-

gies, then we can reduce the number of iterations of IGRS and times to solve LP. On the

other hand, if s is added to G(S ′, A′) (i.e., s is part of the best response), at least one of
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the paths in Ohs is in the support set of the equilibrium strategy in G(S ′, A′). Then, it is

possible that the adversary will escape through the paths in Ohs , and the defender needs

a corresponding strategy to interdict him. To generate such a strategy immediately, we

can sample a uniform strategy over Ohs and then call BR.

For using our technique to add multiple best response strategies at one iteration,

the procedure of IGRS is shown in Figure 7.4. Specifically, before the convergence,

we sample the uniform adversary strategies based on the states that are part of the best

response and then call BR(s0, 0) at Line 4 in IGRS to compute the best response strate-

gies against them. Here, S∗ is the set of the states involved in the best response, A∗ is

the set of actions involved in the best response, and a uniform strategy over Ohs means

yo = 1/|Ohs | (∀o ∈ Ohs). Especially, we sample a strategy with yo = 1/|O| (∀o ∈ O)

at the initial step in IGRS (i.e., after s0 is added to S ′) because we can compute the best

response efficiently by using our effective pruning techniques including the mapping

technique. Each strategy will be sampled at most once.

Finally, IGRS embedded with the above two additional techniques (IGRS++) is still

optimal.

Theorem 7.7. IGRS++ converges to an NE.

Proof. This theorem is implied by Theorems 7.3–7.6.

7.5 Experimental Evaluation

We demonstrate the efficiency of our algorithms through numerical experiments. We

use CPLEX (version 12.6) to solve the linear program. All computations are performed

on a machine with a 3.2GHz quad core CPU and 16GB memory. All results are aver-

aged over 30 randomly generated instances. All random planar graphs are generated by

the grid model with random edges [71], which samples an L×W square grid where hor-

izontal/vertical edges between neighbors are generated with probability p, and diagonal

ones with q. We choose p from [0.4, 0.9] and q from [0.0, 0.5] to match most real-world

road networks. In our evaluation, va0 is located at the center node, m defender resources
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are uniformly distributed on the network at initialization, and |Ve| exit nodes are ran-

domly distributed at the border. By default, L = W = 5, (p, q) = (0.5, 0.1), horizon

tmax = L, |Ve| = 10, and m = 4.

Solution Quality: We compare the solution quality of our approach (represented

by IGRS++) with one baseline, the algorithm for the discussed network security game

model [20, 22] considering time-dependent strategies, denoted as NSG. Figures 7.5a and

7.5b vary parameters: (1) the number of intersections, denoted by L×W , and (2) edge

generation probabilities. It can be seen that IGRS++ significantly outperforms NSG.

These results are similar to ones for varying the number of exit nodes or resources (not

shown here). Here the defender’s utility does not decrease with the size of the network

because although the adversary has more strategies on larger networks, the defender can

exploit more real-time information about him.

We evaluate the influence of the horizon tmax on the solution quality on networks

with different scales in Figure 7.5c and networks with different density of edges in

Figure 7.5d. Results show that the defender’s expected utility converges when tmax is

large enough, e.g., tmax is almost equal to L.

Scalability: We evaluate the scalability of IGRS with two baselines: (1) using the

bounds setting in [38] for IGRS (IGRS+OldB), and (2) only using our new lower bound

setting without the tight upper bound for IGRS (IGRS-UB). Specifically, IGRS+OldB

can cut some branches only when the searching player’s information set has at least two

nodes. To be fair, each state s in IGRS+OldB is treated as a defender’s information set,

and each child history of hs corresponds to one node in this information set. In addition,

to evaluate our second technique at Section 7.4.3, we have a baseline, IGRS+Same,

where IGRS++ uses the method that adds several best response strategies against the

same adversary strategy based on [26].

Results in Figures 7.5e–7.5h show that: 1) The runtime generally increases except

that it reflects the “easy-hard-easy” pattern in security games [79] in Figure 7.5g. 2)

IGRS++ significantly outperforms IGRS and IGRS+Same, especially when the size

of the problem is extremely large. 3) IGRS significantly outperforms IGRS-UB, and

IGRS-UB significantly outperforms IGRS+OldB. To further evaluate the effect of our
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pruning techniques, Figure 7.5i shows the number of evaluated states for computing the

best response against the adversary’s uniform strategy, i.e., yo = 1/|O|(∀o ∈ O), where

results are consistent with the ones in Figures 7.5e–7.5h. Here, IGRS+Same runs slower

than IGRS because its BR evaluates too many states to compute several best response
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strategies, and it adds too many strategies to the restricted game.

The Real-World Network: We also evaluate our approach on the road network of

the whole Manhattan island of New York as shown in Figure 7.5j. In this network,

there are 702 nodes with 1,216 links extracted from OSM (www.openstreetmap.org).

The initial positions of four police officers and the adversary are chosen randomly, and

seven exit nodes are chosen based on the connection to the external world of the island.

A total of 30 cases with different adversary initial positions are tested. As shown in

Figures 7.5k and 7.5l (note that IGRS-UB and IGRS+OldB cannot run on networks of

this size), results are consistent with ones in Figures 7.5a–7.5i on random networks. In

particular, IGRS++ significantly outperforms others and efficiently solves NEST until

the defender’s expected utility converges.

7.6 Chapter Summary

This chapter studies the problem of optimal interdiction of urban criminals with the

aid of real-time information. We show that ignoring such information can cause an

arbitrarily large loss and then propose our NEST. We show that solving NEST is NP-

hard, therefore develop an optimal algorithm IGRS++ to solve it efficiently. Extensive

experiments show the effectiveness of our approach in a wide range of settings.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis makes a thorough study of the TME computation in both normal-form and

extensive-form zero-sum multiplayer games. Chapter 3–4 study this problem and its ap-

plication in normal-form games, and Chapter 5–7 study this problem and its application

in extensive-form games. In terms of algorithms, this thesis proposes the first incremen-

tal strategy generation algorithm guaranteeing to converge to a TME in Chapter 3. Then

this thesis proposes various novel components for the incremental strategy generation

algorithm to improve scalability: 1) the component on how to initialize the strategies

in the restricted game in Chapter 3; 2) the component on how to efficiently solve the

restricted game in Chapter 5; and 3) several best response oracles on how to efficiently

compute the best response in various scenarios in Chapters 4, 6 and 7. The algorithms of

this thesis are supported by theoretical and experimental results, followed by real-world

applications where more specific restrictions or information is available. That is, the

first contribution proposes general algorithms in normal-form games, while the second

contribution is an application with domain-specific algorithms in normal-form games;

and the third and fourth contributions propose general algorithms in extensive-form

games, while the fifth contribution is an application with domain-specific algorithms

in extensive-form games. Experiments show that our general algorithms are orders of

magnitudes faster than baselines. In addition, our algorithms for applications are tested

129
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on real-world datasets, which shows that our algorithms can scale up to realistic problem

sizes with hundreds of nodes on networks, including the real network of Manhattan.

The first contribution of this thesis is proposing an efficient ISG algorithm (CISGT)

to converge to TMEs in normal-form games. We first study the properties of ISG for

multiplayer games, showing that ISG converges to an NE but may not converge to a

TME. Second, we design ISGT by exploiting that a TME is an NE maximizing the

team’s utility and show that ISGT converges to a TME and the impossibility of relaxing

its conditions. Third, to further improve the scalability, we design CISGT by initializing

the strategy space of ISGT via computing a CTME. Finally, experimental results show

that CISGT is orders of magnitude faster than ISGT and the state-of-the-art algorithm

compute TMEs in large games.

The second contribution of this thesis is proposing efficient algorithms to compute

CTMEs in normal-form games for optimal escape interdiction on transportation net-

works. We show that finding a CTME is NP-hard. Therefore, we propose an efficient

double oracle framework, EIGS, based on novel MILPs for best response oracles and

heuristic algorithms for better response oracles. To solve large-scale problems, we de-

velop RedAD to significantly reduce the strategy space for both players. Experimental

results show that our algorithms obtain a robust solution that significantly outperforms

baselines and can scale up to realistic-sized problems.

The third contribution of this thesis is proposing efficient algorithms to compute

TMEs within any given accuracy in extensive-form games. We first show that the in-

efficiency of correlated strategies can be arbitrarily large in extensive-form games. To

efficiently solve the non-convex program for finding TMEs directly, we develop novel

global optimization techniques (i.e., an asynchronous precision method and an asso-

ciated constraint method) and a novel iterative algorithm. Our algorithm is orders of

magnitude faster than baselines in the experimental evaluation.

The fourth contribution of this thesis is proposing efficient algorithms to compute

TMEsCor in extensive-form games. We first propose our novel HFS representation for

the team, which does not change the set of equilibria in a game. We then develop our
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novel CMB including a finite upper bound for the number of iterations and a novel mul-

tilinear BR. In addition, we develop our novel global optimization technique ART to

solve our multilinear BR exactly representing multilinear terms and efficiently gener-

ating associated constraints. Finally, experimental results show that CMB is orders of

magnitude faster than baselines in large games.

The fifth contribution of this thesis is proposing efficient algorithms to compute

TMEsCom in extensive-form games for optimal interdiction of urban criminals with

the aid of real-time information. We show that ignoring such information can cause

an arbitrarily large loss and then propose our novel game model NEST. We show that

computing a TMECom is NP-hard in NEST, therefore develop an optimal algorithm

IGRS++ to solve it efficiently, which includes (i) novel pruning techniques in our best

response oracle; and (ii) novel techniques for mapping strategies between subgames

and adding multiple best response strategies at one iteration to solve extremely large

problems. Extensive experiments show the effectiveness of our approach in a wide

range of settings including the real-world network of Manhattan.

8.2 Future Work

In this section, we discuss several future directions.

The first direction is to develop efficient ISG algorithms to converge to TMEs in

extensive-form games. Bosansky et al. (2014) show that we can exploit the feature of

the game tree to develop efficient ISG algorithms to compute NEs by extending ISG in

normal-form games. Inspired by this, based on our CISGT in normal-form games, we

can explore to develop efficient ISG algorithms to converge to TMEs in extensive-form

games by exploiting the feature of the game tree.

The second direction is to extend the counterfactual regret minimizing (CFR) algo-

rithm [6] to compute TMEs. CFR is an important part for efficiently solving the Poker

[88]. Unfortunately, it has been shown that CFR cannot guarantee to converge to an

NE in multiplayer games [89], let alone a TME. However, inspired by our successful

CISGT, we can explore to extend CFR to compute TMEs.
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The third direction is to extend CFR to compute TMEsCom in our imperfect-recall

game NEST with a combinatorial action space. CFR is built on the perfect-recall struc-

ture. However, we can dramatically reduce the number of states by using games with

imperfect recall, similar to our NEST. On the other hand, CFR is based on the online

learning algorithm [6], but the classic online learning algorithm does not consider the

relation between actions, which will quickly reach the limit when the number of actions

grows exponentially in some games. For example, in the escape interdiction game or in

the pursuit-evasion game, where the defender/pursuer has a collection of teams, all of

which can be deployed simultaneously, leading to a combinatorial action space. Con-

sider just 10 teams with 5 actions (4 directions plus one action staying at the current

node) for each to move at each intersection, where the potential number of combina-

torial actions is 510 ≈ 107, which is hard to update each action’s counterfactual regret

value in CFR.

The fourth direction is to extend the TME to capture more scenarios. For example,

players in a team may not have the same utility function. In this case, the current for-

mulation of computing TMEs may not work. Then we need to design the corresponding

formulation and algorithm to compute the corresponding equilibrium. In extensive-form

games, maybe, there are other forms of communication. For example, players in a team

can have partial information during the play of the game (the communication level is

between that in TMEsCor and that in TMEsCom). In this case, the current formulation

of computing TMEs also may not work. Then we also need to design the corresponding

formulation and algorithm to compute the corresponding equilibrium.
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