
ADVANCED ATTACK AND DEFENSE
TECHNIQUES IN MACHINE LEARNING

SYSTEMS

MENGCHEN ZHAO

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

2019



ADVANCED ATTACK AND DEFENSE
TECHNIQUES IN MACHINE LEARNING

SYSTEMS

MENGCHEN ZHAO

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

A thesis submitted to Nanyang Technological University
in fulfillment of the requirement for the degree of

Doctor of Philosophy

2019



i

Acknowledgements
Reaching the end of my PhD study, I am very grateful for those people who helped and

accompanied with me. This four-year experience teaches me how to behave professionally

and act like a grown-up, even though I really don’t want to grow up. I have seen many

brilliant and excellent people, who always inspire me to become better, and be humble.

At the first place, I would express my sincere gratitude to my supervisor Bo An. Unlike

many teachers I have been met in past years, Bo teaches me not only knowledge, but also

the methodology to do research and the principals to work with people. I really learned a

lot from him during these years: the enthusiasm for research, the professional behaviors in

work and the strong will to chase excellency. I am very lucky to be his student and I hope

that I could let him be proud of me someday.

I would also thank my thesis advisory committee members: Xiaohui Bei and Dusit Niy-

ato. Those discussions and meetings help me a lot in improving my work, and build a better

vision for me in doing research.

During the past four years in NTU, I am grateful to have the privilege to collaborate with

so many excellent researchers: Christopher Kiekintveld, Wei Gao, Teng Zhang, Yaodong Yu,

Sulin Liu, Sinno Jialin Pan, Xiaobo Ma, Yanhai Xiong and Haipeng Chen. I thank you for

your guidance and insights in those projects we worked on together as well as the patience

of mentoring.

I am very fortune to spend four years of time with these cute people in our research

group: Qingyu Guo, Yanhai Xiong, Haipeng Chen, Zhen Wang, Jiarui Gan, Xinrun Wang,

Martin Strobel, Youzhi Zhang, Wanyuan Wang, Jiuchan Jiang, Xu He, Lei Feng, Aye Phyu.

Thank you all for giving me so much happiness, laughs and help and I would never forget

these precious memories.

Most importantly, I want to thank my parents for their endless support and love. They



ii

always remember the deadlines of my work even though I just unintentionally mentioned

them months ago. They care every details of my life, even more than themselves. Mom and

dad, thank you and I love you!



Contents

Acknowledgements i

Contents v

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Adversarial Threats in Machine Learning Systems . . . . . . . . . . . . . . 3

1.1.1 Label Contamination Attacks . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Poisoning Attacks on Multi-Task Learning . . . . . . . . . . . . . 5

1.2 Combating Adversaries in Machine Learning Systems . . . . . . . . . . . . 6

1.2.1 Combating Sequential Spear Phishers . . . . . . . . . . . . . . . . 6

1.2.2 Combating Fraudulent Sellers in E-Commerce . . . . . . . . . . . 8

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Abstract 1

2 Related Work 12

2.1 Adversarial Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Training-time Attacks . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Test-Time Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Combating Spear Phishing Attacks . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Combating Fraud in E-Commerce . . . . . . . . . . . . . . . . . . . . . . 16



Contents iv

3 Label contamination attacks 17

3.1 LCAs on Binary Classification Models . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Attacking Linear Classifiers . . . . . . . . . . . . . . . . . . . . . 19

3.1.2 Attacking Kernel SVMs . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Computing Attacking Strategies . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Attacking Black-Box Victim Models Using Substitutes . . . . . . . . . . . 24

3.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Integrity Attacks Visualization . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Solution Quality Comparison . . . . . . . . . . . . . . . . . . . . 27

3.4.3 Transferability Analysis . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Data poisoning attacks on multi-task relationship learning 31

4.1 Multi-Task Relationship Learning . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Data Poisoning Attacks on MTRL . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Computing Optimal Attack Strategies . . . . . . . . . . . . . . . . . . . . 35

4.3.1 General Optimization Framework . . . . . . . . . . . . . . . . . . 35

4.3.2 Gradients Computation . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.2 Evaluating Convergence of PATOM . . . . . . . . . . . . . . . . . 42

4.4.3 Evaluating Solution Qualities . . . . . . . . . . . . . . . . . . . . 43

4.4.4 Evaluating Task Relationships . . . . . . . . . . . . . . . . . . . . 45

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Combating Spear Phishing Attacks 48

5.1 Sequential Attacks with A Single Credential . . . . . . . . . . . . . . . . . 49

5.1.1 Stackelberg Spear Phishing Game . . . . . . . . . . . . . . . . . . 51

5.2 Optimal Attack with A Single Credential . . . . . . . . . . . . . . . . . . . 53

5.2.1 Attacker’s MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.2 Solving the MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Optimal Defense with A Single Credential . . . . . . . . . . . . . . . . . . 55



Contents v

5.3.1 Representing θ(x, πx) . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.2 PEDS: Reduced Single Level Problem . . . . . . . . . . . . . . . . 57

5.4 Multiple-Credential Model . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.1 Optimal Attack with Multiple Credentials . . . . . . . . . . . . . . 59

5.4.2 Defender’s Loss from Spear Phishing Attacks . . . . . . . . . . . . 61

5.4.3 Single Level Formulation . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Combating Fraudulent Sellers in E-Commerce 67

6.1 Impression Allocation with Fraudulent Sellers . . . . . . . . . . . . . . . . 68

6.2 Learning Seller Behavior Model . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Optimizing via Deep Reinforcement Learning . . . . . . . . . . . . . . . . 72

6.3.1 MDP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.2 Solving the MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4.1 Scalability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4.2 Solution Quality Evaluation . . . . . . . . . . . . . . . . . . . . . 79

6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Conclusion and Future Work 82

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8 Appendix 86

8.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.3 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.4 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Bibliography 93



List of Figures

3.1 Decision boundaries (solid lines) of learned models under attacks with dif-
ferent attacker budgets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Decision boundaries (solid lines) of learned models under attacks with dif-
ferent attacker budgets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Accuracy of victim model under different attacker budgets. . . . . . . . . . 28

4.1 Convergence of PATOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Solution quality comparison. . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Visualization of task correlations under attacks. . . . . . . . . . . . . . . . 46

5.1 Spear phishing attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Spear Phishing Attack Flow. . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Performance of PEDS and PEMS. . . . . . . . . . . . . . . . . . . . . . . 62

6.1 Distribution of the number of fake transactions. . . . . . . . . . . . . . . . 72

6.2 Scalability evaluation of DDPG and DDPG-ANP. . . . . . . . . . . . . . . 78

6.3 Learning curves of DDPG and DDPG-ANP with different parameter settings. 80



List of Tables

3.1 Accuracy of victim models under substitute-based attacks. . . . . . . . . . 30

6.1 Key seller features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Performance of regression models. . . . . . . . . . . . . . . . . . . . . . . 71



Abstract
The security of machine learning systems has become a great concern in many real-

world applications involving adversaries, including spam filtering, malware detection and

e-commerce. There is an increasing trend of study on the security of machine learning sys-

tems but the current research is still far from satisfactory. Towards building secure machine

learning systems, the first step is to study their vulnerability, which turns out to be very

challenging due to the variety and complexity of machine learning systems. Combating ad-

versaries in machine learning systems is even more challenging due to the strategic behavior

of the adversaries.

This thesis studies both the adversarial threats and the defenses in real-world machine

learning systems. Regarding the adversarial threats, we begin by studying label contamina-

tion attacks, which is an important type of data poisoning attacks. Then we generalize the

conventional data poisoning attacks on single-task learning models to multi-task learning

models. Regarding defending against real-world attacks, we first study the spear phishing

attacks in email systems and propose a framework for optimizing the personalized email

filtering thresholds to mitigate such attacks. Then, we study the fraud transactions in e-

commerce systems and propose a deep reinforcement learning based impression allocation

mechanism for combating fraudulent sellers. The specific contributions of this thesis are

listed below.

First, regarding the label contamination attacks, we develop a Projected Gradient Ascent

(PGA) algorithm to compute attacks on a family of empirical risk minimizations and show

that an attack on one victim model can also be effective on other victim models. This makes

it possible that the attacker designs an attack against a substitute model and transfers it to

a black-box victim model. Based on the observation of the transferability, we develop a

defense algorithm to identify the data points that are most likely to be attacked. Empiri-



cal studies show that PGA significantly outperforms existing baselines and linear learning

models are better substitute models than nonlinear ones.

Second, in the study of data poisoning attacks on muti-task learning models, we formu-

late the problem of computing optimal poisoning attacks on Multi-Task Relationship Learn-

ing (MTRL) as a bilevel program that is adaptive to arbitrary choice of target tasks and

attacking tasks. We propose an efficient algorithm called PATOM for computing optimal at-

tack strategies. PATOM leverages the optimality conditions of the subproblem of MTRL to

compute the implicit gradients of the upper level objective function. Experimental results on

real-world datasets show that MTRL models are very sensitive to poisoning attacks and the

attacker can significantly degrade the performance of target tasks, by either directly poison-

ing the target tasks or indirectly poisoning the related tasks exploiting the task relatedness.

We also found that the tasks being attacked are always strongly correlated, which provides a

clue for defending against such attacks.

Third, on defending against spear phishing email attacks, we consider two important ex-

tensions of the previous threat models. First, we consider the cases where multiple users

provide access to the same information or credential. Second, we consider attackers who

make sequential attack plans based on the outcome of previous attacks. Our analysis starts

from scenarios where there is only one credential and then extends to more general scenarios

with multiple credentials. For single-credential scenarios, we demonstrate that the optimal

defense strategy can be found by solving a binary combinatorial optimization problem called

PEDS. For multiple-credential scenarios, we formulate it as a bilevel optimization problem

for finding the optimal defense strategy and then reduce it to a single level optimization prob-

lem called PEMS using complementary slackness conditions. Experimental results show that

both PEDS and PEMS lead to significant higher defender utilities than two existing bench-

marks in different parameter settings. Also, both PEDS and PEMS are more robust than the

existing benchmarks considering uncertainties.



Fourth, on combating fraudulent sellers in e-commerce platforms, we focus on improv-

ing the platform’s impression allocation mechanism to maximize its profit and reduce the

sellers’ fraudulent behaviors simultaneously. First, we learn a seller behavior model to pre-

dict the sellers’ fraudulent behaviors from the real-world data provided by one of the largest

e-commerce company in the world. Then, we formulate the platform’s impression allocation

problem as a continuous Markov Decision Process (MDP) with unbounded action space. In

order to make the action executable in practice and facilitate learning, we propose a novel

deep reinforcement learning algorithm DDPG-ANP that introduces an action norm penalty

to the reward function. Experimental results show that our algorithm significantly outper-

forms existing baselines in terms of scalability and solution quality.



Chapter 1

Introduction

Thanks to the recent success of machine learning technologies, we have witnessed a rapid

growth of machine learning applications, which make our daily lives more convenient and

interesting. For example, the face recognition technologies allow us to unlock our phones by

just taking a look at them; the enhanced email filtering technologies keep us away from nu-

merous spam and phishing emails; the speech recognition technologies allow us to request a

song by simply talking to an intelligent speaker; the autonomous driving technologies would

set us free from driving in the near future. Unfortunately, the vulnerabilities of machine

learning systems open a new door for the adversaries, who could potentially compromise

a system by exploiting such vulnerabilities. The security of machine learning systems has

been a critical concern for adversarial applications such as spam filtering, intrusion detection,

malware detection and fraud detection in e-commerce [1, 2].

As Chinese strategist Sun Tzu said, “Know yourself and your enemy then you will never

be defeated.” Towards securing machine learning systems, the first step is to understand how

the adversaries would launch attacks and what damages can the attacks cause. Therefore,

it is very important to study the attack techniques. Although a random or a heuristic attack

strategy could also cause damages to machine learning systems, it is more interesting and
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necessary to study the optimal attacks, because the adversaries in real world could be very

intelligent. However, it turns out that finding the optimal attack strategies are very chal-

lenging. First, identifying the attacker’s strategy space is challenging because the attackers’

capabilities vary in different application domains. Second, it is algorithmic challenging to

develop efficient and effective attack strategies due to the problem scale and the complexity

of the machine learning system.

Defending machine learning systems is even more challenging than attacking them. First,

the defender’s capabilities vary in different machine learning systems and we need to iden-

tify her strategy space. Second, the robustness of defense strategies must be considered

because a machine learning system might face various, perhaps irrational attackers. Third,

in many scenarios such as email filtering, the defenders usually need to sacrifice some econ-

omy for security. Therefore, the trade-off between economy and security becomes a tricky

problem. Last, in complex and highly dynamic systems such as e-commerce platforms, it is

almost impossible to exactly solve for the optimal defense strategies. Therefore, model-free

methodologies need to be developed for finding good defense strategies.

This thesis dedicates to reveal vulnerabilities of machine learning algorithms and develop

defense strategies for combating adversaries in real-world machine learning systems. First,

we study data poisoning attacks, in particular label contamination attacks, against a class of

machine learning models. Second, we extend data poisoning attacks on single-task learning

models to multi-task learning models. Third, we study how to optimally set the personalized

email filtering thresholds to defend against spear phishing attacks. Fourth, we investigate

how to combat fraudulent sellers in e-commerce through adaptive buyer impression alloca-

tion. Detailed problem descriptions and our contributions are as follows.
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1.1 Adversarial Threats in Machine Learning Systems

At the first place, we focus on exploring vulnerabilities of machine learning systems in al-

gorithmic level. Adversarial threats to machine learning algorithms can be classified as two

categories: exploratory attacks and causative attacks [3]. The exploratory attacks exploit the

vulnerabilities of trained models (e.g., classifiers) but do not affect the training phase. For

example, hackers can obfuscate malware code in order to bypass the malware detection. The

causative attacks (also known as poisoning attacks) target at the training phase, where the ad-

versaries aim to make the learned model in favor of them by manipulating the training data.

For example, the adversaries in recommender systems can manipulate the recommendations

by providing deliberately calculated ratings [4]. Poisoning attacks are usually more dan-

gerous than exploratory attacks because the adversaries could potentially control the whole

system. We first study label contamination attack, which is an important type of poisoning

attacks. We also propose a methodology for attacking black-box learning models. Then,

we extend the data poisoning attacks from single-task learning models to multi-task learning

models.

1.1.1 Label Contamination Attacks

Label contamination attacks usually happen when labels of training data are collected from

external sources. For example, one can use crowdsourcing platforms (e.g., Amazon Mechan-

ical Turk) to collect labels from human workers; Netflix relies on users’ ratings to improve

their recommendation systems; collaborative spam filtering updates the email classifier pe-

riodically based on end-users’ feedback, where malicious users can mislabel emails in their

inboxes to feed false data to the updating process.

We study the label contamination attack against a broad family of binary classification

models. We focus on answering three questions that have not been addressed by existing
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work. First, consider a highly motivated attacker with full knowledge of the victim learning

model, how to compute the label contamination attack against the victim model? Second,

if the victim learning model is a black-box, how does the attacker design effective attacks

against it? Third, how to defend against the label contamination attacks?

Previous work on label contamination attacks has three limitations [5, 6]. First, they

restrict the attacker’s goal to decrease the accuracy of a victim learning model, whereas in

reality the attackers may have arbitrary objectives. Second, they focus on computing attacks

against Support Vector Machines (SVMs) and their algorithms cannot generalize to other vic-

tim learning models. Third, they assume that the attacker has full knowledge of the victim

learning model, which might be unrealistic in reality. Regarding the defense against poison-

ing attacks, there are generally two lines of research: robust learning focuses on improving

the robustness of learning algorithms under contaminated data [5], and data sanitization fo-

cuses on removing suspicious data from training set [7, 8]. Most robust learning and data

sanitization techniques require a set of clean data, which is used to develop metrics for iden-

tifying future contaminated data. However, such techniques become useless when the set of

clean data is hard to obtain, or is contaminated by the attacker.

We make four key contributions. First, we extend the existing work on label contam-

ination attack to allow a broad family of victim models and arbitrary attacker objectives.

We formulate the optimal attack problem as a mixed-integer bilevel program. Second, we

exploit the Representer Theorem [9] and propose a Projected Gradient Ascent (PGA) al-

gorithm to approximately solve the bilevel program. Third, we propose a substitute-based

attack method for attacking black-box learning models, which leverages the transferability

of label contamination attacks. To our knowledge, we are the first to study the transferabil-

ity of poisoning attacks. Finally, we empirically analyze the transferabilities with respect

to five representative substitute models and show that linear models are significantly better

substitutes than nonlinear ones.
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1.1.2 Poisoning Attacks on Multi-Task Learning

Traditional research on data poisoning attacks, including label contamination attacks and

data injection attacks, focus on single-task learning models. In this work, we formally ana-

lyze optimal poisoning attacks on multi-task learning (MTL) models, where multiple tasks

are learned jointly to achieve better performance than single-task learning [10]. Specifi-

cally, we focus on multi-task relationship learning (MTRL) models, a popular subclass of

MTL models where task relationships are quantized and are learned directly from train-

ing data [11, 12]. Many MTL-based machine systems collect training data from individual

users to provide personalized services, including collaborative spam filtering and person-

alized recommendations, which makes them vulnerable to poisoning attacks launched by

cyber criminals. For example, in an MTL-based recommender system, attackers can control

a considerable number of user accounts either by hacking existing user accounts or creating

fictitious user accounts.

Previous works on poisoning attacks focus on single-task learning (STL) models, in-

cluding support vector machines [13], autoregressive models [14] and factorization-based

collaborative filterings [4]. However, none of them study poisoning attacks on MTL mod-

els. Computing optimal poisoning attacks on MTL models can be much more challenging

than on STL models, because MTL tasks are related with each other and an attack on one

task might potentially influence other tasks. This also opens a door for the attacker to attack

some accessible tasks and indirectly influence the unaccessible target tasks, which cannot be

addressed by existing methods on poisoning STL models.

The major contributions of our work are threefold. First, we formulate the optimal poi-

soning attack problem on MTRL as a bilevel program that is adaptive to any choice of target

tasks and attacking tasks. Second, we develop a stochastic gradient ascent based algorithm

called PATOM for solving the optimal attack problem, where the gradients are computed
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based on the optimality conditions of the convex subproblem of MTRL. Third, we demon-

strate experimentally that MTRL is very sensitive to data poisoning attacks. The attacker

can significantly degrade the performance of target tasks, by either directly poisoning the

target tasks or indirectly poisoning the related tasks. Moreover, we study the change of task

relationships under attacks and found that the attacking tasks usually have strong local cor-

relations, which suggests that a group of strongly correlated tasks could be dangerous to the

learner.

1.2 Combating Adversaries in Machine Learning Systems

Combating adversaries in machine learning systems highly depends on the application sce-

narios, because in different systems the adversaries’ attack methods, defenders’ defense ac-

tions and the system structures can be highly different. We study how to combat adversaries

in two different systems. First, we investigate how to defend email filtering systems against

spear phishers, who are much more harmful than ordinary spammers. Then, we focus on the

fraudulent sellers in e-commerce systems, who generate fake transactions in order to escalate

their reputations.

1.2.1 Combating Sequential Spear Phishers

Email is not a secure communications channel, and attackers have exploited this via spam

emails for many years. However, in recent years cyber attacks using email have become

increasingly targeted and much more damaging to organizations [15]. These targeted email

attacks are commonly known as spear phishing. They target individuals or small groups of

people, but use personal information and social engineering to craft very believable messages

with the goal of inducing the recipient to open an attachment, or visit an unsafe website by
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clicking a link. Executing a spear phishing attack is much more costly than sending a broad

spam message, but it is also much more likely to succeed and the potential damage is much

greater. For example, in 2011 the RSA company was breached by a spear phishing at-

tack [16]. This attack resulted in privileged access to secure systems, and stolen information

related to the company’s SecurID two-factor authentication products.

Email filtering systems are one of the primary defenses against both spam and spear

phishing attacks. These systems typically use black and white lists as well as machine learn-

ing methods to score the likelihood that an email is malicious before sending it to a user [17].

Setting the threshold for how safe a message must be to be delivered is a key strategic de-

cision for the network administrator [18]. If the threshold is too high, malicious emails will

easily pass the filtering system, but if the threshold is too low normal emails will be fil-

tered. Recent work has proposed a game-theoretic model that can improve the effectiveness

of filtering if thresholds are personalized according to individuals’ values and susceptibil-

ities [19]. They assume that the attacker’s strategy is simply selecting a subset of users

to attack that maximizes an additive expected reward, ignoring the cost of attacks and the

outcome of previous attacks.

However, in many incidents such as Operation Aurora [20], attackers launches sophisti-

cated attacks toward few targets over months. In such cases, attackers have plenty of time

and attack resources and they can plan long term sequential attack strategies to achieve diffi-

cult objectives [21]. In this work we extend the literature (and particularly the personalized

filtering model of [19]) to consider more sophisticated attackers who can make sequential

decisions about which users to send spear phishing emails to. Specifically, we consider

more complex (also realistic) objective functions for both the attacker and defender, includ-

ing modeling attack costs, and situations where it is only necessary to compromise one user

from a set of users that has access to important data or credentials (i.e., the user values are

substitutable).
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Our contributions are fourfold. First, we consider the case where there is a single im-

portant credential that the attacker seeks to gain and model the attacker’s decision making

as a Markov Decision Process (MDP). We formulate a bilevel optimization problem for the

defender and show that the attacker’s problem (i.e., lower level problem) can be solved by

a linear program. Solving the linear program is computational consuming since the num-

ber of variables and constraints grow exponentially with the number of users. Our second

contribution is to find a simplified representation of the defender’s utility and thus reduce

the defender’s bilevel program into a single level binary combinatorial optimization program

(which we call PEDS) by exploiting the structure of the attacker’s MDP. Our third contri-

bution is to extend the single-credential case to a a more general case where there could be

multiple sensitive credentials. For the multiple-credential case, the defender’s utility cannot

be represented in the same way as the single-credential case. We consider the dual program

of the linear program that solves the attacker’s MDP and represent the defender’s loss from

spear phishing attacks by a linear combination of dual variables. We then propose a single

level formulation (which we call PEMS) for the defender, which is reduced from the pro-

posed bilevel problem using complementary slackness conditions. Our fourth contribution

is to evaluate PEDS and PEMS by comparing our solutions with two existing benchmarks

and show that our solutions lead to significant higher defender utilities in different parameter

settings and are also robust considering uncertainties.

1.2.2 Combating Fraudulent Sellers in E-Commerce

One of the major functions of the e-commerce platforms is to guide buyer impressions to

sellers, where a buyer impression means one buyer click on a product. Buyer impressions

are usually allocated through a ranking system that displays the sellers’s products in some

order based on their quality scores. In order to increase the total number of transactions, the

platform tends to allocate more buyer impressions to popular products, where the popularity
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usually reflects as the conversion rate, i.e., the probability that a buyer buys the product if

he clicks on it. From the seller’s perspective, they usually spend much effort on getting

more buyer impressions and orders. A legal approach to obtain more buyer impressions is

advertising. However, due to the high cost of advertising, many sellers choose illegal ways to

make their products look popular to obtain more buyer impressions [22]. The most common

approach to increase the products’ popularity is through faking transactions, where sellers

control a number of buyer accounts and use them to buy their own products and provide

positive feedback [23, 24]. Such fraudulent behaviors severely decrease the effectiveness of

impression allocation and jeopardize the business environment.

Currently, e-commerce platforms mainly rely on fraud detection techniques to combat

fraudulent behaviors [25–27]. However, given the fact that there is no perfect fraud detection

system, it is necessary to explore alternative approaches for combating fraud in e-commerce.

In this work, we take a mechanism design approach to address this problem. Existing ap-

proaches for impression allocation mechanism focus on maximizing the profit of the plat-

form, ignoring the influence on sellers’ fraudulent behaviors. However, a mechanism that

maximizes the platform’s profit might also induce more fraudulent behaviors, which have

long-term negative effect on the platform. Our objective is to improve the platform’s im-

pression allocation mechanism to maintain the platform’s profit and reducing the fraudulent

behaviors at the same time.

A recent line of works introduces deep reinforcement learning to e-commerce mechanism

design [28–30]. However, their approaches are impractical for real-world applications. First,

they model the platform’s action as an n−dimensional vector, where each entry of the vector

represents the number of impressions to be allocated to a seller. However, there are millions

of sellers in the real world and their approach cannot scale up due to the high-dimensional

action space. Second, the outputted actions are not executable in practice since the number

of impressions that a seller actually receives depends on a complex parameterized ranking



1.3. Thesis Organization 10

system. Third, they directly apply the Deep Deterministic Policy Gradient (DDPG) [31] with

a softmax output layer in the actor network, which makes the allocation of buyer impressions

more smooth. However, in practice, the distribution of buyer impressions is very sharp

because the products in the first few pages account for the most buyer clicks.

In this work, we focus on improving the platform’s impression allocation mechanism

considering both the platform’s profit and fraudulent behaviors. Our contributions are four-

fold. First, we learn a seller behavior model to predict the sellers’ fraudulent behaviors using

real-world data, which is one of the largest e-commerce platforms in the world. Second, we

formulate the platform’s decision making problem as an MDP, where the platform’s action

is to determine the parameters of the ranking system so that the dimensionality of the ac-

tion space does not grow with the number of sellers. Third, as DDPG performs poorly in

our problem, we propose a novel algorithm Deep Deterministic Policy Gradient with Ac-

tion Norm Penalty (DDPG-ANP), where the norm of the agent’s action is included in the

reward function to facilitate learning in an unbounded action space. Fourth, we evaluate

DDPG-ANP with DDPG and several baselines in terms of scalability and solution quality.

Experimental results show that DDPG-ANP outperforms all baselines.

1.3 Thesis Organization

The structure of this thesis is organized as follows: Chapter 2 reviews the related works

to provide context of this thesis. Chapter 3 considers label contamination attacks against

black-box supervised learning models. Chapter 4 investigates data poisoning attacks on

multi-task relationship learning models. Chapter 5 studies spear phishing attacks and op-

timally setting the email filtering thresholds to defend such attacks. Chapter 6 focuses on

fraudulent sellers in e-commerce and explores combating such sellers through optimal im-

pression allocation. Chapter 7 summarizes the thesis and presents possible directions for
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future work.



Chapter 2

Related Work

In this chapter, we review existing research that is relevant to this thesis. First, we review

existing works on adversarial machine learning, including data poisoning attacks, test-time

attacks and their transferabilities. Since we study the data poisoning attacks on multi-task

learning, we will also introduce the related works in multi-task learning. Moreover, we will

review existing studies on spear phishing attacks, which is a hot research topic in the field of

cyber security. Finally, we will revisit the related methods for combating fraudulent sellers

in e-commerce.

2.1 Adversarial Machine Learning

The security of machine learning has attract many research attentions over the last decade.

[3] conclude and provide a taxonomy of different types of attacks on machine learning tech-

niques and systems. They also discuss a variety of possible defenses against adversarial

attacks. [32] investigate both causative attacks (a.k.a. poisoning attacks or training-time

attacks) and exploratory attacks (a.k.a. test-time attacks) with case studies. In particular,

they give methodologies for modeling the attacker’s capabilities and behaviors, and explore
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the limits of an adversary’s knowledge about the learning process. A recent book summa-

rizes the advances of adversarial machine learning techniques, including the attacks on deep

learning and approaches for improving robustness of deep neural networks [33]. We will

introduce training-time attacks and test-time attacks respectively.

2.1.1 Training-time Attacks

Training-time attacks against machine learning algorithms has become an emerging research

in the field of adversarial machine learning. [34] study a simple poisoning attack on online

centroid anomaly detection, where attacker shifts the normal ball by injecting malicious

data so that the ball accepts an anomaly point. Poisoning attacks on machine learning algo-

rithms are pineered by [13], which studies the poisoning attacks on Support Vector Machines

(SVMs), where the attacker is allowed to progressively inject malicious points to the train-

ing data in order to maximize the classification error. In recent years, poisoning attack is

generalized to many popular machine learning techniques, including regression models [35],

feature selection models [36], autoregressive models [14], latent Dirichlet allocation [37]

and factorization-based collaborative filtering [4]. An algorithmic framework for identifying

the optimal training set attacks is provided in [38]. Poisoning attacks is intrinsically a bilevel

optimization problem, where the lower level problem minimizes the learner’s training error

and the upper level problem maximizes the attacker’s utility along with some constraints on

the attacker. The main challenge is to develop algorithms for efficiently solving the bilevel

problem given that the size of the problem is usually big. Note that all of the aforementioned

works assume that the attacker has full knowledge of the learning model. It is still unclear

how to launch poisoning attacks against black-box learning models.

While data poisoning attacks against single-task learning have been studied extensively,

few consider poisoning attacks against multi-task learning (MTL) algorithms. In order to find
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out how to carry out poisoning attacks on MTL, we need to introduce some basics of MTL.

MTL is class of machine learning algorithms that focus on learning multiple tasks simulta-

neously. In general, MTL can be categorized into four classes: feature learning approaches,

low-rank approaches, task clustering approaches, and task relationship approaches. Feature

learning approaches aim to learn a common shared feature space among multiple tasks to

boost the learning performance of each task [39]. Low-rank approaches assume that the

model parameters of different tasks share a low-rank structure, and discovery of such a low-

rank structure could help learning a more precise model for each task [40]. Task clustering

approaches assume that different tasks form several task-clusters, each of which consists of

similar tasks [41]. Task relationship learning aims to quantify and learn task relationship

automatically from data, such that knowledge can be transferred among related tasks [11].

However, as we discussed, the vulnerability of MTL has never been studied. In this work, we

fill the gap by investigating the vulnerability of task relationship learning approaches, which

have proven to be effective in MTL.

2.1.2 Test-Time Attacks

In classical machine learning, the underlying distribution of test data is assumed to be station-

ary. However, in many adversarial applications such as spam filtering and malware detection,

adversaries can actively change the distribution of test data by crafting test samples, which

are also referred to adversarial samples [42]. Such attacks are called exploratory attacks [3]

or evasion attacks [42]. There is an extensive study of exploratory attacks on traditional

machine learning models, including classification [1, 43], feature selection models [44] and

kernel machines [45]. Recently, exploratory attacks on deep learning models have attracted

more and more interests [46, 47].

There has been existing work that studies the transferability of exploratory attack where
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the attacker perturbs the legitimate inputs to induce the trained classifier to misclassify them.

The transferability of such an attack means that the inputs perturbed to induce one clas-

sifier can also induce other classifiers to produce misclassifications. The transferability of

evasion attack among deep neural networks (DNNs) is demonstrated by [48]. Then, an ex-

tensive study explored the transferability of evasion attacks among five classifiers, including

SVM, logistic regression, decision tree, k-nearest neighbors and DNNs [49]. Moreover, [50]

proposed an ensemble-based adversarial example crafting method for attacking black-box

learning models. Similarly, such transferability can be observed in poisoning attacks. Un-

fortunately, none of the existing work studies the transferability of poisoning attacks.

2.2 Combating Spear Phishing Attacks

Spear phishing has been an important type of threats to companies, institutes and organi-

zations [51]. Some behavioral science studies focus on improving humans’ awareness of

phishing attacks [52, 53]. For example, [54] conducted a large-scale experiment that tracked

workers’ reactions to a series of carefully crafted spear phishing emails and a variety of im-

mediate training and awareness activities. Others dedicate to improve the email filter’s ability

to identify spear phishing emails by considering more domain-specific features [17, 55]. One

can refer to [56] for more detailed approaches for fighting against spear phishing attacks. A

recent work tries to improve the performance of the email filter by using personalized email

filtering thresholds [19], which is then extended to the multi-defender scenarios [57]. More-

over, the method of setting personalized thresholds has been extended to general intrusion

detection systems [58]. However, they neglect the fact that most spear phishing attacks are

rather sequential attacks instead of not one-shot attacks. Therefore, the sequential nature of

the attackers has to be considered in designing defense strategies.
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2.3 Combating Fraud in E-Commerce

In e-commerce, fraud transactions mean that the sellers making fake transactions either with

themselves or their conspiracies, such to improve their reputation and gain more profit in

the future. As sellers dedicate to make fraud transactions look like normal ones, a detection

system is usually employed to identify fraud transactions. As part of fraud transactions in

e-commerce, credit card fraud detection has been extensively studied [59, 60]. E-commerce

companies usually employ systematic solutions to defend against fraud transactions. For

example, Alibaba’s anti-fraud system TFS incorporate graph-based detection module and

time series based setection module to achieve real-time fraud detection [61]. For another

example, JD’s fraud detection system CLUE captures detailed information on users’ click

actions using neural-network based embedding, and models sequences of such clicks using

a recurrent neural network.

Besides fraud detection, reinforcement mechanism design is another approach that has

been proved effective in reducing fraudulent behaviors. Reinforcement mechanism design

is a reinforcement learning framework that automatically optimizes mechanisms, without

making too many unrealistic assumptions [28]. This framework has been applied to dy-

namic pricing in sponsored search auctions [62] and impression allocation in e-commerce

[29, 30]. A key challenge in applying reinforcement mechanism design in e-commerce is

the scalability issue since there are potentially millions of sellers on real-world e-commerce

platforms. Instead of computing an impression allocation strategy for each seller [29, 30],

we directly optimize the parameters of the ranking system to avoid the high dimensional

action space and significantly reduce the training time.



Chapter 3

Label contamination attacks

This chapter makes extensive study on label contamination attacks (LCAs). LCA is an im-

portant type of data poisoning attack where an attacker manipulates the labels of training

data to make the learned model beneficial to him. Existing work on LCA assumes that the

attacker has full knowledge of the victim learning model, whereas the victim model is usu-

ally a black-box to the attacker. In this work, we develop a Projected Gradient Ascent (PGA)

algorithm to compute LCAs on a family of empirical risk minimizations and show that an at-

tack on one victim model can also be effective on other victim models. This makes it possible

that the attacker designs an attack against a substitute model and transfers it to a black-box

victim model. Empirical studies show that PGA significantly outperforms existing baselines

and linear learning models are better substitute models than nonlinear ones.

3.1 LCAs on Binary Classification Models

In this section, we first introduce the label contamination attack against linear classifiers and

formulate the optimal attack problem as a bilevel optimization problem. Then, we generalize

our framework to solve the optimal attack against nonlinear kernel machines. We begin
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by introducing the linear binary classification problem. Given a set of training data D =

{(xi, yi)|xi ∈ Rk, yi ∈ {−1,+1}}ni=1, a linear classifier can be solved from the following

optimization problem.

min
f∈H

C
n∑
i=1

L(yi, f(xi)) +
1

2
||f ||2 (3.1)

where f(xi) = wᵀxi + b is the decision function, ||f ||2 = ||w||2 is square of the `2 norm of

w, H is the hypothesis space, L is the loss function and C is the regularization parameter.

For a testing instance xi, its predicted label is sgn(f(xi)). Without loss of generality, we

denote xi as (1,xi) and denote w as (b,w) so that f(xi) can be equivalently represented by

wᵀxi, where w ∈ Rk+1.

Attacker’s goal: Most existing work on poisoning attacks assumes that the attacker’s

goal is to decrease the classifier’s accuracy [6, 13]. A recent work allows the attacker to have

an arbitrary objective model (a classifier) and the attacker’s goal is to make the learner’s

learned model close to the objective model [38]. However, they restrict the attacker’s objec-

tive model to be a linear classifier. We extend their setting to allow the attacker to have an

arbitrary objective model, which is represented by a function f ∗ : x→ {−1,+1}. We define

two kinds of attacks based on the attacker’s incentives in real world.

• Integrity attack. The attacker has some test instances {xi}mi=n+1 and wants the labels

predicted by the victim model to be similar to that predicted by f ∗. For example,

a spammer may only want certain spam to be classified as regular ones. Note that

{xi}mi=n+1 can be a mixture of instances that the attacker has preference on and those

he is neutral about.

• Availability attack. The attacker wants to decrease the accuracy of the victim model.

For example, an attacker may want to disturb a recommender system by decreasing
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the accuracy of its built-in classification models.

Attacker’s capability: In data poisoning attacks, an attacker who takes full control of

training data can create an arbitrary victim model. However, in reality, the attacker usually

faces some constraints. In this work, we assume that the attacker can flip at most B labels

of the training set D. We denote by D′ = {(xi, y′i)}ni=1 the contaminated training set. We

introduce a binary vector z and denote y′i = yi(1 − 2zi) so that zi = 1 means that the label

of sample i is flipped and zi = 0 otherwise.

3.1.1 Attacking Linear Classifiers

In this work, we consider three linear classifiers: SVM, Logistic Regression (LR) and Least-

squares SVM (LS-SVM), but note that our methods allow general loss functions as long as

they are differentiable. The three classifiers can be obtained by replacing the loss function L

in Eq.(1) with the following loss functions.

• Hinge loss (SVM): L1(yi, f(xi)) = max{0, 1−yif(xi)}

• Logistic loss (LR): L2(yi, f(xi)) = log(1 + exp(−yif(xi)))

• Squared hinge loss (LS-SVM): L3(yi, f(xi))=(1−yif(xi))2

For attacking linear classifiers, the attacker first reduces his objective model f ∗ to

a weight vector w∗∈Rk+1. In other words, w∗ can be viewed as a linear classi-

fier that is the closest to f ∗. Specifically, in the integrity attack, w∗ can be learned

from Da
in={(xi, yi)|yi=f ∗(xi)}mi=n+1. In the availability attack, w∗ can be learned from

Da
av={(xi,−yi)|(xi, yi)∈D}ni=1. In both integrity attack and availability attack, the attacker

wants the learner’s learned weight vector w as close to w∗ as possible. Since w and w∗ can

be viewed as two hyper-lines in a k+1-dimensional space, intuitively, the attacker’s goal can

be viewed as rotating w to w∗. We assume that the attacker’s goal is maximizing the cosine
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of the angle between w and w∗ and define the attacker’s utility function as:

U(w,w∗) =
wᵀw∗

||w||||w∗||
.

We formulate the optimal attack problem as the following bilevel program.

max
z

wᵀw∗

||w||||w∗||
(3.2)

s.t. f ∈ arg min
g∈H

C
n∑
i=1

L(y′i, g(xi)) +
1

2
||g||2 (3.3)

∑n
i=1 zi ≤ B (3.4)

y′i = yi(1− 2zi),∀i ∈ [n] (3.5)

zi ∈ {0, 1},∀i ∈ [n] (3.6)

One can obtain the optimal attack problem on specific linear classifiers by replacing the loss

function L in Eq.(3.1) with the associated loss functions. Eqs.(3.2) - (3.6) is a mixed-integer

bilevel program, which is generally hard to solve. We will introduce the PGA algorithm to

approximately solve this problem in Section 3.2.

3.1.2 Attacking Kernel SVMs

A kernel machine applies a feature mapping φ : Rk → Rr on training data so that the data

could be more separable in higher dimensional space (usually r > k). A kernel SVM can be

viewed as a linear SVM in the transformed feature space. Since r can be arbitrarily large,

instead of solving the primal problem Eq.(3.1), one usually solves its dual problem:

min
α

1

2
αᵀQα−

∑n
i=1 αi (3.7)

0 ≤ αi ≤ C, ∀i ∈ [n] (3.8)
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where Qij = yiyjφ(xi)
ᵀφ(xj). In practice, φ(xi)

ᵀφ(xj) is usually replaced by a kernel func-

tion K(xi,xj) to facilitate computation. We classify the kernel functions into two classes:

one with finite feature mapping (e.g., polynomial kernels) and the other with infinite feature

mapping (e.g., radial basis function kernels). We will introduce how to attack these kernel

SVMs separately.

For kernel SVMs with finite feature mapping, the attacker first reduces his objective

model f ∗ to a weight vector w∗∈Rr+1. Similar to the linear classification case, in the in-

tegrity attack, w∗ can be learned from Da
in = {(φ(xi), yi)|yi=f ∗(xi)}mi=n+1. In the avail-

ability attack, w∗ can be learned from Da
av={(φ(xi),−yi)|(xi, yi)∈D}ni=1. For kernel SVMs

with infinite feature mapping, we use the technique of random Fourier features [63, 64]

to construct an approximate finite feature mapping. The random Fourier features are con-

structed by first sampling random vectors ω1, ..., ωq from p(ω), where p(ω) is the Fourier

transform of kernel function K. Then, xi is transformed to φ(xi) with new features

φ(xi) = (sin(ωᵀ
1xi), cos(ω

ᵀ
1xi), ..., sin(ωᵀ

qxi), cos(ω
ᵀ
qxi)).

One can refer to [64] for detailed procedures. The random Fourier features ensures

φ(xi)
ᵀφ(xj) ≈ K(xi,xj). Note that the dimension of φ is 2q, where q is the number of

random vectors drawn from p(ω). The attacker can construct his objective model w∗∈R2q+1

similarly to the finite feature mapping case using the feature mapping φ.

In order to obtain the optimal attack problem on kernel SVMs, we need to replace the

lower level problem Eqs.(3.3) - (3.6) with Eqs.(3.7) - (3.8) and add constraint Eq.(3.9) to the

upper level problem, which is derived from the Representer Theorem [65].

w =
∑n

i=1 αiy
′
iφ(xi) (3.9)
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Algorithm 1: Projected Gradient Ascent (PGA)
1 Input: Original training data D = {(xi, yi)}ni=1, attacker’s objective model w∗, budget

B, step size η, iteration limit tmax;
2 Choose a random z0 ∈ [0, 1]n;
3 y′0 ← Flip(z0);
4 Train a classifier using training data {(xi,y′0)};
5 Initialize dual variables α0 and primal variables w0;
6 t← 1;
7 while Not converge and t < tmax do
8 zt ← Proj(zt−1 + η∇zt−1U);
9 y′t ← Flip(zt);

10 Retrain the classifier using training data {(xi,y′t)};
11 Update αt,wt;
12 t← t+ 1;
13 end
14 Output: Contaminated labels y′t.

Algorithm 2: Flip strategy
1 Input: z, original labels y, budget B;
2 Γ← Indices of Sort([z1, z2, ..., zn], ‘descent′);
3 j ← 1, y′i ← yi,∀i ∈ [n];
4 while

∑n
i=1 zΓ(j) ≤ B do

5 y′Γ(j) ← −yΓ(j);
6 j ← j + 1;
7 end
8 Output: Flipped labels y′.

3.2 Computing Attacking Strategies

Inspired by [4, 36, 38], we develop the PGA algorithm 1 for computing approximate solu-

tions of Eqs.(3.2) - (3.6) and show that PGA can also compute attack strategies on kernel

SVMs. We first relax binary variables zi to interval [0, 1] and solve the relaxed problem.

PGA works by gradually updating zt along its approximate gradients until converge or the

iteration limit is reached. Since zt is a real number vector and retraining the classifier re-

quires y′t to be a binary vector, we construct a flip strategy to project zt to y′t. The flip

strategy is shown in Algorithm 2. At each iteration, the projector Proj(z) first projects z to
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an `∞ norm ball by truncating each zi into range [0, 1]. Then the projected point is further

projected to an `1 norm ball with diameter B, which ensures that
∑n

i=1 zi ≤ B.

Steps 4 and 10 in PGA involve training process of the victim model. If the victim model

is SVM, in step 4 and 10 we solve the dual SVM problem Eqs.(3.7) - (3.8). If the victim

model is logistic regression, we solve the following dual logistic regression problem:

max
α

1

2
αᵀQα+

∑
i:αi>0

αi logαi+
∑

i:αi<C

(C−αi) log(C−αi) (3.10)

0 ≤ αi ≤ C,∀i ∈ [n] (3.11)

where Qij = y′iy
′
jxi

ᵀxj . If the victim model is least-squares SVM, we solve the dual least-

squares SVM problem:

(Q+ C−1In)α = 1n (3.12)

where In is the n×n identical matrix and 1n is the n-dimensional vector of element 1. If the

victim learning model is kernel SVM, we solve Eqs.(3.7) - (3.8) withQij = y′iy
′
jφ(xi)

ᵀφ(xj).

In step 5 (step 11) of PGA, α0 (αt) is the solution of the problem solved in step 4 (step 10)

and w0 (wt) is computed using Eq.(9).

In order to compute the gradient ∇zU in step 8 (refer to Section 3.1.1 for the definition

of U ), we first apply chain rule to arrive at:

∇zU = ∇wU · ∇y′w · ∇zy
′ (3.13)
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The first and the third gradient can be easily computed as:

∂U

∂wj
=
||w||2w∗j −wᵀw∗wj

||w||3||w∗||
(3.14)

∂y′i
∂zj

= −1(i = j)2yi (3.15)

where 1(·) is the indicator function. The second gradient ∇y′w is hard to compute since

it involves an optimization procedure. We leverage Eq.(3.9) to approximately compute the

second gradient. If the victim learning model is linear, Eq.(3.9) is modified as Eq.(3.16).

w =
n∑
i=1

αiy
′
ixi. (3.16)

Taking the derivatives of both sides we have:

∂wj
∂y′i

= αixij (3.17)

If the victim learning model is a kernel SVM, we can take derivatives of both sides of Eq.(3.9)

and obtain:

∂wj
∂y′i

= αiφ(xij) (3.18)

3.3 Attacking Black-Box Victim Models Using Substitutes

In previous sections we introduced how to compute attacks against a broad family of learning

models. However, the attacker may not have full knowledge of the victim learning model in

many real-world scenarios. Observing that an attack targets on one learning model can also
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Figure 3.1: Decision boundaries (solid lines) of learned models under attacks with different
attacker budgets.

be effective on another learning model even if the two models have different architectures,

the attacker can design attack against a substitute model and then perform this attack on the

victim learning model. Figure 3.1 shows the general paradigm of black-box attacks. A good

substitute model is such that the attack against it is also effective on a general family of

learning models.

The effectiveness of substitute-based attacks on a victim model can be evaluated by

the victim model’s accuracy on a test set Dtest. In the integrity attack, Dtest can be

Da
in = {(xi, yi)|yi=f ∗(xi)}mi=n+1 and in the availability attack Dtest can be Da

av =

{(xi,−yi)|(xi, yi)∈D}ni=1. As discussed in Section 3.1, the attacker aims to increase the

classification accuracy of the victim model on Dtest because the attacker’s objective model

w∗ is learned from Da
in and Da

av, with respect to integrity attack and availability attack. We

denote by M = {M1,M2, ...,M|M |} the set of learning models and by τi the attack against

model Mi. We denote by M τi
j the victim model Mj learned under attack τi. Then the

effectiveness of the attack against substitute Mi on victim model Mj can be evaluated by

accuracy(M τi
j , Dtest). We will evaluate the effectiveness of five substitute models on eight

victim models in Section 3.4.3.
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3.4 Experimental Evaluation

In this section, we evaluate the proposed attack and defense algorithms and analyze the trans-

ferability of the attacks. We compute attacks against three linear learning models: SVM, lo-

gistic regression (LR), least-squares SVM (LS-SVM) and two nonlinear models: SVM with

polynomial kernel (POLY) and radial basis function kernel (RBF). We will use five public

data sets: Australian (690 points, 14 features), W8a (10000 points, 300 features), Spambase

(4601 points, 57 features) [66], Wine (130 points, 14 features) and Skin (5000 points, 3 fea-

tures) 1. All training processes are implemented with LIBSVM [67] and LINLINEAR [68].

All attacks computed by PGA are the best among 50 runs.

3.4.1 Integrity Attacks Visualization

We visualize the integrity attacks against SVM, LR, LS-SVM, POLY, RBF computed by

PGA. We set the regularization parameter C=1 for all five models. We set the parameters

d=2 for polynomial kernel and γ=0.1 for RBF kernel. The training set is a 2-D artificial data

set containing 100 points. We ignore the process of generating the attacker’s objective model

and set it as an arbitrary one. Figure 3.2 shows how the attacks under different attacker bud-

gets can affect the decision boundaries of victim models. The dashed black lines represent

the attacker’s objective model. The attacker wants the points on the left side of this line to

be classified as “red” and the points on the right side to be classified as “blue”. The bigger

red (blue) points are originally blue (red) and are flipped by the attacker. We can see that

the victim learning models can be converted to models that are very close to the attacker’s

objective model under only 20 flips. In addition, the attacked points with respect to different

victim models are highly similar, which indicates that the attacks have transferability.

1Except Spambase, all data sets can be downloaded from https://www.csie.ntu.edu.tw/

˜cjlin/libsvmtools/datasets/.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 3.2: Decision boundaries (solid lines) of learned models under attacks with different
attacker budgets.

3.4.2 Solution Quality Comparison

We compute availability attacks against SVM using PGA and compare our solution with

two baselines. The first baseline is a random flip strategy, where the attacker randomly flips

the labels of training data under his budget. For each data set and budget, we compute the

random attack for 50 times and report the best out of them. The second baseline, Adversarial

Label Flip Attack on SVMs (ALFA) [6], is an existing algorithm that can compute attacks

that decrease the accuracy of SVMs. ALFA works by iteratively solving a quadratic and

a linear problem until convergence. Figure 3.3 shows that the attacks computed by PGA

significantly outperform both baselines. X-axis is the percentage of flipped points and y-axis

is the accuracy of victim model on training set. On the W8a data set, the attacks computed by

PGA decrease the victim model’s accuracy from 90% to 30% with only 30% flips. We also

find that PGA scales significantly better than ALFA. Because in each iteration of ALFA it

solves two optimization problems and their sizes grow with the number of data points, while
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Figure 3.3: Accuracy of victim model under different attacker budgets.

in each iteration of PGA it trains a linear classifier, which can be efficiently implemented

with LIBLINEAR.

3.4.3 Transferability Analysis

We compute availability attacks against the aforementioned five substitute models using

PGA and test the accuracy of eight victim models under the attacks. The victim models

include the five substitute models and decision tree (DT), k-nearest neighbors (KNN) and

Naive Bayes (NB). The DT, KNN and NB models are trained using MATLAB R2016b Stat-

ics and Machine Learning Toolbox and all parameters are set by default. We set the attacker’s

budget as 30% of the training points.

Table 3.1 shows the influence of the five attacks on the eight victim models. First, we

can see from the diagonal values that if the substitute model and the victim model are of the

same type, the attack can significantly degrade the accuracy of the victim model. Second,

the performance of an attack designed for a linear model on another linear victim model

are comparable with the attack designed for the victim model, which means that the attack

designed for a linear model has a good transferability when victim models are also linear.

Third, the attack designed for a linear model has a good transferability when the victim model

is nonlinear. However, the attack designed for nonlinear models has a bad transferability

when the victim models are linear. For example, on the Skin dataset, the attack designed
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for RBF can degrade the accuracy of an RBF model to 0.38. However, an SVM victim

model under this attack can still achieve 0.94 accuracy, which means that the attack barely

has influence on the SVM model. Fourth, on the Australian and the Skin dataset, the attacks

designed for the five substitute models have similar transferability when the victim models

are DT, KNN and NB. However on the Spambase dataset, the attacks designed for linear

models have significantly better transferability than those designed for nonlinear models.

In conclusion, attacks against linear models generally have a good transferability than that

against nonlinear models.

3.5 Chapter Summary

This work studies label contamination attacks against classification models. We first focused

on the problem of optimal label contamination attack against a family of empirical risk min-

imization models. We formulated each optimal attack problem as a mixed integer bilevel

program and developed the PGA algorithm to compute the near-optimal attacks. Then, we

considered a more realistic scenario where the victim model are a black-box to the attacker.

In such a scenario, we proposed a substitute-based attacking strategy for the attacker. In

the experimental part, we studied the transferability of the label contamination attacks and

demonstrated that the substitute-based attacks can be very effective against black-box learn-

ing models when appropriate substitute model is chosen. We also discussed about possible

defenses to mitigate data poisoning attacks.
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SVM LR LS-SVM POLY RBF DT KNN NB
SVM 0.40 0.55 0.42 0.63 0.49 0.68 0.70 0.39
LR 0.55 0.53 0.48 0.59 0.49 0.69 0.70 0.33

LS-SVM 0.53 0.54 0.25 0.63 0.64 0.66 0.70 0.33
POLY 0.67 0.68 0.55 0.53 0.52 0.62 0.70 0.43
RBF 0.82 0.78 0.69 0.67 0.55 0.64 0.70 0.48

(a) Australian dataset.

SVM LR LS-SVM POLY RBF DT KNN NB
SVM 0.45 0.47 0.48 0.62 0.55 0.68 0.70 0.35
LR 0.54 0.48 0.48 0.63 0.67 0.69 0.70 0.33

LS-SVM 0.53 0.50 0.50 0.63 0.66 0.68 0.69 0.36
POLY 0.74 0.73 0.74 0.76 0.74 0.70 0.70 0.61
RBF 0.83 0.81 0.82 0.84 0.54 0.71 0.71 0.78

(b) Spambase dataset.

SVM LR LS-SVM POLY RBF DT KNN NB
SVM 0.56 0.59 0.58 0.59 0.58 0.71 0.70 0.56
LR 0.57 0.59 0.57 0.61 0.78 0.70 0.70 0.56

LS-SVM 0.46 0.52 0.51 0.50 0.46 0.67 0.69 0.46
POLY 0.90 0.60 0.69 0.52 0.77 0.69 0.75 0.45
RBF 0.94 0.90 0.88 0.91 0.38 0.76 0.69 0.58

(c) Skin dataset.

Table 3.1: Accuracy of victim models under substitute-based attacks.



Chapter 4

Data poisoning attacks on multi-task

relationship learning

This chapter studies data poisoning attacks, in particular data injection attacks on multi-task

learning (MTL) models. MTL is a machine learning paradigm that improves the performance

of each task by exploiting useful information contained in multiple related tasks. However,

the relatedness of tasks can be exploited by attackers to launch data poisoning attacks, which

has been demonstrated to be a big threat to single-task learning. In this work, we provide

the first study on the vulnerability of MTL. Specifically, we focus on multi-task relationship

learning (MTRL) models, a popular subclass of MTL models where task relationships are

quantized and are learned directly from training data. We formulate the problem of com-

puting optimal poisoning attacks on MTRL as a bilevel program that is adaptive to arbitrary

choice of target tasks and attacking tasks. We propose an efficient algorithm called PATOM

for computing optimal attack strategies. PATOM leverages the optimality conditions of the

subproblem of MTRL to compute the implicit gradients of the upper level objective function.

Experimental results on real-world datasets show that MTRL models are very sensitive to

poisoning attacks and the attacker can significantly degrade the performance of target tasks,
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by either directly poisoning the target tasks or indirectly poisoning the related tasks exploit-

ing the task relatedness. We also found that the tasks being attacked are always strongly

correlated, which provides a clue for defending against such attacks.

4.1 Multi-Task Relationship Learning

We denote by T = {Ti}mi=1 the set of learning tasks. For each task Ti, we are given a set

of training data Di = {(xij, yij)|xij ∈ Rd, j = 1, ..., ni}. The label yij ∈ R if the task is

a regression task and yij ∈ {−1,+1} if the task is a binary classification task. Note that a

multi-class classification problem can be easily decomposed to a set of binary classification

problems using the one-vs-the-rest strategy [68]. The goal of MTL is to jointly learn a

prediction function fi(x) for each task. In this work, we consider linear prediction functions

where fi(x) = (wi)>x + bi, but note that it is easy to extend to non-linear cases using kernel

methods. For the ease of representation, we denote (x, 1) by x and denote (w, b) by w so

that fi(x) = (wi)>x.

We consider a general multi-task relationship learning (MTRL) formulation [11] as fol-

lows, which includes many existing popular MTL methods as its special cases [69–72].

min
W,Ω

m∑
i=1

1

ni

ni∑
j=1

l((wi)>xij, y
i
j) +

λ1

2
tr(WW>)

+
λ2

2
tr(WΩ−1W>), (4.1)

s.t. Ω � 0, tr(Ω) = 1, (4.2)

where l(·) is an arbitrary convex loss function, W is a matrix whose i-th column wi is

the weight vector of task Ti, Ω ∈ Rm×m is the covariance matrix that describes positive,
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negative and unrelated task relationships. The first term in the objective function measures

the empirical loss of all tasks with the term 1/ni to balance the different sample sizes of

tasks. The second term in the objective function is to penalize the complexity of W, and

the last term serves as the task-relationship regularization term. The first constraint ensures

that the covariance matrix Ω is positive semi-definite, and the second constraint controls its

complexity.

4.2 Data Poisoning Attacks on MTRL

In this section, we introduce the problem settings for the data poisoning attack on MTRL. We

define three kinds of attacks based on real-world scenarios and propose a bilevel formulation

for computing optimal attacks.

We assume that the attacker aims to degrade the performance of a set of target tasks

Ttar ⊂ T by injecting data to a set of attacking tasks Tatt ⊂ T . We denote by D̂i =

{(x̂ij, ŷij)|x̂ij ∈ Rd, j = 1, ..., n̂i} the set of malicious data injected to task i. Specially,

D̂i = ∅, i.e., n̂i = 0, if Ti 6∈ Tatt. We define and study the following three kinds of attacks

based on real-world scenarios.

• Direct attack: Ttar = Tatt. Attacker can directly inject data to all the target tasks. For

example, in product review sentiment analysis, each task is a sentiment classification

task that classifies a review as negative or positive. On e-commerce platforms such as

Amazon, attackers can directly attack the target tasks by providing crafted reviews to

the target products.

• Indirect attack: Ttar ∩ Tatt = ∅. Attacker cannot inject data to any of the target

tasks. However, he can inject data to other tasks and indirectly influence the target

tasks. For example, personalized recommendations treat each user as a task and use
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users’ feedback to train personalized recommendation models. In such scenarios, at-

tackers usually cannot access the training data of target tasks. However, attackers can

launch indirect attacks by faking some malicious user accounts, which will be treated

as attacking tasks, and providing crafted feedback to the systems.

• Hybrid attack: A mixture of direct attack and indirect attack where the attacker can

inject data to both target tasks and attacking tasks.

We denote byL(D,w) =
∑|D|

k=1 l(w
>xk, yk) the empirical loss incurred by weight vector

w on data set D, and define the attacker’s utility function as the empirical loss on training

data of the target tasks:

U =
∑
{i|Ti∈Ttar} L(Di,w

i).

Following the Kerckhoffs’ principle [73] and existing works on poisoning attacks [4, 13],

we assume that the attacker has full knowledge of the victim MTRL model. In reality,

attackers can either obtain the knowledge of victim models by exploiting insider threats [74]

or probing the machine learning systems by sending queries from the outside [75]. We

then formulate the optimal attack problem as the following bilevel optimization problem.

Problem (4.3) is the upper level problem, in which the objective function is the attacker’s

utility U . The variables of the upper level problem are the injected data points D̂i, which

are usually constrained in real-world scenarios. For example, the injected data should have

similar scale with the clean data. Problem (4.4) is the lower level problem, which is an

MTRL problem with training set consists of both clean and injected data points. The lower

level problem can be regarded as the constraint of the upper level problem. In other words,

the variables W used for computing the upper level objective U is kept to be the optimal

solution of the lower level problem.
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max
{D̂i|Ti∈Tatt}

∑
{i|Ti∈Ttar}

L(Di,w
i), (4.3)

s.t. Constraints on {D̂i|Ti ∈ Tatt},

min
W,Ω

m∑
i′=1

1

ni′+n̂i′
L(Di′ ∪ D̂i′ ,w

i′)

+
λ1

2
tr(WW>)+

λ2

2
tr(WΩ−1W>), (4.4)

s.t. Ω � 0, tr(Ω) = 1. (4.5)

4.3 Computing Optimal Attack Strategies

In this section, we propose an algorithm called PATOM for computing optimal attack strate-

gies. PATOM is a projected stochastic gradient ascent based algorithm that efficiently maxi-

mizes the injected data in the direction of increasing the empirical loss of target tasks. Since

there is no close-form relation between the empirical loss and the injected data, we compute

the gradients exploiting the optimality conditions of the subproblem of MTRL.

4.3.1 General Optimization Framework

Bilevel problems are usually hard to solve due to their non-linearity, non-differentiability

and non-convexity. In our bilevel formulation, although the upper level problem (4.3) is

relatively simple, the lower level problem (4.4) is highly non-linear and non-convex. Inspired

by [4, 23, 36, 38], we use a projected gradient ascent method to solve our proposed bilevel

problem. The idea is to iteratively update the injected data in the direction of maximizing the

attacker’s utility function U . In order to reduce the complexity of the optimal attack problem,
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we fix the labels of injected data ŷij and optimize over the features of injected data x̂ij . The

update rule is written as follows,

(x̂ij)
t ← ProjX((x̂ij)

t−1 + η∇(x̂ij)
t−1U), ∀i, j, (4.6)

where η is the step size, t denotes the t-th iteration, and X represents the feasible region of

the injected data, which is specified by the first constraint in the upper level problem (4.3).

We consider X as an `2-norm ball with diameter r. Therefore, ProjX can be represented by:

ProjX(x) =

 x, if ||x||2 ≤ r,

xr
||x||2 , if ||x||2 > r.

In order to compute the gradients ∇(x̂ij)
t−1U , we first apply the chain rule to arrive at

∇(x̂ij)
U = ∇WU · ∇(x̂ij)

W. (4.7)

However, note that U is the sum of losses incurred by every point in the target tasks, the

first term on the right side could be computationally expensive if the number of data points

in target tasks is large. Therefore, we instead propose a projected stochastic gradient ascent

based algorithm, called PATOM, to improve the scalability of our approach.

The details of PATOM is shown in Algorithm 3. We first randomly initialize the injected

data D̂i within the `2-norm ball with diameter r. Using the injected data, we solve the MTRL

problem (the lower level problem (4.4)), and obtain the initial values of the weight matrix W0

and the covariance matrix Ω0. In each iteration, we perform a projected stochastic gradient

ascent procedure steps (7-10) on all the injected data. Specifically, for each data point (xpq ,y
p
q )

sampled from Dbatch, we compute the gradients of its associate loss l((wp
t )
>xpq ,y

p
q ) with

respect to each injected data x̂ij . Therefore, by replacing U in (4.6) with l((wp
t )
>xpq ,y

p
q ) we

have the stochastic version of the update rule as shown in (4.8). Then, with the updated
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injected data D̂i = D̂t
i , we solve the lower level problem (4.4) again to obtain a new weight

matrix Wt and a new covariance matrix Ωt, which will be used in the next iteration.

(x̂ij)
t ← ProjX((x̂

i
j)
t−1+η∇(x̂ij)

t−1 l((w
p
t−1)

>xpq ,y
p
q )), ∀i, j. (4.8)

Algorithm 3: computing Poisoning ATtacks On Multi-task relationship learning
(PATOM)
1 Input: Ttar, Tatt, step size η, attacker budget n̂i.
2 Randomly initialize D̂0

i = {((x̂ij)0, (ŷij)
0)|j = 1, ..., n̂i}, ∀i ∈ Tatt.

3 D̂i = D̂0
i , ,∀i ∈ Tatt.

4 Solve lower level problem (??) to obtain W0 and Ω0.
5 t← 1.
6 while t < tmax do
7 Sample a batch Dbatch from ∪i∈TtarDi.
8 for (xpq ,y

p
q ) ∈ Dbatch do

9 for i ∈ Tatt, j = 1...n̂i do
10 Update (x̂ij)

t according to (4.8).
11 end
12 end
13 D̂i = D̂t

i ,∀i ∈ Tatt.
14 Solve (??) to obtain Wt and Ωt.
15 t← t+ 1.
16 end

4.3.2 Gradients Computation

In order to compute the gradients ∇(x̂ij)
l((wp)>xpq ,y

p
q ) in (4.8), we still apply the chain rule

and obtain:

∇x̂ij
l((wp)>xpq ,y

p
q ) = ∇wpl((wp)>xpq ,y

p
q ) · ∇x̂ij

wp. (4.9)
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We can see that the first term on the right side depends only on the loss function l(·) and

is relatively easy to compute. However, the second term on the right side depends on the

optimality conditions of lower level problem (4.4). In the rest of this section, we show how

to compute the gradients with respect to two commonly used loss functions. For regression

tasks, we adopt least-square loss: l1(w>x, y) = (y − w>x)2. For classification tasks, we

adopt squared hinge loss: l2(w>x, y) = (1−yw>x)2.

We first fix Ω to eliminate the constraints of the lower level problem (4.4), and obtain the

following sub-problem:

min
W

m∑
i=1

1

ni+n̂i
L(Di ∪ D̂i,w

i)+
λ1

2
tr(WW>)

+
λ2

2
tr(WΩ−1W>). (4.10)

As shown in [11], MTRL problems can be solved by an alternating approach with Ω and

W alternatingly fixed in each iteration. Also note that in bilevel optimization, the optimality

of the lower level problem can be considered as a constraint to the upper level problem.

Therefore, at convergence, we can treat Ω in Problem (4.10) as a constant-value matrix

when computing the gradients. We then substitute the least-square loss function l1(·) into

Problem (4.10) and reformulate it as the following constrained optimization problem:

min
W

m∑
i=1

1

ni+n̂i

(
ni∑
j=1

(εij)
2+

n̂i∑
j′=1

(ε̂ij)
2

)
+
λ1

2
tr(WW>)

+
λ2

2
tr(WΩ−1W>), (4.11)

s.t. εij = yij − (wi)>xij, ∀i, j,

ε̂ij′ = ŷij′ − (wi)>x̂ij′ , ∀i, j′.
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The Lagrangian of the problem (4.11) is:

G =
m∑
i=1

1

ni+n̂i

(
ni∑
j=1

(εij)
2+

n̂i∑
j=1

(ε̂ij)
2

)
+
λ1

2
tr(WW>)

+
λ2

2
tr(WΩ−1W>)

+
m∑
i=1

(
ni∑
j=1

αij
(
yij − (wi)>xij − εij

)
+

n̂i∑
j′=1

α̂ij′(ŷ
i
j′ − (wi)>x̂ij′ − ε̂ij′)

)
. (4.12)

The gradient of G with respect to W is:

∂G

∂W
= W(λ1Im + λ2Ω

−1)

−
m∑
i=1

(
ni∑
j=1

αijx
i
je
>
i +

n̂i∑
j′=1

α̂ij′x̂
i
j′e
>
i

)
. (4.13)

where Im is m×m identity matrix, and ei is the i-th column of Im. By setting ∂G
∂W

= 0, we

obtain:

W =
m∑
i=1

((
ni∑
j=1

αijx
i
j+

n̂i∑
j′=1

α̂ij′x̂
i
j′

)
e>i Ω(λ1Ω + λ2In)−1

)
, (4.14)

which implies that each task’s weight vector wi can be represented as a linear combination

of training data from all tasks. For simplicity in presentation, we denote by Φ = Ω(λ1Ω +

λ2In)−1, and reexpress (4.14) as the following form:

wp =
m∑
i=1

Φi,p

(
ni∑
j=1

αijx
i
j +

n̂i∑
j′=1

α̂ij′x̂
i
j′

)
, p = 1...m. (4.15)

Similarly, we substitute the squared hinge loss into the loss function L(·) in Problem (4.10),
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and obtain:

wp =
m∑
i=1

Φi,p

(
ni∑
j=1

αijy
i
jx

i
j +

n̂i∑
j′=1

α̂ij′ ŷ
i
j′x̂

i
j′

)
, p = 1...m. (4.16)

Given (4.15) and (4.16), we can compute the gradient in (4.8). In case of the least-square

loss, we have:

∇x̂ij
l((wp)>xpq ,y

p
q ) = 2((wp)>xpq − ypq )xpq

∂wp

∂x̂ij

= 2((wp)>xpq − ypq )xpqα̂ijΦi,p. (4.17)

In case of the squared hinge loss, we have:

∇x̂ij
l((wp)>xpq ,y

p
q )

= 2(ypq (w
p)>xpq − 1)ypqx

p
q

∂wp

∂x̂ij

= 2(ypq (w
p)>xpq − 1)ypqx

p
q ŷ
i
jα̂

i
jΦi,p. (4.18)

4.4 Experimental Results

In this section, we first evaluate PATOM in terms of convergence and solution quality. Ex-

perimental results show that PATOM converges to local optima in less than 10 iterations and

the attack strategies computed by PATOM significantly outperform baselines. Second, we

study the task relationships under the data poisoning attacks and found that task relationships

are very sensitive to the attacks. We also found that the tasks under attacking form strong

correlations.
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4.4.1 Datasets

We use three real-world datasets to validate our proposed methods. The Landmine and the

MNIST datasets are used for classification tasks and Sarcos dataset is used for regression

tasks. For each dataset, all data points are divided by the maximum `2 norm among them,

so that all data points are within a `2-norm ball with diameter 1. We consider this ball as the

feasible region of the injected data in order to ensure that the injected data and the clean data

are at the same scale. We use the area under the ROC curve (AUC) to evaluate the learning

performance for classification tasks, and the normalized mean squared error (NMSE) for

regression tasks. The higher AUC corresponds to the better performance for classification

and the lower NMSE corresponds to the better performance for regression. The detailed

description of the datasets are given below.

• Sarcos1 relates to an inverse dynamics problem for a 7 degrees-of-freedom SARCOS

anthropomorphic robot arm. The input is a 21-dimensional space that includes 7 joint

positions, 7 joint velocities and 7 joint accelerations. Each input instance is associated

with 7 joint torques. Following previous work [11], each task is to learn a mapping

from the 21-dimensional input space to one of the 7 torques. The dataset contains

44,484 training examples and 4,449 test examples.

• Landmine2 consists of 29 tasks collected from various landmine fields. A data point

in each task is represented by a 9-dimensional feature vector, and associated with a

corresponding binary label (“1” for landmine and “-1” for cluster). The feature vec-

tors are extracted from radar images, concatenating four momentbased features, three

correlation-based features, one energy ratio feature and one spatial variance feature.

The tasks entail different numbers of data points, varying from 89 to 138 examples.

1http://www.gaussianprocess.org/gpml/data/.
2http://people.ee.duke.edu/˜lcarin/LandmineData.zip.

http://www.gaussianprocess.org/gpml/data/
http://people.ee.duke.edu/~lcarin/LandmineData.zip
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• MNIST3 is a hand-written digit dataset with 10 classes. We use the one-vs-the-rest

strategy to decompose the multi-class classification problem to 10 binary classification

problems, and treat each binary classification problem as a task. To form the training

set for each task, we randomly draw 300 data points of the designated digits and as-

sign label “+1” and draw an equal number of instances from other classes randomly

and assign label “-1”. The dataset contains 60,000 training examples and 10,000 test

examples. We use principal component analysis (PCA) to reduce the feature space to

a 128-dimensional space.

4.4.2 Evaluating Convergence of PATOM

Our first set of experiments study the convergence of PATOM on Sarcos dataset and Land-

mine dataset, with respect to regression tasks and classification tasks. On Sarcos dataset, we

randomly draw 300 training examples and 600 test examples from the associated training

and test set. For direct attacks, we select 3 tasks on Sarcos dataset and 15 tasks on Landmine

dataset as the respective target tasks, and set the attacking tasks the same as the target tasks.

For indirect attacks, we use the same target tasks as in the direct attack, and treat the rest

of tasks as the attacking tasks. For hybrid attacks, we randomly select the same number

of attacking tasks as in the indirect attack experiments from all tasks. We set the step size

η = 100 and the lower level problem parameters λ1 = λ2 = 0.1. The batch size is set to be

three times larger than the clean data. The number of injected data points in each task is set

to be 20% of the clean data.

Figure 4.1 shows the results of the convergence experiments on the two datasets, where

x-axis represents the number of iterations in PATOM, and y-axis represents the NMSE aver-

aged over target tasks of Sarcos dataset and the AUC averaged over target tasks on Landmine

dataset, respectively. We can see that for all the three kinds of attacks on the two datasets,
3http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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Figure 4.1: Convergence of PATOM.

PATOM converges to local optima in less than 10 iterations, where at iteration 0 the in-

jected data points are randomly initialized. Since existing optimization techniques cannot

guarantee global optimal solutions for nonconvex programs, all of the solutions we find are

approximate. However, we can get an estimation of the global optimal solution by selecting

multiple start points and comparing the local optima. In our experiments, we observe very

similar local optima values when choosing multiple start points. Based on this observation,

we run PATOM with one start point in our remaining experiments.

4.4.3 Evaluating Solution Qualities

Our second set of experiments evaluates the performance of MTRL under direct attacks and

indirect attacks with respect to different datasets. On each dataset, we select 4 different

pairs of target task set and attacking task set. Each pair (Ttar, Tatt) is chosen by randomly

selecting half of tasks to form Ttar and the rest of tasks to form Tatt. We have |Ttar| = 4 and

|Tatt| = 3 on Sarcos dataset, |Ttar| = 15 and |Tatt| = 14 on Landmine dataset, and |Ttar| = 5

and |Tatt| = 5 on MNIST dataset. For a pair (Ttar, Tatt) of each dataset, we compare the

averaged NMSE or averaged AUC over the target tasks under four kinds of attacks: direct
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attacks, indirect attacks, random direct attacks and random indirect attacks. The last two

kinds of attacks are treated as baselines, where the injected data points are randomly chosen.

Figure 4.2 shows the results of quality comparison among the four kinds of attacks. Each

figure corresponds to a choice of pair (Ttar, Tatt) of the associated dataset. The bold line

(dashed line) with circle marker represents direct attacks (random direct attacks); the bold

line (dashed line) with square marker represents indirect attacks (random indirect attacks).

The budget represents the ratio of the number of injected data points to the number of clean

data points. Some interesting findings include:

• Direct attacks are more effective than indirect attacks and random attacks given the

same budget. From Figure 4.2, we can see that direct attacks significantly degrade

the learning performance on all datasets. For example, on Sarcos dataset, direct at-

tacks with 30% malicious data injected leads to about 50% higher averaged NMSE.

However, note that in some scenarios, attackers may have larger budget for launching

indirect attacks. Take the recommender system for example, attackers can provide ar-

bitrary number of training data through the malicious accounts created by themselves.

In such cases, indirect attacks are also big threats to the learning system.

• Both direct attacks and indirect attacks computed by PATOM significantly outperform

random attacks, respectively, which demonstrates that the real-world attackers can do

much better than just launching random attacks.

• Different choices of pairs (Ttar, Tatt) influence the attacks’ performance. For example,

we can see from the second figure of the first row of Figure 4.2, the indirect attacks

lead to a higher loss than random direct attacks. However, in the third figure of the

first row, the random direct attacks lead to a higher loss than indirect attacks.

• Indirect attacks almost have no effect on MNIST dataset. This is because we can easily

learn good classifiers on MNIST dataset using only hundreds of training examples.
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Figure 4.2: Solution quality comparison.

Therefore, each task does not need much help from other tasks and the task correlations

are relatively low. Consequently, it is hard for the attacker to launch effective indirect

attacks by exploiting task relationships.

4.4.4 Evaluating Task Relationships

Our third set of experiments study the task relationships under different attacks. We fix the

target task set as Ttar = {T1, T2, T3} on Sarcos dataset and Ttar = {T1, ..., T15} on Landmine

dataset. Then, for each dataset, we select three different attacking task sets and compute three

hybrid attacks. We set the amount of injected data to be 30% of the clean data with respect to

each task. We convert the learned covariance matrices to correlation matrices and visualize

them in Figure 4.3. Since the Sarcos dataset has 7 tasks and the Landmine dataset has 29

tasks, the learned correlation matrix is a 7×7 symmetric matrix on Sarcos dataset and 29×29

symmetric matrix on Landmine dataset.
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Figure 4.3: Visualization of task correlations under attacks.

Figure 4.3 shows that on both datasets the ground-truth task correlations are significantly

subverted by the data poisoning attacks. (a) - (d) are the results on Sarcos dataset and (e) -

(f) are the results on Landmine dataset. The color of each grid represents the value of the

correlation matrix, ranging from−1 (blue) to +1 (yellow). The first figure of each row is the

ground-truth task correlations learned with clean data. The target task set is set to be Ttar =

{T1, T2, T3} on Sarcos dataset and Ttar = {T1, ..., T15} for Landmine dataset and remains

the same under different attacks. For example, in Figure 3(a), the ground-truth correlation

between tasks 2 and 3 is −0.99, which suggest that the two tasks are highly negatively

correlated. However, in Figure 3(b), the correlation between tasks 2 and 3 becomes 0.99,

meaning that the two tasks are highly positively correlated. Similar results can be found

on Landmine dataset. Moreover, from Figures 3(b) - 3(d) and 3(f) - 3(h), we observe that

the attacking tasks are usually highly positive correlated, in contrast with other tasks. This

suggests that the machine learner needs to be aware of a group of tasks that form strong local

correlations.
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4.5 Chapter Summary

This work studies the data poisoning attacks on MTRL models. To the best of our knowledge,

we are the first to study the vulnerability of MTL. We categorize the data poisoning attacks

into direct attacks, indirect attacks and hybrid attacks based on the real-world scenarios.

We propose a bilevel formulation that includes the three kinds of attacks to analyze the

optimal attack problems. We propose PATOM, a stochastic gradient ascent based approach

that leverages the optimality conditions of MTRL to compute the gradients. We evaluate

PATOM in terms of convergence and solution quality on real-world datasets. Experimental

results show that PATOM converges to local optima in less than 10 iterations and the attack

strategies computed by PATOM significantly outperform baselines. We also study the task

correlations under data poisoning attacks.



Chapter 5

Combating Spear Phishing Attacks

This chapter studies the spear phishing attacks and their countermeasures. Highly targeted

spear phishing attacks are increasingly common, and have been implicated in many major

security breaches. Figure 5.1 shows the general procedure of spear phishing attacks. Email

filtering systems are the first line of defense against such attacks. These filters are typically

configured with uniform thresholds for deciding whether or not to allow a message to be

delivered to a user. However, users have very significant differences in both their suscepti-

bility to phishing attacks as well as their access to critical information and credentials that

can cause damage. Recent work has considered setting personalized thresholds for individ-

ual users based on a Stackelberg game model. We consider two important extensions of the

previous model. First, in our model user values can be substitutable, modeling cases where

multiple users provide access to the same information or credential. Second, we consider

attackers who make sequential attack plans based on the outcome of previous attacks. Our

analysis starts from scenarios where there is only one credential and then extends to more

general scenarios with multiple credentials. For single-credential scenarios, we demonstrate

that the optimal defense strategy can be found by solving a binary combinatorial optimiza-

tion problem called PEDS. For multiple-credential scenarios, we formulate it as a bilevel
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6. Attacker steals    
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    pass the email filter 

Figure 5.1: Spear phishing attacks.

optimization problem for finding the optimal defense strategy and then reduce it to a single

level optimization problem called PEMS using complementary slackness conditions. Exper-

imental results show that both PEDS and PEMS lead to significant higher defender utilities

than two existing benchmarks in different parameter settings. Also, both PEDS and PEMS

are more robust than the existing benchmarks considering uncertainties.

5.1 Sequential Attacks with A Single Credential

We consider a spear phishing game between an attacker and a defender. The defender (e.g.,

an organization) has a credential1 that can be accessed by a set of users U = {1, 2, ..., |U |}.

For now we consider only a single credential, and later generalize the model to multiple cre-

dentials. The attacker, wanting to gain access to the credential, sends spear phishing emails

to the users based on an attack plan taking into account the susceptibility, confidentiality

level and attack cost of the users. We denote by au the susceptibility of user u, meaning that

u will be compromised with probability au after a spear phishing email is delivered to her.
1We use the generic term “credential” here to mean any critical data or access privilege that the attacker is

seeking to gain.
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There are many methods to measure au, e.g., by sending probe emails to the users [76–78].

We denote by ku the confidentiality level of user u, meaning that user u can access the cre-

dential with probability ku when she is compromised. The attacker sustains some costs when

launching attacks, such as crafting phishing emails, investigating users and writing malware.

We denote by cu the cost of attacking user u.

When receiving emails, the filter first scores them according to their likelihood of be-

ing malicious emails, and then delivers only those with scores lower than a given threshold

[17, 79]. It is possible that malicious emails are misclassified as normal ones. We call such

misclassifications false negatives. On the other side, some normal emails might be misclas-

sified as malicious. We call such misclassifications false positives. In binary classification,

a threshold determines a pair (xu, yu) where xu, yu ∈ [0, 1] are the false negative rate and

the false positive rate, respectively. Moreover, the relationship between xu and yu can be

characterized as a function Φ : [0, 1] → [0, 1], yu = Φ(xu), which is a Receiver Operating

Characteristic (ROC) curve, with y-axis replaced by false positive rate [80]. In practice, Φ is

represented by a set of data points and can be approximated by a piecewise linear function

φ [81]. By adjusting the thresholds, the organization can determine a pair (xu, yu) for each

user. We will use the false negative rate vector x to represent the defender’s strategy. But

note that using y as the defender’s strategy is equivalent to as Φ and φ are bijections. Intu-

itively, the defender actually controls the probability that malicious emails will pass the filter

(xu) and the probability that normal emails will be filtered (yu).

Figure 5.2 shows the attack flow. The attacker sends a spear phishing email to a targeted

user. The email will pass the filter with probability xu and otherwise be discarded. We

assume that the attacker is able to observe whether the email is delivered and opened by the

user using email tracking techniques2. When receiving the email, the user will be tricked

with probability au and otherwise be alerted. We assume that if the user is tricked, she will
2For example, Yesware provides services allowing their clients to view the detailed status of outgoing

emails, including whether the emails are opened and the time the receivers spend on each email[82].
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Figure 5.2: Spear Phishing Attack Flow.

be compromised, and if the user is alerted, she will be aware of being targeted and not be

tricked by subsequential phishing emails. If the user is compromised, the attacker can access

the credential with probability ku.

5.1.1 Stackelberg Spear Phishing Game

We model the interaction between the defender and the attacker as a Stackelberg game. The

defender moves first by choosing a false negative probability vector x. After observing x3,

the attacker launches an optimal attack. We denote by πx the attacker’s optimal policy that

maximizes his expected utility given the defender’s strategy x.

We denote by Pa(x, πx) the attacker’s expected utility and by Pd(x, πx) the defender’s

expected utility given strategy profile (x, πx). We denote by L the value of the credential.

The attacker suffers a cost cu each time he attacks user u and he gains L if he accesses the

credential. The defender’s loss is threefold. (1) The defender loses L if the credential is

accessed by the attacker. (2) The defender loses FPu for per normal email sent to user u

filtered. (3) Besides spear phishing attacks, the defender also faces mass attacks (e.g., spam

and regular phishing emails), which are usually less harmful than spear phishing attacks. We

3We make the worst-case assumption that the attacker knows x since spear phishers collect security infor-
mation about the organization before attacking [83].
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assume that the probability that a mass attack email passes the filter is xu4 and the defender

loses Nu for per mass attack email delivered to user u. Note that the defender sustains

the second and the third parts of loss constantly as normal emails and mass attack emails

are sent to users constantly. However, spear phishing attacks usually happen in a relatively

short period. To make the three kinds of losses comparable, we assume that the defender’s

expected utility is measured in a time period T . We denote by FP Tu the expected loss of

misclassifying normal emails sent to user u and by NTu the expected loss of delivering mass

attack emails sent to user u during T , which can be computed by

FP Tu = FPu × E[number of normal emails sent to u during T ]

NTu = Nu × E[number of mass attack emails sent to u during T ]

The defender’s loss from filtering normal emails and delivering mass attack emails can be

simply represented as the summation of the loss from every individual user,
∑

u∈U xuN
T
u and∑

u∈U φ(xu)FP
T
u respectively. However, the defender’s loss from spear phishing attacks is

not cumulative. We denote by ρT the probability that the spear phishing attacks occur in time

period T and by θ(x, πx) the probability that the attacker will access the credential given the

strategy profile (x, πx). Then the defender’s expected utility can be represented as

Pd(x,πx)=−ρT θ(x,πx)L−
∑
u∈U

xuN
T
u −

∑
u∈U

φ(xu)FP
T
u

We consider the widely used strong Stackelberg equilibrium (SSE) as our solution concept

[84–87].
4This assumption means that the classification accuracies for spear phishing emails and mass attack emails

are the same. Note that our approach can be easily extended to the case where these accuracies are different,
by introducing a function that captures the relationship between these accuracies.
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Definition 1. If a strategy profile (x∗, πx∗) such that Pd(x∗, πx∗) ≥ Pd(x, πx) holds for

any possible x, under the assumption that the attacker plays a best response and breaks ties

among multiple optimal policies in favor of the defender, then (x∗, πx∗) is an SSE strategy

profile.

5.2 Optimal Attack with A Single Credential

In this section, we model the attacker’s decision making as a Markov Decision Process

(MDP) and show that the MDP can be solved by a linear program.

5.2.1 Attacker’s MDP

The attacker’s MDP can be represented as a tuple (S,A, T, R, π). S = {s|s ⊆ U}∪{sn, sy}

is the state space that consists of non-terminal states and two terminal states sn, sy. A non-

terminal state corresponds to a subset of the user set U that represents the users who have not

been alerted or compromised. The initial state is s0 = U . The terminal state sn represents

the situation where the attacker stops attacking without accessing the credential, while sy

represents the situation where the attacker stops attacking with the credential accessed. A =

{a|a = u ∈ U or a = stop} is the attacker’s action space where a = u means that the

attacker chooses to attack user u, and a = stop means that the attacker stops attacking. We

denote by As = {a|a = u ∈ s or a = stop} the attacker’s action space at non-terminal

state s, since the attacker only attacks users that have not been alerted or compromised.

Transition function T (s, a, s′) represents the probability that s transitions to s′ by executing

action a. Reward functionR(s, a, s′) represents the attacker’s reward when s transitions to s′

by executing action a. π : S → A is a deterministic function that projects each non-terminal

state to an action.
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Now we define T and R. We assume that the terminal states always transition to them-

selves with probability 1 and with reward 0. For any non-terminal state s, if the attacker stops

attacking, s transitions to sn with reward 0. If the attacker chooses to attack user u ∈ As,

there are four possible transitions: (1) If the malicious email fails to pass the filter, s transi-

tions to itself. The transition probability is 1 − xu and the reward is −cu. (2) If the email is

delivered and user u is alerted, s transitions to s−u = s \ {u}. The transition probability is

xu(1 − au) and the reward is −cu. (3) If the email passes the filter and u is compromised,

however u does not have access to the credential, then s transitions to s−u = s \ {u}. The

transition probability is xuau(1 − ku) and the reward is −cu. Note that in both transitions

(2) and (3), s transitions to s−u with the same reward −cu. Therefore they can be merged

into one transition with probability xu(1 − au) + xuau(1 − ku) = xu(1 − auku) and with

reward −cu. (4) The email passes the filter, user u is compromised and she can access the

credential, s transitions to sy. The transition probability is xuauku. The transition function

T and the reward function R can be summarized as:

T (s, a, s′) R(s, a, s′)

a = stop, s′ = sn 1 0

a = u ∈ As, s′ = s 1− xu −cu

a = u ∈ As, s′ = s−u xu(1− auku) −cu

a = u ∈ As, s′ = sy xuauku L− cu

5.2.2 Solving the MDP

In this section, we review how the MDP can be solved by a linear program [88, 89]. The

value function V π : S → R represents the attacker’s expected utility when his current state

is s and he follows a policy π afterwards. Moreover, we denote by V ∗ the value function

when the attacker follows the optimal policy πx. Then the attacker’s expected utility can be
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written as

Pa(x, πx) = V ∗(s0).

The attacker’s MDP can be solved by the following linear program [89].

min
V∗a

∑
s∈S\ST

µ(s)V ∗a (s) (5.1)

s.t. V ∗a (s) ≥
∑
s′∈S

T (s, a, s′) [R(s, a, s′) + V ∗a (s′)]

∀a ∈ As, ∀s ∈ S \ ST (5.2)

V ∗a (s) = 0, ∀s ∈ ST (5.3)

where ST = {sn, sy} denotes the set of terminal states and µ(s) is the probability that

the MDP starts from state s. Since we have an initial state s0, µ(s) = 1 if s = s0 and 0

otherwise. The optimal policy πx can be obtained:

πx(s) = arg max
a∈As

Q(s, a), ∀s ∈ S \ ST ,

where Q(s, a) =
∑

s′∈S T (s, a, s′) [R(s, a, s′) + V ∗a (s′)] .

5.3 Optimal Defense with A Single Credential

The defender seeks a false negative probability vector x that maximizes her expected utility

given that the attacker plays the optimal policy πx. The defender’s optimization problem is

given by the following bilevel optimization problem.
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max
x

Pd(x, πx) (5.4)

s.t. xu ∈ [0, 1], ∀u ∈ U (5.5)

πx ∈ arg max
π

V π(s0) (5.6)

The objective function 5.4 represents the defender’s expected utility. Constraint 5.5 in-

dicates that the false negative rate can only be chosen from [0, 1]. Constraint 5.6, i.e., the

lower level problem, assures that the attacker always responds optimally. The hardness of

solving this bilevel problem is twofold. First, θ(x, πx) in Pd(x, πx) does not have an explicit

representation with respect to variables x. Second, the lower level problem is hard to be

characterized by a set of constraints. We will first show how to represent θ(x, πx), and then

show that this bilevel problem is equivalent to a single level problem called PEDS.

5.3.1 Representing θ(x, πx)

In fact, θ(x, πx) is the probability that the attacker ends in the terminal state sy given that

he follows the optimal policy πx. Before we show how to represent θ(x, πx), we introduce

two concepts: reachable states and potential attack set. Once a policy is determined, the

MDP is reduced to a Markov chain where only some states (called reachable states) can be

reached from the initial state if we consider the Markov chain as a graph. For example, if

s0={u1, u2} and π(s0)=u1, then state s={u1} cannot be reached from s0 with a nonnegative

probability. We denote by ∆(π) the set of reachable states given the policy π. A policy π

projects each reachable state s ∈ ∆(π) to an action a ∈ As. We denote by Γ(π) the potential

attack set, which is the set of users that are projected from the reachable states under the

policy π, i.e., Γ(π) = {π(s)|s ∈ ∆(π)}. Lemma 1 states that if the immediate expected gain
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of attacking user u (i.e., xuaukuL) is greater than the attack cost cu, then the user is in the

potential attack set. 5

Lemma 1. u ∈ Γ(πx) if and only if xuaukuL > cu.

Lemma 2 shows that θ(x, πx) can be easily computed given the potential attack Γ(πx).

Lemma 2.

θ(x, πx) =


1−

∏
u∈Γ(πx)(1− auku), if Γ(πx) 6= ∅

0, if Γ(πx) = ∅
.

Combining Lemmas we can show that even though the attacker may have multiple op-

timal policies, they have the same potential attack set. Therefore, θ(x, πx) does not change

for different optimal attack policies.

Theorem 1. The defender’s expected utility remains the same no matter how the attacker

breaks ties, i.e., choosing any optimal policy.

5.3.2 PEDS: Reduced Single Level Problem

Now we show how to solve Eqs.(5)-(7) based on the lemmas. We define a function Λu for

each user u:

Λu(x) = xNTu + φ(x)FP Tu , x ∈ [0, 1].

Λu(x) represents the total loss from mass attacks and false positives of user u if she is as-

signed a false negative probability x. Λu is a piecewise linear function since it is the sum

of a linear function and a piecewise linear function. Therefore, we can easily find a set

arg minx Λu for each user.
5All proofs of Lemmas and Theorems are in Chapter 8.
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We rewrite the defender’s utility as

Pd(x, πx) = −ρT θ(x, πx)L−
∑
u∈U

Λu(xu).

Lemma 2 indicate that the value of θ(x, πx) depends on the potential attack set Γ(πx). We

define a set U = {u| cu
Lauku

∈ [0, 1], u ∈ U}. If u ∈ U \ U , the optimal false negative rate

x∗u can be any arbitrary point of arg minx Λu since u ∈ Γ(πx) holds for any xu ∈ [0, 1]. If

u ∈ U , it holds that u 6∈ Γ(πx) when xu ∈ [0, cu
Lauku

] and u ∈ Γ(πx) when xu ∈ ( cu
Lauku

, 1].

Given u ∈ U , we denote by x1
u the optimal false negative rate if u 6∈ Γ(πx) and by x2

u the

optimal false negative rate if u ∈ Γ(πx).

Theorem 2. x1
u is an arbitrary point in arg minx∈[0, cu

Lauku
] Λu and x2

u is an arbitrary point

in arg minx∈( cu
Lauku

,1] Λu.

Then Problem 5.4 are equivalent to the following binary combinatorial optimization

problem, which we call PEDS (Personalized thrEsholds in Defending Sequential spear phish-

ing attacks):

max
α

−ρT (1−
∏
u∈U

βu)L−
∑
u∈U

Λu(xu) (5.7)

s.t. xu = x0
u, ∀u ∈ U \ U (5.8)

βu = 1, ∀u ∈ U \ U (5.9)

xu = x1
u + (x2

u − x1
u)αu, ∀u ∈ U (5.10)

βu = 1− aukuαu, ∀u ∈ U (5.11)

αu ∈ {0, 1}, ∀u ∈ U (5.12)

where x0
u can be an arbitrary point from arg minx Λu. αu is the indicator of whether user u is

in the potential attack set Γ(πx). αu = 0 indicates that u is in Γ(πx) and 1 otherwise. Since
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PEDS’s decision variables are binary, we can find the optimal solutions by using CPLEX CP

Optimizer.

5.4 Multiple-Credential Model

An organization may need to protect many different credentials or pieces of sensitive infor-

mation. We now consider the multiple-credential case, where the attacker’s decision making

can still be modeled as an MDP. Note that Problem 5.4 is still the defender’s optimization

problem except that π and V represent the policy and the value function of the new MDP. In

this section, we first introduce the attacker’s MDP with multiple credentials. Then we give

the dual formulation of Problem 5.1 and show that using complementary slackness condi-

tions, Problem 5.6 (i.e., the lower level optimization problem) can be replaced by a set of

constraints, which guarantee that the attacker plays the best response. Consequently, bilevel

problem Problem 5.4 is reduced to a single level problem which can be directly solved.

5.4.1 Optimal Attack with Multiple Credentials

We denote by H = {1, 2, ..., |H|} the set of credentials, by Lh the value of the credential h

and by mh
u the probability that user u can access credential h. With multiple credentials, the

attacker’s MDP can be represented as a tuple (S,A, T, R, π). S = P(U)⊗P(H) is the state

space, where P(U) (P(H)) is the power set of U (H). A state s ∈ S can be represented as

s = s(U) ⊗ s(H), where s(U) ⊆ U represents the set of users that have not be alerted or

compromised and s(H) ⊆ H represents the set of credentials that have not been accessed

by the attacker. s is a terminal state if either s(U) = ∅ or s(H) = ∅, i.e., all the users

have been alerted or compromised, or all credentials have been accessed. We use ST to

represent the set of terminal states. At each non-terminal state, the attacker’s action space is
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As = {a|a = u ∈ s(U) or a = stop}, in the sense that the attacker does not attack users that

have been alerted or compromised. π : S → A represents a policy of the attacker.

T (s, a, s′) represents the probability and R(s, a, s′) represents the attack reward that s

transitions to s′ by executing action a. We assume that terminal states transition to them-

selves with probability 1 and reward 0. We define the transitions and rewards as follows.

(1) If s = s(U) ⊗ s(H) is a non-terminal state and the attacker chooses to stop attacking at

s, s transitions to the terminal state s′ = ∅ ⊗ s(H) with probability 1 and reward 0. (2) If

s = s(U)⊗s(H) is a non-terminal state and the attacker chooses to attack a user u ∈ s(U) at

s, there are 3 kinds of transitions. (2.1) The malicious email is filtered, in which case s transi-

tions to itself. The transition probability is 1−xu and the reward is−cu. (2.2) The malicious

email is delivered and user u is alerted, in which case s transitions to s′ = s(U)\{u}⊗s(H).

The transition probability is xu(1 − au) and the reward is −cu. (2.3) The malicious email

is delivered and user u is compromised, after which the attacker will access each credential

h ∈ H with probability mh
u. We have

T (s, a = u, s′) =


0, if s′(U)6=s(U)\{u} or s′(H)6⊆s(H),

xuau
∏

h∈s(H)\s′(H)

mh
u

∏
h∈s′(H)

(1−mh
u), otherwise.

The associated rewards

R(s, a=u, s′) =


0, if s′(U)6=s(U)\{u} or s′(H)6⊆s(H),∑
h∈s(H)\s′(H)

Lh, otherwise.

Note that the new MDP can still be solved by linear program 5.1.
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5.4.2 Defender’s Loss from Spear Phishing Attacks

When there are multiple credentials, the probability of losing the credentials cannot be com-

puted in the same way as in the single-credential case. We introduce another way to represent

the defender’s expected utility. Consider the dual of linear program 5.1:

max
W

∑
s∈S\ST

∑
a∈As

∑
s′∈S

T (s, a, s′)R(s, a, s′)W (s, a) (5.13)

s.t.
∑
a′∈As′

W (s′, a′)=µ(s′)+
∑

s∈S\ST

∑
a∈As

W (s, a)T (s, a, s′)

∀s′ ∈ S \ ST (5.14)

W (s, a) ∈ R+, ∀a ∈ As,∀s ∈ S \ ST (5.15)

The dual variable W is called the occupation measure [90]. W (s, a) can be interpreted

as the expected total number of times that the system is in state s and action a is executed.∑
a∈AsW (s, a) is the expected total number of visits to state s. We define a reward function

Rd(s, a, s
′) for the defender.

Rd(s, a, s
′) =


−(R(s, a, s′) + cu), if a = u ∈ As,

0, if a = stop.

Recall that R(s, a, s′) is the attacker’s reward when he executes action a and the state

transitions from s to s′. In fact, R(s, a, s′) consists of the gain of accessing some cre-

dentials (positive) and the cost of attack (negative). The defender’s loss can thus be

represented as −(R(s, a, s′) + cu) if a = u ∈ As, and 0 if a = stop. There-

fore the defender’s expected loss from spear phishing attacks can be represented as∑
s∈S\ST ,a∈AsW (s, a)

∑
s′∈S T (s, a, s′)Rd(s, a, s

′).
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Figure 5.3: Performance of PEDS and PEMS.

5.4.3 Single Level Formulation

It follows that feasible solutions V∗a and W are optimal for the original LP and its dual

problem if the following complementary slackness conditions are satisfied:

{V ∗a (s)−
∑
s′∈S

T (s, a, s′)[R(s, a, s′) + V ∗a (s′)]}W (s, a) = 0,

∀a ∈ As, ∀s ∈ S \ ST . (5.16)

Then the bilevel problem 5.4 can be converted to the following single level problem,

which we call PEMS (Personalized thrEsholds in protecting Multiple credentialS):
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max
x

ρT
∑

s∈S\ST ,a∈As
W (s, a)

∑
s′∈S

T (s, a, s′)Rd(s, a, s
′)

−
∑
u∈U

Λu(xu) (5.17)

s.t. Eqs.(3), (4), (15) and (17)

W (s, a) ∈ R+,∀a ∈ As,∀s ∈ S \ ST (5.18)

xu ∈ [0, 1], ∀u ∈ U (5.19)

PEMS is a nonlinear problem and we can solve it by KNITRO, a popular solver that can

handle many complicated non-linear optimization problems.

5.5 Experimental Evaluation

We evaluate PEDS and PEMS in terms of runtime, solution quality and robustness. All

values of parameters are uniformly randomly generated from an interval unless otherwise

specified. Specifically, values of credentials are generated from [10,15]. Attack costs cu

are generated from [0,2]. Users’ susceptibilities au and their accesses to credentials ku (mh
u

in multiple-credential case) are generated from [0,0.5]. Losses from mass attacks NTu and

losses from false positives FP T are generated from [0,1] and [0,5], respectively. PEDS is

solved by CPLEX CP Optimizer (version 12.6) and PEMS is solved by KNITRO (version

9.0). All computations were performed on a 64-bit PC with 16 GB RAM and a quad-core

Intel E5-1650 3.20GHz processor. We use a 10-section piecewise linear function φ to ap-

proximate the original false negative-false positive function Φ, which is drawn from prior

work [19].

We compare the solutions computed by PEDS and PEMS with two existing benchmarks.



5.5. Experimental Evaluation 64

• Uniform: All users have a uniform false negative rate x∗ ∈ [0, 1] that maximizes the

defender’s expected utility. We discretize the interval [0,1] into 1000 equal-distance

points and search among these points to find the optimal value x∗. In addition, we will

use x∗ as the starting point when solving PEMS.

• Laszka et al. [19]: An existing approach for personalized threshold setting assumes

that the defender’s expected loss from spear phishing attacks is the sum of users’ indi-

vidual expected losses. Following our notations, user u’s individual loss is set to the

immediate expected loss xuaukuL in the single-credential case and xuau
∑

h∈H m
h
uLh

in the multiple-credential case.

Scalability Analysis

We first evaluate the scalability of PEDS and PEMS. We assume that each credential can

only be accessed by 30% of total users with nonzero probability considering that sensitive

information is usually accessed by a small portion of total users. Figure 5.3(a) shows that

PEDS can solve games with 70 users in 23s. Figure 5.3(e) shows that both the number

of users and the number of credentials have significant influence on the runtime of PEMS.

PEMS runs slower than PEDS since nonlinear problems are usually more computationally

consuming. However, we argue that both PEDS and PEMS are applicable in real-world cases

due to two reasons. First, spear phishing attacks, unlike mass attacks, usually jeopardize

a small group of people. For example, in the attack towards the US Nuclear Regulatory

Commission, only 16 employees are targeted [91]. Second, in our model the defender does

not need to update her strategy adaptively so that the runtime requirement is not very high.
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Solution Quality Comparisons

We compare our approaches with two benchmarks for different values of ρT , which mea-

sures the probability that spear phishing attacks happen in T . Note from Figure 5.3(b) and

Figure 5.3(f), when ρT = 0, meaning that there is no spear phishing attacks, our approaches

lead to the same defender utilities as Laszka et al.. In this case the defender’s optimal strat-

egy is simply setting xu = arg maxx Λu(x) for each user u, considering only mass attacks

and false positives. With ρT growing, Laszka et al. performs significantly worse than our

approaches.

Our approaches outperform the optimal uniform strategy. This is because that the opti-

mal uniform strategy is computed under the constraints that all users’ thresholds are equal.

We compare our approaches with the optimal uniform strategy to show how much improve-

ment “personalization” can bring. Our approaches also outperform Laszka et al.. The reason

is, when computing defender strategy of Laszka et al., the attacker is assume to launch a

non-sequential attack. It’s not surprising that this strategy performs poorly when against a

sequential decision making attacker. Moreover, note from Figure 5.3(b) that Laszka et al.

performs even worse than the optimal uniform strategy when ρT > 0.5. This indicates that

estimation about the attacker’s behaviour may be even more important than “personaliza-

tion”.

Robustness Analysis

Defender’s estimation of the attack cost and user susceptibility may not be perfect. We

consider a noise on cu and au. In this section of experiments, estimations of cu are drawn

uniformly from two intervals cu·[1−5%, 1+5%] and cu·[1−10%, 1+10%]. Estimations of au

are drawn from au·[1−5%, 1+5%] and au·[1−10%, 1+10%]. We use these estimations to

compute the defender strategy and then use this strategy to compute the defender’s utility in
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the accurate parameter setting. Figure 5.3(c) (Figure 5.3(g)) shows that PEDS (PEMS) out-

performs both benchmarks even with a 10% error range on attack cost cu in single-credential

(multiple-credential) case. Similarly, Figure 5.3(d) (Figure 5.3(h)) shows that PEDS (PEMS)

outperforms both benchmarks w.r.t. the susceptibility measurement au in single-credential

(multiple-credential) case.

5.6 Chapter Summary

This work studies the problem of setting personalized email filtering thresholds against se-

quential spear phishing attacks. We first consider a simple single-credential case and then

extend it to a more general multiple-credential case. Our approach features the following

novelties. (1) An MDP framework is proposed to model the sequential decision making

attacker. (2) An efficient binary combinatorial optimization formulation PEDS is proposed

for computing solutions for the single-credential case. (3) With multiple credentials, the

defender’s loss from spear phishing attacks is represented by a linear combination of dual

variables. (4) A single level formulation PEMS, which is reduced from the defender’s bilevel

problem using complementary slackness conditions, is proposed for computing solutions for

the multiple-credential case.



Chapter 6

Combating Fraudulent Sellers in

E-Commerce

This chapter studies fraud transactions in e-commerce and countermeasures to combat fraud-

ulent sellers. Conducting fraud transactions has become popular among e-commerce sellers

to make their products favorable to the platform and buyers, which decreases the utilization

efficiency of buyer impressions 1 and jeopardizes the business environment. Fraud detection

techniques are necessary but not enough for the platform since it is impossible to recognize

all the fraud transactions. In this work, we focus on improving the platform’s impression al-

location mechanism to maximize its profit and reduce the sellers’ fraudulent behaviors simul-

taneously. First, we learn a seller behavior model to predict the sellers’ fraudulent behaviors

from the real-world data provided by Alibaba. Then, we formulate the platform’s impression

allocation problem as a continuous Markov Decision Process (MDP) with unbounded action

space. In order to make the action executable in practice and facilitate learning, we propose

a novel deep reinforcement learning algorithm DDPG-ANP that introduces an action norm

penalty to the reward function. Experimental results show that our algorithm significantly

1In our work, a buyer impression is defined as a buyer click on an item.
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outperforms existing baselines in terms of scalability and solution quality.

6.1 Impression Allocation with Fraudulent Sellers

We begin by introducing some basics of the impression allocation mechanism. When a buyer

searches a keyword on an e-commerce website, the platform retrieves a set of related items

and displays them in some order. We assume that there are n products to be placed into n

slots and each slot i is associated with a click-through rate ctri, which means the probability

that the buyer will click on slot i. Usually, the click-through rates of slots decrease from the

top to the bottom in the list of search results. The platform computes a score for each product

and places the products with higher scores to the slots with higher click-through rates. We

denote by σ : product → R the score function and refer it to the impression allocation

mechanism as it determines the ranking of products and the number of impressions each

product gets.

We consider the impression allocation problem as a sequential decision making process

as the platform can update its strategy regularly. We assume that the platform updates its

strategy every 3 days and consider 3 days as one time step. At time t, each seller i determines

the price priceti of his product2. We denote by bti the number of buyer impressions that seller

i receives at time t. We denote by cvrti the conversion rate and by rti the number of real

transactions of product i at time t. We denote by f ti the number of detected fake transactions

of product i at time t. Note that the real number of fake transactions might be different from

f ti due to detection error. We use a feature vector vti = (bti, cvr
t
i , price

t
i, r

t
i , f

t
i ) to represent

seller i’s record at time t. The platform determines a score function σt+1 : R5 → R that

maps the each seller’s record at time t to a real value, which is used to determine the sellers’

ranking at time t+ 1. Table 6.1 summarizes the notations.

2For simplicity, we assume that each product is sold only by one seller and each seller sells only one product.
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Notation Description
ctrti click-through rate of slot i at time t
bti number of impressions of product i at time t
cvrti conversion rate of product i at time t
priceti price of product i at time t
rti number of real transactions of i at time t
f ti number of detected fake transactions

of product i at time t

Table 6.1: Key seller features.

Gross Merchandise Volume (GMV) is a common metric for evaluating the scale of trans-

actions, which is defined by the product of the total number of transactions and the average

price of each transaction. We assume that each transaction contains only one product since

we observe in our real-world data that over 95% of the transactions contain only one item.

Existing works define the platform’s utility as the positive GMV (GMV generated by real

transactions), which fails to capture the goal of reducing fraudulent behaviors [30]. We de-

fine the platform’s utility as the weighted sum of positive GMV and negative GMV (GMV

generated by fake transactions) as follows.

UT =
T∑
t=1

n∑
i=1

(rti − λf ti ) · priceti

where λ ≥ 0 represents the weight of negative GMV. We will formulate the platform’s deci-

sion making problem as an MDP. As the transitions of the MDP cannot be explicitly defined,

we exploit deep reinforcement learning to learn the platform’s optimal policy. Since it is

impractical to get the seller’s responses to the platform’s impression allocation mechanism

in real time, we learn a seller behavior model using real-world data which is used to predict

the sellers’ fraudulent behaviors.
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6.2 Learning Seller Behavior Model

In this section, we show how to learn a seller behavior model to predict the number of trans-

actions that the seller intend to fake. Since the sellers usually decide whether to cheat based

on the number of impressions received in the last few days, we assume that the expected

number of fake transactions at time t + 1 depends only on the feature vector until time t3.

In this section, we describe how to estimate E[f t+1
i |vti] from our real-world dataset. The

learned seller behavior model will be used to simulate the environment for deep reinforce-

ment learning in Section 6.3.

Dataset and Preprocessing. Our dataset is provided by one of the largest e-commerce

company in the world. The dataset contains over one million records of products in the

category of “women clothes” collected in one months. Each record is a feature vector that

describes the statistics of a product in 3 consecutive days, including the product ID, the

number of total exposures, the number of total buyer clicks, the average conversion rate,

the average price, the average number of real and fake transactions, the total GMV, refund

rate, and the buyer’s feedback on the product’s quality, logistics and the seller’s service

quality. We filter the products whose number of total transactions (including both real and

fake transactions) in 3 days is zero since these inactive products are not important to the

platform. We also filter the products whose average transaction price is lower than 1 dollar

since these products are usually not real women clothes but are the seller’s marketing tools.

We uniformly randomly sample 100, 000 products from the remaining products. Then, we

select 5 features of each product i and obtain the feature vector vti = (bti, cvr
t
i , price

t
i, r

t
i , f

t
i ).

In addition, we add a new feature f ti
rti+f

t
i

to vti, which can be interpreted as the stage of a fraud

product. On one hand, a fraud product often has a low number of real transactions at its

early stages so that the ratio f ti
rti+f

t
i

is relatively high. On the other hand, when the number

3Note that the real number of fake transactions is unknown to the platform. However, it is usually positively
correlated with the number of detected fake transactions.



6.2. Learning Seller Behavior Model 71

Model LR RR LASSO EN DNN
nMSE 0.19 0.19 0.28 0.26 0.17

Runtime(s) 0.014 0.015 0.013 0.014 2.265

Table 6.2: Performance of regression models.

of real transactions goes high, the seller has less incentive to get more impression by faking

transactions.

We treat the problem of predicting a seller’s fraud behavior as a regression task, where

each training point is a product’s feature vector vti = (bti, cvr
t
i , price

t
i, r

t
i , f

t
i ,

f ti
rti+f

t
i
) and the

label is f t+1
i , which represents the ground truth number of fake transactions in the following

3 consecutive days. However, we observe in our dataset that the numbers of fake transac-

tions of over 90% sellers are zeros, which suggests that the data is imbalanced. Figure 6.1

shows the distribution of the number of fake transactions of 10, 000 products that are ran-

domly sampled from our dataset. In order to reduce the imbalance of the data, we divide

all products into two classes, where the negative class contains products that have zero fake

transactions and the positive class contains products that have non-zero fake transactions.

We randomly sample 50, 000 products from each class to form the training data and sample

20, 000 products from each class to form the test data. We normalize the training and test data

by scaling each feature to a unit norm and test the performance of four popular regression

models: linear regression (LR), Ridge regression (RR), LASSO, elastic net (EN) and deep

neural network (DNN). The DNN has two hidden layers with 100 neurons with a relu activa-

tion function performed on the outputs of the hidden layers. All other parameters of the four

regression models are set by default in Scikit-learn [92]. We evaluate the performance of the

regression models by the normalized Mean Square Error (nMSE) on the test set. Table 6.2

shows the performance of the four regression models. We can see that DNN has the lowest

nMSE, while LR and RR are slightly worse than DNN but significantly outperform LASSO

and EN.
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Figure 6.1: Distribution of the number of fake transactions.

We choose LR to simulate the environment for our experiment in Section 6.4 because it

has comparable performance with DNN but with significantly lower computational cost. We

denote by ∆ : vti → f t+1
i the seller’s behavior model, which can be represented by a weight

vector u∗ and bias α∗ that satisfy

(u∗, α∗) = arg min
u,α

∑
i

(u>vti + α− f t+1
i )2.

6.3 Optimizing via Deep Reinforcement Learning

In this section, we formulate the platform’s decision making as a continuous state and con-

tinuous action MDP. We sample seller data from our real-world dataset to form the initial

state and simulate the environment using the seller behavior model learned in Section 6.2.

Then, we propose a novel algorithm based on the DDPG framework to solve the MDP.
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6.3.1 MDP Formulation

The platform’s optimization problem can be formulated as an MDPM = (S,A, T ,R). A

state st = (vt1, ...,v
t
n) ∈ S represents all sellers’ feature vectors at time t. An action at ∈ A

represents the score function σt+1 the platform uses at time t + 1. We assume that the score

function is linear with respect to the sellers’ feature vectors. In other words, the score of

seller i at time t + 1 can be computed by σt+1(vti) = vti
>
wt+1 + βt+1, where wt+1 is the

weight vector and βt+1 is the bias at time t + 1. Then, the platform’s action at time t can be

represented as at = (wt+1, βt+1). The transition function T : S × A → S and the reward

functionR : S ×A → R are determined by the environment.

Specifically, given all sellers’ feature vectors (vt1, ...,v
t
n), the score function σt+1, the

platform places the sellers in the n slots in the descending order of their scores. We assume

that the click-through rates descend with the order of the slots, which can be predicted based

on the historical data [93]. If there are a total of mt buyer exposures at time t and the product

i is placed at the j-th slot, the impressions that product i gets can be calculated as

bti = mt · ctrtj.

There are many existing approaches for conversion rate prediction [94, 95]. For simplic-

ity, we assume that the conversion rate cvrt+1
i = max{0,N (cvrti , 0.1)}, where N (cvrti , 0.1)

is a Gaussian distribution whose mean value is the conversion rate at time t and the vari-

ance is 0.1. Since the price of a product usually remains stable except promotion activities,

we simulate the price at time t + 1 as pricet+1
i = max{0,N (priceti, 0.1)}. Given vti, the

number of fake transactions at time t + 1 can be predicted using the learned seller behavior

model, i.e., f t+1
i = ∆(vti). One can refer to Section 6.2 for details of learning seller behav-

ior model. The number of real transactions of product i at time t + 1 can be calculated as

rt+1
i = bt+1

i · cvrt+1
i − f t+1

i . As discussed in Section 6.1, the reward function of the platform
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is defined as the weighted sum of both positive GMV and negative GMV:

R(st, at) =
1

n

n∑
i=1

(rt+1
i − λf t+1

i ) · pricet+1
i , λ ≥ 0.

We denote by π : S → A the policy function of the platform. The platform seeks an optimal

policy π∗ that maximizes its accumulated reward in a period of time {1, ..., T}:

π∗ ∈ arg max
π

T∑
t=1

R(st, π(st).

6.3.2 Solving the MDP

The MDPM cannot be solved exactly since state space S and the action spaceA are contin-

uous and the transition function T does not have an explicit form. We consider our problem

as a continuous control problem and resort to deep reinforcement learning to optimize the

platform’s policy function. Deep deterministic policy gradient (DDPG) is a reinforcement

learning algorithm that has been successfully applied to many continuous control problems

[31]. DDPG is a policy gradient algorithm that uses a stochastic behavior policy for ac-

tion exploration and estimates a deterministic policy. DDPG is also an actor-critic algorithm

where the actor and the critic are represented by deep neural networks. The input of the actor

network is the current state, and the output is a real value representing an action chosen from

a continuous action space. The input of the critic network is the current state and the action

given by the actor network and the output is the estimated Q-value of the state-action pair.

The update rule of the actor network is given by the deterministic policy gradient theorem

[96] and the critic network is updated based on the temporal-difference error computed using

a target network.
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Algorithm 4: Deep Deterministic Policy Gradient with Action Norm Penalty (DDPG-
ANP)
1 Randomly initialize critic network Q(s, a|θQ) and actor network γ(s|θγ) with weights
θQ and θγ .

2 Initialize target networks Q′(s, a|θQ′) and γ′(s|θγ′) with weights θQ′ ← θQ and
θγ
′ ← θγ .

3 Initialize the replay buffer.
4 for episode=1, ...,M do
5 Initialize the state at t = 1: s1 = (v1

1, ...,v
1
n).

6 for t=1,...,T do
7 Determines an action at = γ(st|θγ) + Φt, where Φt is a Gaussian noise for

exploration.
8 Execute at and receive a reward computed by the re-engineered reward

function R̃(st, at) and a new state st+1.
9 Store n experiences (sti, a

t
i, r

t
i , s

t+1
i )i=1,...,n in replay buffer.

10 Sample a minibatch of N experiences (sj, aj, rj, sj+1)j=1,...,N from replay
buffer.

11 Set yj = rj + ηQ′(sj+1, γ′(sj+1|θγ′)|θQ′).
12 Update critic by minimizing the loss: L = 1

N

∑N
j=1(yj −Q(sj, aj|θQ))2

13 Update actor using the sampled policy gradient:
∇θγJ ≈ 1

N

∑N
j=1∇aQ(s, a|θQ)|s=sj ,a=γ(sj)∇θγγ(s|θγ)|sj

14 Update the target networks:
15 θQ

′ ← τθQ + (1− τ)θQ
′

16 θγ
′ ← τθγ + (1− τ)θγ

′

17 end
18 end

Unfortunately, DDPG performs very poor in solving our problem. Although the action

space is continuous, the space of ranking results of the products is discrete. Given an ar-

bitrary ranking result, there is an associated unbounded subspace of the action space. For

example, if the weights and bias (w, b) realize one ranking result, then for any ρ > 0,

(ρw, ρb) realize the same ranking result because the order of the scores of products remains

the same. When the agent explores in an unbounded subspace, it receives the same reward

since the reward R(st, at) is uniquely determined by the ranking result if we consider the

click-through rate, the conversion rate and the price as constants. As a result, the agent does

not get any informative reward signals when exploring in the subspace. In our experiments,
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we found that the weights w, β usually go to infinity during the learning process, which

suggests that the policy is trapped into some local optimal ranking results.

One approach to address this issue of unbounded action space is to impose an upper

bound on the platform’s action space. Although we can project the original action to the

bounded action space and execute the projected action, there would be a bias on the policy

gradients as is discussed in [97]. We address this issue by reward shaping, which is a method

for engineering a reward function in order to provide more frequent feedback on appropriate

behaviors. Specifically, we add an action norm penalty to the reward function:

R̃(st, at) =
1

n

n∑
i=1

(rt+1
i − λf t+1

i ) · pricet+1
i − δ||at||2,

where ||at||2 is the `2 norm on the action at and δ ≥ 0 is its weight in the reward function.

There are two advantages: on one hand, it avoids getting an unbounded action since the agent

gets a low reward if the norm of action is large; on the other hand, it provides informative

feedback to the agent when exploring in the subspace of the action space that is associated

with one ranking result. We refer to our algorithm the Deep Deterministic Policy Gradient

with Action Norm Penalty (DDPG-ANP), which is shown in Algorithm 4.

6.4 Experimental Results

We build a simulator using the seller behavior model described in Section 6.2 and the en-

vironmental dynamics described in Section 6.3.1. Then we evaluate our algorithm DDPG-

ANP with several basedlines. First, we evaluate the scalability of DDPG-ANP compared

with an existing work that directly apply DDPG to optimize the platform’s impression allo-

cation. Then, we evaluate the solution quality of DDPG-ANP compared with DDPG and a

greedy impression allocation strategy. All computations were performed on a 64-bit PC with
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8 GB RAM and a quad-core 3.20 GHz CPU. Experimental results show that our approach

outperforms both baselines in terms of scalability and solution quality.

6.4.1 Scalability Evaluation

There is an existing work that formulates the platform’s impression allocation problem as an

MDP and directly uses DDPG to solve the MDP [30]. They represent the platform’s action

as an n-dimensional vector where i-th element represents the number of buyer impressions

seller i gets. When the number of sellers is large, the platform has a high-dimensional

action space and the scalability of the algorithm becomes a great challenge. In order to

evaluate the scalability of DDPG with respect to the dimensionality of the action space, we

reformulate the action spaceA of the MDPM defined in Section 6.3. Specifically, an action

at = (bt+1
1 , ..., bt+1

n ) ∈ A at time t is represented by the impression allocation of all sellers at

time t + 1. The state transitions and the reward function are accordingly modified based on

the reformulated action space.

In the implementation of DDPG, both the actor network and the critic network are four-

layer fully connected neural networks, where each of the two hidden layers consists of 100

neurons and a ReLU activation function is applied on the outputs of the hidden layers. A

softmax function is applied to the output layer of the actor network in order to bound the

total number of impressions. The input of the actor network is a tensor of shape (n, 6) rep-

resenting feature vectors of n sellers and the output is an n-dimensional action representing

the impression allocation of the n sellers. The input the of critic network is a tensor of shape

(n, 6, n) representing the state-action pair and the output is the estimated Q-value of the

state-action pair. We set the replay buffer size to 105, the batch size to 50 and the learning

rate to 10−5 in the training of both actor and critic networks. We set the weight λ inR to 0.1.

In the implementation of DDPG-ANP, we remove the softmax function at the output layer of
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Figure 6.2: Scalability evaluation of DDPG and DDPG-ANP.

the actor network and set the weight δ of the action norm in R̃ to 0.01. All other parameters

are the same as in the implementation of DDPG.

We evaluate the scalability of DDPG and DDPG-ANP with respect to the number of

sellers and the number of maximum time steps T using the average runtime per episode as

the evaluation metric. For each set of experiments, we run the algorithm for 1, 000 episodes

and calculate an average runtime (seconds). Figure 6.2 shows the scalability of DDPG and

DDPG-ANP. We set the maximum time step T = 10 in the left figure of Figure 6.2. We

can see that the runtime of DDPG-ANP is lower than the half of the runtime of DDPG. We

set the number of sellers n = 100 in the right figure of Figure 6.2. We can see that the

run time of DDPG increases drastically while the runtime of DDPG-ANP increases slightly.

This is because the actor network in DDPG has significantly more parameters and training

time due to the high-dimensional action space compared with DDPG-ANP, which has a

fixed dimension of the action space. Since the agent updates its actor network at every time

step, the difference between the training times of DDPG and DDPG-ANP becomes very

significant.
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6.4.2 Solution Quality Evaluation

In this section, we evaluate DDPG, DDPG-ANP and a greedy impression allocation

algorithm using the platform’s accumulated reward in 10 time steps as metric. Since each

time step represents 3 days, the accumulated reward represents the platform’s utility in one

month. The click-though rates of the slots are randomly sampled between [0, 1] and ranked

in a descending order. We use this simple setting since the click-through rates of slots are

not important in our model as long as they are ranked in a descending order. The simulation

of state transitions are described in Section ??, where the number of fake transactions are

predicted using the linear regression model described in Section6.2. The implementation of

DDPG is similar to that in the last section except that the action is modeled as the platform’s

score function σt = (wt, βt), which is unbounded since wt and βt can be arbitrarily large.

We also compare our results with a greedy impression allocation algorithm described as

follows.

Greedy allocation: At each time step t, the platform displays the sellers at the slots in a

descending order according to their numbers of real transactions rt−1
i at the last time step.

In other words, the platform considers only the number of real transactions as the ranking

factor and ignores the number of fake transactions.

We did four sets of experiments with respect to different parameter settings to evaluate

our algorithm. Figure 6.3 shows the results of the four sets of experiments. In the first two

sets of experiments, we randomly sample 100 sellers from our dataset to form the initial state

and randomly sample 1, 000 sellers for the last two sets of experiments. We froze learning

every 100 training episodes to evaluate the learned policies across 50 episodes and plot the

average platform’s utility. As introduced in Section 6.3, λ represents the weight of the num-



6.5. Chapter Summary 80

0 1000 2000 3000 4000 5000

# of episodes (n=100,¸=0.01)

10

15

20

25

30

P
la

tf
o
rm

 u
ti

lit
y

3(a)

DDPG
DDPG-ANP, ±=0.01

DDPG-ANP,±=0.1

GREEDY

0 1000 2000 3000 4000 5000

# of episodes (n=100,¸=0.1)

8

10

12

14

16

18

20

22

24

26
3(b)

DDPG
DDPG-ANP, ±=0.01

DDPG-ANP, ±=0.1

GREEDY

0 1000 2000 3000 4000 5000

# of episodes (n=1000,¸=0.01)

100

120

140

160

180

200

220

240

260

280
3(c)

DDPG
DDPG-ANP, ±=0.01

DDPG-ANP, ±=0.1

GREEDY

0 1000 2000 3000 4000 5000

# of episodes (n=1000,¸=0.1)

120

140

160

180

200

220

240

260

280

300
3(d)

DDPG
DDPG-ANP, ±=0.01

DDPG-ANP, ±=0.1

GREEDY

Figure 6.3: Learning curves of DDPG and DDPG-ANP with different parameter settings.

ber of fake transactions and δ represents the weight of action norm penalty. The settings of

λ and δ are shown in Figure 6.3. From Figure 3(a) we can see that the platform’s utility

rapidly increases after 500 episodes and the policy learned by DDPG-ANP outperforms both

baselines. Specifically, we can see that DDPG actually learns a sub-optimal policy which

is clearly worse than that of DDPG-ANP. In the case of Figure 3(b), the policy learned by

DDPG performs even worse than the greedy algorithm.

In our experiments, we found that the actions (values of wt and βt) outputted by the

actor network of DDPG usually reach about 10, 000 while the actions outputted by the actor

network of DDPG-ANP remains in the range [−100, 100], although there is no imposed

bound on the action space. We also found that the parameter δ can significantly influence the

performance of DDPG-ANP. In our experiments, the values of δ are set empirically. Through

the comparison of Figure 3(a) and Figure 3(b) and the comparison of Figure 3(c) and Figure

3(d) we can see that the platform’s utility goes down if the weight of the number of fake

transactions increases.

6.5 Chapter Summary

In this work, we study the problem of combating fraudulent sellers in e-commerce through a

mechanism design approach. We focus on improving the impression allocation mechanism

using deep reinforcement learning with consideration of both real and fake transactions. We
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first learn a seller behavior model from real-world data to predict the number of fake trans-

actions that the sellers intend to make. Then, we formulate the platform’s decision making

problem as an MDP with continuous state and action spaces. We simulate an impression

allocation environment in e-commerce using the seller behavior model learned from real-

world data. We propose a deep reinforcement learning algorithm DDPG-ANP based on the

framework of DDPG for solving the MDP. DDPG-ANP incorporates the action norm penalty

in the agent’s reward function to facilitate learning. Experimental results show that DDPG-

ANP significantly outperforms DDPG and heuristic approaches in terms of scalability and

solution quality.



Chapter 7

Conclusion and Future Work

7.1 Conclusions

Along with the success and progress of machine learning technologies, the requirement of

security in machine learning systems becomes increasingly urgent. Although machine learn-

ing technologies can already handle many complex tasks that we would have not imagined

before, we are still far away from fully understanding their vulnerabilities, which could po-

tentially be exploited by adversaries. Combating adversaries in machine learning systems

is a complex and challenging task, which involves multidisciplinary techniques including

game theory, optimization, human behavior studies and reinforcement learning. This thesis

investigates several important problems in the area of adversarial machine learning in order

to deepen the understanding of the vulnerabilities of machine learning. Moreover, this thesis

studies two real-world problems of combating adversaries in machine learning systems.

The first contribution of this thesis is an efficient label contamination attack algorithm,

which demonstrates that the adversaries could significantly bias the learning model by flip-

ping a small proportion of labels of training data. It also demonstrates that the adversaries
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could attack a black-box learning model by designing attacks on several substitute models

and transferring the attacks to the target model. Based on the observation of transferability,

we found that linear learning models are better substitute models than nonlinear ones.

The second contribution of this thesis is generalizing the data poisoning attacks from

single-task learning models to multi-task learning models. We formulate the problem of

computing optimal poisoning attacks on MTRL as a bilevel problem and propose an efficient

algorithm called PATOM for computing optimal attack strategies. PATOM leverages the

optimality conditions of the subproblem of MTRL to compute the implicit gradients of the

upper level objective function. During experiments we found that MTRL models are very

sensitive to both directly attacks and indirect attacks. We also found that the tasks being

attacked are always strongly correlated, which provides a clue for defending against such

attacks.

The third contribution of this thesis is the study of spear phishing attacks and their de-

fenses. We model the spear phishing attack scenarios as s Stachelberg games played by an

attacker and a defender. For the single-credential scenario, we demonstrate that the opti-

mal defense strategy can be found by solving a binary combinatorial optimization problem

called PEDS. For the multiple-credential scenario, we formulate it as a bilevel optimization

problem for finding the optimal defense strategy and then reduce it to a single level opti-

mization problem called PEMS using complementary slackness conditions. Experimental

results show that both PEDS and PEMS lead to significant higher defender utilities than two

existing benchmarks in different parameter settings. Also, both PEDS and PEMS are more

robust than the existing benchmarks considering uncertainties.

The fourth contribution of this thesis is a novel reinforcement learning based impres-

sion allocation mechanism, which aims to combat fraudulent sellers and maintain the real

transactions in e-commerce. First, we build a simulator to simulate the online e-commerce

environment by learning seller behavior model from historical data. Then, we formulate the
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platform’s impression allocation problem as a continuous Markov Decision Process (MDP)

with unbounded action space. In order to make the action executable in practice and facilitate

learning, we propose a novel deep reinforcement learning algorithm DDPG-ANP that intro-

duces an action norm penalty to the reward function. Experimental results show that our

algorithm significantly outperforms existing baselines in terms of scalability and solution

quality.

Overall, this thesis investigates two important type of adversarial machine learning prob-

lems and provides efficient attack algorithms. This thesis also studies real-world adversaries

and develop effective defense strategies from the perspective of practical use.

7.2 Future Directions

The ultimate goal of adversarial machine learning is to develop defense strategies based on

the analysis of the attacker’s strategic behavior. Regarding the label contamination attacks,

there are two main difficulties in developing defense strategies. First, the attacker’s goal is

hard to estimate. For example, the attacker can perform integrity attack, availability attack,

or even a hybrid attack. Since the attacker’s strategy is optimized with respect to his goal,

it is difficult for the learner to accurately estimate the attacker strategy without knowing his

goal. Second, most existing defense methods (e.g., robust learning) require a set of clean

data (true labels), and future data will be judged based on the metrics developed using the

clean data. However, in practice, it is often expensive to obtain enough true labels, especially

when domain experts are employed.

The analysis of data poisoning attacks provides opportunities to develop alternative de-

fense strategies in the future. Here we discuss two possible future directions to develop

defense strategies. 1) Discovering the characteristics of poisoned data and identify the data

that are most likely to be attacked. For example, from Figure 3.2 we can see that the at-
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tacked data basically form two clusters (one cluster with big blue points and the other cluster

with big red points). Therefore, if we have successfully identified an attacked point, we can

look into its adjacent points. In addition, most attacked points are extreme points, which

indicates that the extreme points are more likely to be attacked than those near centroid. 2)

Game-theoretic modeling. Adversarial machine learning can be viewed as a game between

the learner and the attacker. [98] model the test-set attack problem as a Stackelberg game

[99]. They assume that the learner has a set of explicit defense actions, such as verifying

data with third parties, and try to compute the optimal defense action. However, few works

apply game-theoretic analysis to poisoning attacks. Although the study of poisoning attacks

provide a framework to model the attacker behavior, the learner’s defense actions have not

been considered in the traditional poisoning attack setting. If we consider defense actions,

such as giving penalty on detected attacker behavior, we might be able to develop realistic

game models and more secure learning algorithms.

Regarding the security of MTL, in future work, we will consider two classes of potential

defense strategies for protecting MTL: data sanitization and improving the robustness of

MTL. First, as shown in our experiments, the tasks under attack show a strong correlation

with 30% data injected. Therefore, the machine learner can examine the data from tasks that

form strong local correlations, perhaps through human verifications. Moreover, once a task is

demonstrated to be malicious, the learner can examine the tasks that strongly correlate to it,

which will significantly reduce the learner’s effort in examining the data. Second, improving

the robustness of MTL could also be an effective approach to defend against data poisoning

attacks. MTL exploits the task relatedness to improve the performance of individual tasks,

where such relatedness can also be exploited by the attacker to launch indirect attacks. A

possible approach to improve the robustness of MTL is to differentiate the normal relatedness

and the malicious task relatedness, so that we can preserve the helpful relatedness and reduce

the harmful relatedness during learning.



Chapter 8

Appendix

8.1 Proof of Lemma 1

Lemma 1. u ∈ Γ(πx) if and only if xuaukuL > cu.

Proof. First we show that V ∗(s) ≥ 0 (∀s ∈ S):

V ∗(s) = arg max
a∈As

Q(s, a) ≥ Q(s, a = stop) = 0.

If direction: Consider state s = {u}, we have

V ∗(s) = (1− xu)(V ∗(s)− cu) + auxuku(L− cu)

+ xu(1− auku)(V ∗(s−u)− cu)

≥ (1− xu)(V ∗(s)− cu) + auxuku(L− cu)

+ xu(1− auku)(0− cu).

If xuaukuL > cu, then V ∗(s) > 0, which means that s is a reachable state and the optimal
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action at state s is to attack user u instead of stop attacking. Therefore, u belongs to the

potential attack set Γ(πx).

Only if direction: First, consider state s and s−u. If we restrict the attacker’s policy so

that he never attacks u, then s and s−u are indifferent so that V ∗(s)=V ∗(s−u). Without

the restriction, we have V ∗(s)≥V ∗(s−u). In other words, adding a user to a state does not

decrease its value. We prove that if πx(s)=u, then xu > cu
Lauku

. By definition we have:

V ∗(s) = (1− xu)(V ∗(s)− cu) + auxuku(L− cu)

+ xu(1− auku)(V ∗(s−u)− cu).

By adjusting the terms we have:

V ∗(s) = − cu
auxu

+ Lku + (1− ku)V ∗(s−u).

Since V ∗(s)≥V ∗(s−u), then:

− cu
auxu

+ Lku ≥ kuV
∗(s−u) ≥ 0

Note that if− cu
auxu

+Lku=0, we have V ∗(s)=V ∗(s−u)=0 and s={u}. Due to the setting that

the attacker always prefers stopping attack rather than launching another attack, we have

πx(s)=0, which contradicts the assumption that πx(s)=u. Therefore, − cu
auxu

+ Lku > 0,

equivalently, xu > cu
Lauku

.
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8.2 Proof of Lemma 2

Lemma 2.

θ(x, πx) =


1−

∏
u∈Γ(πx)(1− auku), if Γ(πx) 6= ∅

0, if Γ(πx) = ∅
.

Proof. If Γ(πx) = ∅, meaning that the attacker stops attacking at the initial state s0,

therefore the probability that the credential accessed is 0. Otherwise, we write the reachable

states set as ∆(πx) = {s0, s1, ..., sr} ∪ {sn, sy}. We denote by M∆(πx) the transition

probability matrix, whose entry Mij represents the probability that state si transitions to sj

under policy πx (WLOG, we define sr+1=sn and sr+2=sy). There are two cases for sr: (1)

πx(sr) = u ∈ Asr and (2) πx(sr) = stop.

If case (1), sr could transition to itself, sn or sy. Hence M∆(πx) has the form like (denote

di=auikui and xi = xui):



1− x0 x0(1− d0) d0x0

1− x1 x1(1− d1) d1x1

. . . . . .
...

1− xr xr(1− dr) drxr

1

1


Precisely, M∆(πx) can be represented as:

M∆(πx) =

[
A B
0 I2

]

where A is r+1 dimensional square matrix, I2 is 2 dimensional unit diagonal matrix and B
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is (r+1)× 2 matrix. We introduce a (r+1)× 2 matrix E:

E = FB, where F = (Ir+1 − A)−1

Note that sn and sy are absorbing states. According to the properties of absorbing Markov

chain, s0 will eventually end in state sn or sy with probability E11 and E12 respectively, and

E11+E12=1. Therefore, the probability of losing the credential is equal to the probability

that the attacker eventually ends in state sy, i.e., θ(x, πx)=E12. We can directly calculate

E11 based on the rules of matrix calculation:

E11 =
r+1∑
i=1

F1iBi1

= F1,r+1Br+1,1

=

∏r−1
i=0 (1− di)

xr
xr(1− dr)

=
r∏
i=0

(1− di)

=
∏

u∈Γ(πx)

(1− auku)

Then E12 = 1− E11 = 1−
∏

u∈Γ(πx)(1− auku).

If case (2), sr transitions to sn with probability 1. Thus M∆(πx) has the form like

(di=auikui and xi = xui):
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

1−x0 x0(1−d0) x0k0

1−x1 x1(1−d1) x1k1

. . . . . . ...

1−xr−1 xr−1(1−dr−1) 0 xr−1dr−1

1

1

1



Similarly,

E11 =
r+1∑
i=1

F1iBi1

= F1,r+1

=
r−1∏
i=0

(1− di)

=
∏

u∈Γ(πx)

(1− auku)

Then, we still have E12 = 1− E11 = 1−
∏

u∈Γ(πx)(1− auku).

8.3 Proof of Theorem 1

Theorem 3. The defender’s expected utility remains the same no matter how the attacker

breaks ties, i.e., choosing any optimal policy.
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Proof. Recall that in single-credential case the defender’s utility function is

Pd(x, πx) = −ρT θ(x, πx)L−
∑
u∈U

Λ(xu).

Based on the result of Lemma 1, Γ(πx) can be represented as {u ∈ U |xu > cu
Lauku

}, then

θ(x, πx) can be represented as

θ(x, πx) = 1−
∏

u∈{u′∈U |xu′>
cu′

Lau′ku′
}

(1− ku).

For any other optimal policy π′x, we have

θ(x, π′x) = 1−
∏

u∈{u′∈U |xu′>
cu′

Lau′ku′
}

(1− ku).

Note that θ(x, πx) = θ(x, πx)′, which indicates that the defender’s expected utility will be

the same when the attacker chooses any other optimal policy.

8.4 Proof of Theorem 2

Theorem 4. x1
u is an arbitrary point in arg minx∈[0, cu

Lauku
] Λu and x2

u is an arbitrary point

in arg minx∈( cu
Lauku

,1] Λu.

Proof. Recall that in single-credential case the defender’s utility function is

Pd(x, πx) = −ρT θ(x, πx)L−
∑
u∈U

Λu(xu).

Consider a user u, given all values of xu′ (u′ ∈ U \ {u}), θ(x, πx) is constant for any

xu ∈ [0, cu
Lauku

] since the potential attack set Γ(πx) remains the same when xu varies among
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[0, cu
Lauku

]. Therefore, any point in arg minx∈[0, cu
Lauku

] Λu maximizes Pd(x, πx). Similarly,

θ(x, πx) is constant for any xu ∈ ( cu
Lauku

, 1]. Therefore, any points in arg minx∈( cu
Lauku

,1] Λu

maximizes Pd(x, πx).
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