
Adaptive Dynamic Bipartite Graph Matching:
A Reinforcement Learning Approach

Yansheng Wang †, Yongxin Tong †, Cheng Long ‡, Pan Xu #

, Ke Xu †, Weifeng Lv †

†BDBC, SKLSDE Lab, School of Computer Science and Engineering and IRI, Beihang University, China
‡School of Computer Science and Engineering, Nanyang Technological University, Singapore

#Department of Computer Science, University of Maryland, College Park, USA
†{arthur wang, yxtong, kexu, lwf}@buaa.edu.cn, ‡c.long@ntu.edu.sg, #panxu@cs.umd.edu

Abstract—Online bipartite graph matching is attracting grow-
ing research attention due to the development of dynamic task
assignment in sharing economy applications, where tasks need be
assigned dynamically to workers. Past studies lack practicability
in terms of both problem formulation and solution framework.
On the one hand, some problem settings in prior online bipartite
graph matching research are impractical for real-world applica-
tions. On the other hand, existing solutions to online bipartite
graph matching are inefficient due to the unnecessary real-time
decision making. In this paper, we propose the dynamic bipartite
graph matching (DBGM) problem to be better aligned with
real-world applications and devise a novel adaptive batch-based
solution framework with a constant competitive ratio. As an
effective and efficient implementation of the solution framework,
we design a reinforcement learning based algorithm, called
Restricted Q-learning (RQL), which makes near-optimal decisions
on batch splitting. Extensive experimental results on both real
and synthetic datasets show that our methods outperform the
state-of-the-arts in terms of both effectiveness and efficiency.

I. INTRODUCTION

With the rapid development of sharing economy, many
new business models are springing up and attracting much
popularity. Typical real-world applications include intelligent
transport platforms e.g., Uber and crowdsourcing platforms
e.g., Amazon Mechanical Turks (AMT). One central issue in
these emerging applications is dynamic task assignment, which
aims to assign each worker with one or more tasks to maximize
the overall revenue of the platform, where the workers are
dynamic while the tasks arrive sequentially.

Dynamic task assignment can be formulated as an online
bipartite matching problem, which has attracted growing re-
search interest [1]–[4]. Earlier studies [1], [2] focus on one-
sided online bipartite matching, where tasks are assumed to
come dynamically while workers are considered static. A few
recent efforts [3], [4] have explored the two-sided online
bipartite matching problem, where both tasks and workers
arrive dynamically. However, some of their problem settings
are still restrictive and fail to model emerging sharing economy
applications. For instance, in [3], the authors only maximize
the total number of assignments, while real-world applications
often focus on more general goals such as maximizing the
overall profits. In [4], it is assumed that the deadline of each
worker/task is known, while in applications such as on-demand
taxi dispatching, workers and tasks usually would not report

their deadlines to the platform. To be better aligned with these
practical settings, we propose a more generic problem called
the dynamic bipartite graph matching (DBGM) problem. In the
DBGM problem, both workers and tasks arrive dynamically
and can leave at any time without notifications in advance,
and the goal is to find a matching allocation that yields the
highest total revenue.

In addition to the restrictive problem settings, prior solutions
to online bipartite graph matching [4]–[9] are also impractical
to real-world sharing economy applications. They often rely
on strong assumptions such as specific demand distributions
or market equilibrium and some of them are low in efficiency,
e.g., of cubic time complexity [4]. The strong assumptions
and the low efficiency are the results of real-time matching
decisions upon arrival of a single task or worker, which may
be unnecessary in practice. For example, passengers and taxi
drivers are likely to wait for a short time before they disappear
from the on-demand taxi-calling applications. This observation
leads us to take an alternative framework to solve the DBGM
problem, i.e., in a batch-based manner.

More specifically, we propose an adaptive batch-based
framework to the DBGM problem. The idea is to cumulate
the dynamically coming tasks and workers into a batch, match
those in the batch when the batch size is suitable and repeat
the process. There are two critical challenges in designing an
effective adaptive batch-based framework to the DBGM prob-
lem. (i) How optimal is an adaptive batch-based framework
in theory? (ii) How to implement an optimal strategy to split
batches with performance guarantees? For the first challenge,
we conduct a theoretical analysis and prove that if the in-
batch matching algorithm outputs a local optimum e.g., via the
Hungarian algorithm [10], then there exists an adaptive batch-
based strategy that guarantees the overall performance. For the
second challenge, we model the strategy searching problem
as a sequential decision making problem [11], because the
decision of whether to split the current batch is made at each
time step sequentially. Particularly, we formulate the problem
as a Markov decision process (MDP) [12] with unknown
parameters, which can be solved by reinforcement learning
(RL) [13]. Then we propose an effective and efficient RL-
based algorithm to solve the MDP with unknown parameters
in the context of our DBGM problem.

In summary, the main contributions of this work are:
• We propose the dynamic bipartite graph matching (D-

BGM) problem, which is a more practical formulation of
dynamic task assignment in emerging intelligent trans-
portation and spatial crowdsourcing applications.

• We devise a novel adaptive batch-based framework to
solve the DBGM problem and prove that its performance
is guaranteed by a constant competitive ratio 1

C−1 under
the adversarial model , where C is the maximum duration
of a worker/task.

• We propose an effective and efficient RL-based algorithm,
Restricted Q-learning (RQL), to retrieve a near-optimal
batch-based strategy.

• We validate the effectiveness and efficiency of our meth-
ods on synthetic and real datasets. Experimental results
show that our methods outperform state-of-the-arts in
terms of the overall revenue and running time.

In the rest of this paper, we review related work in Sec. II
and formally define the DBGM problem in Sec. III. We
introduce the adaptive batch-based framework and analyze its
competitive ratio in Sec. IV and propose an RL-based solution
to find the batch splitting strategy in Sec. V. We evaluate our
solutions in Sec. VI and finally conclude in Sec. VII.

II. RELATED WORK

We study a generic online maximum bipartite matching
problem and adopt a reinforcement learning based algorithm
for our adaptive batch-based solution framework. Below we
review representative work in these two categories of research.

A. Online Maximum Bipartite Matching

Online maximum bipartite matching problems include one-
sided version and two-sided version, and both versions consid-
er the weighted or the unweighted (i.e., maximum cardinality
matching) case. We divide the algorithms to these problems
into two categories according to the analytical model they use,
i.e., the adversarial model and the stochastic model. Algo-
rithms in the adversarial model always make guarantees on
the worst case performance while those in the stochastic model
need more assumptions and care about expected performance.
As a result, conclusion made in the adversarial model still
holds in the stochastic model.

1) Algorithms in the Adversarial Model: In this model, the
information on the graph and the arrival order of nodes are
unknown and can be arbitrarily bad. In [1], the authors study
the one-sided online maximum unweighted bipartite matching
and propose the randomized algorithm called Ranking with
a competitive ratio of 1 − 1

e in adversarial model. Another
randomized algorithm named Greedy-RT for the one-sided
weighted bipartite matching is proposed in [5]. The two-
sided unweighted case is considered in [6], where a 0.526-
competitive algorithm is presented. A recent work [3] extends
the Ranking algorithm [1] to the two-sided unweighted case
and shows a competitive ratio of 0.5211. To the best of our
knowledge, no prior work has studied the general two-sided
weighted case in the adversarial model.

2) Algorithms in the Stochastic Model: This model includes
the random order model and the I.I.D model. The former
assumes that the arrival order of nodes follows a uniform
random permutation, and cares about the expected perfor-
mance of online algorithms [14] while the latter assumes
that there is an underlying distribution of the coming objects
[15]–[17]. The Ranking algorithm is 0.6534-competitive in
the one-sided weighted case in the random order model [18].
In [7], the authors study the two-sided maximum cardinality
matching on spatial data and a 0.47-competitive method under
the I.I.D model is designed based on predictions of tasks and
workers. In [4], the authors propose the TGOA algorithm
with a 1

4 competitive ratio in the random order model. Our
work is closely related to [4] in that we both study the two-
sided online maximum weighted bipartite matching. Our work
differs from [4] in that (i) we do not assume the deadline of
each worker/task is known and (ii) we propose solutions in
the adversarial model.

B. Reinforcement Learning

Reinforcement learning (RL) [13] studies how agents should
take actions in an unknown environment to maximize a
cumulative reward. The environment can be formulated as
a Markov Decision Process (MDP) [12]. There are mainly
three categories of RL algorithms. Algorithms that aim to
learn the parameters of an unknown MDP are called model-
based algorithms [19], [20], while those make no efforts to
learn a model are called model-free, and the third type is
policy search such as policy gradient [21]. We adopt model-
free algorithms since they are more computationally efficient
and have guarantees on convergence. Particularly, we utilize Q-
learning [22], which estimates the Q-function iteratively using
Bellman backups [23] and acts greedily according to the Q-
function, and can converge to optimum.

Some pioneer studies have applied RL to matching prob-
lems, such as advertisement placement [24] and spatial crowd-
sourcing [25], [26]. In [24], the authors propose the combina-
tional multi-armed bandit (CMAB) framework, which decides
whether to match the coming nodes in the one-sided online
maximum bipartite matching problem. The algorithms in [25]
focuses on learning parameters like worker reliability using
methods from the CMAB class in spatial crowdsoucring tasks,
while the structure of bipartite graphs is still static. In [26],
the authors also model the online matching problem as an
MDP but with a straightforward idea. It takes every matching
behavior as an action, which makes the approach impractical
due to the high sparsity problem.

In this paper, we design effective RL-based algorithm to
implement our adaptive batch-based solution framework to the
DBGM problem.

III. PROBLEM STATEMENT

This section defines the DBGM problem (Sec. III-A) and
important concepts such as the competitive ratio in the adver-
sarial model (Sec. III-B). Finally we present a Greedy baseline
algorithm to the DBGM problem (Sec. III-C). Table I lists

TABLE I: Summary of symbol notations

Notation Description
B The dynamic bipartite graph

L,R The set of left and right nodes on the graph
E The set of edges on the graph
i.d The duration of a node i

w(i, j) The weight of edge between node i and j
M The matching allocation set over the graph

U(B,M) The utility score of M over B
Opt(B) The offline optimum of B
SB The adaptive batch-based strategy space
σ The adaptive batch-based strategy

b(i, j) The function to indicate whether (i, j] is a batch
UR(B,σ),
UE(B,σ)

The utility score induced by a strategy
in remain/expiration model

C The upper bound of the duration
SLen
B The restricted strategy space of SB by an interval Len

lmin, lmax The minimum/maximum length of batch

the notations used throughout the paper. Some notations are
inspired by [27], [28].

A. Problem Definition

Definition 1 (Dynamic Bipartite Graph, DBG). A dynamic
bipartite graph is defined as B = (L,R,E), where L = {i ∈
N∗} and R = {j ∈ N∗} are the sets of left and right nodes
with L ∩ R = ∅ and E ⊆ L × R is the set of edges between
L and R. Each node i ∈ L (j ∈ R) has its arriving time at
i (j). The notations are abused to denote both the nodes and
the nodes’ arriving times for easy reference. Each node i (j)
also has a duration denoted by i.d (j.d), meaning the amount
of time it keeps activated. Each edge (i, j) ∈ E has a weight
denoted by eij . For convenience, B also denotes the set of all
its nodes, and we have |B| = |L|+ |R|.

We do not specify the unit of arriving time and duration,
as it is application-specific. For instance, the unit can be one
second in on-demand taxi dispatching. We also assume that the
arriving time of each node is different for the simplification of
analysis. Our solution works with or without this assumption.

Note that there is no need to consider those edges (i, j) with
[i, i+ i.d]∩ [j, j+ j.d] = ∅ for matching since in this case one
node expires before the other arrives, and thus we focus on the
remaining edges only. Specifically, we define a weight function
w : L × R → R such that w(i, j) = eij , if the edge (i, j)
exists in E and [i, i+ i.d] ∩ [j, j + j.d] ̸= ∅, and w(i, j) = 0
otherwise. In the former case, we have w(i, j) > 0. With this,
in the following, we could safely focus on those edges (i, j)
with w(i, j) > 0 for matching.

Definition 2 (Matching Allocation). A matching allocation
over a dynamic bipartite graph B is denoted by M =
{(i, j)|i ∈ L, j ∈ R}. It is a set of node pairs where each
node appears at most once.

Definition 3 (Utility Score). The utility score of a matching
allocation M over a dynamic bipartite graph B is measured
by U(B,M) =

∑
(i,j)∈M w(i, j).

に

な

ぬ

に

ね の は

ぬ ね な に

(a) An example of DBG

に

な

ぬ

に

ね の は

ぬ ね な に

(b) A batch-based strategy

Fig. 1: A simple example of DBG and batch-based strategy

Example 1. Take Fig. 1a as an example. The indices of
the 6 nodes are their arriving times, i.e., 1, 2, 3, 4, 5, 6 and
their durations are 3, 5, 3, 1, 2, 4 respectively. Suppose there
are edges between node 1 and 4, also 4 and 5. Note that
the duration of node 1 is 3, which means it will vanish
before node 4 appears. Thus we have w(1, 4) = 0. The same
situations happen for w(4, 5) and w(2, 6). The other edge
weights are shown in the figure, and we have w(1, 3) = 2,
w(2, 4) = 4, etc.. A possible matching allocation in Fig. 1a is
M1 = {(2, 4), (3, 5)}. We have U(B,M1) = 4 + 1 = 5.

Definition 4 (DBGM Problem). Given a dynamic bipartite
graph B, the DBGM problem is to find a matching allocation
M to maximize the utility score, i.e., maxM U(B,M) in the
online scenario.

Here in the online scenario, nodes arrive one by one
following the arriving times in B, and will vanish after their
deadlines. The arriving time and vanishing time of any node
cannot be forecast. The difference between DBGM and the
two-sided online maximum bipartite matching [4] is that the
nodes in DBGM are totally dynamic, but in the latter, the
deadline of each node is assumed given upon its arrival. Hence
the DBGM problem is more generic and better aligned with
real-world applications.

An online algorithm to the DBGM problem decides at each
time step k a subset of M, denoted by Mk, which only
contains the activated nodes that are not expired yet at k. The
final matching allocation is M =

∪T
k=1Mk, where T is the

number of time steps.

B. Evaluation Metric

The performance of an online algorithm is often accessed by
comparing against the optimal results in the offline scenario.
In the following, we will introduce the offline optimum of the
DBGM problem and the competitive ratio in the adversarial
model. Note that the competitive ratio in the adversarial model
will still be guaranteed in the stochastic model.

A dynamic bipartite graph B can be adjusted to a general
bipartite graph B′ by removing all the edges that do not satisfy
the restriction of deadline, [i, i + i.d] ∩ [j, j + j.d] ̸= ∅ (i.e.,
only those edges with w(i, j) > 0 are kept). Then the offline
optimum is defined by Opt(B) = maxM U(B′,M).

Algorithm 1: Greedy Algorithm
input : A dynamic bipartite graph B
output: A matching allocation M

1 M← ∅;
2 for each new arrival node u in B do
3 if u ∈ L then
4 V ← {v|v ∈ R,w(u, v) > 0};
5 if V ̸= ∅ then
6 v′ ← argmaxv∈V w(u, v);
7 Remove u, v′ from B;
8 M←M∪ {(u, v′)};

9 else
10 Symmetrically matching u ∈ R;

11 return M

The optimal matching allocation in the offline scenario can
be found in polynomial time by Hungarian algorithm [10].
For example, in Fig. 1a, the optimal matching allocation is
{(1, 3), (2, 4), (5, 6)} and Opt(B) = 8.

Competitive Ratio. The competitive ratio in the adversarial
model of an online algorithm for the DBGM problem is the
minimum ratio between the utility score of matching allocation
M produced by the algorithm and the offline optimum over
all possible instances of the dynamic bipartite graph,

CR = min
B

U(B,M)

Opt(B)

The competitive ratio in the adversarial model measures the
performance of an online algorithm in the worst case, and we
are interested in online algorithms which have guarantees on
the lower bound of the ratio.

C. Greedy Algorithm: A Baseline

A straightforward solution to the DBGM problem is the
Greedy algorithm, which matches a node to its neighbor with
the maximum edge weight, and leaves a node waiting if it does
not have any available neighbors yet. The procedure is illus-
trated in Algorithm 1. By conducting the Greedy Algorithm
in Fig. 1a, we will get a matching allocation {(2, 3), (5, 6)}
and the utility score is 5.

The competitive ratio of the Greedy algorithm can be
arbitrarily bad in the adversarial model, because we can insert
a node v into the opposite side of a node u with a potential
weight of 1 as soon as u is just matched greedily to some
other node with the weight ϵ. If we set ϵ to an infinitely small
value, then the competitive ratio is close to 0.

IV. SOLUTION FRAMEWORK

This section presents the adaptive batch-based framework
(Sec. IV-A) and analyzes its achievable optimum (Sec. IV-B).

A. Adaptive Batch-based Framework

The rationale of our adaptive batch-based framework to the
DBGM problem lies in two-fold. (i) If nodes were allowed to
wait rather than being immediately assigned, they may meet
better matching candidates in the future (i.e., the advantage of
batch-based decisions). (ii) The batch size should be adjusted
according to the current dynamic bipartite graph (i.e., the need
for an adaptive batch size). In this work, we propose to decide
the batch size on the fly by using a binary decision indicator
for each time step. Specifically, if the indicator is 0, all the
nodes will wait at this time step; otherwise we will match all
the activated nodes in the waiting pool. We formally define
the adaptive batch-based strategy below.

Definition 5 (Adaptive Batch-based Strategy). Denote the
strategy space of B as SB = 2|B|+1. Each adaptive batch-
based strategy σ = (σk)k∈J0,|B|K is a binary sequence with
length |B| + 1. Let σ0 = 1. ∀1 ≤ k ≤ |B|, if σk = 1, the
strategy is to match all the nodes available (including itself)
to achieve a local optimum (e.g., by Hungarian algorithm).
Otherwise, all nodes are kept till the next time step. An
interval (i − 1, j] is called a batch if σi−1 = σj = 1, and
∀k ∈ Ji, j − 1K, σk = 0. We set a binary function b(i, j) = 1
if (i− 1, j] is a batch; otherwise, b(i, j) = 0.

We make the following notes on the definition above.
• If each σk is set to 1, it is equivalent to the Greedy

algorithm in Sec. III-C. Hence the optimal adaptive batch-
based strategy in the strategy space is always no worse
than the Greedy algorithm.

• We perform optimal matching in each batch to achieve
theoretical guarantees (see Sec. IV-B).

• The adaptive batch-based strategy consists of two models
based on whether the unmatched nodes in each batch are
removed (denoted as expiration model) or kept to the next
batch (denoted as remain model). We analyze these two
models separately.

We still use utility score to assess the performance of a
strategy. We override the utility score function U(B,M) by
U(B,σ) because a fixed strategy σ results in a deterministic
matching allocation.

Definition 6 (Utility Score of Strategy). Let UR(B,σ) denote
the utility score in the remain model, i.e., the sum of weights in
B induced by σ in the online scenario where the unmatched
nodes in each batch will remain. Similarly, denote UE(B,σ)
as the utility score in the expiration model, i.e., the sum where
the unmatched nodes in each batch will expire.

We further define the utility score of a strategy space
in the remain and the expiration models: UR(B,SB) =
maxσ∈SB

UR(B,σ) and UE(B,SB) = maxσ∈SB
UE(B,σ).

The utility score of a strategy space represents the highest
utility a strategy in that space can achieve.

Example 2. Take Fig. 1b as an example. Suppose σ1 =
(1, 0, 0, 0, 0, 1, 1), there are two batches (0, 5] and (5, 6] as
shown in the figure. If we remove the unmatched nodes

͙

͙

͙

͙

͙

ͳ

ͳ

߳ ߳

݅ଵ ݅௡ ݆ଵ ݆௡ ݆ଵԢ ݆௡Ԣ
(a) A counterexample

͙

͙

͙

ͳ ͳ

݅ଵ ݅ଶ

݆ଵ ݆ଶ
ͳ ݆௡

݅௡

(b) The example of tightness

Fig. 2: Two special graphs

in each batch, the matching allocation is {(a, c), (b, d)}
and UE(B,σ1) = 6. Otherwise we have the allocation
{(a, c), (b, d), (e, f)} with UR(B,σ1) = 8, which is the
optimal allocation. Different strategies have different utility
scores. In this example, UR(B,SB) = UR(B,σ1) = 8.
Yet UE(B,SB) ̸= UE(B,σ1), because if we set σ2 =
(1, 0, 0, 0, 1, 0, 1), we will have UE(B,σ2) = 8 > UE(B,σ1).

Next we study the theoretically achievable optimum of our
adaptive batch-based framework by analyzing the competitive
ratio (with respect to utility score) of the strategy space.

B. Theoretical Analysis on Achievable Guarantees

1) Assumptions: We assume that the duration of each node
has an upper bound C ∈ N∗ and C ≥ 2. On the one hand, an
upper bounded C is reasonable since no worker or task would
wait endlessly in real applications. On the other hand, if C =
1, no match exists as we assume the expiration comes before
the arrival of new nodes at the same step. We demonstrate the
necessity of this assumption via the following example.

Example 3. Suppose the nodes in Fig. 2a come in the
order of i1, · · · , in, j1, · · · , jn, j′1, · · · , j′n. The weights of
edges between ik and jk are ϵ, and those between ik and
j′k are 1. The durations of ik and jk are infinite and the
duration of j′k is 1. No matter how we segment the batches,
UE(B,SB)
Opt(B) = UR(B,SB)

Opt(B) = 1+(n−1)ϵ
n , which can be arbitrarily

bad if ϵ approaches 0. Hence we assume that no duration can
be larger than C.

2) Main Results: We have the following two theorems on
the competitive ratios of the strategy spaces in the remain and
the expiration models.

Theorem 1. For any given dynamic bipartite graph B with
an upper bound of duration C ≥ 2, we have

min
B

UE(B,SB)

Opt(B)
=

1

C − 1
(1)

Proof. We first prove that minB
UE(B,SB)
Opt(B) ≥

1
C−1 . The idea

is to construct a good enough batch-based strategy.
Suppose MB is the set of edges that are in the offline

optimal matching allocation of B. Let epq be an edge in MB

where p comes earlier than q. We also use epq to represent
the weight on the edge.

(a) A1(i, j) (b) A2(i, j)

Fig. 3: Illustrations on A1 and A2

We first consider the special case where C = 2. In this
case, each node must be matched no latter than one round
after its arrival. Thus our strategy is to set every σq = 1 for
each epq ∈ MB , and the strategy always leads to an optimal
matching allocation. So UE(B,SB)

Opt(B) = 1 = 1
C−1 if C = 2.

Next we consider the general cases. For any batch (i−1, j],
we define two sets, A1(i, j) and A2(i, j) on it: A1(i, j) =
{epq ∈ MB |(i < p < j ∧ q > j) ∨ (p < i ∧ i < q < j)} and
A2(i, j) = {epq ∈MB |p < i ∧ q > j}.

Intuitively, A1(i, j) contains edges with one end point in the
batch and the other out of the batch while edges in A2(i, j)
have two end points both out of the batch but in the different
side. Thus if C = 3, we have |A1(i, j)| ≤ 1 (as the maximum
time span of an edge is 2) and |A2(i, j)| = 0. In the general
case C > 3, we take Fig. 3 for illustration. In Fig. 3a, all the
edges in A1 must have exactly one end point in the shaded
area. As there are at most (j− i−1) nodes in the shaded area,
we have |A1(i, j)| ≤ j− i− 1. In Fig. 3b, the same condition
holds if k1 = k2. The shaded area has a maximum span of
C−1. Thus there are at most C−1− (j− i+1) nodes in the
shaded area and |A2(i, j)| ≤ C−1− (j− i+1). In summary,
|A1(i, j)|+ |A2(i, j)| ≤ C − 2.

Now a good enough strategy σ∗ is as follows:

• Initially, set σk = 0 for k ∈ J1, |B|K.
• Pick the edge with the largest weight inMB , named eij ,

and remove it from MB .
• Set σi−1 = σj = 1, and then remove all edges in A1(i, j)

and A2(i, j) from MB .
• Repeat (2), (3) until there is no edge in MB .

Then we prove that the competitive ratio of σ∗ has a lower
bound. Suppose in each batch (i − 1, j], by conducting the
Hungarian algorithm, we have a gain of weights denoted
by u(i, j). Apparently, u(i, j) ≥ eij ≥ epq where epq ∈
A1(i, j)∪A2(i, j). Consider the edges we drop in our strategy.
The sum of weights dropped by edges in A1(i, j) and A2(i, j)
are denoted by u1(i, j) and u2(i, j), respectively. We have
u1(i, j) ≤ |A1(i, j)|eij , u2(i, j) ≤ |A2(i, j)|eij . Thus, ∀B,

we have

Opt(B) =
∑

epq∈MB

epq =
∑

b(i,j)=1

(u1(i, j) + u2(i, j) + eij)

≤
∑

b(i,j)=1

(|A1(i, j)|+ |A2(i, j)|+ 1)eij

≤
∑

b(i,j)=1

(C − 2 + 1)eij

≤ (C − 1)
∑

b(i,j)=1

u(i, j)

≤ (C − 1)UE(B,σ∗)

≤ (C − 1)UE(B,SB)

In summary, minB
UE(B,SB)
Opt(B) ≥ 1

C−1 . Notice that the same
inequality also holds for UR(B,SB), because we have∑

b(i,j)=1 u(i, j) = UE(B,σ∗) ≤ UR(B,σ∗) by the same
construction of σ∗.

To prove the bound is tight, we use the example in Fig. 2b.
In the graph, each node has the duration equal to n+1, and as
a result, C = n+1. In this case, Opt(B) = C− 1. No matter
how we change the strategy, UE(B,SB) = 1. This verifies
that the bound 1

C−1 is tight.

Theorem 2. For any given dynamic bipartite graph B with
an upper bound of duration C ≥ 3, we have

1

C − 1
≤ min

B

UR(B,SB)

Opt(B)
<

2

C − 2
(2)

Proof. If C = 2, UR(B,SB) is also optimal. We only consider
the general cases when C ≥ 3 here. As demonstrated above,
we have minB

UR(B,SB)
Opt(B) ≥

1
C−1 . To find an upper bound, we

take Fig. 2a as an example. We set n = ⌊C−1
2 ⌋. As pointed

out above, UR(B,SB)
Opt(B) = 1+(n−1)ϵ

n < 1
n + ϵ ≤ 2

C−2 + ϵ. Since

ϵ can be infinitely small, thus minB
UR(B,SB)
Opt(B) < 2

C−2 .

Summary. The best strategy in the expiration model can
achieve a constant competitive ratio, and that of the best strat-
egy in the remain model also lies in a constant interval. Hence
the adaptive batch-based framework has strong performance
guarantees in theory. Next we design an effective and efficient
strategy from the strategy space by exploiting reinforcement
learning techniques.

V. RL-BASED SOLUTION

Sec. IV shows that the adaptive batched-based framework
has theoretical performance guarantees to the DBGM problem.
This section aims to devise an algorithm following such a
framework. We first explain the high-level idea (Sec. V-A),
then model the algorithm as a Markov decision process
(Sec. V-B), and finally present the a reinforcement learning
based algorithm implementation (Sec. V-C).

A. Basic Idea

As shown in Sec. IV-B, the performance guarantees of
the adaptive batch-based framework require (i) an in-batch
algorithm that outputs the local optimum and (ii) an optimal
strategy to split batches. The former can be achieved by
classical algorithms such as the Hungarian algorithm [10],
while the latter is our focus.

We model the batch splitting process as a Markov decision
process (MDP) [12] with unknown parameters, because it is
a sequential decision making problem, and the actions we
take interact with the environment (i.e., the dynamic bipartite
graph) and influence the reward (i.e., the utility score).

To find an optimal strategy to split batches, we apply Rein-
forcement Learning (RL) [13], because it proves to be effective
for the sequential decision making problem in MDPs with
unknown parameters. Particularly, we propose the Restricted
Q-learning (RQL) algorithm, which is based on Q-learning
[22] but is optimized to have a notably smaller search space.

We present the MDP modeling and the details of our RQL
algorithm in sequel.

B. MDP Modeling for Batch Splitting

We model the environment and actions with an MDP in the
context of batch splitting as below.

Given a dynamic bipartite graph B, we define a finite-
horizon undiscounted Markov decision process M =
(S,A, Tr, Rw,H) on B where

• S is the state space, where every state s ∈ S stands for
a bipartite graph.

• A = {0, 1} is the action space, where action 0 means to
make no matches and go to the next time horizon and
action 1 means to perform a maximum weight matching
e.g., using the Hungarian algorithm, drop the edges that
have been matched, and go to the next time horizon.

• Tr : (S × A × S) → [0, 1] is the transition distribution,
which models the dynamics of nodes joining in or leaving
the graph. The probability of reaching s′ from s by
executing a is then expressed by Tr(s, a, s

′).
• Rw : (S×A)→ R+ is the reward function. If we conduct

action a at state s, we will get a reward of Rw(s, a),
which is the sum of weights of matched pairs. The reward
is a constant given s and a, because if a = 1, Rw(s, a)
is the output from the Hungarian algorithm conducted at
s, and if a = 0, Rw(s, a) = 0.

• H is the time horizon, and H = (1, 2, · · · , |H|).

C. Restricted Q-learning (RQL) for Optimal Batch Splitting

Reinforcement learning (RL) is effective to find an optimal
policy in unknown MDPs, where a deterministic stationary
Markovian policy π is defined by a mapping from S to A.
Here policies can be measured by the state-value function (Q-
function) Qπ

M (st, at) = E[
∑|H|

t′=t rt′ |s = st, a = at], where
st, at and rt are the state, action and reward at time step
t respectively. An optimal strategy search problem (optimal
batch splitting in our case) can be solved by RL because the
execution result of a policy on the MDP is the same as a

strategy and maximizing the utility is equivalent to maximizing
the cumulative rewards at the initial state.

We build our solution upon Q-learning [22], a classical
model-free RL method with relatively low computational
complexity. Q-learning approximates the Q-function directly
based on the recursion in Eq.(3), where st is the current state,
at is the action chosen based on the current Q-function, rt+1

is the obtained reward after taking action at and st+1 is the
next state. It has been demonstrated that a policy conducted
greedily according to the optimal Q-function is also optimal.
The convergence of Q-learning has been proven in [22].

Q(st, at)← Q(st, at)+

α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)]
(3)

We propose the Restricted Q-learning (RQL) algorithm to
further improve the efficiency to solve our DBGM problem.
Specifically, we adapt the naive Q-learning to our problem
and significantly reduce its search space using the restriction
principle based on our analysis in Sec. IV. Next we explain
the three parts of our RQL algorithm: state representation,
restriction principle and state & action reformulation.

• State Representation. We represent each state by the
pair containing the number of left nodes and also that
of right nodes, i.e., (|L|, |R|), rather than using a state-
action table to record the Q-function as in traditional Q-
learning algorithms. This is because the state-action table
has two problems in our case: (i) The size of state space
of our MDP is infinite, meaning we cannot record every
state-action pair. (ii) The table suffers from the sparsity
problem because it is almost impossible to encounter the
same state twice. The effectiveness of our representation
lies in the fact for the action a = 1, the reward, which is
the sum of the weights of the edges that are matched, is
closely correlated with the number of nodes on each side.
As there are at most C nodes waiting either on the left
or on the right, the size of state space is C × C, which
is much smaller.

• Restriction Principle. An important improvement of our
RQL algorithm over traditional Q-learning is to exploit
the restriction principle to reduce the size of the strategy
space (which is 2|H| in traditional Q-learning). The
restriction principle is based on the restricted strategy
space defined as follows.
Definition 7 (Restricted Strategy Space). The restricted
strategy space of SB by an interval Len is denoted by
SLen
B . The strategies in SLen

B satisfy that ∀b(i, j) = 1, j−
i ∈ Len.
To maintain the performance guarantees of strategies in
the restricted space, we need to consider the construction
procedure of σ∗ in Theorem 1. Suppose the batches in σ∗

have a maximum length of lmax and a minimum length of
lmin. Let Len = [lmin, lmax]. If we search for strategies
in the restricted strategy space SLen

B , it is guaranteed that
the best strategy we can find has a constant competitive
ratio 1

C−1 because σ∗ ∈ SLen
B . However, we do not

know lmin and lmax in advance. A naive approach is
to use the super set of Len, i.e., [1, C] as lmax ≤ C.
Another method is to estimate them by conducting the
construction method on historical data, which can be
time-consuming. A better method is to consider them as
hyper-parameters of the learning algorithm and the values
are empirically tuned.

• State & Action Reformulation. The aim of state &
action reformulation is to meet the constraint without
violating the principle of Q-learning when applying the
restriction principle.
The original action space is {0, 1}. To meet the interval
constraint of the restriction principle, we have to force
the action to be 0 or 1 if the batch length is out of Len.
This violates the principle of Q-learning, where the action
should only be decided by the Q values. Accordingly, we
cannot ensure the number of our mandatory assignments
thus the convergence will stand no more.
To overcome this problem, we reformulate states and
actions and no mandatory assignments would happen.
First, when the batch length is smaller than lmin, we
take the state when the batch length is exactly lmin as
the next state and skip the states in-between. In other
words, our opportunity of decision only occurs when the
batch length is no smaller than lmin. Then we use (s, l)
instead of s to represent a state where l ∈ [lmin, lmax] is
the length of the batch so far, and the action a ∈ {0, 1}
is replaced by l′ ∈ [lmin, lmax], meaning the expected
length of the current batch. Thus Q((s, l), l′) stands for
the Q-value of cutting the batch with a length l′ at state s
while the current length is l. We initially set the Q-values
with all l > l′ to be zero and others to be non-zero. Thus
impossible actions will not happen.
Example 4. Suppose lmin = 10, lmax = 60, and the
greedy action argmaxl′ Q((s0, 15), l

′) = 20. It means
that at state s0 with a batch length l = 15, the best action
is to cut the batch at the 20th step, so it is better to wait
at the current step. The best action 13 is impossible due
to the initial rules. Also, if l = 60, the greedy choice of l′

can only be 60. So the batch will be cut at its maximum
size lmax = 60. The interval constraint is still satisfied.
According to the reformulations, the updates of Q-values
for lt = l′t and lt ̸= l′t are formulated as:

Q((st, lt), l
′
t = lt)← Q((st, lt), l

′
t) + α[rt+

max
l0

Q((st+lmin , lmin), l0)−Q((st, lt), l
′
t)]

(4)

Q((st, lt), l
′
t ̸= lt)← Q((st, lt), l

′
t)+

α[max
l0

Q((st+1, lt + 1), l0)−Q((st, lt), l
′
t)]

(5)

Algorithm Sketch. Algorithm 2 illustrates our RQL algo-
rithm. We initialize the Q-function with small positive real
numbers (line 1) and set the Q-values of the situations where
l > l′ to be 0 (line 2). In the outer loop of iterating the
episodes, we first conduct action a = 0 for lmin − 1 times,

Algorithm 2: Restricted Q-learning
input : learning rate α ∈ (0, 1], lmin, lmax, C
output: Learned state-value function Q((s, l), l′)

1 Q((s, l), l′)← Random(), ∀s, l, l′;
2 Q((s, l), l′)← 0,∀s, ∀l > l′;
3 for episode 1, 2, · · · do
4 Repeatedly take action a = 0 for lmin − 1 times,

observe slmin ;
5 t← lmin; lt ← lmin;
6 while time step t < |H| in each episode do
7 l′t ← argmaxl′ Q((st, lt), l

′);
8 if l′t = lt then
9 Take action a = 1, observe st+1, rt;

10 Repeatedly take action a = 0 for lmin − 1
times, observe st+lmin ;

11 Q((st, lt), l
′
t)← Q((st, lt), l

′
t) + α[rt +

maxl Q((st+lmin , lmin), l)−Q((st, lt), l
′
t)];

12 t← t+ lmin; lt ← lmin;

13 else
14 Take action a = 0, observe st+1;
15 Q((st, lt), l

′
t)← Q((st, lt), l

′
t) +

α[maxl Q((st+1, lt + 1), l)−Q((st, lt), l
′
t)];

16 t← t+ 1; lt ← lt + 1;

17 return Q

observe the last state (line 4) and update the counters (line 5).
In the inner loop of iterating the time steps, we get the greedy
action at the current state first (line 7). If the action is to cut
the batch, we conduct action a = 1, record the rewards (line 9)
and then conduct action a = 0 successively for lmin−1 times
until observing the last state (line 10). Then we update the
Q-function with a lmin-step lookahead (line 11). Otherwise,
we conduct action a = 0, observe the next state (line 14) and
update the Q-function with a one-step lookahead (line 15).

Complexity Analysis. The space complexity of RQL is
O(C2(lmax−lmin)

2), i.e., the memory size to store the tabular
Q-function. The per-step time complexity is at most O(H(C)),
where H(C) is the time to execute the Hungarian algorithm
on a bipartite graph with at most C nodes.

Other Optimization. To further reduce the memory cost to
store the tabular Q-function and relieve the sparsity problem
of the Q-value table, we propose quantization techniques
for the RQL. The main idea is to partition both the s-
tate space and the action space into piles, and the index
of each pile represents the new state or action. Intuitively,
states or actions sharing similar values have similar results
as the values can be considered as continuous numbers, and
they can be compressed by quantization. Formally, let the
quantized parameters of states and actions be qs ∈ J1, CK
and qa ∈ J1, lmax − lminK. Suppose s = (nl, nr), then the
quantized Q-value is Qq = (((nl

qs
, nr

qs
), l

qa
), l′

qa
). Suppose

lq = argmaxl′ Qq(((nl, nr), l), l
′), then the greedy action is

updated by lgreedy = randint(lqqa, (lq + 1)qa − 1) where

TABLE II: Parameter settings

Parameter Setting
Cardinality 1K, 2.5K, 5K, 7.5K, 10K

ap(Power distribution) 1.1, 1.25, 1.5, 1.75, 2
al(Lomax distribution) 2, 3, 5, 10, 50
σn(Normal distribution) 0.05, 0.1, 0.15, 0.2, 0.3

α (Sparsity) 0.1, 0.3, 0.5, 0.7, 0.9
dUB (Upper bound of duration) 30, 60, 120, 300, 600

σd (Variance of duration) 10, 20, 30, 40, 50
Scalability |L| = |R| = 10K, 50K, 100K

randint(a, b) is the uniformly random function to get an
integer from [a, b]. By applying the quantized techniques, the
space complexity of RQL would be O((C

qs
)2(lmax−lmin

qa
)2),

which is 1
(qsqa)2

of the original RQL.

VI. EXPERIMENTAL STUDY

This section presents the experimental evaluations of our
RQL algorithm on both synthetic and real datasets.

A. Experimental Setup

Datasets. We use both synthetic and real datasets.
The real dataset is collected by Didi Chuxing [29] in

Chengdu, China, which is published through its GAIA ini-
tiative [30]. Each tuple is a taxi calling request consisting
of a pickup latitude/longitude, a pickup timestamp, a drop
off latitude/longitude and a drop off timestamp. We take the
pickup time as the arriving time of each node on the left side
and the drop off time as that on the right side. To calculatE the
edge weight between each node pair, we estimate the expected
revenue of each request by dr − dc where dr is the estimated
fare of the trip and dc is the estimated cost for the driver to
pick up the passenger. If dc ≥ dr, the edge will be removed.
The dataset does not contain the deadline of each node, so we
manually generate their durations.

For the synthetic dataset, we vary the distributions of edge
weights, the sparsity of graph, the duration of nodes, the
arriving density of nodes, the cardinality and the scalability.
We consider three distributions, namely power distribution,
lomax distribution and normal distribution, for generating the
weights since they are widely used in real-world applications,
e.g., the income in a market economy usually follows the
power distribution. The parameter settings are motivated by
[31], [32] and are shown in Table II.

Compared Methods. We compared our RQL algorithm
with the following algorithms.

• Greedy algorithm (GR). We use the greedy algorithm
in Algorithm 1. Although the Greedy algorithm may
perform arbitrarily bad in the worst case, it is still
competitive in average efficiency [33].

• TGOA. It is the state-of-the-art online matching algorithm
for the two-sided online maximum bipartite matching
problem [4]. We modify the algorithm to our DBGM
problem.

• Fixed-batch algorithm (FB). The algorithm uses batches
with a constant size. In the evaluation, we try different

1.1 1.25 1.5 1.75 2

a
p

3400

3600

3800

4000

4200

4400

4600

4800

5000
U

ti
lit

y

OPT

GR

TGOA

FB

QL

RQL

(a) Utility of varying ap

2 3 5 10 50

a
l

0

1

2

3

4

5

6

U
ti
lit

y

104

OPT

GR

TGOA

FB

QL

RQL

(b) Utility of varying al

0.05 0.1 0.15 0.2 0.3

n

2000

2500

3000

3500

4000

4500

5000

U
ti
lit

y

OPT

GR

TGOA

FB

QL

RQL

(c) Utility of varying σn

0.1 0.3 0.5 0.7 0.9
2500

3000

3500

4000

4500

5000

U
ti
lit

y

OPT

GR

TGOA

FB

QL

RQL

(d) Utility of varying α

1.1 1.25 1.5 1.75 2

a
p

2000

2020

2040

2060

2080

2100

2120

2140

T
im

e
(m

s
)

GR

FB

QL

RQL

(e) Time of varying ap

2 3 5 10 50

a
l

2000

2020

2040

2060

2080

2100

2120

2140

T
im

e
(m

s
)

GR

FB

QL

RQL

(f) Time of varying al

0.05 0.1 0.15 0.2 0.3

n

2050

2060

2070

2080

2090

2100

2110

2120

T
im

e
(m

s
)

GR

FB

QL

RQL

(g) Time of varying σn

0.1 0.3 0.5 0.7 0.9
2000

2050

2100

2150

2200

T
im

e
(m

s
)

GR

FB

QL

RQL

(h) Time of varying α

1.1 1.25 1.5 1.75 2

a
p

1.2

1.4

1.6

1.8

2

2.2

2.4

M
e

m
o

ry
(K

B
)

104

GR

TGOA

FB

QL

RQL

(i) Memory of varying ap

2 3 5 10 50

a
l

1.2

1.4

1.6

1.8

2

2.2

2.4

M
e

m
o

ry
(K

B
)

104

GR

TGOA

FB

QL

RQL

(j) Memory of varying al

0.05 0.1 0.15 0.2 0.3

n

1.2

1.4

1.6

1.8

2

2.2

2.4

M
e

m
o

ry
(K

B
)

104

GR

TGOA

FB

QL

RQL

(k) Memory of varying σn

0.1 0.3 0.5 0.7 0.9
1.2

1.4

1.6

1.8

2

2.2

2.4

M
e

m
o

ry
(K

B
)

104

GR

TGOA

FB

QL

RQL

(l) Memory of varying α

Fig. 4: Results on varying the distribution of edge weights and the sparsity

sizes and pick the best one for each parameter setting. The
in-batch matching algorithm is the Hungarian algorithm.

• Q-learning (QL). This is the original Q-learning algo-
rithm [22] without the restriction principle and other
optimization techniques in Sec. V-C.

Metrics and Implementation. All the algorithms are eval-
uated in terms of total utility score, running time (measured
by milliseconds) and memory cost (measured by KB). We also
add the curve of the optimal solution on the figures of utility.
As TGOA always consumes 20x larger time than others, we
remove the curve of TGOA when comparing the running time.

All the algorithms are implemented by C++. The exper-
iments are conducted on Ubuntu 16.04 LTS with Intel(R)
Core(TM) i7-6700 3.4GHz CPU and 16GB main memory. The
experiments are repeated 10 times for each parameter setting
and the average is reported.

B. Experimental Results

We have experimented the algorithms in both the remain
model and the expiration model. Since the performances of the
algorithms in the remain model are better than in the expiration
model in most cases, we only present the results in the remain
model for brevity.

Impact of Edge Weights. This thread of experiments
investigate the impact of the distribution and the sparsity of
edge weights.

The first column of Fig. 4 presents the results of varying
the parameter ap of the power distribution. As ap grows
larger, the upper bound of weights becomes closer to 1. RQL
performs the best, followed by QL, FB and GR while TGOA
is the worst. The running time of all the algorithms is similar,
but RQL always runs faster than QL, as it skips the rounds
quickly when the batch size is smaller than lmin. The memory
cost of RQL is nearly twice of others because its Q-function
contains the current batch sizes as an extra slot, but the cost
is acceptable. The results on memory cost are the same for
the the three subsequent experiments on the impact of edge
weights, so we omit the corresponding descriptions.

The second column of Fig. 4 shows the results of lomax
distribution (also known as the long tail distribution). As al
increases, the curve of its probability density function becomes
more steep, leading to more small values, so the utility of each
method decreases exponentially. RQL still performs the best
among all the algorithms, followed by FB, QL and TGOA.
GR is the worst as there are more unexpected edges with very
large weights and it is better to leave the nodes waiting.

The third column of Fig. 4 shows the results of varying the
variance in the normal distribution, where the mean is set to
0.5. RQL outperforms the others but the gap between RQL and
QL is small. For the running time, RQL is still competitive,
as it is faster than QL on all cases.

The final column of Fig. 4 shows the results of varying

30 60 120 300 600

d
UB

3000

3500

4000

4500

5000
U

ti
lit

y

OPT

GR

TGOA

FB

QL

RQL

(a) Utility of varying dUB (both sides)

30 60 120 300 600

d
UB

3000

3500

4000

4500

5000

U
ti
lit

y

OPT

GR

TGOA

FB

QL

RQL

(b) Utility of varying dUB (one side)

10 20 30 40 50

d

3400

3600

3800

4000

4200

4400

4600

4800

5000

U
ti
lit

y

OPT

GR

TGOA

FB

QL

RQL

(c) Utility of varying σd

1 1.5 2 2.5 3
3000

3500

4000

4500

5000

U
ti
lit

y

OPT

GR

TGOA

FB

QL

RQL

(d) Utility of varying λ

30 60 120 300 600

d
UB

2000

2050

2100

2150

2200

2250

2300

2350

T
im

e
(m

s
)

GR

FB

QL

RQL

(e) Time of varying dUB (both sides)

30 60 120 300 600

d
UB

2000

2050

2100

2150

2200

2250

T
im

e
(m

s
)

GR

FB

QL

RQL

(f) Time of varying dUB (one side)

10 20 30 40 50

d

2060

2080

2100

2120

2140

2160

2180

T
im

e
(m

s
)

GR

FB

QL

RQL

(g) Time of varying σd

1 1.5 2 2.5 3
2050

2100

2150

2200

2250

T
im

e
(m

s
)

GR

FB

QL

RQL

(h) Time of varying λ

30 60 120 300 600

d
UB

1

2

3

4

5

6

7

M
e

m
o

ry
(K

B
)

104

GR

TGOA

FB

QL

RQL

(i) Memory of varying dUB (both sides)

30 60 120 300 600

d
UB

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

M
e

m
o

ry
(K

B
)

104

GR

TGOA

FB

QL

RQL

(j) Memory of varying dUB (one side)

10 20 30 40 50

d

1.2

1.4

1.6

1.8

2

2.2

2.4

M
e

m
o

ry
(K

B
)

104

GR

TGOA

FB

QL

RQL

(k) Memory of varying σd

1 1.5 2 2.5 3
1.2

1.4

1.6

1.8

2

2.2

2.4

M
e

m
o

ry
(K

B
)

104

GR

TGOA

FB

QL

RQL

(l) Memory of varying λ

Fig. 5: Results on varying the duration and arriving density

different sparsity of the graph. The parameter α means that
when we generate an edge, it has a probability of α that we
remove it from the graph. When the graph grows denser, the
utility gets higher. We could observe that RQL beats other
methods both for utility and running time.

Impact of Duration. This series of experiments study the
impact of durations of the nodes.

The first column of Fig. 5 shows the results of varying the
upper bound of duration dUB of nodes from both sides. The
durations are sampled uniformly while the lower bound is set
to 10. To our surprise, the utility only increases slightly with
the increase of duration. It indicates that waiting for too long
may not result in a much higher revenue. Also, the advantage
of RQL is not obvious over others, and it is even outperformed
by FB in the last case, possibly because the action space is
too large when the duration is 600, which makes the algorithm
difficult to converge. The running time also increases with the
duration and RQL is still fast. However, for the memory cost,
it increases with the duration, because as lmax grows larger,
the Q-value table will consume more space.

The second column of Fig. 5 shows the results of varying
dUB of nodes from one side. The curve is similar to the last
one, which means that the upper bound of duration does not
change the performance greatly. Similar results hold for the
running time. For the memory, the cost of RQL does not
increase in the last two cases because the tuned value of lmax

does not significantly increase.
The third column of Fig. 5 shows the results when we

sample the duration from a truncated normal distribution with
the variance from 10 to 50. The utility does not change much
as the variance increases. RQL performs the best, followed
by FB, QL, GR and TGOA. The results on running time and
memory are similar as before.

Impact of Arriving Density. The arriving density of nodes
is decided by a Poisson distribution with the parameter λ. The
final column of Fig. 5 presents the results of varying λ. As
λ increases, the utility also grows. The advantage of RQL is
more notable with a larger λ. The results on running time and
memory cost remain similar.

Impact of Cardinality. As nodes from the left side and the
right side are symmetrical in the synthetic dataset, we only
vary the size of |R| from 1K to 10K while |L| is set to 5K.
The purpose is to show the results when the arriving densities
of left and right sides are unbalanced. The first column in
Fig. 6 shows the results. When the nodes of both sides are
balanced (i.e., |R| = 5000) RQL performs the best, but in
unbalanced cases, the advantage of RQL is not obvious. The
possible reason is that in the unbalance cases, the number
of nodes from one side is oversized, bringing more than
enough candidates to the other side. Thus it is very likely to
encounter the optimal choice even with the greedy algorithm.
For the running time, all the algorithms perform similarly.

1000 2500 5000 7500 10000

|R|

0

2000

4000

6000

8000

10000
U

ti
lit

y

OPT

GR

TGOA

FB

QL

RQL

(a) Utility of varying |R|

1K 5K 10K 50K 100K

|L|

0

2

4

6

8

10

U
ti
lit

y

104

OPT

GR

TGOA

FB

QL

RQL

(b) Utility of varying scalability

30 60 120 300 600

d
UB

230

240

250

260

270

280

290

300

310

U
ti
lit

y

OPT

GR

TGOA

FB

QL

RQL

(c) Utility of real data varying dUB (both
sides)

30 60 120 300 600

d
UB

220

240

260

280

300

320

U
ti
lit

y

OPT

GR

TGOA

FB

QL

RQL

(d) Utility of real data varying dUB (one
side)

1000 2500 5000 7500 10000

|R|

0

0.5

1

1.5

2

2.5

T
im

e
(m

s
)

104

GR

FB

QL

RQL

(e) Time of varying |R|

1K5K10K 50K 100K

|L|

0

1

2

3

4

5

T
im

e
(m

s
)

104

GR

FB

QL

RQL

(f) Time of varying scalability

30 60 120 300 600

d
UB

0

2000

4000

6000

8000

10000

12000

14000

T
im

e
(m

s
)

GR

FB

QL

RQL

(g) Time of real data varying dUB (both
sides)

30 60 120 300 600

d
UB

1800

1850

1900

1950

2000

2050

2100

2150

2200

T
im

e
(m

s
)

GR

FB

QL

RQL

(h) Time of real data varying dUB (one
side)

1000 2500 5000 7500 10000

|R|

1.2

1.4

1.6

1.8

2

2.2

2.4

M
e

m
o

ry
(K

B
)

104

GR

TGOA

FB

QL

RQL

(i) Memory of varying |R|

1K5K10K 50K 100K

|L|

1.2

1.4

1.6

1.8

2

2.2

2.4

M
e

m
o

ry
(K

B
)

104

GR

TGOA

FB

QL

RQL

(j) Memory of varying scalability

30 60 120 300 600

d
UB

1.2

1.4

1.6

1.8

2

2.2

2.4

M
e

m
o

ry
(K

B
)

104

GR

TGOA

FB

QL

RQL

(k) Memory of real data varying dUB (both
sides)

30 60 120 300 600

d
UB

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

M
e

m
o

ry
(K

B
)

104

GR

TGOA

FB

QL

RQL

(l) Memory of real data varying dUB (one
side)

Fig. 6: Results on cardinality, scalability and real dataset

The balanced case consumes the least time, because in the
unbalanced cases, all the algorithms need a waiting pool to
store the nodes from the oversized side. The memory stays
unchanged as the waiting pool does not consume much space,
but the insertion and deletion operations will consume time.

Scalability. The the second column of Fig. 6 shows the
scalability test of RQL. Due to the limitations on the time
complexity for OPT and TGOA, we only plot the values of
them for the first three cases. The utility increases linearly
and RQL outperforms all the baselines. The running time also
grows linearly, and the memory costs of all the algorithms
only increase to a small extent, as they are all designed for
data streams, and the expansion of data scale will not change
the memory cost much.

Performance on Real Datasets. The third column of Fig. 6
presents the results of varying dUB of nodes from both sides
on the real dataset. The utility is similar to the first column of
Fig. 5, but the advantage of RQL is not notable. The running
time of FB grows the fastest, as the arriving frequency of real
data varies a lot and FB has to maintain a waiting pool for a
fixed time even when nodes arrive frequently. Consequently,
the Hungarian algorithm is conducted on too many nodes.

The final column of Fig. 6 shows the results of varying
dUB of nodes from one side on the real dataset. If only the

nodes from one side wait longer, the waiting pool will not
be too crowded and the memory consuming problem of FB
vanishes. The performance of RQL on real data is not as good
as that on synthetic data. The reason is that the synthetic data
are generated by stable distributions and RQL can learn some
regular patterns. But for real data, the regular pattern may
not be obvious, and there are also many external factors to
affect the distributions. Particularly, the real data have spatial
and temporal features but RQL does not make use of them
as RQL is intended for general bipartite matching rather than
optimized for spatial matching.

Impact of Quantization. We study the effectiveness of
quantization on the most space consuming parameter setting,
i.e., the setting varying the upper bound of duration on both
sides and where qs = 5 and qa = 3. The results are shown
in Fig. 7, where the quantized RQL is denoted by RQL-q.
In Fig. 7a, we observe that RQL-q achieves the same utility
score as RQL, it even outperforms RQL in some cases, since
a more compact representation of Q-value may relieve the
sparsity problem and make the convergence faster. In Fig. 7b,
we find that the memory cost of RQL-q remains stable, at
about 15MB increase of duration, while that of RQL keeps
mounting, which proves that applying quantization to reduce
the memory cost is effective.

0 30 60 120 300 600

d
UB

0

1

2

3

4

5
U

ti
lit

y
RQL

RQL-q

(a) Utility comparison

0 30 60 120 300 600

d
UB

0

1

2

3

4

5

6

7

M
e

m
o

ry
(K

B
)

104

RQL

RQL-q

(b) Memory comparison

Fig. 7: Effect of quantized techniques

Summary of Experimental Results. In terms of utility
scores, RQL is the best in most cases both on real and
synthetic datasets. For the running time, all the algorithms
except TGOA perform similarly, but RQL is generally faster
than QL. However, the memory cost of RQL is about twice
as that of the others. By applying quantization, the memory
of RQL can be reduced without affecting the utility score.

VII. CONCLUSION

In this work, we propose a new online bipartite match-
ing problem, the dynamic bipartite graph matching (DBGM)
problem, which is better aligned with emerging real-world
applications. On observing that most existing algorithms make
real-time matching decisions which limits their performance
and practicability, we propose a novel adaptive batch-based
framework to solve the DBGM problem. We prove that the
adaptive batch-based framework guarantees a competitive ratio
of 1

C−1 in the adversarial model. On basis of the frame-
work, we devise Restricted Q-learning (RQL), a reinforcement
learning based algorithm that yields a near optimal batch-
splitting strategy. We also propose optimization techniques to
reduce the search space and the memory cost of our algorithm.
Extensive experiments on both real and synthetic datasets
validate the effectiveness and efficiency of our algorithm.

ACKNOWLEDGMENT

We are grateful to anonymous reviewers for their construc-
tive comments. Yansheng Wang, Yongxin Tong, Ke Xu, and
Weifeng Lv’s works are partially supported by National Sci-
ence Foundation of China (NSFC) under Grant No. 61822201,
U1811463, 61532004, the Science and Technology Major
Project of Beijing under Grant No. Z171100005117001, and
Didi Gaia Collaborative Research Funds for Young Scholars.
Cheng Long’s work is partially supported by NTU SUG
M4082302.020. Yongxin Tong is the corresponding author in
this paper.

REFERENCES

[1] R. M. Karp, U. V. Vazirani, and V. V. Vazirani, “An optimal algorithm
for on-line bipartite matching,” in STOC, 1990, pp. 352–358.

[2] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani, “Adwords and
generalized online matching,” Journal of the ACM (JACM), vol. 54,
no. 5, p. 22, 2007.

[3] Z. Huang, N. Kang, Z. G. Tang, X. Wu, Y. Zhang, and X. Zhu, “How
to match when all vertices arrive online,” in STOC, 2018, pp. 17–29.

[4] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen, “Online mobile micro-
task allocation in spatial crowdsourcing,” in ICDE, 2016, pp. 49–60.

[5] H. Ting and X. Xiang, “Near optimal algorithms for online maximum
edge-weighted b-matching and two-sided vertex-weighted b-matching,”
Theor. Comput. Sci., vol. 607, pp. 247–256, 2015.

[6] Y. Wang and S. C. Wong, “Two-sided online bipartite matching and
vertex cover: Beating the greedy algorithm,” in ICALP, 2015, pp. 1070–
1081.

[7] Y. Tong, L. Wang, Z. Zhou, B. Ding, L. Chen, J. Ye, and K. Xu, “Flexible
online task assignment in real-time spatial data,” PVLDB, vol. 10, no. 11,
pp. 1334–1345, 2017.

[8] T. Song, Y. Tong, L. Wang, J. She, B. Yao, L. Chen, and K. Xu,
“Trichromatic online matching in real-time spatial crowdsourcing,” in
ICDE, 2017, pp. 1009–1020.

[9] Y. Zeng, Y. Tong, L. Chen, and Z. Zhou, “Latency-oriented task
completion via spatial crowdsourcing,” in ICDE, 2018, pp. 317–328.

[10] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[11] M. L. Littman, “Algorithms for sequential decision making,” Ph.D.
dissertation, 1996.

[12] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[13] R. S. Sutton and A. G. Barto, Reinforcement learning - an introduction,
ser. Adaptive computation and machine learning. MIT Press, 1998.

[14] G. Goel and A. Mehta, “Online budgeted matching in random input
models with applications to adwords,” in SODA. Society for Industrial
and Applied Mathematics, 2008, pp. 982–991.

[15] J. Feldman, A. Mehta, V. S. Mirrokni, and S. Muthukrishnan, “Online
stochastic matching: Beating 1-1/e,” in FOCS, 2009, pp. 117–126.

[16] B. Brubach, K. A. Sankararaman, A. Srinivasan, and P. Xu, “New
algorithms, better bounds, and a novel model for online stochastic
matching,” in ESA, 2016, pp. 24:1–24:16.

[17] J. P. Dickerson, K. A. Sankararaman, A. Srinivasan, and P. Xu, “Assign-
ing tasks to workers based on historical data: Online task assignment
with two-sided arrivals,” in AAMAS, 2018, pp. 318–326.

[18] Z. Huang, Z. G. Tang, X. Wu, and Y. Zhang, “Online vertex-weighted
bipartite matching: Beating 1-1/e with random arrivals,” in ICALP, 2018,
pp. 79:1–79:14.

[19] R. I. Brafman and M. Tennenholtz, “R-MAX - A general polynomial
time algorithm for near-optimal reinforcement learning,” Journal of
Machine Learning Research, vol. 3, pp. 213–231, 2002.

[20] M. J. Kearns and S. P. Singh, “Near-optimal reinforcement learning in
polynomial time,” Machine Learning, vol. 49, no. 2-3, pp. 209–232,
2002.

[21] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in NIPS, 2000, pp. 1057–1063.

[22] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[23] R. Bellman, Dynamic programming. Courier Corporation, 2013.
[24] W. Chen, Y. Wang, and Y. Yuan, “Combinatorial multi-armed bandit:

General framework and applications,” in ICML, 2013, pp. 151–159.
[25] E. Curry et al., “Adaptive task assignment in spatial crowdsourcing,”

Ph.D. dissertation, 2016.
[26] M. Z. Spivey and W. B. Powell, “The dynamic assignment problem,”

Transportation Science, vol. 38, no. 4, pp. 399–419, 2004.
[27] D. Gao, Y. Tong, J. She, T. Song, L. Chen, and K. Xu, “Top-k team

recommendation and its variants in spatial crowdsourcing,” Data Science
and Engineering, vol. 2, no. 2, pp. 136–150, 2017.

[28] Y. Tong, L. Chen, Z. Zhou, H. V. Jagadish, L. Shou, and W. Lv,
“SLADE: A smart large-scale task decomposer in crowdsourcing,” IEEE
Transactions on Knowledge and Data Engineering, vol. 30, no. 8, pp.
1588–1601, 2018.

[29] “Didi chuxing,” https://www.didichuxing.com/.
[30] “Gaia,” https://outreach.didichuxing.com/research/opendata/.
[31] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye, “Dynamic pricing

in spatial crowdsourcing: A matching-based approach,” in SIGMOD,
2018, pp. 773–788.

[32] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu, “A unified
approach to route planning for shared mobility,” PVLDB, vol. 11, no. 11,
pp. 1633–1646, 2018.

[33] Y. Tong, J. She, B. Ding, L. Chen, T. Wo, and K. Xu, “Online minimum
matching in real-time spatial data: Experiments and analysis,” PVLDB,
vol. 9, no. 12, pp. 1053–1064, 2016.

