
1

On Nearby-Fit Spatial Keyword Queries
Victor Junqiu Wei, Raymond Chi-Wing Wong, Cheng Long, and Pan Hui

Abstract—Geo-textual data is ubiquitous nowadays, where each object has a location and is associated with some keywords. Many
types of queries based on geo-textual data, termed as spatial keyword queries, have been proposed, and are to find optimal object(s) in
terms of both its (their) location(s) and keywords. In this paper, we propose a new type of query called nearby-fit spatial keyword query
(NSKQ), where an optimal object is defined based not only on the location and the keywords of the object itself, but also on those of
the objects nearby. For example, in an application of finding a hotel, not only the location of a hotel but also the objects near the hotel
(e.g., shopping malls, restaurants and bus stops nearby) might need to be taken into consideration. The query is proved to be NP-hard,
and in order to perform the query efficiently, we developed two approximate algorithms with small constant approximation factors equal
to 1.155 and 1.79. We conducted extensive experiments based on both real and synthetic datasets, which verified our algorithms.

Index Terms—spatial keyword queries, proximity queries, spatial database, location-based services

F

1 INTRODUCTION

Nowadays, geo-textual data which refers to data with both
spatial and textual information is ubiquitous. Some exam-
ples of geo-textual data include the spatial points of interest
with textual description, geo-tagged web objects (e.g., web-
pages and photos at Flicker), and also geo-social networking
data (e.g., users of FourSquare have their check-in histories,
which are spatial, and their profiles, which are textual). The
geo-textual data could be represented by a set of spatial
objects each of which is associated with a set of (textual)
keywords.

For example, Figure 1 shows our motivating example
with a piece of geo-textual data. There are five types of
objects distinguished by shapes, where each rectangular
object is associated with keyword “hotel” meaning that it
is a hotel, and similar rules apply to other objects. Note that
each round object contains two keywords (i.e., “hotel” and
“café”). Some distances are shown in the figure. Note that
the distance between two objects is the distance between
their centers.

Consider the following problem based on the geo-textual
data presented in Figure 1.

A hotel-finding problem: Tom is going
to attend an international conference and
would like to find a hotel such that (1)
the location of the hotel is near to the

• V.J. Wei is with Noah’s Ark Lab of Huawei Technologies. Major work was
done when V.J.Wei was a Phd Student in the Department of Computer
Science and Technology, Hong Kong University of Science and Technology.
E-mail: wei.junqiu1@huawei.com

• R.C. Wong is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Hong Kong.
E-mail: raywong@cse.ust.hk

• C. Long is with School of Computer Science and Engineering, Nanyang
Technological University. Partial work was done when C. Long was a
lecturer at Queen’s University Belfast.
E-mail: c.long@ntu.edu.sg

• P. Hui is with the Department of Computer Science at the University of
Helsinki and the Department of Computer Science and Engineering, Hong
Kong University of Science and Technology, Hong Kong.
E-mail: panhui@cse.ust.hk

Conference Venue

H3

H2

H1
P2

P1

C2

S1
S2

Hotel

Convenience Store

Pub

Café

Hotel, Café

d(,) CV

3.6

1.9

2.7

2

3.8

2.8

3

0.8

H1

P1
S1

H2
P2

C2
S2

d(,)

1.7

H2

P2

d(,)

1.6

0.9

H1
P1
S1

Distances

H3

Fig. 1: A motivating example (CV stands for ”Conference
Venue”)
conference venue (marked by the black dot
in the figure) and (2) there are at least a
convenience store, a café and a pub nearby
the hotel.

It is easy to see that H2 is the best selection for Tom since
it is surrounded by a pub (P2), a café (C2) and a convenience
store (S2) and is in the vicinity of the conference venue.
Besides, H1 and H3 are bad choices since there are nothing
in the vicinity of H3 and H1 is far away from the conference
venue.

Although many different types of queries based on geo-
textual data which are termed as spatial keyword queries
have been proposed in the literature, none of them could
be used to capture the above hotel-finding problem well.
We explain in detail by classifying these queries into four
categories. The first category is the spatial keyword kNN query
(SKkNNQ) [1], [2], [3], [4] which takes a query location
and some query keywords as inputs and returns k closest
objects to the query location among all objects each of which
covers all query keywords. One attempt of using SK1NNQ
to solve the problem is to specify the query location as the
conference venue and the query keyword as “hotel”, and
the closest hotel to the conference venue, i.e., H3, would
be returned. The problem with this attempt is that it only
captures the first criterion of the hotel-finding problem, but
not the second one. An alternative attempt is to specify

2

the query location as the conference venue and the query
keywords as “hotel”, “convenience store”, “café” and “pub”,
and no objects would be returned in this case since there
exists no object which covers all these keywords. The draw-
back of this attempt is that it requires that all keywords are
covered by a single object which is often not possible when
there are multiple query keywords.

The second category is the collective spatial keyword query
(CoSKQ) [5], [6], [7] which takes a query location and
some query keywords as inputs and returns a set of objects
such that the objects in the set collectively cover the query
keywords and the distance from the set to the query location
is the smallest. One attempt of using the CoSKQ query
to solve the problem is to specify the query location as
the conference venue and the query keywords as “hotel”,
“convenience store”, “café” and “pub”. No matter which
distance function of CoSKQ is adopted and no matter what
the parameters of CoSKQ are equal to, {H1, S1, P1}would be
returned by a CoSKQ query, i.e., the best hotel H2 is missed
(see [8] for the detailed explanation). Thus, CoSKQ fails to
capture the hotel-finding problem, and the key reason is
that CoSKQ is not aware of the special role of ‘hotel’ in this
problem which is Tom’s target and the hotel in its solution
could be far away from the conference venue as shown in
the example.

The third category is m Closest Keyword query (mCK) [9],
[10], [11]. The mCK query takes a set of m keywords as
input and finds a set of m objects with the smallest diameter
that cover the m keywords specified in the query where the
diameter of a set is equal to the maximum pairwise distance
between any two objects in this set. One attempt of using
mCK to solve the problem is to specify the query keywords
as “hotel”, “convenience store”, “café” and “pub”, and H1
(together with S1 and P1) would be returned. But, H1 is far
away from the conference venue.

The fourth category includes miscellaneous spatial key-
word queries [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37], [38], [39], [40], [41] whose objectives
are very different from that of the hotel-finding problem.
Details could be found in Section 2.2.

Motivated by this, in this paper, we formalize the hotel-
finding problem as a query called nearby-fit spatial keyword
query (NSKQ) which has its query input q consisting of
three parts: (1) a location q.λ called the query location, (2)
a keyword q.t called the target keyword and (3) a set q.ψ
of keywords called nearby keywords and returns the object
which has the smallest cost among all objects covering the
target keyword, where the cost of an object is defined to be
a linear combination of two parts: (1) the distance from the
query location to the object and (2) the smallest distance from
a set of objects collectively covering the nearby keywords
to the object, where the distance from a set of objects to
an object can be computed based on the Diameter distance
function [6]. For example, the hotel-finding problem could
be expressed by an NSKQ where the query location q.λ
is the conference venue, the target keyword q.t is “hotel”,
and the set q.ψ of nearby keywords is {“convenience store”,
“café”, “pub”}. As could be verified, the answer to this
NSKQ instance is H2.

The key feature of NSKQ is that it evaluates each object

not only by its own location and its keyword(s) but also
its nearby objects. In other words, it accepts two types
of keywords, namely a target keyword and some nearby
keywords, which are used in two different ways. The target
keyword is used to express users’ requirements of what
object to be found, called the target object, while nearby
keywords are used to express users’ requirements of what
objects are preferred to be located nearby the target object.
As a benefit of this distinguishable feature, NSKQ could be
used to capture many queries based on geo-textual data
where users’ requirements/needs could be expressed in
a fine-grained way. There are many other applications of
NSKQ. We list two as follows.
• house-finding problem: it finds a house such that

the house is near the work office and there are at least
a restaurant, a supermarket and a swimming pool near
the house, where the query location is the work office,
the target keyword is ”house” and nearby keywords are
”restaurant”, ”supermarket” and ”swimming pool”.

• geo-location based game: in many geo-location
based games such as Pokemon Go and InGress, each
spatial object has some features which are essentially
keywords (e.g. in Pokemon Go, each location is asso-
ciated with some monsters). Consider Pokemon Go.
In this game, each player collects monsters in some
locations and then gathers at the so-called ‘assembly
place’ (i.e., a POI) to play the monsters with each other.
Suppose that Tom would like to find an assembly place
to play games with other players where there are some
desired monsters nearby so that he could by the way
capture them. This query could be expressed in NSKQ
where the query location is Tom’s current location and
the target keyword is ‘assembly place’ and the nearby
keywords are the names of his desired monsters.

In many applications such as geo-location based game,
one strong requirement is the real-time response. Unfortu-
nately, NSKQ problem turns out to be NP-hard. A straight-
forward method for solving NSKQ is to compute the cost
of each object covering the target keyword and return the
one with the smallest cost. However, the problem of com-
puting the cost of an object is intractable since the problem
of computing the smallest distance from a set of objects
covering the set of nearby keywords to a location is NP-
hard [5], [6]. Therefore, in the case that there exist many
objects covering the target keyword, the above algorithm
is prohibitively expensive. An alternative idea is to design
a branch-and-bound algorithm (like the algorithms in [5],
[6] originally designed for other spatial queries) to find an
optimal solution of the NSKQ problem. Still, as will be
shown in our experiments, they are not efficient enough.
Therefore, in this paper, we aim at developing fast approx-
imate algorithms for NSKQ. Specifically, we developed two
approximate algorithms, namely Appro1 and Appro2, for
NSKQ. Appro1 provides a near-to-optimal approximation
guarantee (i.e., 1.155-factor) and Appro2 provides a slightly
larger approximation factor (i.e., 1.79-factor) but with a
better time complexity. Besides, our experiments show that
they return near-to-optimal solutions in practice.

In summary, our main contributions are as follows.
Firstly, we propose a new query called nearby-fit spatial
keyword query (NSKQ) which has better expressiveness

3

than existing spatial keyword queries. Secondly, we prove
that the NSKQ problem is NP-hard, and to solve it ef-
ficiently, we developed two approximate algorithms, both
with small constant approximation factors. Thirdly, we con-
ducted extensive experiments based on both real and syn-
thetic datasets and verified the efficiency and the effective-
ness of the approximate algorithms.

The rest of the paper is organized as follows. Section 2
formulates the NSKQ problem and reviews the related
work, and Section 3 presents the two approximate algo-
rithms for NSKQ. Section 4 gives the empirical study and
Section 5 concludes the paper.

2 PROBLEM DEFINITION AND RELATED WORK

2.1 Problem Definition
Let D be a set of spatial objects each of which is associated
with a set of keywords. Let o be an object in D. We denote by
o.λ the location of o and o.ψ the set of keywords associated
with o. Given a set O of objects and a set ψ of keywords, O is
said to cover ψ if for each keyword in ψ, there is an object in
O which contains the keyword, i.e., ψ ⊆ (∪o∈Oo.ψ). Given
two objects o1 and o2 in D, we simply denote the distance
between o1 and o2 by d(o1, o2).

Given an object o and a set O of objects in D, we define
Dist(o, O) to be the distance from a set O of objects to an
object o. In this paper, we adopt the Diameter function since
this function is used in a lot of related studies like [5],
[6], [11], [36], [37]. Specifically, given an object o and a set
O ⊆ D of objects, Dist(o, O) denotes the diameter, i.e., the
maximum pairwise distance, of the set O ∪ {o}, i.e.,

Dist(o, O) = max
o1,o2∈O∪{o}

d(o1, o2) (1)

Problem statement. Given a query q which consists of a
location q.λ called the query location, a keyword q.t called
the target keyword, and a set q.ψ of keywords called the nearby
keywords, the nearby-fit spatial keyword query (NSKQ) is to
find the object in D which has the smallest cost wrt q among
all objects containing the target keyword, where the cost of
object o wrt q, denoted by Cost(o|q), is defined to be a linear
combination of two components: (1) the distance from the
query location to o (i.e., d(q, o)) and (2) the smallest distance
from a set of objects covering the set of nearby keywords to
o (i.e., min{Dist(o, O)|O ⊆ D, O covers q.ψ}), i.e.,

Cost(o|q) = α · d(q, o)
+(1−α) ·min{Dist(o, O)|O ⊆ D, O covers q.ψ} (2)

where α ∈ [0, 1] is a tuning parameter.
Besides, we safely assume that q.t 6∈ q.ψ (since otherwise,

we consider another query q′ with q′.λ = q.λ, q′.t = q.t
and q′.ψ = q.ψ\{q.t}, which is equivalent to q). We also
assume that no object in D contains all nearby keywords
and the target keyword (since otherwise, the solution could
be found easily by scanning all objects in D and checking
whether each object contains all nearby keywords and the
target keyword).
Intractability. Unfortunately, NSKQ is NP-hard. We present
this result in the following lemma.

Lemma 1. NSKQ is NP-hard.

Proof. We first give the decision problem of the NSKQ
problem. Given a set D of spatial objects each of which
is associated with a set of keywords, a query q consisting

Fig. 2: An example of NSKQ

Obj o1 o2 o3 o4 o5 o6 o7 o8 o9

ψ a b c a b, c b, c a, c b, c c
TABLE 1: Keyword set of each object

of a query location q.λ, a target keyword q.t and a set q.ψ
of nearby keywords, and a non-negative real value r, the
problem is to determine whether there exists an object o ∈ D
such that Cost(o|q) is at most r.

We prove by transforming the CoSKQ problem [6] which
is known to be NP-hard to our NSKQ problem.

The decision problem of CoSKQ is given as follows.
Given a set D′ of spatial objects each of which is associated
with a set of keywords, a query q′ consisting of a query
location q′.λ and a set q′.ψ of query keywords, and a non-
negative real value r′, the problem is to determine whether
there exists a set of objects O ⊆ D′ such that O covers q′.ψ
and Dist(q′, O) is at most r′.

We then construct an NSKQ problem instance based on
a CoSKQ problem instance as follows. We create a dummy
keyword t which is different from any existing keyword of
an object in D′. We construct D as D′ ∪ {o′} where o′ is a
dummy object with o′.λ = q′.λ and o′.ψ = {t}. We construct
q where q.λ = q′.λ, q.t = t, and q.ψ = q′.ψ. We set r to r′. It
is easy to verify that the above construction could be done
in polynomial time.

It could be verified that the CoSKQ problem instance and
the constructed NSKQ problem instance are equivalent since
o′ is the only object in D covering the target keyword t and in
the NSKQ problem instance, Cost(o′|q) = α · d(q, o′) + (1−
α) ·min{Dist(o′, O)|O ⊆ D, O covers q.ψ} = α · 0 + (1− α) ·
min{Dist(q′, O)|O ⊆ D′, O covers q′.ψ}, which is the (1 −
α)Dist(·, ·) cost in the CoSKQ instance. �

Notations: In the following, we define some notations which
will be used later in the paper. An object op is said to be a
target object if it contains q.t. An object op is said to be the
optimal target object if (1) it is a target object and (2) it has the
smallest value of Cost(op|q) among all target objects (i.e.,
Cost(op|q) = min{Cost(o|q)|o is a target object}). Given a
set O of objects and a target object op, O is said to be a
nearby set of op if O covers q.ψ. Given a set O of objects
and a target object op, O is said to be the best nearby set of
op if (1) O is a nearby set of op and (2) it has the smallest
value of Dist(op, O) among all possible nearby sets of op
(i.e., Dist(op, O) = min{Dist(op, O′)|O′ is a nearby set of
op}). Given a target object o and its nearby set O, we define
Cost(o|q, O) to be α · d(q, o) + (1− α) · Dist(o, O).

Figure 2 shows an example of NSKQ. There are 9 objects
and 1 query q. The keyword set of each object is presented

4

in Table 1. In this example, q.t = c and q.ψ = {a, b}. o3 is the
optimal target object and {o1, o2} is the best nearby set of o3.

It is worth mentioning that although the original prob-
lem setting of NSKQ considers a single target keyword for
the ease of illustration, any algorithm originally designed
for handling a single target keyword could also handle the
case when an object to be returned covers multiple target
keywords (by replacing the operation of selecting objects
covering a single target keyword with the operation of
selecting objects covering multiple target keywords).

2.2 Related Work

Many types of queries have been proposed based on geo-
textual data, which we classify into four categories.

The first three categories are spatial keyword kNN query
(SKkNNQ) [1], [2], [3], [4], collective spatial keyword query
(CoSKQ) [5], [6], [7], [11] and m Closest Keyword query
(mCK) [9], [10], [11]. We refer the readers to Section 1 for
the details due to the limited space.

The fourth category includes some miscellaneous spatial
keyword queries, whose objectives are very different from
NSKQ, as explained below. The spatial keyword reverse top-
k query [12], [13], [14], [15] finds a set of objects whose spa-
tial keyword kNN query results include the query location.
The spatial keyword top-k query [16], [17], [18] is to take a
query location and a set of keywords as inputs and return
k objects with the greatest scores computed based on both
their locations and their relevance to the query keywords.
The continuous spatial keyword query [19], [20], [21] studies a
spatial keyword query based on moving objects. The spatial
keyword why-not query [22], [23] is a spatial keyword kNN
query enhanced with the feedback from users. The feedback
is given in the form of several desired objects which could
not be found in the initial output and the feedback is used to
refine the query processing to obtain a final satisfied output.
The spatial keyword query over data streams [24], [25], [26], [27],
[28], [29], [30] is under the steaming model where data is
continuously generated. The direction-aware spatial keyword
query [31] is a spatial keyword kNN query with the consider-
ation of the direction constraint. The spatial-textual similarity
join problem [32], [33], [34], [35] finds all “similar” pairs of
objects from a set (or two sets) of geo-tagged objects where
the similarity between two objects is computed based on the
spatial closeness and the textual similarity. The best keyword
cover search [36] assumes that each object has a location, a
set of keywords and a rating score, and finds a set O of
objects covering a set of query keywords with the greatest
score computed based on the diameter of this set and their
rating scores. SK-Cover [37] finds a set O of objects covering
a set of query keywords such that they have the smallest
(|O| − 1) ·maxo1,o2∈O d(o1, o2). In the clue-based spatio-textual
query [38], a query consists of (1) the category (or called the
target keyword in our paper) of the object op to be found and
(2) a number of clue objects, each of which contains a number
of keywords and its relative position w.r.t. op (represented
by the direction and the distance). It finds the object op with
the category specified in the query such that for each clue
object oc, there exists an object o in D, where oc.ψ ⊆ o.ψ
and oc.λ ≈ o.λ (note that oc.λ could be computed from
op.λ and the relative position information of oc given in

the query). This query is usually used when a user went to
visit the object op before but after a certain of time, s/he
would like to search for op again with a rough memory
about the information of some clue objects related to op (e.g.,
keywords and distance). Thus, this query requires the user
to provide the distance information (for clue objects) which
is not required by NSKQ. Rocha-Junior, etc. [40] proposed
the Spatial Preference Query (SPQ) which ranks each object
by the feature objects in its vicinity, where the feature object
is an object belonging to one of the user-specified categories.
Although each category could be treated as a keyword, there
are several other major differences between SPQ and NSKQ.
First, the vicinity of an object utilized in SPQ must be a
circle or a star-shaped graph both centered at the object (i.e.,
a fixed distribution/shape). Note that other nodes in the
star-shaped graph are nearest neighbors of the object in each
category. However, in NSKQ, there is no priori knowledge of
the distribution of the nearby objects of an object. Secondly,
the ranking function of SPQ is an aggregate function of the
ratings of the object’s feature objects. Thirdly, SPQ does not
have query location. But, in NSKQ, the objective function is
an aggregate distance function of the object and its nearby
objects. Thus, in this sense, SPQ and NSKQ have different
goals. Later, Li, etc. [39] proposed Location-Aware Group
Preference (LGP). LGP considered multiple users and ranks
each object by the the combination of the following two
components: 1. the sum of the distances between the object
and each user and 2. the sum of the distances between the
object and its nearest neighbors in each category. Again, the
vicinity adopted in LGP is a star-shaped graph centered at
the object with its nearest neighbors in each category as
other nodes. Due to the strong priori assumption of SPQ
and LPQ imposed on the vicinity, their techniques could not
be applied to NSKQ. [41] studies the spatial keyword query
problem in a setting where each object is associated with an
inherent cost (e.g., workers have monetary costs).

Many index structures have been developed for effi-
cient spatial keyword queries. Some examples include IR-
tree [16], bR-tree, IR2-tree [9] and I3 index [42]. Chen, etc. [43]
conducted a comprehensive empirical study on the existing
index structures of the spatial keyword query.

2.3 Adaptions of Algorithms for Existing Spatial Key-
word Queries

Although the existing spatial keyword queries are different
from NSKQ, the algorithms for some of these existing
queries could be adapted to solve NSKQ but they either
provide a not-that-good approximation factor (e.g., ≥ 2)
or has a high time complexity (e.g., worse than O(|D|2)).
Specifically, we explored the adaptions of the algorithms for
CoSKQ and mCK (specifically, the approximate algorithms
for CoSKQ and mCK since both problems are NP-hard
and the exact algorithms are not scalable) and show that
they could in fact provide some constant approximation
factors, which we would introduce next (we did not consider
the adaptions of the algorithms for other existing queries
since they cannot provide any reasonable approximation
guarantees).
Adaptions of the Existing Algorithms of CoSKQ. In the lit-
erature, three approximate algorithms have been developed

5

for CoSKQ, namely Cao-Appro1 [5], Cao-Appro2 [5] and Long-
Appro [6]. Let A be any of these three algorithms. We have
two options of adapting A for NSKQ.

Option 1. We adapt algorithm A for an NSKQ query q
with two steps. First, for each object o containing the target
keyword, we execute algorithm A for a CoSKQ query with
the query location as o.λ and the set of query keywords as
q.ψ and obtain a set O of objects that cover q.ψ. Second,
among all these o’s, we return the one with Cost(o|q, O)
the smallest where O is the corresponding set of objects
returned by algorithm A for the object o. Note that in this
adaption, algorithm A is executed |Dq.t| times where Dq.t
denotes the set containing all target objects.

The algorithms of adapting Cao-Appro1, Cao-Appro2
and Long-Appro with the above Option 1 are called Cao-
Appro1-Adapt1, Cao-Appro2-Adapt1, and Long-Appro-Adapt1,
respectively.

Option 2. According to [5], [6], during the process of
algorithm A for a CoSKQ query, many sets of objects that
cover the set of query keywords are constructed, and among
these sets, the one with smallest distance to the query
location is returned.

We adapt algorithm A for an NSKQ query q with two
steps. First, we execute algorithm A for a CoSKQ query with
the query location as q.λ and the set of query keywords
as q.ψ ∪ {q.t}, and during the execution process, whenever
a set O is constructed, we pick the nearest object o in O
from q.λ that covers the target keyword q.t (note that such
o always exist since q.t is a query keyword for the CoSKQ
query). Second, among all these o’s, we return the one with
Cost(o|q, O) the smallest, where O is the corresponding
set of objects. Note that in this adaption, algorithm A is
executed only once.

Similarly, the algorithms of adapting Cao-Appro1, Cao-
Appro2 and Long-Appro with the above Option 2 are
called Cao-Appro1-Adapt2, Cao-Appro2-Adapt2, and Long-
Appro-Adapt2, respectively.
Adaptions of the Existing Algorithms of mCK. In the
literature, two approximate algorithms have been developed
for mCK, namely SKEC [11] and SKEC+ [11]. Let A be
any of these two algorithms. According to [11], during the
process of algorithm A for an mCK query, many sets of
objects that cover the set of query keywords of the query
are constructed, and among these sets, the one with smallest
diameter is returned.

We adapt A for an NSKQ query q with two steps. First,
we execute algorithm A for an mCK query with the set of
query keywords as q.ψ ∪ {q.t}, and during the execution
process, whenever a set O is constructed, we pick the nearest
object o in O from q.λ that covers the target keyword q.t (note
that such o always exists since q.t is a query keyword for the
mCK query). Second, among all these o’s, we return the one
with Cost(o|q, O) the smallest, where O is the corresponding
set of objects. Note that in this adaption, algorithm A is
executed only once.

Similarly, the algorithms of adapting SKEC and SKEC+
are called SKEC-Adapt and SKEC+-Adapt, respectively. Since
SKEC and SKEC+ were originally designed for mCK which
has no query location, in SKEC-Adapt and SKEC+-Adapt,
we also provide a heuristic-based pruning method to make
them query-location-aware. This pruning method works as

a prelude of SKEC-Adapt and SKEC+-Adapt and it prunes
a large amount of objects outside the vicinity of the query
location. Specifically, the pruning method first executes Cao-
Appro2-Adapt2. Let o′ and O′ denote the target object and its
nearby set found by Cao-Appro2-Adapt2. Then, in the execu-
tion of SKEC-Adapt and SKEC+-Adapt, all objects whose dis-
tances to the query location are greater than C′ = Cost(o′ |q,O′)

min{α,1−α}
are omitted. The correctness of this pruning is based on the
following lemma.

Lemma 2. Consider any target object ot and any nearby set O
of ot. Cost(ot|q, O) > Cost(o′|q, O′) if the distance between an
object o and q is larger than C′ where o ∈ O ∪ {ot}.

Proof. For the sake of limited space, the proof could be
found in [8]. �

Thus, there is no need to consider any object o ∈ O∪{ot}
whose distance to q is larger than C′ since it gives a solution
worse than o′, where ot is an target object and O is a nearby
set of ot.

Although BKC [36] is a generalized version of mCK (i.e.,
BKC reduces to mCK when α = 1 in its objective function
and thus is NP-hard.), we do not consider the adaption
of the BKC algorithm to NSKQ since the only algorithm
proposed in [36] is an exact algorithm which is not scalable
(it takes more than 200s on a dataset with only 678,581 POIs
and 187 unique keywords when there are more than 6 query
keywords).
Summarization of the Adapted Algorithms. We analyze
the approximation factors and also time complexities of the
above adapted algorithms and present them in Table 2. We
refer the readers to [8] for the analysis. As mentioned before,
it is usually the case that an algorithm either provides a not-
that-good approximation factor (e.g., ≥ 2) or has a high time
complexity (e.g., worse than O(|D|2)).

In this paper, we develop two new algorithms, namely
Appro1 and Appro2 for NSKQ, which provide better trade-
offs between the approximation factor and the running time
compared with the aforementioned adapted algorithms.

3 PROCESSING NSKQ
As shown in Lemma 1, NSKQ is NP-hard. The running time
of any exact algorithm designed for NSKQ is large. In the
experimental results (to be shown later), we will show that
an adapted exact algorithm for NSKQ is very slow. Thus,
we propose two approximate algorithms for NSKQ, namely
Appro1 and Appro2, which are much more efficient, in Sec-
tion 3.1 and Section 3.2, respectively. We assume that an
indexing structure is built on the dataset and the indexing
structure supports the spatial keyword kNN query and the
spatial circular range query which finds all objects in a given
disk. The indexing structure could be but not limited to the
IR-tree [16] which supports the aforementioned queries.

3.1 Approximate Algorithm 1

In this section, we present an algorithm, Appro1, based
on a concept of “minimal covering disk”, which has its
approximate ratio of 1.155 and its time complexity of
O(|q.ψ|3 · |D| log |D|).

6

Algorithm Approx. Factor for NSKQ Time Complexity Small Approximate Factor (< 2)? Low Time Complexity
(Lower Than |D|2)?

Cao-Appro1-Adapt1 [5] 2 O(|q.ψ||D| log |D|) no yes
Cao-Appro2-Adapt1 [5] 2 O(|q.ψ||D|2 log |D|) no no
Long-Appro-Adapt1 [6] 1.73 O(|q.ψ||D|2 log |D|) yes no
Cao-Appro1-Adapt2 [5] max{2, 2

α − 1} (at least 2) O(|q.ψ| log |D|) no yes
Cao-Appro2-Adapt2 [5] 2 O(|q.ψ||D| log |D|) no yes
Long-Appro-Adapt2 [6] max{ 2−α

1−α , 2−α
α } (at least 2) O(|q.ψ||D| log |D|) no yes

SKEC-Adapt [11] 1.155 O(|D|4) yes no
SKEC+-Adapt [11] 1.155+ε O(|q.ψ||D|2 log |D| log 1

ε) yes no
Appro1 (i.e., our algorithm) 1.155 O(|q.ψ|3 · |D| log |D|) yes yes
Appro2 (i.e., our algorithm) 1.79 O(|q.ψ||D| log |D|+ |D| log2 |D|) yes yes

TABLE 2: Comparison of Algorithms where |D| is large and |q.ψ| is small in practice

The major idea of Appro1 is described as follows.
Roughly speaking, “minimal covering disk” is a disk com-
pactly covering all the nearby keywords and the target key-
word. Due to this property, we propose a preliminary version
of Appro1 which (1) first enumerates all possible candidates of
minimal covering disks, (2) for each enumerated disk, finds
the nearest object o′p from query q in the disk containing
the target keyword and a set O′ of objects in the disk
covering all nearby keywords, and computes the cost value
Cost(o′p|q, O′), and (3) returns the object o′p with the smallest
cost. Later, we show that this preliminary version is a 1.155-
approximate algorithm. However, there is a major challenge
in this preliminary version which is how to enumerate all
possible candidates of minimal covering disks. As discussed
later, a straightforward implementation is very expensive.
Motivated by this, based on an interesting observation called
the corner-edge observation to be introduced later, we propose
a complete version of Appro1 with an efficient implementation
of enumerating all possible candidates of minimal covering
disks. The approximate ratio of this complete version is still
1.155 and its time complexity is O(|q.ψ|3 · |D| log |D|).

We first give some important concepts used in our
approximate algorithm, including the concept of “minimal
covering disk”, in Section 3.1.1. Then, we give our proposed
algorithm called Appro1 in Section 3.1.2.

3.1.1 Notations
Firstly, we define the concept of “minimal covering disk” as
follows. Given a disk Θ, Θ is said to be a covering disk if there
exists a set O of objects in Θ such that O covers all nearby
keywords and the target keyword. Given a disk Θ, Θ is said
to be a minimal covering disk if Θ is a covering disk and there
does not exist a smaller disk Θ′ such that Θ′ is a covering
disk and Θ′ does not contain any object outside Θ. Given
a point q and a non-negative real number r, we denote the
disk centered at q with radius equal to r by D(q, r).

For example, Figure 2 shows 9 objects, namely o1, o2, ..., o9
as well as three disks, namely Θ1, Θ2 and Θ3, where Θ1 =
D(q, d(q, o6)), Θ2 is a disk whose boundary contains o5 and
o6, and Θ3 is a disk whose boundary contains o1, o2 and
o3. Consider that q.t = c and q.ψ = {a, b}. Θ1, Θ2 and Θ3
are covering disks since there exists a set O of objects in
each of these disks such that O covers all nearby keywords
and the target keyword. Neither Θ1 nor Θ2 is a minimal
covering disk (since there exists a smaller covering disk of
Θ1 and there exists a smaller covering disk of Θ2) but Θ3 is
a minimal covering disk.

We defined the concept of “minimal covering disk”.
Next, we present two observations about “minimal cover-

ing disk” (which will be used to generate “candidates” of
“minimal covering disk” in our algorithm, Appro1). Before
that, we define more concepts which will be used in the
observations.

Given an object o in D and a disk Θ, o is said to be a
unique object in Θ if o has a keyword t in q.ψ ∪ {q.t} and
no other objects in Θ excluding the boundary of Θ have
t. For example, consider Θ2 in Figure 2. Each of the three
objects in Θ2 is a unique object in Θ2 since it has a keyword
t in q.ψ ∪ {q.t} and no other objects in Θ2 excluding the
boundary of Θ2 have t. Note that although o5.ψ = o6.ψ(=
{b, c}), o5 and o6 (on the boundary of Θ2) are both unique
objects in Θ2.

Given an object o in D and a disk Θ, o is said to be a
unique boundary object of Θ if o is along the boundary of Θ
and o is a unique object in Θ. For example, consider Θ2 in
Figure 2. o5 and o6 are both unique boundary objects of Θ2
because each of them is a unique object in Θ2 and is along
the boundary of Θ2. But, o4 is not a unique boundary object
of Θ2 because it is not along the boundary of Θ2.

It is well known that a disk could be determined by
three points on its boundary or two points on its boundary
lying on a line passing through its center. Equipped with
the above notations and concepts, we are ready to present
the observations.

Observation 1. Given a disk Θ, if Θ is a minimal covering disk,
then there exist two or three unique boundary objects of Θ. If there
are exactly two unique boundary objects of Θ, then the two objects
must lie on a line passing through the center of Θ.

Proof. The proof could be found in [8]. �

Consider our running example in Figure 2. Θ2 is the case
for two objects. Disk Θ3 is the case for three objects.

According to the above observation, we know that there
are two possible cases. The first case is that there exist
exactly two unique boundary objects of disk Θ. We call this
case the two-object covering case. The second case is that there
exist three unique boundary objects of Θ. We call this case
the three-object covering case.

Note that in the two-object covering case, we know that
there exist exactly two unique boundary objects of Θ. In
this case, the minimal covering disk is a disk whose center
is equal to the mid-point of these two objects and whose
radius is equal to the distance between the mid-point and
one of these two objects.

It is worth mentioning that any more-than-three-object
covering case belongs to three-object covering case. But a
three-object covering case may be or may not be a two-object

7

covering case since the later has the requirement on the
positions of its unique boundary objects while the former
does not have such a requirement.

Next, we give our next observation.

Observation 2. Given a covering disk Θ, if there exists two or
three unique boundary objects of Θ, then Θ can be a minimal
covering disk or not.

For example, consider Θ3 in Figure 2. It has three unique
boundary objects o1, o2, o3 and it is a minimal covering disk.
Consider Θ2 in Figure 2. It has two unique boundary objects
o5 and o6 but it is not a minimal covering disk.

Given a disk Θ, we say that Θ is a candidate of a minimal
covering disk if Θ is a covering disk and one of the following
conditions holds: (1) there exist exactly two unique bound-
ary objects lying on a line passing through the center of Θ
and (2) there exist three unique boundary objects of Θ.

We want to emphasize that based on Observation 1, if
disk Θ is a minimal covering disk, then Θ is a candidate
of a minimal covering disk. However, we know that based
on Observation 2, if disk Θ is a candidate of a minimal
covering disk, then Θ can be a minimal covering disk or not.
In conclusion, the set of all possible candidates of minimal
covering disks is a proper superset of the set of all possible
minimal covering disks.

3.1.2 Algorithm
Based on the concept of “minimal covering disk”, one may
come up with the following three-step method called the
preliminary version of Appro1.
• Step 1 (Initialization): A variable op, denoting the best-

known target object, is initialized as ∅. A variable O,
denoting the best-known nearby set of op, is initialized
to ∅. A variable C, denoting the current best-known
cost, is initialized to ∞.

• Step 2 (Minimal Covering Disk Finding): For each
candidate of the minimal covering disk Θ, we do the
following. We find the nearest object o′p from query q
in Θ containing the target keyword. We find a set O′

of objects in Θ covering all nearby keywords. (How to
find objects in Θ covering all nearby keywords does not
affect the approximate ratio of Appro1. We will present
how we execute this step later.) If Cost(o′p|q, O′) < C,
then we update O with O′, op with o′p, and C with
Cost(o′p|q, O′).

• Step 3 (Output): We return op as the output.
The following theorem shows the approximate factor of

the preliminary version of Appro1.

Theorem 1. The preliminary version of Appro1 returns a 1.155-
approximate solution for NSKQ.

Proof: The proof can be found in [8]
It is interesting to know that the preliminary version of

Appro1 is a 1.155-approximate algorithm but as described
before, the remaining issue is how to enumerate all possible
candidates of minimal covering disks efficiently in Step 2.
After we address this issue, we have a complete version of
Appro1.
Straightforward Implementation of Enumerating All Pos-
sible Candidates: In the following, we first present a

straightforward implementation of enumerating all possible
candidates of minimal covering disks which is very costly.
Then, we propose a novel and efficient implementation.

The straightforward implementation includes the follow-
ing two sub-steps for finding candidates of the minimal
covering disks based on Observation 1.
• Step (a) (Disk Enumeration): For each possible com-

bination of three objects, say o1, o2 and o3, in D, we
construct a disk Θ whose boundary passes through
these three objects. For each possible combination of
two objects, say o1 and o2, in D, we construct a disk Θ
whose boundary passes through these two objects (i.e.,
a disk whose center is equal to the mid-point of these
two objects and whose radius is equal to the distance
between the mid-point and one of these two objects).

• Step (b) (Minimal Covering Disk Candidate Verifica-
tion): For each disk Θ constructed in Step (a), we check
whether Θ is a candidate of a minimal covering disk by
checking the following two conditions: (1) whether Θ
is a covering disk and (2) whether, for each object o of
the objects involved in constructing Θ in Step (a), o is
a unique boundary object of Θ. If both conditions are
satisfied, Θ is a candidate of a minimal covering disk.
Otherwise, Θ is not and in this case, we prune Θ.

Efficient Implementation of Enumerating All Possible
Candidates: However, Step (a) of the straightforward imple-
mentation is costly because it has to enumerate all possible
combinations of three objects in D and all possible com-
binations of two objects in D. In the following, based on
a new observation called the corner-edge observation to be
introduced later, we propose an efficient algorithm which
considers all possible combinations of two/three “close” ob-
jects in D only for generating candidates of minimal cover-
ing disks and prune all possible combinations of two/three
“distant” objects in D which are unnecessary because the
disk constructed by each combination of these two/three
“distant” objects is not a minimal covering disk (since it is
not “compact” enough).

Before we introduce the corner-edge observation, we
introduce some concepts first.

Given a Voronoi Diagram (VD) built on a set of points, a
disk Θ is called a corner disk of VD if the center of Θ is at one
of the corners of a cell of VD and the radius of Θ is equal to
the distance between this corner and the object occupying
this cell. A disk Θ is called an edge disk of VD if the center
of Θ is at the mid-point between two objects occupying the
two cells separated by an edge of VD and the radius of Θ
is equal to the distance between this mid-point and one of
these two objects.

Consider our running example as shown in Figure 2.
Figure 3(a) shows the Voronoi diagram built on all objects.
Note that point x is a corner of the cell occupied by object
o1. Disk Θ is a disk centered at the corner x with the
radius equal to d(x, o1). Note that this radius is also equal to
d(x, o2) and d(x, o3). Thus, Θ is a corner disk of this Voronoi
Diagram. Figure 3(b) shows the Voronoi diagram built on
all objects except o2. Note that point y is the mid-point
between o4 and o6 whose cells are separated by an edge
of the Voronoi diagram. Disk Θ′ is a disk centered at point
y with the radius equal to d(y, o4). Note that this radius is

8

q

o1

o3

o7 o8

o2

o6
o5

o4

o9

x

q

o1

o3o7
o8

o6
o5

o4

o9
y

()a ()b

Θ

Θ’

Θ’

Θ

Fig. 3: Illustration of Observation 3
also equal to d(y, o6). Thus, Θ′ is an edge disk of the Voronoi
Diagram.

Let St be a set of objects in D containing keyword t. Con-
sider three distinct keywords t1, t2 and t3. Let VD(t1, t2, t3)
be the Voronoi diagram built on all objects in St1 ∪ St2 ∪ St3 .
Let VD(t1, t2) be the Voronoi diagram built on all objects in
St1 ∪ St2 .

Observation 3 (Corner-Edge Observation). If Θ is a minimal
covering disk, then one of the following two conditions holds.
• (1) There exist three distinct keywords, namely t1, t2 and t3,

in q.ψ ∪ {q.t} such that Θ is a corner disk of VD(t1, t2, t3),
• (2) There exist two distinct keywords, namely t1 and t2, in

q.ψ ∪ {q.t} such that Θ is an edge disk of VD(t1, t2).

Proof. The proof could be found in [8] �

Consider back our running example (Figure 2). Consider
three distinct keywords, namely a, b and c. We know that
Sa ∪ Sb ∪ Sc is a set of all objects in the example (i.e.,
o1, o2, ..., o9). Figure 3(a) shows the Voronoi diagram built on
all objects in Sa ∪ Sb ∪ Sc (i.e., VD(a, b, c)). Note that as de-
scribed before, Θ is a minimal covering disk. In Figure 3(a),
Θ is also a corner disk of VD(a, b, c).

Consider two distinct keywords, namely a and c. We
know that Sa ∪ Sc is a set of all objects except o2. Figure 3(b)
shows the Voronoi diagram built on all objects in Sa ∪Sc (i.e.,
VD(a, c)). It is easy to verify that Θ′ is a minimal covering
disk. In Figure 3(b), Θ′ is also an edge disk of VD(a, c).

Note that disk Θ (in Figure Figure 3(a)) whose boundary
contains the objects o7, o8 and o9 is not a corner disk of
VD(a, b, c) and an edge disk of the Voronoi diagram built
on all objects in St ∪ St′ for any two distinct keywords
t and t′ in {a, b, c}, Thus, it is not a minimal covering
disk. Similarly, the disk Θ′ (in Figure 3(b)) centered at the
mid-point between o6 and o7 with the radius equal to the
distance between this mid-point and o6 is not a corner disk
of VD(a, b, c) and an edge disk of the Voronoi diagram built
on all objects in St ∪ St′ for any two distinct keywords t and
t′ in {a, b, c}. Thus, it is not a minimal covering disk.

We want to emphasize that the straightforward im-
plementation requires to enumerate disks like Θ and Θ′

constructed by two/three “distant” objects but our efficient
implementation to be introduced later does not.

With the corner-edge observation, we are ready to de-
scribe our efficient algorithm for Step (a) involving the
following steps.
• Step (i) (Keyword-Driven Set Finding): For each dis-

tinct keyword t, we find a set St of objects in D contain-
ing t.

• Step (ii) (Possible Candidate Disk Generation): We
perform the following two operations.
– The first operation is shown as follows. If |q.ψ ∪
{q.t}| ≥ 3, for each possible triple of three distinct
keywords, namely t1, t2 and t3 from q.ψ ∪ {q.t}, we
do the following.
∗ Step (I): We build a Voronoi diagram

VD(t1, t2, t3)
∗ Step (II): We construct all possible corner disks

of VD(t1, t2, t3). Note that there are O(|D|) corner
disks.

– The second operation is shown as follows. For each
possible pair of two distinct keywords, namely t1 and
t2, from q.ψ ∪ {q.t}, we do the following.
∗ Step (A): We build a Voronoi diagram VD(t1, t2)
∗ Step (B): We construct all possible edge disks of

VD(t1, t2). Note that there are O(|D|) edge disks.
After we introduce the above two-step method, we have

a complete version of Appro1. In the following, when we
write Appro1, we mean the complete version of Appro1. The
following lemma shows that the above two-step method
(i.e., Step (i) and Step (ii)) does not affect the approximate
ratio of Appro1.

Lemma 3. The approximate ratio of Appro1 is still 1.155 even
if the set of candidates of minimal covering disks considered by
Appro1 is the set of all possible corner disks and all possible edge
disks.

Proof. The proof could be found in [8] �

Detailed Steps and Time Complexity: Appro1 involves three
steps, namely Step 1, Step 2 and Step 3. Step 1 takes O(1)
time.

Consider Step 2. We first give the time complexities of
the two fundamental operations used in Step 2 and then
analyze the time complexity of Step 2. The first operation
is the operation of finding a nearest neighbor containing
a given keyword from a query point, whose time cost is
denoted by TNN−Key. Note that TNN−Key = O(log |D|) [44]
(since a nearest neighbor query could be issued on a Voronoi
diagram built based on all objects containing a particular
keyword). The second operation is the operation of finding
a nearest neighbor containing a given keyword from a
query point in a given disk, whose time cost is denoted by
TNN−Key−Disk. Note that TNN−Key−Disk = O(log |D|+ l) [45],
where l is the number of objects in the given disk (since
a range query could be issued for finding all objects in a
disk and then a linear scan of all objects in a disk could
be involved for finding the nearest neighbor from a query
point).

Now, we are ready to analyze the time complexity of Step
2. In Step 2, we have to enumerate all possible candidates of
minimal covering disks, which involves Step (a) and Step
(b). Consider Step (a) which involves two steps, namely Step
(i) and Step (ii). Step (i) takes O(|D| · |q.ψ|) time. Step (ii) in-
cludes two operation. Consider the first operation. The first
operation executes Step (I) and Step (II). For each possible
triple of three distinct keywords, namely t1, t2 and t3, Step (I)
takes O(|D| log |D|) time. Step (II) takes O(|D|) time (since
there are O(|D|) corner disks). Since there are (|q.ψ|+1

3) pos-
sible triples, the first operation takes O((|q.ψ|

3) · (|D| log |D|))

9

time. Consider the second operation. For each possible pair
of two distinct keywords, namely t1 and t2, Step (A) takes
O(|D| log |D|) time. Step (B) takes O(|D|) time (since there
are O(|D|) edge disks). Since there are (|q.ψ|+1

2) possible
pairs, the second operation takes O((|q.ψ|

2) · (|D| log |D|))
time. So, Step (ii) takes O((|q.ψ|

3) · (|D| log |D|)) time. Thus,
Step (a) takes O(|D| · |q.ψ|+ (|q.ψ|

3) · (|D| log |D|)) time. Note
that there are O((|q.ψ|

3) · |D|) possible candidates generated
in Step (a).

Consider Step (b) which checks whether each disk satis-
fies two conditions: (1) whether the disk is a covering disk
and (2) whether for each object o of the objects involved in
constructing the disk in Step (a), o is a unique boundary ob-
ject of the disk. Since each checking operation on a disk can
be implemented by a range query from the center of the disk
(which takes O(log |D| + l) time where l is the number of
objects in the disk) and an operation of comparing whether
each object involved in constructing the disk in Step (a) is a
unique boundary object of the disk (which takes O(l) time),
Step (b) takes O((|q.ψ|

3) · |D|(log |D|+ l)) time.
Thus, Step (a) and Step (b) (for finding candidates of the

minimal covering disks in Step 2) take O(|D| · |q.ψ|+ (|q.ψ|
3) ·

(|D| log |D|) + (|q.ψ|
3) · |D|(log |D| + l)) = O(|D| · |q.ψ| +

(|q.ψ|
3) · |D|(log |D| + l)) time. In Step 2, for each candidate

of the minimal covering disk, we find the nearest object
from the query in a disk containing the target keyword
(which takes O(log |D| + l)), find a set of objects in a disk
covering all nearby keywords (by finding all objects in a
disk with a range query and incrementally inserting objects
found satisfying “uncovered” nearby keywords to a set
variable, initialized to an empty set, until the set variable
covers all nearby keywords) (which takes O(log |D| + l))
and update the best-known variables (which takes O(|q.ψ|)).
The overall time complexity of Step 2 is O(|D| · |q.ψ| +
(|q.ψ|

3) · |D|(log |D|+ l) + (|q.ψ|
3) · |D| · (log |D|+ l + log |D|+

l + |q.ψ|)) = O(|D| · |q.ψ|+ (|q.ψ|
3) · |D|(log |D|+ l + |q.ψ|)).

Step 3 takes O(1) time.
The overall time complexity of Appro1 is O(|D| · |q.ψ|+

(|q.ψ|
3) · |D|(log |D| + l + |q.ψ|)) = O(|D| · |q.ψ| + |q.ψ|3 ·
|D|(log |D| + l + |q.ψ|)). Since l and |q.ψ| are two small
numbers in practice, we finally simplify the overall time
complexity of Appro1 as O(|q.ψ|3 · |D| log |D|).

3.2 Approximate Algorithm 2
Although Appro1 is a polynomial-time algorithm with a
theoretical error bound of a 1.15-factor, when the number
of nearby keywords is large, it becomes slow (because its
time complexity is cubic to the number of nearby keywords).
In this section, we propose another approximate algorithm
called Appro2 which is faster than Appro1. Appro2 uses a new
concept of “center-centric nearest neighbor set” which is a
“looser” concept compared with “minimum covering disk”.
The reason why we say that “center-centric nearest neighbor
set” is looser than “minimum covering disk” is that a set
of objects derived from “minimum covering disk” satisfies
the concept of “center-centric nearest neighbor set” but the
reverse is not true. Since finding “center-centric nearest
neighbor set” is computationally cheaper than finding “min-
imum covering disk” (due to its looser property), Appro2

q

o1 o2

o5

o4

o3

o6

o7 o8

o9

R o()9

Fig. 4: Center-Centric Nearest Neighbor Set

Fig. 5: Minimum ψ-Covering Axis-Parallel Square
(based on “center-centric nearest neighbor set”) is faster
than Appro1 (based on “minimum covering disk”). The time
complexity of Appro2 is O(|q.ψ||D| log |D| + |D| log2 |D|)
which is linear to the number of nearby keywords. However,
since “center-centric nearest neighbor set” is looser than
“minimum covering disk”, using “center-centric nearest
neighbor set” alone in our algorithm may introduce a large
error. In our algorithm, in addition to the concept of “center-
centric nearest neighbor set”, we introduce another new
concept called “minimum covering axis-parallel square”
which not only is computationally cheap but also minimizes
the overall error. Thus, the approximate factor of Appro2 is
just a little bit higher than that of Appro1. Specifically, the
approximate factor of Appro2 is 1.79, a little bit greater than
the approximate factor of Appro1 (i.e., 1.15).

Firstly, we give some concepts related to “center-centric
nearest neighbor set” and “minimum covering axis-parallel
square” before we present our algorithm Appro2.

Given an object o in D and a keyword t, we define
the t-keyword center-centric nearest neighbor of o, denoted by
CCNN(o, t), to be the nearest neighbor from o containing
keyword t. Given an object o in D, we define the center-
centric nearest neighbor set of o to be ∪t∈q.ψCCNN(o, t). Given
an object o, we define R(o) to be maxo′∈S d(o, o′) where
S is the center-centric nearest neighbor set of o. Consider
our running example as shown in Figure 2 where q.t = c
and q.ψ = {a, b}. Consider object o9. The a-keyword center-
centric nearest neighbor of o9 is o7 and the b-keyword center-
centric nearest neighbor of o9 is o8. The center-centric nearest
neighbor set of o9 is {o7, o8}. Besides, as shown in Figure 4,
R(o9) is equal to d(o9, o7).

We just defined the concept of “center-centric nearest
neighbor set”. Next, we describe the concept of “minimum
covering axis-parallel square”.

An axis-parallel square is a square such that each side
of the square is parallel to one of the axes. Given a set
ψ of keywords, a square is said to cover ψ if there exists
a set of objects in the square covering ψ. Consider our
running example. Consider Figure 5. Let ψ = {a, b, c}. Q1 is
an axis-parallel square covering ψ. Similarly, Q2 is another
axis-parallel square covering ψ. Given a set ψ of keywords,
the minimum ψ-covering axis-parallel square is defined to be
the axis-parallel square such that the square covers ψ and
the area of the square is the smallest. Consider Figure 5

10

again. Q2 is the minimum ψ-covering axis-parallel square
since it covers ψ and its area is the smallest. But, Q1 is not.
Note that the concept of “minimum ψ-covering axis-parallel
square” used here is based on the global minimum criterion
(meaning that the square has the smallest area globally) but
the concept of “minimal covering disk” used in the previous
section is based on the local minimal criterion (meaning that
the disk has the smallest area locally).
Using Center-Centric Nearest Neighbor Set Only: Next, we
present a preliminary version of Appro2 with the following
three steps considering the concept of “center-centric near-
est neighbor set” only without the concept of “minimum
covering axis-parallel square”.
• Step (a) (Initialization): A variable op, denoting the

best-known target object, is initialized as ∅. A variable
O, denoting the best-known nearby set of op, is initial-
ized to ∅. A variable C, denoting the best-known cost,
is initialized to ∞.

• Step (b) (Center-Centric Nearest Neighbor Set Find-
ing): For each target object o′p in D, we find the center-
centric nearest neighbor set O′ of o′p. Let C′ denote
Cost(o′p|q, O′). If C′ < C, then we update O with O′,
op with o′p, and C with C′.

• Step (c) (Output): We return op as the output.

Lemma 4. The preliminary version of Appro2 is 2-
approximate.

Proof. The proof could be found in [8]. �

Using Both Center-Centric Nearest Neighbor Set and
Minimum Covering Axis-Parallel Square: We would like to
lower down the approximate ratio further by involving some
additional low-cost operations related to the concept of
“minimum covering axis-parallel square”. Next, we present
the final version of Appro2. Before that, we describe the new
concept of “critical objects” which is used in the algorithm.

Given an object o in D, o is said to be a critical object if
o is a target object and d(q, o) < 0.265 · 1−α

α · R(o). Roughly
speaking, a critical object is “close” to q and how to quantify
its closeness is defined in the definition of “critical object”.
This concrete “closeness” could help us derive a better
approximate ratio.

The major reason why the approximate ratio could be
lowered down is described as follows. The “best” center-
centric nearest neighbor set found by the preliminary ver-
sion is very near to the optimal solution in some cases but
it is a little bit far away from the optimal solution in some
other cases. In the final version, we find not only this set
but also another set determined based on the concept of
“minimum covering axis-parallel square” and the concept of
“critical objects” in the final version of Appro2. Specifically,
the reason why the “best” center-centric nearest neighbor
set is a little bit far away from the optimal solution in some
cases is that it considers the pairwise distance between a
target object and an object from its center-centric nearest
neighbor set but does not consider any pairwise distance
between any two objects from the center-centric nearest
neighbor set, which leads to a larger approximate ratio.
Motivated by this weakness, we propose to additionally
use the concept of “minimum covering axis-parallel square”
and the concept of “critical objects” in the final version of

Appro2 to lower down the approximate ratio. The concept
of “minimum covering axis-parallel square” considers the
pairwise distance between two objects in a set of objects to
be returned (i.e., the second component of Equation (2)),
and the concept of “critical objects” considers the distance
between q and the target object (i.e., the first component of
Equation (2)). Specifically, we efficiently find the minimum
(q.ψ ∪ {q.t})-covering axis-parallel square Q in the final
version of Appro2. Since Q is a square with the smallest area
covering both the target keyword and the nearby keywords,
using Q could somehow capture the pairwise distance
between any two objects in Q, lowering down the second
component of Equation (2). Besides, in the final version, we
only consider critical objects. Since for each critical object
o, d(q, o) < 0.265 · 1−α

α · R(o), each object considered by the
final version (including object o) is “close” to q, which helps
to lower down the first component of Equation (2).

Now, we are ready to present the final version of Appro2
based on both “center-centric nearest neighbor set” and
“minimum covering axis-parallel square”. Compared with
the preliminary version, this final version considers (1) one
additional variable S denoting the set of critical objects, (2)
additional operations finding a result based on the concept
of “minimum covering axis-parallel square” and (3) an op-
eration of combining the result found based on the concept
of “center-centric nearest neighbor set” and the result found
based on the concept of “minimum covering axis-parallel
square”. Details are shown as follows.
• Step 1 (Initialization): A variable op, denoting the best-

known target object, is initialized as ∅. A variable O,
denoting the best-known nearby set of op, is initialized
to ∅. A variable C, denoting the best-known cost, is
initialized to ∞. A variable S, denoting the set of critical
objects, is initialized to ∅.

• Step 2 (Center-Centric Nearest Neighbor Set Finding):
For each target object o′p in D, we perform the following
operations. Firstly, we find the center-centric nearest
neighbor set O′ of o′p. Let C′ denote Cost(o′p|q, O′). If
C′ < C, then we update O with O′, op with o′p, and C
with C′. Secondly, if o′p is a critical object, then we insert
o′p into S.

• Step 3 (Minimum Covering Axis Parallel Square Find-
ing): Let Θ be D(q, C). We create a new keyword t′ and
associate t′ to each object in S. We find the minimum
(q.ψ ∪ {t′})-covering axis-parallel square Q for all ob-
jects in Θ by the algorithm proposed in [46]. Let o′′p
denote the nearest object in Q containing keyword t′ to
q. Note that o′′p contains the target keyword (since each
object in S contains the target keyword). Let O′′ be the
nearby set of o′′p in Q.

• Step 4 (Output): If Cost(o′′p |q, O′′) < C, we return o′′p .
Otherwise, we return op.

Time Complexity: Appro2 involves four steps, namely
Step 1, Step 2, Step 3 and Step 4. Step 1 takes O(1) time.
Step 2 takes O(|D||q.ψ| log |D|) time since there are O(|D|)
objects containing the target keyword and each operation
of finding the center-centric nearest neighbor set of an ob-
ject takes O(|q.ψ| log |D|) time. Step 3 takes O(|D| log2 |D|)
time since finding the minimum (q.ψ ∪ {t′})-covering axis-
parallel square takes O(|D| log2 |D|) time [46]. Step 4 takes

11

Dataset Web GN Hotel
No. of Objects 552,163 1,777,598 20,790
No. of Unique Keywords 2,899,175 222,409 602
No. of Words 249,132,883 18,374,228 80,845

TABLE 3: Dataset Statistics

Appro1
Appro2

Cao-Appro1-Adapt1
Cao-Appro2-Adapt1
Long-Appro-Adapt1
Cao-Appro1-Adapt2

Cao-Appro2-Adapt2
Long-Appro-Adapt2

SKEC-Adapt
SKEC+1-Adapt
SKEC+2-Adapt

10
-1

10
0

10
1

10
2

10
3

1 1.4 1.8 2.2 2.4

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

Approximate Ratio

Fig. 6: Trade-off between Accuracy and Efficiency (Web)
O(1) time. So, the total running time is O(|D||q.ψ| log |D|+
|D| log2 |D|).

Approximation Ratio: The following shows the approx-
imate factor of Appro2.

Theorem 2. Appro2 returns a 1.79-approximate solution for
NSKQ.

Proof: The proof can be found in [8]

4 EXPERIMENT

4.1 Experimental Set-up

We conducted experiments on a 2.2GHz machine with 4GB
RAM installed with a Linux operating system. All algo-
rithms were implemented in C++.

Datasets. We use the same datasets in [5], namely Web,
GN and Hotel. Dataset Web was created from two real
datasets. The first one, called WEBSPAMUK20071, corre-
sponds to a set of web documents. The second one is
a set of spatial objects, called TigerCensusBlock2, which
corresponds to a set of census blocks in Iowa, Kansas,
Missouri and Nebraska. Specifically, Web consists of the
spatial objects in TigerCensusBlock, each of which is as-
sociated with a document randomly selected from WEB-
SPAMUK2007. Dataset GN was collected from the U.S.
Board on Geographic Names (geonames.usgs.gov). Each
object in GN is a 2D location which is associated with a
set of keywords describing it (e.g., a geographic name like
valley). Dataset Hotel corresponds to a set of hotels in U.S.
(www.allstays.com), each of which is associated with its
location and a set of words that describe the hotel (e.g.,
restaurant and pool). Table 3 shows the dataset statistics.

Query Generation. For a given dataset D and a positive
integer k, we generated queries in the same way as in [5].
We randomly picked a location from the dataspace of D
as a query location q.λ. We sorted all keywords in D in
descending order of their frequencies and randomly picked
|q.ψ| keywords within the percentile range [5, 30] as q.ψ.

1. http://barcelona.research.yahoo.net/webspam/datasets/uk2007
2. http://www.rtreeportal.org

Appro1
Appro2

Long-Appro-Adapt1
Cao-Appro1-Adapt2

10
-2

10
-1

10
0

10
1

10
2

10
3

3 6 9 12 15

(a)

R
u

n
n

in
g
 t

im
e
 (

s
e
c
o

n
d

s
)

No. of nearby keywords

1

1.5

2

2.5

3

3 6 9 12 15

(b)

A
p

p
ro

x
im

a
te

 r
a

ti
o

No. of nearby keywords

Fig. 7: Effect of |q.ψ| for (Web)
Similarly, we randomly picked a keyword within this range
as q.t. The default value of |q.ψ| is set to be 6 since users
normally do not input more than 6 keywords for query in
practice. Besides, the default value of α is set to be 0.5.

Algorithms. We implemented our proposed algorithms,
namely Appro1 and Appro2. Besides, we implemented the
adapted algorithms as shown in Table 2. We indexed each
dataset used with an IR-tree and all algorithms are based on
the IR-tree. Since SKEC+ has a user parameter ε with an ap-
proximate ratio of (1.155 + ε), we set two values for ε here.
The first value is 0.01, the default value as suggested in [11].
The second value is a value such that the approximate
ratio of SKEC+ is equal to the approximate ratio of Appro2
(i.e., 1.79). That is, the second value is set to the difference
between 1.79 and 1.155 (i.e., 0.635). Let SKEC+1-Adapt and
SKEC+2-Adapt denote SKEC+-Adapt with the first ε value
setting and the second ε value setting, respectively. We
also adapted the exact algorithms of CoSKQ to the NSKQ
problem and developed our own exact algorithm. But our
results showed that they all run more than 1 hour on Web
dataset on the default setting. Thus, any exact algorithm fails
to fulfill the real-time requirement of NSKQ and ignore the
exact algorithms for the clarity in the remaining part.

4.2 Experimental Results

We study the effect of the number of nearby keywords, the
average number of keywords per object and the number of
objects. Besides, we use two measurements in the exper-
iments: the running time and the approximate ratio. We
conducted each experiment with 100 queries and took the
average value as the reported value.

To measure the approximate ratio of each approximate
algorithm, we adapted existing exact algorithms for CoSKQ
to give an exact algorithm for NSKQ. Consider an existing
exact algorithm A for CoSKQ. We adapt the existing exact
algorithm A in the same way of Adaption 1 of an existing
approximate algorithm for CoSKQ described in Section 2.3.
Accuracy vs. Efficiency. Figure 6 shows the trade-off be-
tween accuracy and efficiency of all algorithms on the
dataset Web where |q.ψ| = 6. As shown in the figure,
Appro1, Appro2, Long-Appro-Adapt1 and Cao-Appro1-Adapt2
are on the skyline (i.e., any other algorithm must be dom-
inated by one of the above four algorithms.). Thus, in the
remaining experiments, we only show the results of Appro1,
Appro2, Long-Appro-Adapt1 and Cao-Appro1-Adapt2 for clar-
ity. In Figure 6, the approximate ratio of Cao-Appro1-Adapt2
is 1.86 but that of Appro1 or Appro2 is at most 1.1. As will
be shown in the later experiments, the approximate ratio

12

Appro1
Appro2

Long-Appro-Adapt1
Cao-Appro1-Adapt2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

3 6 9 12 15

(a)

R
u

n
n

in
g
 t

im
e
 (

s
e
c
o

n
d

s
)

No. of nearby keywords

1

1.2

1.4

1.6
1.8

2
2.2
2.4
2.6

3 6 9 12 15

(b)

A
p

p
ro

x
im

a
te

 r
a

ti
o

No. of nearby keywords

Fig. 8: Effect of |q.ψ| (Hotel)
of Cao-Appro1-Adapt2 is much larger (e.g., 2.8) but that of
Appro1 or Appro2 is still kept at a very small value (e.g.,
at most 1.1), which suggests that our proposed algorithms,
namely Appro1 and Appro2, are very accurate in practice.
Note that there could be a significant difference between
a solution with 1.1 approximation ratio and that with 1.86
approximation ratio, though it does not seem to look so,
e.g., in the case an optimal solution has its cost of 10km, a
1.1-approximate solution has a cost about 11km and a 1.86-
approximate solution about 18.6km, then the difference is
about 7.6km (18.6km - 11km) which is 76% of the optimal
cost. Figure 6 shows that Appro1 and Appro2 ran 2-3 orders
of magnitude faster than Long-Appro-Adapt1.
Effect of |q.ψ|. We tested 5 different values of |q.ψ|: 3, 6,
9, 12, 15. The results on the dataset Web are shown in
Figure 7. Figures 7(a) and (b) show the running times and
the approximate ratios of the approximate algorithms. In
Figure 7(a), Appro1 (resp. Appro2) is faster than Long-Appro-
Adapt1 by 1-3 (resp. 2-3) orders of magnitude. In Figure 7(b),
the approximate ratio of Appro1 is nearly 1, which means
that its accuracy is significantly high in practice. Consistent
with our theoretical analysis, Appro2 has a smaller approxi-
mate ratio than Cao-Appro1-Adapt2. The results on Hotel and
GN are also similar and are shown in Figure 8 and Figure 9.
Effect of average |o.ψ|. We varied the average |o.ψ| on the
dataset Hotel, as shown in Figure 10. In dataset Hotel, the
average number of keywords per object is nearly 4. We
synthesized additional 5 datasets based on this dataset,
whose average number of keywords per object are 8, 16,
24, 32, 40. We used the following method to generate the
i-th dataset among the additional 5 datasets where i ∈ [1, 5]:
for every object o in Hotel, we randomly selected another
object o′ in Hotel and update the keywords of o to o.ψ

⋃
o′.ψ.

We repeat this procedure 2i-1 times. It can be verified that
this method generates a dataset, whose average |o.ψ| is 8·i.
We did the test on the dataset Hotel and the 5 generated
datasets.

Figure 10(a) shows that the running time of all algo-
rithms increases with the average |o.ψ|. This is because the
number |D′| of objects containing at least one keyword in
q.ψ

⋃{q.t} increases with the average |o.ψ|. Note that since
the running time of Appro1 is cubic to |q.ψ| and linear to
|D′| as analyzed, in our experimental result, the running
time of Appro1 is more sensitive to |q.ψ| (as shown in Fig-
ure 10(a)) than |o.ψ| (as shown in Figures 7(a), 8(a) and 9(a)).

Appro1
Appro2

Long-Appro-Adapt1
Cao-Appro1-Adapt2

10
-3

10
-2

10
-1

10
0

10
1

10
2

3 6 9 12 15

(a)

R
u

n
n

in
g
 t

im
e
 (

s
e
c
o

n
d

s
)

No. of nearby keywords

1

2

3 6 9 12 15

(b)

A
p
p

ro
x
im

a
te

 r
a

ti
o

No. of nearby keywords

Fig. 9: Effect of |q.ψ| for (GN)
Figure 10(b) shows that the average |o.ψ| has no obvious
effect on the approximate ratio of all algorithms. Besides,
our proposed algorithms, namely Appro1 and Appro2, are
scalable to the average |o.ψ|. We also tested the effect of
average |o.ψ| on GN and Web and the results are similar to
that of Hotel. For the sake of space, we omit their results.
Scalability Test. We tested the scalability of algorithms
on 5 synthesized datasets. The number of objects in these
datasets are 2M, 4M, 6M, 8M and 10M. We generated
the datasets from GN (the largest dataset). We adopted
the following method to generate a new dataset DS: we
randomly picked an object o in GN. Then, we created a
new object o′ and assigned a random location to o′.λ and
assigned o.ψ to o′.ψ. Finally, we put o′ into DS. We repeated
the above procedure until DS had the number of objects as
we required.

Figure 11 shows the running times of the algorithms.
In the figure, our two approximate algorithms (Appro1 and
Appro2) are scalable to the number of objects. It coud be
noticed that the runtime is shorter as the number of objects
is increased from 2M to 4M (for Appro1) and from 4M to
6M (for Appro2). The reason is stated as follows. In Appro1
and Appro2, we implemented an early stopping strategy
to enhance the efficiency which prunes a large number of
distant objects and only process objects which are close
to the query location. In other words, the running time
is not heavily affected by the total number of objects in
the dataset but it depends on the spatial distribution of
the keywords heavily. The aforementioned issue is due to
the spatial keyword distribution more compared with the
total number of objects in the dataset. We also conducted
the scalability tests on Hotel and Web and their results are
similar to that of GN. For the sake of space, we omit their
results in the paper.
Effect of α. We tested the effect of α on the Hotel dataset on
five different values of α: 0.1, 0.3, 0.5, 0.7, 0.9. The results
are as shown in Figure 12. The performances of Appro1
and Long-Appro-Adapt1 keep intact under different values
of α but the performances of the other two algorithms are
affected by α. Appro1 and Appro2 are faster than Long-Appro-
Adapt1 by several orders of magnitude. Appro1 and Long-
Appro-Adapt1 have the best accuracy and their approximate
ratio is 1. The approximate ratio of Appro2 is slightly larger
but is still a very small value less than 1.1. Cao-Appro1-Adapt2
has the worst accuracy and its approximate ratio is up to 1.8.

13

Appro1
Appro2

Long-Appro-Adapt1
Cao-Appro1-Adapt2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

4 8 16 24 32 40

(a)

R
u

n
n

in
g
 t

im
e
 (

s
e
c
o

n
d

s
)

No. of keywords per object

1

1.3

1.6

1.9

2.2

2.5
2.8

4 8 16 24 32 40

(b)
A

p
p
ro

x
im

a
te

 r
a

ti
o

No. of keywords per object

Fig. 10: Effect of average |o.ψ| (Hotel)

Appro1
Appro2

Long-Appro-Adapt1
Cao-Appro1-Adapt2

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

2M 4M 6M 8M 10M

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

No. of objects

Fig. 11: Scalability Test

Effect of Frequency of Query Keywords. We tested the ef-
fect of the frequency of query keywords on the Hotel dataset
on five different percentile range: [0-20], [20-40], [40-60], [60-
80], [80-100]. Let Oi denote {o ∈ D|o contains a keyword in
the ith-Percentile}, where i ∈ {1, 2, 3, 4, 5}. The results are as
shown in Figure 13. The running time of Appr1, Appro2 or
Long-Appro-Adapt1 keeps almost unaffected under the last 4
percentile ranges but it is larger in the first percentile range.
This is because |O1| is much larger than |O2|, |O3|, |O4|
and |O5|, but |O2|, |O3|, |O4| and |O5| are close to each
other. The running time of Cao-Appro1-Adapt2 keeps almost
unaffected under all five percentile ranges since its time
complexity is logarithmic to the number of objects involved.
Appro1 and Appro2 are faster than Long-Appro-Adapt1 by
several orders of magnitude. Appro1 and Long-Appro-Adapt1
have the best accuracy and their approximate ratios are 1.
The approximate ratio of Appro2 is slightly larger but is still
a very small value smaller than 1.1. Cao-Appro1-Adapt2 has
the worst accuracy and its approximate ratio is up to 1.66.

Conclusion. First, Appro1 and Appro2 dominate 6 out of
8 existing algorithms in terms of running time and accu-
racy. Second, Appro1 and/or Appro2 are superior over the
2 remaining existing algorithms which are not dominated,
namely Long-Appro-Adapt1 and Cao-Appro1-Adapt2. Specifi-
cally, Appro1 and Appro2 run faster than Long-Appro-Adapt1
by 1-3 orders of magnitude while providing very similar
accurate results and Appro2 gives more much more accurate
results than Cao-Appro1-Adapt2 and yet run reasonably fast,
i.e., within 1 second in most cases. Third, Appro1 and Appro2
give slightly different trade-offs between running time and
accuracy: Appro1 does slightly better in accuracy and Appro2

Appro1
Appro2

Long-Appro-Adapt1
Cao-Appro1-Adapt2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0.1 0.3 0.5 0.7 0.9

(a)

R
u

n
n

in
g
 t

im
e
 (

s
e
c
o

n
d

s
)

α

1

1.2

1.4

1.6

1.8

2
2.2

0.1 0.3 0.5 0.7 0.9

(b)

A
p

p
ro

x
im

a
te

 r
a

ti
o

α

Fig. 12: Effect of α
Appro1 Appro2 Long-Appro-Adapt1 Cao-Appro1-Adapt2

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10-20 20-40 40-60 60-80 80-100

(a)

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

Percentile

1

1.2

1.4

1.6

1.8

2

2.2

0-20 20-40 40-60 60-80 80-100

(b)

A
p

p
ro

x
im

a
te

 r
a

ti
o

Percentile

Fig. 13: Effect of Frequency of Query Keywords (Hotel)
in running time.

5 CONCLUSION AND FUTURE WORKS

We proposed a new query type called Nearby-fit Spatial
Keyword Query (NSKQ) which is shown to be NP-hard. We
proposed two approximate algorithms with approximate
ratios of 1.115 and 1.79. In experiments, our algorithms
significantly outperformed adapted existing methods and
were also scalable to large datasets.

There are several potential directions for future work.
First, it is interesting to study the continuous NSKQ, in
which the query location keeps moving. It is also worth
studying the top-k NSKQ Query which returns the best k
target objects. Besides, it is an interesting research direction
to incorporate the popularity or the rating of each POI into
our cost function. Specifically, it will involve the design
of a novel cost function which involves objects’ locations,
keywords and ratings and the design of the corresponding
algorithms.
ACKNOWLEDGMENTS: We are grateful to the anony-
mous reviewers for their constructive comments on this
paper. The research of Victor Junqiu Wei and Raymond Chi-
Wing Wong is supported by HKRGC GRF 16219816. The
research of Cheng Long is partially supported by NTU SUG
M4082302.020.

REFERENCES

[1] I. D. Felipe, V. Hristidis, and N. Rishe, “Keyword search on spatial
databases,” in ICDE, 2008.

[2] A. Cary, O. Wolfson, and N. Rishe, “Efficient and scalable method
for processing top-k spatial boolean queries,” in Scientific and
Statistical Database Management. Springer, 2010.

[3] D. Wu, M. Yiu, G. Cong, and C. Jensen, “Joint top-k spatial
keyword query processing,” TKDE, 2011.

[4] T. Lee, J.-w. Park, S. Lee, S.-w. Hwang, S. Elnikety, and Y. He, “Pro-
cessing and optimizing main memory spatial-keyword queries,”
VLDB, 2015.

[5] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi, “Collective spatial
keyword querying,” in SIGMOD, 2011.

14

[6] C. Long, R. C.-W. Wong, K. Wang, and A. W.-C. Fu, “Collective
spatial keyword queries:a distance owner-driven approach,” in
SIGMOD, 2013.

[7] X. Cao, G. Cong, T. Guo, C. S. Jensen, and B. C. Ooi, “Efficient
processing of spatial group keyword queries,” TODS, 2015.

[8] V. J. Wei, R. C.-W. Wong, C. Long, and P. Hui, “On
nearby-fit spatial keyword queries (technical report),” in
http://www.cse.ust.hk/~raywong/paper/nearbyFit-technicalReport.pdf.

[9] D. Zhang, Y. M. Chee, A. Mondal, A. Tung, and M. Kitsuregawa,
“Keyword search in spatial databases: Towards searching by doc-
ument,” in ICDE, 2009.

[10] D. Zhang, B. C. Ooi, and A. K. H. Tung, “Locating mapped
resources in web 2.0,” in ICDE, 2010.

[11] T. Guo, X. Cao, and G. Cong, “Efficient algorithms for answering
the m-closest keywords query,” in SIGMOD, 2015.

[12] J. Lu, Y. Lu, and G. Cong, “Reverse spatial and textual k nearest
neighbor search,” in SIGMOD, 2011.

[13] F. M. Choudhury, J. S. Culpepper, T. Sellis, and X. Cao, “Maxi-
mizing bichromatic reverse spatial and textual k nearest neighbor
queries,” VLDB, 2016.

[14] K. Zheng, H. Su, B. Zheng, S. Shang, J. Xu, J. Liu, and X. Zhou,
“Interactive top-k spatial keyword queries,” in ICDE, 2015.

[15] Y. Lu, J. Lu, G. Cong, W. Wu, and C. Shahabi, “Efficient algorithms
and cost models for reverse spatial-keyword k-nearest neighbor
search,” TODS, 2014.

[16] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-k
most relevant spatial web objects,” VLDB, 2009.

[17] J. Rocha, O. Gkorgkas, S. Jonassen, and K. Nørvåg, “Efficient
processing of top-k spatial keyword queries,” Advances in Spatial
and Temporal Databases, 2011.

[18] Z. Li, K. Lee, B. Zheng, W. Lee, D. Lee, and X. Wang, “Ir-tree: An
efficient index for geographic document search,” TKDE, 2011.

[19] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong, “Efficient continu-
ously moving top-k spatial keyword query processing,” in ICDE,
2011.

[20] W. Huang, G. Li, K.-L. Tan, and J. Feng, “Efficient safe-region
construction for moving top-k spatial keyword queries,” in CIKM,
2012.

[21] B. Zheng, K. Zheng, X. Xiao, H. Su, H. Yin, X. Zhou, and G. Li,
“Keyword-aware continuous knn query on road networks,” in
ICDE, 2016.

[22] L. Chen, X. Lin, H. Hu, C. S. Jensen, and J. Xu, “Answering why-not
questions on spatial keyword top-k queries,” in ICDE, 2015.

[23] L. Chen, J. Xu, C. S. Jensen, and Y. Li, “Yask: a why-not question
answering engine for spatial keyword query services,” VLDB,
2016.

[24] L. Chen and G. Cong, “Diversity-aware top-k publish/subscribe
for text stream,” in SIGMOD, 2015.

[25] L. Chen, G. Cong, X. Cao, and K.-L. Tan, “Temporal spatial-
keyword top-k publish/subscribe,” in ICDE, 2015.

[26] L. Chen, Y. Cui, G. Cong, and X. Cao, “Sops: A system for efficient
processing of spatial-keyword publish/subscribe,” VLDB, 2014.

[27] L. Chen, G. Cong, and X. Cao, “An efficient query indexing
mechanism for filtering geo-textual data,” in SIGMOD, 2013.

[28] X. Wang, Y. Zhang, W. Zhang, X. Lin, and Z. Huang, “Skype: top-k
spatial-keyword publish/subscribe over sliding window,” VLDB,
2016.

[29] X. Wang, Y. Zhang, W. Zhang, X. Lin, and W. Wang, “Ap-tree: Effi-
ciently support continuous spatial-keyword queries over stream,”
in ICDE, 2015.

[30] ——, “Selectivity estimation on streaming spatio-textual data us-
ing local correlations,” VLDB, 2014.

[31] G. Li, J. Feng, and J. Xu, “Desks: Direction-aware spatial keyword
search,” in ICDE, 2012.

[32] J. Fan, G. Li, L. Zhou, S. Chen, and J. Hu, “Seal: Spatio-textual
similarity search,” VLDB, 2012.

[33] S. Liu, G. Li, and J. Feng, “Star-join: spatio-textual similarity join,”
in CIKM, 2012.

[34] P. Bouros, S. Ge, and N. Mamoulis, “Spatio-textual similarity
joins,” VLDB, 2012.

[35] S. Liu, G. Li, and J. Feng, “A prefix-filter based method for spatio-
textual similarity join,” TKDE, 2014.

[36] K. Deng, X. Li, J. Lu, and X. Zhou, “Best keyword cover search,”
TKDE, 2015.

[37] D.-W. Choi, J. Pei, and X. Lin, “Finding the minimum spatial
keyword cover,” in ICDE, 2016.

[38] J. Liu, K. Deng, H. Sun, Y. Ge, X. Zhou, and C. S. Jensen, “Clue-
based spatio-textual query,” VLDB, 2017.

[39] M. Li, L. Chen, G. Cong, Y. Gu, and G. Yu, “Efficient processing of
location-aware group preference queries,” in CIKM, 2016.

[40] J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and K. Nørvåg,
“Efficient processing of top-k spatial preference queries,” VLDB,
2010.

[41] H. K.-H. Chan, C. Long, and R. C.-W. Wong, “Inherent-cost aware
collective spatial keyword queries,” in SSTD, 2017.

[42] D. Zhang, K.-L. Tan, and A. K. Tung, “Scalable top-k spatial
keyword search,” in ICDT, 2013.

[43] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial keyword query
processing: an experimental evaluation,” in VLDB, 2013.

[44] M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf,
Computational geometry. Springer, 2000.

[45] P. Afshani and T. M. Chan, “Optimal halfspace range reporting in
three dimensions,” in SODA, 2009.

[46] P. Khanteimouri, A. Mohades, M. A. Abam, and M. R. Kazemi,
“Computing the smallest color-spanning axis-parallel square,” in
Algorithms and Computation. Springer, 2013.

Victor Junqiu Wei is currently a researcher in
Noah’s Ark Lab of Huawei Technologies. He got
the PhD degree from the Department of Com-
puter Science and Engineering (CSE) of The
Hong Kong University of Science and Technol-
ogy (HKUST) under supervision of Raymond
Chi-Wing Wong. He obtained the BEng in Infor-
mation Engineering from Nanjing University. His
research interest is spatial data management.

Raymond Chi-Wing Wong is an Associate Pro-
fessor in Computer Science and Engineering
(CSE) of The Hong Kong University of Science
and Technology (HKUST). He is currently the
director of the Risk Management and Business
Intelligence (RMBI) program. He was the direc-
tor of the Computer Engineering (CPEG) pro-
gram from 2014 to 2016 and was the associate
director of the Computer Engineering (CPEG)
program from 2012 to 2014. He received the
BSc, MPhil and PhD degrees in Computer Sci-

ence and Engineering in the Chinese University of Hong Kong (CUHK)
in 2002, 2004 and 2008, respectively. In 2004-2005, he worked as a
research and development assistant under an R&D project funded by
ITF and a local industrial company called Lifewood.

Cheng Long is currently an Assistant Professor
at the School of Computer Science and Engi-
neering (SCSE), Nanyang Technological Univer-
sity (NTU). From 2016 to 2018, he worked as
a lecturer (Asst Professor) at Queen’s Univer-
sity Belfast, UK. He got the PhD degree from
the Department of Computer Science and En-
gineering, The Hong Kong University of Science
and Technology (HKUST) in 2015. His research
interests are broadly in data management, data
mining and big data analytics. He has served as

a Program Committee member/referee for several top data management
and data mining conferences/journals (TODS, VLDBJ, TKDE, ICDM,
CIKM, etc.). He is member of IEEE.

Pan Hui is the Nokia Chair in Data Science (
with a generous endowment from Nokia) and
a Professor of Computer Science at the Uni-
versity of Helsinki. He is also the director of
the HKUST-DT System and Media Laboratory
(SyMLab) at Computer Science and Engineering
Department of Hong Kong University of Science
and Technology since January 2013. His cur-
rent research interests include Mobile Comput-
ing, Computer Networking, Data Analytics, and
Human-Computer Interactions.

He is also an Associate Editor of both IEEE Transactions on Mobile
Computing and IEEE Transactions on Cloud Computing; moreover, he
is on the editorial board of the Springer journal of Computational Social
Networks, and a guest editor for IEEE Communications Magazine and
ACM Transactions on Multimedia Computing, Communications, and
Applications. He is an ACM Distinguished Scientist and an IEEE Fellow
(Computer Society and Communications Society).

