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Abstract—Deep metric learning is a supervised learning
paradigm to construct a meaningful vector space to represent
complex objects. A successful application of deep metric learn-
ing to pointsets means that we can avoid expensive retrieval
operations on objects such as documents and can significantly
facilitate many machine learning and data mining tasks involving
pointsets. We propose a self-supervised deep metric learning
solution for pointsets. The novelty of our proposed solution lies
in a self-supervision mechanism, that makes use of a distribution
distance for set ranking called the Earth’s Mover Distance (EMD)
to generate pseudo labels. Our experimental studies on four
documents datasets show that our proposed solution outperform
baselines and state-of-the-art approaches on unsupervised deep
metric learning in most settings.

Index Terms—set retrieval, deep metric learning,
supervised learning, triplet loss, earth mover’s distance
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I. INTRODUCTION

A pointset, in the form of a set of vectors or points,
can represent unstructured data such as documents [1] and
video clips. We can retrieve documents most similar to a
query document effectively using a distribution distance, such
as the Earth Mover’s Distance (EMD) [2] as the ranking
function. However, its computational complexity, which is
O(n®log(n)), may be prohibitive for a real-time retrieval
system, where n is the number of elements in the set. One
way to mitigate this problem is to construct an entirely new L,,
norm embedding vector space. This embedding idea has been
adopted for various applications including image retrieval [3],
face recognition [4], [5], person re-identification [6], and
trajectory similarity search [7], [8].

One main limitation of deep metric learning is that it
requires supervision, which makes it impossible to use with
unlabeled datasets or hard to generalize when the number of
labels is small. A popular approach to overcome this challenge
is to apply unsupervised methods. However, these techniques
are designed specifically for computer vision [9], [10] or
natural language processing (NLP) [11] rather than generic
pointsets.

In this paper, we propose a generic solution for pointset
metric learning that can alleviate learning challenges on unla-
beled or small datasets. The crux of our proposed solution lies
in a new loss function called Weighted Self-supervised EMD
Triplet (WSSET), which enables embedding space training
without labels. Our solution constructs a vector space in
which the Euclidean distance between vectors resembles the
relationship between their pointsets in the EMD space and
provides better performance than a straightforward method
that tries to approximate the EMD directly. The vector space

constructed by our solution also provides the simplicity of
distance calculation and indexing. Furthermore, we propose
sequential transfer learning strategies that can transfer the
learned relationships as prior knowledge for improving the
performance of learning a target problem.

We conducted extensive experimental studies on pointset
documents [1] to evaluate against well-known baselines and
state-of-the-art supervised and unsupervised techniques. Re-
sults show that our proposed solution outperforms the com-
petitors in most settings and works exceptionally well in
simulated scenarios when the training data is limited (i.e.,
small dataset conditions). In addition, our method also has
lower computation time than other competitors.

The contributions of our work are as follows. First, we
propose a novel deep metric learning loss function based on
EMD and a learning method to enable self-supervised training
on any unlabeled pointsets. Second, we introduce a transfer
learning strategy to overcome the small dataset conditions.
Third, we avoid the expensive computational complexity of
EMD calculation by formulating an embedding function that
maps pointsets into the Euclidean space. Fourth, we con-
ducted extensive experiments to compare our proposed solu-
tion against state-of-the-art techniques for both unsupervised
and supervised learning approaches.

II. RELATED WORK
A. Pointsets Similarity Retrieval

The main challenge of finding similar pointsets lies in the
cost of distance calculation. For example, using the Earth
Mover’s Distance (EMD) [2], which is a well-known measure
for pointsets, we end up with a cubic (or cubic-logarithmic)
complexity with respect to the number of elements per distance
calculation. [12] improves the efficiency of EMD by using
approximation techniques. However, it still suffers from issues
of computational cost and indexing [13]. In the next subsec-
tion, we will discuss how deep metric learning can address
these issues.

B. General Deep Metric Learning

Deep metric learning is a popular technique to learn an
embedding function in a supervised learning manner, such
that the distances between intra-class samples are significantly
smaller than those between inter-class samples. There are two
main methods for embedding learning: pair-based and triplet-
based. Results from various experiments [14] show that using
a shared reference point in the triplet-based methods provide
an improvement over the pair-based ones. Also, focusing on
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Fig. 1. The overall architecture of our proposed method using document input for illustrative purposes. We first process each unlabeled document into a set
of word vectors, then embed this set into our embedding space with a permutation invariant neural network. This embedding network is optimized using our

triplet loss in a self-supervised fashion through our automatic triplet selection.

critical negatives in the triplet-based methods outperform a
baseline that chooses triplets at random [4], [6]. In our work,
we employ the triplet loss with a semi-hard negative sampling
[4] and propose a self-supervised method to train it without
labels, which were traditionally required.

C. Unsupervised and Self-supervised Deep Metric Learning

Recently, unsupervised and self-supervised embedding
learning receive growing research attention, especially in the
field of computer vision. [9], [10] formulate a self-prediction
problem in which each instance is its own distinct class by
using a CNN with contrastive learning.

Alternatively, [15] propose a method which utilizes a pre-
trianed ImageNet model to provide an intermediate embedded
space for mining triplets.

These mentioned techniques work well for image retrieval
tasks without using labels. Unlike these studies, we propose
a novel self-supervised deep metric learning technique for
embedding the unlabeled pointsets, which is not domain-
specific.

D. Deep Learning on Pointsets

In our work, we make use of deep learning on pointsets.
One of the first challenges of applying a neural network to
process pointsets is the mismatch between the order invariance
of pointsets and the order sensitivity of the network’s input.
An early attempt to address this challenge provides a specific
convention to reorder the elements before putting them into an
LSTM network [16]. Recent approaches introduce permutation
invariance directly into the model, e.g., DeepSets [17], and
another area of research also aims to learn pointsets represen-
tation in an unsupervised fashion, i.e., set autoencoder [18].

One advancement in deep learning on pointsets is the
application of self-attention mechanism i.e., Transformer [19],
which helps capture the relationship between set elements [20].
In our study, we apply the self-attention mechanism by com-
bining Transformer and DeepSets for encoding pointsets and
learning a representation in a self-supervised way.

II1. PROBLEM FORMULATION

Consider three pointsets x;, =;, and xj represented as sets
of vectors. Let S(,) and f() be a set similarity function and
an embedding function for pointsets, respectively. Our goal is
to learn f() such that if S(x;,z;) < S(x;, zx), then || f(z;) —

f(xi)|| < ||f(x:)—f(zk)]|- Specifically, the output embedding
f(x) € RF is located in an embedding space associated with
the Euclidean metric. Given this embedding space, one can
solve a retrieval task or classify a query input with, e.g., k-
nearest neighbor algorithm. The main challenge is how to find
f that well generalizes to downstream tasks from zero training
labels.

IV. PROPOSED SOLUTION

In this section, we describe our proposed solution in detail.
For ease of exposition, we use the application of document
classification as our narration framework. However, our solu-
tion can be applied to any classification problem in which data
entries can be represented as pointsets.

Our key idea is to parameterize the embedding function
as a permutation invariant neural network fp and use a
triplet loss [4] with our pseudo labels to optimize for the
embedding space. In triplet loss optimization with supervision,
an “anchor” document will be forced closer to a document
belonging to the same class and farther away from a document
of a different class, called the positive and negative respec-
tively. Our key contribution is a self-supervised method for
identifying the positive and negative pairs associated with each
anchor document without ground-truth labels. The overview of
our proposed solution is shown in Fig. 1.

Inspired by the success of Earth mover’s distance (EMD)
[1] used for document classification, image and multimedia
retrieval tasks, we propose to use EMD for inferring the
positive and negative pairs. In particular, a document with a
low EMD to an anchor document will be labeled positive,
and a document with a high EMD will be labeled negative.
Moreover, we also introduce a re-weighting approach that
places more emphasis on negative documents that are more
likely to belong to different classes. For the embedding func-
tion, we propose a neural network based on a state-of-the-art
architecture in NLP, i.e., Transformer [19] and its self-attention
mechanism that achieves permutation invariance suitable for
representing documents.

A. Self-supervised EMD triplet loss

To train our network with a triplet loss, we first need to
form a set of document triplets, each of which consists of an
anchor, a positive, and a negative as shown in Fig. 2. Given a
mini-batch of size n, we generate n training triplets by taking
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Fig. 2. An illustration of triplet selection. Given an anchor point (yellow
circle), the closest point to this anchor in EMD space is chosen as the positive
(green rectangle). Then, the negative is the closest point to the anchor that is
at least as far way as the distance between the anchor and the positive (dotted
ring) in the embedding space.

each document z; in the mini-batch as the anchor and taking
the closest document to each anchor in the EMD space as the
positive z¥. For the negative, we follow the semi-hard negative
mining strategy from [4]. This strategy mines a negative based
on document embedding from f() by choosing a document
closest to the anchor in the embedding space but is farther
away from the anchor than the positive. Formally, the negative

z} is a document closest to the anchor in the embedding

space that satisfies: || f(z¢) — f(acf)”i < || f(z2) - f(m?)”i
With these training triplets, we then train our mapping func-
tion, parametrized by a neural network f with the following
triplet loss:

L(X) =

[7G) = F@DI; = @) - £ +a]

+

ey
where X is the mini-batch, n is the total number of triplets
in each mini-batch, and « is a hyper-parameter denoting
the desired margin between the anchor-positive and anchor-
negative distances in the embedding space.

We call this loss self-supervised EMD triplet loss or SSET.
Minimizing this loss encourages neighbor documents in the
EMD space, potentially belonging to the same class, to be
close to one another in the embedding space, as well as
maximizing the distances of documents in the embedding
space whose EMDs are high.

It is interesting to note that we can approximate EMD
among items directly using regression loss (i.e., L(X) =
1S (BMD(ay,25)— || f(2:) — f(2;) |I3)?). Empirically,
we found that our proposed triplet loss is easier to train
and consistently gives better results than the direct EMD
approximation loss (See Section VI-B).

n
=0

B. Re-weight the negative pair using EMD

One of the challenges of semi-hard negative sampling with-
out supervision is that we cannot be certain that those negative
documents that are quite close to the positives truly belong
to different classes. This could be especially problematic in
our self-supervised setting. One way to alleviate the effect of
mislabeling is to prioritize negative documents that are more
likely to come from different classes, which can be captured

by higher EMDs to their anchors [1]. To achieve this, rather
than using a hard negative sampling strategy, which could lead
to minimal learning [4], we simply re-weight the negative pair
distance so that the more likely negatives are moved farther
away than the less likely ones. In particular, our modified
triplet loss has the following form:

)=

S (I = DI - will ) - £ +a]
i=0
2

where w; is an exponential decay re-weighting factor for the
i triplet and is defined as

EMD (z%, z
(B

where o is the standard deviation of all pairwise EMD
distances in each mini-batch and c is a tunable scaling for o.
Negative documents whose EMDs are higher will be given
lower w;, and in order to satisfy the margin constrain of the
triplet loss, the network needs to make these negatives even
farther away from their anchors. We call this loss function
Weighted self-supervised triplet loss or WSSET. Surprisingly,
such a simple modification also consistently outperforms the
standard version given in Eq. 1. Please refer to our experi-
mental section for results.

=
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C. Self-attention permutation invariance representation

To model the embedding function f(x) in Eq. (2) as a
permutation invariant neural network, we follow a general
approach [17] that decomposes the final embedding of a set
into a sum of individual embeddings of its elements. By the
commutative property of addition or aggregation, the final
embedding is thus permutation invariant. In our model, the
embedding function that is applied to each individual element,
a word vector w in our case, is modeled using a self-attention
module [19], which we will refer to as Encoder. Our final
embedding function is f(z) = p (3, ., ENCODER(w)),
where p is modeled using three fully-connected layers. Our
self-attention module, Encoder, is a stack of Transformer’s
encoders [19] similar to the one proposed in a state-of-the-art
model BERT [11] in NLP. These encoders help the network
understand the inner-set correlation of the documents, and
by stacking them multiple times, we allow the network to
model more complex relationships between each word in the
documents.

V. APPLICATION: TRANSFER LEARNING

In this section, we analyze the benefits of our proposed
self-supervised learning loss. We hypothesize that the learned
representation based on EMD space could be useful for
learning a target task. To test this, we apply a “sequential”
transfer learning method [21] by using our learned embedding
function as an input feature extractor for the target problem.
We introduce two strategies: Internal-data transfer learning
(i.e., Ours+Int.) and External-data transfer learning (i.e.,
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Fig. 3. Tllustrations of two transfer learning strategies. The left figure shows internal-data transfer learning which first constructs a base model from the target
dataset without using labels, before fine-tuning the model with labels. The right figure shows external-data transfer learning which first constructs a base
model from an additional dataset without using labels, then followed by step 2 and 3 which are similar to the first two steps of internal-data transfer learning.

Ours+Ext.). The difference between these two strategies is in
the way a base model is trained. Ours+Int. trains the base
model using the target dataset only, while Ours+Ext. is using
additional datasets as shown in Fig. 3.

With these ideas, we can formulate a set of hypotheses form-
ing the basis for experimental studies in the next subsection.

1) We expect the learned representation based on our
proposed loss to have comparable performance to the
exact EMD method.

2) We expect that the two transfer learning strategies should
outperform supervised learning baselines. The learned
representation from the self-supervised learning stage
could improve the performance of downstream task, es-
pecially, in small dataset conditions, by using the learned
representation from additional datasets, i.e., external-
data transfer learning.

VI. EXPERIMENTS

To evaluate our proposed method and extension ideas from
the previous section, we use four datasets for document
retrieval and classification tasks [1], [22]: BBCSports, Twitter,
Recipe, and Amazon with the original train/test splits. We use
classification accuracy as the main evaluation metric similar
to the practice in existing literature [1], [22] and Recall@K
metric to measure the retrieval performance.

A. Implementation

Our Encoder in Section IV-C uses a stack of 5 Transformer’s
encoders, each of which uses 7 attention heads in the multi-
head attention module and a feed-forward layer with 1,000
hidden nodes. The p function is modeled with three fully-
connected layers of sizes 512, 256, and 64, where only the
first two have ReLU activations. We also normalize the last
layer using L2 normalization. The input document is converted
into a set of word vectors using GoogleNews Word2Vec model
with a feature size of 300. We also append the word frequency
to the feature vector, resulting in our feature of size 301.
Additionally, we zero-pad the dimension corresponding to the
number of words in each document so that each document
has the same number of words, i.e., the maximum number of
words in all documents.

We trained our network with a batch size of 64 using Adam
optimizer with a learning rate of 107%, 5, = 0.9, By = 0.999,
e = 1077 for 1,000 epochs for each experiment and use the
model that has the best accuracy on the validation set for
testing. For WSSET, we use « = 0.1 and ¢ = 7.

In the transfer learning strategies, we train a base model
using the same WSSET setting. In particular, we used Con-
sumer Reviews of Amazon Products dataset on Kaggle to train
a base model in the external-data transfer learning model. For
the supervised training step, we use a triplet loss with o = 0.1
and the semi-hard negative mining strategy proposed in [4].

To benchmark our models, we use a distance-weighted k-
nearest neighbor classifier (¢\NN) with £ = 10 to predict labels
on classification task experiments on Section VI-B, VI-C, and
VI-E. !

For other competitors that are not designed for pointsets
data, we use DeepSets [17] architecture to encode pointsets
input and train the models using their proposed losses.

B. Comparison with state-of-the-art approaches

In this section, we evaluate retrieval and classification per-
formance of our proposed WSSET loss and internal/external-
data transfer learning model (i.e., Ours+Int. and Ours+Ext.)
against state-of-the-art approaches.

For the classification task, Table I shows that our proposed
WSSET loss, i.e., Ours, outperforms all unsupervised and self-
supervised methods, including Exemplar [9], UDML-SS [15],
and Approx.EMD. However, we perform better than the dis-
tribution distance method only on BBCSport (i.e., WMD).
Nonetheless, WMD takes O(n?logn) for one distance calcu-
lation while our method has a much lower computation cost.
Lastly, Approx.EMD, which is a direct EMD approximation
method, has poorer performance than ours as mentioned in
Section V but still outperforms the other two approaches.

In the supervised learning setting without using external
training data, Ours+Int. dominates all competitors, i.e., DSPN
[18] with a softmax layer, RepSet [22], DeepSets [17] with
cross-entropy and triplet loss, and self-attention representation
module (Section IV-C) with triplet loss. This result shows that
the representation learned from EMD space by our proposed
loss is useful for learning the target task.

ICode and data available at https://github.com/vistec-AI/WSSET/
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Ours+Int. on Recipe and Amazon datasets. This demonstrates Qurs+Ext. v v 6.22 12.06 22.72 42,10
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that the prior knowledge learned from external datasets could WMD X X 6.58 12.87 36.09 57.19
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COMPARISON OF CLASSIFICATION ACCURACIES WITH OTHER
SUPERVISED/UNSUPERVISED APPROACHES (SUP) AND APPROACHES
USING EXTERNAL DATA (EXT).

Datasets

Methods Sup  Ext BBCSport  Recipe  Amazon  Twitter
WMD X X 95.0 58.42 92.75 71.49
Exemplar X X 58.64 33.26 69.79 70.17
UDML-SS X X 60.9 28.60 72.45 65.66
Approx.EMD X X 93.18 50.13 84.79 70.49
Ours X X 96.36 51.87 92.17 70.71
DeepSets+CE v X 97.7 58.88 94.95 75.42
DeepSets+TL v X 99.09 54.3 94.10 73.6
SelfAttn+CE v X 97.27 61.00 94.30 76.6
SelfAttn+TL v X 97.75 62.30 94.65 71.5
RepSet v X 98.00 61.43 94.71 74.58
DSPN+CE v X 95.19 47.77 93.29 68.80
Ours+Int. v X 100.00 63.16 95.50 78.33
BERTgASE v v 99.54 - 95.21 75.85
Ours+Ext. v v 100.00 63.31 95.63 78.11

C. Experiments on small dataset conditions

This experiment demonstrates how our proposed transfer
learning strategy can help alleviate small dataset limitations
in some learning task. We generate multiple smaller versions
of BBCsports and Twitter datasets with varying numbers
of average samples per class ranging from 10 to 90 while
retaining the original class distribution.

Similar to the previous experiment, we split the settings
based on external training data. However, we choose only one
competitor for the setting trained without external data, which
is a general self-attention module with triplet loss (i.e., TL).
This competitor equivalents to a method that directly learn a
supervised classification task on small datasets without using
transfer learning.

The results in Fig. 4 show the classification accuracy be-
tween two approaches that do not use external data (solid line)
in which Ours+Int. approach outperforms TL at all situations.

For the approaches trained with external data, BERTgAsg
has surprisingly good performance even at a very low sample
per class on BBCSports dataset. This is possibly due to the
similarity between the target dataset and the pretrained data in
BERTgasE, which had been trained from BookCorpus (800M
words) and English Wikipedia (2,500M words) datasets. How-
ever, Ours+Ext. achieves higher accuracy than BERTgsg for
30 samples per class or more for BBCSports and all settings
for Twitter. This demonstrates that our approach has the
capability to improve the accuracy of TL on a different target
domain, e.g., Twitter in small dataset conditions.
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Fig. 6. Figure shows the effectiveness of our re-weighting negative terms on
recall@K by tuning the hyperparameter ¢ in Eq.3.

D. Experiments on computational efficiency

We evaluated the average query time on the Amazon dataset
of our approach against classic EMD (O(n3logn) ) [2],
threshold EMD (O(n?Ulogn)) [12] and a neural network-
based method, BERT. All of the studies were conducted on
Intel Xeon E5-2698 v4 2.20GHz with 20-core multiprocessing
for distance calculation and NVIDIA Tesla V100 for neural
network inference.

Fig. 5 shows that our approach is the fastest method among
the competitors. However, BERT uses a tokenizer to process
raw text, which is faster than Word2Vec in other approaches.
Nonetheless, BERT takes a longer time to encode a query to a
feature vector than our model since our model has significantly
fewer parameters of 4.9M while BERT has 110M parameters.

In the distance calculation phase, the neural network ap-
proaches (i.e., ours and BERT) which use Euclidean distance
are 39.625 times faster than Threshold EMD and 905.9 times
than classical EMD.

E. Hyperparameter study

We conducted a study to demonstrate the effectiveness of
re-weighting negative terms by varying hyperparameters c in
Eq.3 on Recipe, which is the most challenging dataset among
all 4 datasets. Higher ¢ means less effect of re-weighting.
We observe that for all Recall@ K, ¢ 7 to c 13 have
significantly better recall rates than higher c values as shown in
Fig. 6. This shows the effectiveness of prioritizing high EMD
negative pairs to force the network to learn with samples that
are more likely to belong to different classes.

VII. CONCLUDING REMARKS

We propose a self-supervised deep metric learning approach
for pointsets, which enables effective representation learning
on unlabeled datasets. The key idea of our method is the use
of EMD to generate pseudo labels for triplet loss training
and a re-weighting technique that encourages larger separation
between certain negative pairs deemed more likely to come
from different classes. Our experiments show that our learned

representation can be used for downstream tasks and produce
results superior to other supervised competitors, including an
NLP-specific approach based on a state-of-the-art language
model. In addition, our method is shown to be the fastest
among all the competitors. As future work, we plan to further
generalize this approach to other pointsets data or other
distance functions.
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