
Error-Bounded Online Trajectory Simplification with
Multi-Agent Reinforcement Learning
Zheng Wang

1
, Cheng Long

1,∗
, Gao Cong

1
, Qianru Zhang

2

1
School of Computer Science and Engineering, Nanyang Technological University, Singapore

2
Department of Computer Science, The University of Hong Kong, Hong Kong SAR

{wang_zheng,c.long,gaocong}@ntu.edu.sg,qrzhang@cs.hku.hk

ABSTRACT
Trajectory data has been widely used in various applications, in-

cluding taxi services, traffic management, mobility analysis, etc. It

is usually collected at a sensor’s side in real time and corresponds

to a sequence of sampled points. Constrained by the storage and/or

network bandwidth of a sensor, it is common to simplify raw tra-

jectory data when it is collected by dropping some sampled points.

Many algorithms have been proposed for the error-bounded online

trajectory simplification (EB-OTS) problem, which is to drop as

many points as possible subject to that the error is bounded by

an error tolerance. Nevertheless, these existing algorithms rely on

pre-defined rules for decision making during the trajectory sim-

plification process and there is no theoretical ground supporting

their effectiveness. In this paper, we propose a multi-agent rein-

forcement learning method called MARL4TS for EB-OTS. MARL4TS
involves two agents for different decision making problems during

the trajectory simplification processes. Besides, MARL4TS has its

objective equivalent to that of the EB-OTS problem, which provides

some theoretical ground of its effectiveness. We conduct extensive

experiments on real-world trajectory datasets, which verify that

MARL4TS outperforms all existing algorithms in effectiveness and

provides competitive efficiency.

CCS CONCEPTS
• Information systems→ Data mining; • Computing method-
ologies → Knowledge representation and reasoning.

KEYWORDS
trajectory data; online trajectory simplification; multi-agent rein-

forcement learning

ACM Reference Format:
Zheng Wang

1
, Cheng Long

1,∗
, Gao Cong

1
, Qianru Zhang

2
. 2021. Error-

Bounded Online Trajectory Simplification with Multi-Agent Reinforcement

Learning. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD ’21), August 14–18, 2021, Virtual Event,

∗
Cheng Long is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00

https://doi.org/10.1145/3447548.3467351

Figure 1: Illustration of the three-step process. Step 1:
it opens a window with 𝑝1 and 𝑝2. Step 2: it repeat-
edly expands the window to 𝑝6 and marks the points
𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6 as safe points because the errors of segments
𝑝1𝑝2, 𝑝1𝑝3, 𝑝1𝑝4, 𝑝1𝑝5, 𝑝1𝑝6 are all within a given error toler-
ance. Step 3: It performs this step since the error of 𝑝1𝑝7 vi-
olates the tolerance (at point 𝑝4). Specifically, it (1) chooses
point 𝑝6 among all safe points based on some pre-defined
rule, (2) drops points between 𝑝1 and 𝑝6 (both exclusively),
and (3) re-opens a new window involving the chosen safe
point 𝑝6 and its following point 𝑝7.
Singapore. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/

3447548.3467351

1 INTRODUCTION
Trajectory data, which captures traces of moving objects such as

pedestrians, vehicles and robots, has been widely used in different

applications, including taxi services, vehicle and fleet management,

traffic management, mobility analysis and sports games, etc. Trajec-

tory data is usually collected at a sensor’s side, say, by sampling the

location of a moving object periodically. Therefore, it corresponds

to a sequence of time-stamped locations (called points).

Since the trajectory data is collected in real time, it is often of big

volume in a raw form [35]. On the other hand, a sensor is usually

constrained by its storage and/or network bandwidth. To deal with

these issues of big volume of raw data and constrained resources, a

common practice is to simplify the trajectory data while it is being

collected in an online manner, which is called online trajectory
simplification (OTS). Specifically, OTS is to drop some raw points

of a trajectory before they are stored and/or transmitted and keep

the remaining points as a simplified trajectory. In this paper, we

study an OTS problem, which is to drop as many points as possible

(or equivalently to keep as few points as possible) such that the

information loss, which is captured as the “error” of the simplified

trajectory, is bounded by an error tolerance. We call this problem

error-bounded online trajectory simplification (EB-OTS).

Many existing algorithms have been developed for EB-OTS prob-

lem, including OPW [23], CISED-S [17], BQS [19, 20], FBQS [19, 20],
OPERB [18], Intersect [21], Angular [8], and Interval [7]. These
algorithms all adopt the following three-step process. Step 1: it

https://doi.org/10.1145/3447548.3467351
https://doi.org/10.1145/3447548.3467351
https://doi.org/10.1145/3447548.3467351

opens a window involving the first and second points. Step 2: it

checks whether the segment linking the first point and the last

point in the window can approximate the trajectory consisting of

all points in the window within the error tolerance. If so, it marks

the last point of the window as a safe point, expands the window
by including one following point outside the window, and repeats

Step 2; otherwise, it proceeds to Step 3. Step 3: it (1) chooses a point

among all safe points in the window based on some pre-defined
rules, (2) drops all the points between the first point and the cho-

sen safe point in the window, both exclusively (note that the error

caused by dropping these points should be bounded by the error

tolerance), and (3) re-opens a new window involving the chosen

safe point and the one following the chosen point, and goes back

to Step 2. An example illustrating the three-step process is shown

in Figure 1.

These existing algorithms differ from each other in (1) adopting

different strategies for checking the error in Step 2 and (2) using

different pre-defined rules in Step 3. For example, the OPW algorithm
computes the error exactly in Step 2 and explores two pre-defined

rules in Step 3, namely one to choose the last safe point of the

window and one to choose the point such that dropping it would

cause the greatest error. The CISED-S algorithm computes only an

upper bound of the error in Step 2 for better efficiency and expands

the window if the upper bound is bounded by the error tolerance,

and chooses the last safe point in the window in Step 3.

These existing algorithms suffer from two issues. First, in Step

2, they expand the window by one each time, for which it needs

to check the error caused by dropping a sequence of points, which

incurs expensive computation costs. Note that for algorithms such

as OPW, they compute the error exactly for each point, which takes

𝑂 (𝑛) time, and as a result, they have the time complexity of 𝑂 (𝑛2),
where 𝑛 is the number of points of the inputted trajectory. Second,

in Step 3, they use pre-defined rules for choosing a safe point for

re-opening a window, e.g., choosing the last safe point in the win-

dow. These rules are human-crafted and cannot adapt to different

problem instances and inputted data. There is no theoretical ground

supporting that these rules would achieve the objective of the EB-

OTS problem, and as a result, the effectiveness of the algorithms

with these rules is not guaranteed.

We observe that the aforementioned three-step process corre-

sponds to a sequential decision process, i.e., it sequentially make

decisions on how to expand a window (if possible) and on how

to choose a safe point for re-opening a window (if expanding a

window is not possible). All existing algorithms utilize pre-defined

rules for this sequential decision process, e.g., expanding a window

by one point in Step 2 and choosing the last safe point in a window

in Step 3. Inspired by the fact that reinforcement learning (RL) has

been shown to work effectively for sequential decisionmaking prob-

lems such as those in robotics [10] and gaming [24], we propose

to leverage RL for the EB-OTS problem. Specifically, we introduce

two agents, namely Agent-E and Agent-R, for expanding a window

and re-opening a window in the three-step process, respectively.

Agent-E decides how many points to be included for expanding a

window. Agent-R decides which safe point to choose for re-opening

a window. For both Agent-E and Agent-R, we carefully define their

underlying Markov decision process (MDP) [29] model, including

states, actions, transitions and rewards such that the states can be

computed efficiently and capture essential information for deci-

sion making and the model can be learned effectively. In particular,

we let the two agents share their rewards so that they can work

cooperatively for achieving effective online trajectory simplifica-

tion. We call this multi-agent RL-based algorithm for trajectory

simplification MARL4TS. MARL4TS is applicable to all error measure-

ments that are commonly used, while most existing algorithms are

designed for specific error measurement (e.g., CISED-S is applicable
only when the synchronous Euclidean distance (SED) [23, 26–28] is
used for measuring the error of a simplified trajectory). In addition,

we develop two techniques to further boost the efficiency and ef-

fectiveness of MARL4TS, namely one of imposing a maximum size

over windows to be considered (for improving efficiency) and one

of delaying to re-open a window for a certain number of points so

as to potentially include more safe points for consideration when

re-opening a window (for improving the effectiveness).

In summary, the major contributions of this paper are as follows.

First, we develop the first multi-agent RL-based method MARL4TS
for the EB-OTS problem. MARL4TS achieves the best effectiveness
compared with all existing algorithms under different parameter

settings and error measurements. This marks a significant improve-

ment in trajectory simplification methodology, especially given

that trajectory simplification is a fundamental problem, for which

a rich set of techniques have been developed. Second, we formally

show that the objective of EB-OTS is perfectly captured by that of

MARL4TS. This provides some theoretical ground/explanation on the

superior effectiveness over existing algorithms, which are based on

pre-defined rules and do not optimize EB-OTS’s objective directly.

In addition, we show that MARL4TS runs in linear time, which pro-

vides theoretical justifications of its competitive efficiency. Third,

as far as we know, this is the first work that targets the EB-OTS

problem under a general error measurement that covers multiple

existing error measurements which are widely used. Correspond-

ingly, we probably have conducted the most extensive experiments

on EB-OTS in a single research paper (across error measurements,

datasets, and settings).

The rest of this paper is organized as follows. We study the lit-

erature in Section 2. We review some basic concepts and provide

the problem definition in Section 3. We present our MARL4TS algo-
rithm in Section 4 and present the experimental results in Section 5.

Finally, we conclude our paper in Section 6.

2 RELATEDWORK
(1) Error-Bounded Online Trajectory Simplification. Many

existing algorithms have been developed for the EB-OTS prob-

lem, including OPW [23], CISED-S [17], BQS [19, 20], FBQS [19, 20],
OPERB [18], Intersect [21], Angular [8], Interval [7], and DOTS [3].
All except for DOTS adopt the three-step process as described in

Section 1, but use different strategies for expanding and re-opening

a window in Step 2 and Step 3, respectively. Specifically, BOPW, NOPW
and MOPW are three variants of OPW. They check the error exactly

and expand a window by including one point in Step 2. When

re-opening a window in Step 3, BOPW chooses the last safe point,

NOPW chooses the first safe point that causes the tolerance viola-

tion, and MOPW chooses the safe point such that dropping it incurs

the greatest error. These three algorithms have the time complex-

ity of 𝑂 (𝑛2) and are applicable to multiple error measurements.

CISED-S proposes an upper bound estimation via a spatiotempo-

ral cone intersection technique for error checking and expands

a window by including one point in Step 2 and adopts the same

strategy for Step 3 as BOPW. It has the time complexity of 𝑂 (𝑛)
and works for the synchronous Euclidean distance (SED) error

measurement [23, 26–28] only. BQS adopts the same strategies for

expanding and re-opening windows as BOPW and improves the

efficiency of the error checking procedure in Step 2. The time com-

plexity remains 𝑂 (𝑛2) in the worst case. Further, FBQS reduces the

time complexity of BQS to 𝑂 (𝑛) by estimating an upper bound of

the error in Step 2. OPERB adopts the same strategies as BOPW

and achieves a fast upper bound computation in Step 2 based on

a local distance checking method. OPERB has the time complexity

of 𝑂 (𝑛). BQS, FBQS and OPERB are applicable for the perpendicular

Euclidean distance (PED) error measurement [1, 19, 20, 23] only.

Intersect, Augular and Interval adopt the same strategies as

BOPW. They differ from each other in estimating an upper bound

of the error in Step 2 and each of them has a time complexity of

𝑂 (𝑛). They are applicable to the direction-based distance (DAD)

error measurement [7, 8, 21, 22] only. DOTS assumes the Integral

Square Synchronized Euclidean Distance (ISSED) error measure-

ment, which is not targeted in this paper. Besides, it does not follow

the three-step process. Our solution MARL4TS is based on a learned

policy from multi-agent reinforcement learning instead of some

pre-defined rules for decision making. In addition, MARL4TS is appli-
cable to multiple error measurements including the aforementioned

SED, PED, and DAD and speed-based distance (SAD) error mea-

surement [27].

(2) Other Trajectory Simplification Studies. Some other studies

target error-bounded trajectory simplification in a batch mode,

which assumes full access to the whole trajectory throughout the

trajectory simplification process [6, 9, 21, 27]. It is clear that the

algorithms proposed in these studies cannot be adopted for the

ET-OTS problem. In addition, there are studies on the dual problem

of the error-bounded trajectory simplification problem, which is

called size-bounded trajectory simplification (also called the Min-
Error problem). Interested readers are referred to a survey paper [35]

and a concurrent work [32] and the references therein for details.

It is worth mentioning that [32] targets the size-bounded trajectory

simplification problem in both the online mode and the batch mode

and proposes a reinforcement learning method for the problem. In

contrast, this paper targets the EB-OTS problem and develops a

multi-agent reinforcement learning method. There are some other

studies that develop dead reckoning techniques for online trajectory

simplification, which decide whether to discard an incoming point

according to some criterion [11, 28, 31].

(3) Road Network based Trajectory Compression. Trajectory
compression is process of compressing trajectories that are con-

strained on road networks with and/or without information loss [4,

5, 13]. The major idea is to first map the raw trajectories onto road

networks, and as a result, a trajectory would become a sequence

of roads with some temporal information. It then compresses the

sequence data and temporal information with various techniques,

Figure 2: Error measurements.

e.g., a sequence of roads can be compressed to be shorter one in-

volving the first road and the last road if it corresponds to a shortest

path from the first road to the last one. In this paper, we focus on

the trajectories that are generated in a free space, such as those of

animals [21], pedestrians [36], sports players [33], etc.

(4) Multi-agent Reinforcement Learning. Reinforcement learn-

ing is a machine learning technique, which is usually used to make

sequential decisions when an agent interacts with its surrounding

environment [30]. Multi-agent reinforcement learning is for cases

where multiple agents are involved [12, 16]. In recent years, multi-

agent reinforcement learning has attracted much research attention.

For example, it has been used for many problems including express

system [14], courier dispatching [15], traffic management [16], sim-

ilar sub-trajectory search [34], etc. In this paper, we use multi-agent

reinforcement learning for error-bounded online trajectory simpli-

fication.

3 PROBLEM STATEMENT
(1) Trajectory. A trajectory, denoted by 𝑇 , consists of a sequence

of time-stamped locations to capture the trace of a moving object.

Let 𝑇 =< 𝑝1, 𝑝2, ..., 𝑝𝑛 > be a trajectory, where 𝑝𝑖 has the form of a

triplet (𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖), which means that a moving object is at location

(𝑥𝑖 , 𝑦𝑖) at time 𝑡𝑖 . We use |𝑇 | to denote the size of the trajectory 𝑇

(i.e., |𝑇 | = 𝑛). We use 𝑇 [𝑖 : 𝑗] (𝑖 ≤ 𝑗) to denote the subtrajectory

of 𝑇 , which starts form point 𝑝𝑖 and ends at point 𝑝 𝑗 . Let 𝑝𝑖𝑝𝑖+1
(1 ≤ 𝑖 ≤ 𝑛 − 1) denote the line segment which connects two

locations (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑖+1, 𝑦𝑖+1), meaning that an object moves

from (𝑥𝑖 , 𝑦𝑖) to (𝑥𝑖+1, 𝑦𝑖+1) along the line segment at a constant

speed that equals to
𝑑 (𝑝𝑖 ,𝑝𝑖+1)
𝑡𝑖+1−𝑡𝑖 , where 𝑑 (·, ·) denotes the Euclidean

distance.

(2) Trajectory Simplification. A simplified trajectory of T, de-

noted by 𝑇 ′
, has the form of < 𝑝𝑠1 , 𝑝𝑠2 , ..., 𝑝𝑠𝑚 >, where 𝑚 ≤ 𝑛

and 1 = 𝑠1 < 𝑠2 ... < 𝑠𝑚 = 𝑛. Consider Figure 2 for example.

𝑇 =< 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6 > is an original trajectory and 𝑇 ′ =<

𝑝1, 𝑝4, 𝑝6 > is a simplified trajectory of 𝑇 .

(3) Error Measurements. Within the time period [𝑡𝑠 𝑗 , 𝑡𝑠 𝑗+1] (1 ≤
𝑗 ≤ 𝑚 − 1), based on the simplified trajectory 𝑇 ′

, it represents that

the object moves along the segment 𝑝𝑠 𝑗 𝑝𝑠 𝑗+1 , while based on the

original trajectory 𝑇 , it represents that the object moves along a

sequence of segments which are formed by a sequence of points

𝑝𝑠 𝑗 , 𝑝𝑠 𝑗+1, ..., 𝑝𝑠 𝑗+1 . That is, the segment 𝑝𝑠 𝑗 𝑝𝑠 𝑗+1 in simplified tra-

jectory 𝑇 ′
approximates a sequence of segments in the original

trajectory starting from the points 𝑝𝑠 𝑗 , 𝑝𝑠 𝑗+1, ..., 𝑝𝑠 𝑗+1−1. Thus, the
segment 𝑝𝑠 𝑗 𝑝𝑠 𝑗+1 is called the anchor segment of each of points

𝑝𝑠 𝑗 , 𝑝𝑠 𝑗+1, ..., 𝑝𝑠 𝑗+1−1. All points in the original trajectory 𝑇 , except

for the point 𝑝𝑛 , have an anchor segment. For example, in Figure

1, 𝑝1𝑝4 approximates a sequence of three segments 𝑝1𝑝2, 𝑝2𝑝3 and

𝑝3𝑝4 in 𝑇 and corresponds to the anchor segment of points 𝑝1,

𝑝2 and 𝑝3. Note that there exists some discrepancy between the

movement along the simplified trajectory 𝑇 ′
and that along the

original trajectory 𝑇 , which is measured as the error of 𝑇 ′
wrt 𝑇

and denoted by 𝜖 (𝑇 ′).
Quite a few error measurements have been proposed, among

which, four that are widely-used include Synchronized Euclidean

Distance (SED) [23, 26–28], Perpendicular EuclideanDistance (PED) [1,

19, 20, 23], Direction-aware Distance (DAD) [7, 8, 21, 22], and Speed-

aware Distance (SAD) [27]. The major ideas of these error mea-

surements are as follows. (1) It first defines the error of a segment

𝑝𝑠 𝑗 𝑝𝑠 𝑗+1 wrt a point 𝑝𝑖 that takes the segment as its anchor seg-

ment, denoted by 𝜖 (𝑝𝑠 𝑗 𝑝𝑠 𝑗+1 |𝑝𝑖) (𝑠 𝑗 ≤ 𝑖 < 𝑠 𝑗+1). Different error mea-

surements adopt different definitions for 𝜖 (𝑝𝑠 𝑗 𝑝𝑠 𝑗+1 |𝑝𝑖). For illus-
trations, consider Figure 2, where 𝜖𝑆𝐸𝐷 (𝑝1𝑝4 |𝑝2), 𝜖𝑃𝐸𝐷 (𝑝1𝑝4 |𝑝3),
and 𝜖𝐷𝐴𝐷 (𝑝4𝑝6 |𝑝5) are shown. Detailed definitions can be found

in [32]. (2) It then defines the error of a segment 𝑝𝑠 𝑗 𝑝𝑠 𝑗+1 , denoted

by 𝜖 (𝑝𝑠 𝑗 𝑝𝑠 𝑗+1), as the maximum error wrt a point that take the

segment as its anchor segment, i.e.,

𝜖 (𝑝𝑠 𝑗 𝑝𝑠 𝑗+1) = max

𝑠 𝑗 ≤𝑖<𝑠 𝑗+1
𝜖 (𝑝𝑠 𝑗 𝑝𝑠 𝑗+1 |𝑝𝑖) (1)

(3) It finally defines the error of 𝑇 ′
as the maximum error of its

segments, i.e.,

𝜖 (𝑇 ′) = max

1≤ 𝑗≤𝑚−1
𝜖 (𝑝𝑠 𝑗 𝑝𝑠 𝑗+1) (2)

Note that the maximum function but not the summation function

is adopted by existing studies in Equation (2) since with the latter,

it would be sensitive to the size of trajectory, i.e., the error would

be accumulated when a trajectory gets longer.

(4) ProblemDefinition (EB-OTS).We study the EB-OTS problem,

which is defined as follows.

Problem 1 (EB-OTS). Given a raw trajectory𝑇 =< 𝑝1, 𝑝2, ..., 𝑝𝑛 >

that is inputted in a streaming fashion and an error tolerance 𝜀𝑡 , the
EB-OTS problem is to find a simplified trajectory 𝑇 ′ of 𝑇 such that
𝜖 (𝑇 ′) ≤ 𝜀𝑡 and |𝑇 ′ | is minimized. Here, 𝜖 (𝑇 ′) could be instantiated
with SED, PED, DAD, or SAD.

4 METHODOLOGY
We observe that the three-step process as described in Section 1 cor-

responds to a sequential decision process, i.e., it sequentially makes

decisions on how to expand a window if possible and how to choose

a safe point for re-opening a window if expanding a window is not

possible. Therefore, we propose to leverage reinforcement learning

(RL) to help the decision making of the three-step process. In par-

ticular, RL is widely used to guide agents on how to take actions

to maximize a cumulative reward in an environment, where the

environment is modelled as aMarkov decision process [29] (MDP). In

this paper, we introduce two agents, namely Agent-E and Agent-R,

to help with expanding a window and re-opening a window, respec-

tively. We capture the decision problems of the two agents with

MDP models (Section 4.1 and Section 4.2), learn the optimal policies

for the MDPs via Deep-𝑄-Network (DQN)[24] (Section 4.3), and

utilize the learned policies of Agent-E and Agent-R for expanding

and re-opening a window in the three-step process, respectively

(Section 4.4). We call the resulting algorithm MARL4TS.

4.1 MDP for Expanding a Window (Agent-E)
Consider the task of expanding a window in Step 2 of the three-

step process. Existing algorithms all adopt a pre-defined rule of

expanding a window by including one following point outside

the window. While this strategy gives each point a chance to be

chosen for re-opening a window in Step 3 if it is a safe point, it is

somehow a bit too conservative. For instance, in a scenario where

the underlying object moves along a straight line and at a constant

speed, we havemuch confidence to drop the corresponding sampled

points. This motivates us to potentially include multiple points

for expanding a window so as to reduce the number of times of

checking the error of dropping points from a window. Specifically,

we introduce an agent called Agent-E for deciding howmany points

to be included for expanding a window. We capture this decision

making problem as a MDP, involving states, actions, transitions

and rewards, which are defined as follows.

(1) States. We denote a state of Agent-E’s MDP by 𝑠𝑒 . Suppose

the window involves points 𝑝𝑙 , 𝑝𝑙+1, ..., 𝑝𝑟 , which we denote by

𝑊 [𝑙, 𝑟]. Intuitively, the state should capture essential information

of the window for deciding how many points to be included when

expanding the window. We propose to define the state as a pair of

two numbers, namely, (1) the ratio between the distance from 𝑝𝑙 to

𝑝𝑟 when traveled along the raw trajectory and that when traveled

along the segment 𝑝𝑙𝑝𝑟 and (2) the number of points in the window.

Formally, the state 𝑠𝑒 is defined as follows.

𝑠𝑒 := (
∑
𝑙≤ℎ<𝑟 𝑑 (𝑝ℎ, 𝑝ℎ+1)

𝑑 (𝑝𝑙 , 𝑝𝑟)
, 𝑟 − 𝑙 + 1) (3)

The intuition of the above definition is as follows. The first number

captures how smooth the underlying trace is to some extent, e.g., if

it is close to 1, it means that the trace is close to a straight line, and

if it is significantly larger than 1, it means that trace may involve

big turns. The second number captures the size of the window. In

addition, with this definition, the state can be updated in𝑂 (1) time,

which is important since the main purpose of Agent-E is to boost

the efficiency of the three-step process.

(2) Actions.We denote an action of Agent-E’s MDP by 𝑎𝑒 . Suppose

the current window is𝑊 [𝑙, 𝑟]. We define 𝐽 possible actions for ex-

panding𝑊 [𝑙, 𝑟], namely, (1) expanding to𝑊 [𝑙, 𝑟 +1], (2) expanding
𝑊 [𝑙, 𝑟 + 2], ..., (J) expanding to𝑊 [𝑙, 𝑟 + 𝐽]. Here, 𝐽 is a hyperpa-
rameter, which is to be decided via empirical studies. Formally, we

define 𝑎𝑒 as follows.

𝑎𝑒 := 𝑗 (1 ≤ 𝑗 ≤ 𝐽) (4)

where 𝑎𝑒 = 𝑗 means to expand𝑊 [𝑙, 𝑟] to𝑊 [𝑙, 𝑟 + 𝑗]. Note that

when 𝐽 is set to 1, it reduces to the conventional rule of always

expanding a window by including one following point outside the

window.

(3) Transitions. Let 𝑠𝑒 be a state and𝑊 [𝑙, 𝑟] be the window at 𝑠𝑒 .

Suppose we take an action 𝑎𝑒 = 𝑗 , which expands the window to

𝑊 [𝑙, 𝑟 + 𝑗]. There are two cases. Case 1: the error of dropping the

points in the window, i.e., 𝜖 (𝑝𝑙𝑝𝑟), is bounded by the error tolerance
𝜀𝑡 . In this case, it would continue to expand the window𝑊 [𝑙, 𝑟 + 𝑗]
(in Step 2). A new state can be computed based on the window

𝑊 [𝑙, 𝑟 + 𝑗]. Case 2: it corresponds to the other case. In this case,

it would re-open a window with the Agent-R (to be introduced in

Section 4.2) (in Step 3). A new state can be computed based on the

re-opened window. Note that a re-opened window can always be

expanded further since it involves exactly two adjacent points.

(4) Rewards. When expanding a window, it does not drop any

points and thus the rewards cannot be immediately observed. Since

Agent-E and Agent-R cooperate for the same objective, i.e., to drop

as many points as possible without violating the error tolerance,

we let Agent-E and Agent-R share their rewards. Specifically, we

set the reward of performing an action of expanding a window to

be equal to that of the following action of re-opening a window

(which will be introduced in Section 4.2).

4.2 MDP for Re-Opening a Window (Agent-R)
Consider the task of re-opening a window in Step 3 of the three-step

process. The key is to choose a safe point in the window since once

it has been chosen, a window can be re-opened by including the

chosen safe point and the point following the chosen safe point.

Existing algorithms all use pre-defined rules for choosing a safe

point, e.g., choosing the last safe point in the windows. These pre-

defined rules are simple heuristics and cannot adapt to different

inputs with different settings. In addition, there is no theoretical

ground supporting that they optimize the objective of the EB-OTS

problem. We introduce an agent called Agent-R for deciding which

safe point in the window to choose for re-opening a window. We

capture this decision making problem as a MDP, which are defined

as follows.

(1) States.We denote a state of Agent-R’s MDP by 𝑠𝑟 . Suppose that

the current window is𝑊 [𝑙, 𝑟] and𝑀 safe points have been marked

in Step 2. We denote these safe points by 𝑝𝑠1 , 𝑝𝑠2 , ..., 𝑝𝑠𝑀 . We need to

choose a point among these𝑀 safe points. An immediate idea is to

incorporate all𝑀 safe points for defining the state. Nevertheless, it

would have two issues. First, the state defined in this way would be

𝑀-dependent and cannot be used for other cases where the number

of safe points is not𝑀 . Second,𝑀 is typically a large integer, and

with this definition, the state space would be huge, which introduces

difficulty to train the model effectively.

We propose to focus on the last 𝐾 safe points, i.e., 𝑝𝑠𝑀−𝐾+1 ,

𝑝𝑠𝑀−𝐾+2 , ..., 𝑝𝑠𝑀 , for defining a state, where 𝐾 is a hyperparameter

that can be tuned. The rationale is that to re-open a window at a safe

point that appears later would mean to drop more points. In case

that there are fewer than 𝐾 safe points, we simply duplicate the last

safe point a few times to obtain𝐾 safe points. For each safe point 𝑝𝑠𝑖
considered, we define a pair of two numbers, namely (1) the error

of the segment linking 𝑝𝑙 and 𝑝𝑠𝑖 and (2) the number of points that

would be dropped if point 𝑝𝑠𝑖 is chosen for re-opening a window.

We denote the pair by 𝑐 (𝑝𝑠𝑖), i.e., 𝑐 (𝑝𝑠𝑖) = (𝜖 (𝑝𝑙𝑝𝑠𝑖), 𝑠𝑖 − 𝑙 +1). Note
that 𝜖 (𝑝𝑙𝑝𝑠𝑖) has already been computed when checking whether

the window𝑊 [𝑙, 𝑠𝑖] can be expanded in Step 2. These numbers cap-

ture the the consequence of choosing 𝑝𝑠𝑖 for re-opening a window

to some extent. Formally, we define 𝑠𝑟 as follows.

𝑠𝑟 := {𝑐 (𝑝𝑠𝑀−𝐾+1), 𝑐 (𝑝𝑠𝑀−𝐾+2), ..., 𝑐 (𝑝𝑠𝑀)}. (5)

The above definition is𝑀-independent. In addition, with this defini-

tion, the state space is controllable via the hyperparameter 𝐾 . Note

that we would normalize the values of the state in each dimension

to avoid potential data scale issues.

(2) Actions. We denote an action of Agent-R’s MDP by 𝑎𝑟 . We

define 𝐾 actions, each to choose one of the last 𝐾 safe points for

re-opening a window. The rationale is the same as that of defining

the state 𝑠𝑟 . Formally, we defne 𝑎𝑟 as follows.

𝑎𝑟 := 𝑘 (0 ≤ 𝑘 ≤ 𝐾 − 1) (6)

where the action 𝑎𝑟 = 𝑘 means to choose the safe point 𝑝𝑠𝑀−𝑘 , drop

all the points between 𝑝𝑙 and 𝑝𝑠𝑀−𝑘 (both exclusively), and re-open

a window involving 𝑝𝑠𝑀−𝑘 and 𝑝𝑠𝑀−𝑘+1, i.e.,𝑊 [𝑠𝑀−𝑘 , 𝑠𝑀−𝑘 + 1].
(3) Transitions. After we take an action 𝑎𝑟 at a state 𝑠𝑟 , which re-

opens awindow. It would continue to expand thewindow iteratively

until it is not possible to do so. By then, some safe points would

have been marked, based on which, we can compute a new state

𝑠𝑟
′
, which corresponds to the next state of 𝑠𝑟 .

(4) Rewards. Consider that Agent-R performs an action 𝑎𝑟 at a

state 𝑠𝑟 and then it arrives at a new state 𝑠𝑟
′
. We define the reward

associated with this transition from state 𝑠𝑟 to state 𝑠𝑟
′
, which we

denote by 𝑅, as follows. Let𝑊 [𝑙, 𝑟] and𝑊 [𝑙 ′, 𝑟 ′] be the windows
before and after the action 𝑎𝑟 is taken, respectively. Recall that the

action 𝑎𝑟 involves the process of dropping the points between 𝑝𝑙
and 𝑝𝑙 ′ . We therefore define the reward to be equal to the number

of points dropped. Formally, we define 𝑅 as follows.

𝑅 := 𝑙 ′ − 𝑙 − 1 (7)

The intuition is that if more points are dropped, it is more towards

the objective of the EB-OTS problem and thus the reward should

be larger. It is clear that with this reward definition, the objective

of the Agent-R’s MDP, i.e., maximizing the accumulative rewards,

is equivalent to that of the EB-OTS problem, i.e., maximizing the

number of points dropped. A formal verification of this equivalence

is as follows. Suppose that the Agent-R goes through a sequence of

𝑁 states, 𝑠𝑟
1
, 𝑠𝑟
2
, ..., 𝑠𝑟

𝑁
and correspondingly it receives a sequence of

𝑁−1 rewards,𝑅1,𝑅2, ...,𝑅𝑁−1. Let𝑊 [𝑙1, 𝑟1],𝑊 [𝑙2, 𝑟2], ...,𝑊 [𝑙𝑁 , 𝑟𝑁]
be the windows at the𝑁 states. Note that 𝑙1 = 1 and𝑁 is the number

of points kept among the first 𝑙𝑁 points. Then, the accumulative

rewards can be computed as follows.

𝑁−1∑
𝑡=1

𝑅𝑡 =

𝑁−1∑
𝑡=1

(𝑙𝑡+1 − 𝑙𝑡 − 1) = 𝑙𝑁 − 𝑙1 − 𝑁 + 1 = 𝑙𝑁 − 𝑁 (8)

where 𝑙𝑁 − 𝑁 corresponds to the number of points dropped before

point 𝑝𝑙𝑁 .

4.3 Learning Policies of MDPs
We adopt the Deep-𝑄-Network (DQN) [25] method for learning the

policies from the MDPs of Agent-E and Agent-R, which has been

widely used for MPDs with continuous state spaces. The major idea

of DQN is as follows. It first defines an optimal action-value func-

tion 𝑄∗ (𝑠, 𝑎) (called 𝑄 function), which represents the maximum

expected accumulative rewards it would receive by following any

policy after taking the action 𝑎 at the state 𝑠 . Formally, 𝑄∗ (𝑠, 𝑎) is
defined as follows.

𝑄∗ (𝑠, 𝑎) = 𝐸𝑠′ [𝑅 + 𝛾 ·max

𝑎′
𝑄∗ (𝑠 ′, 𝑎′)] (9)

where 𝑠 ′ is a possible next state and 𝑅 is the reward observed after

action 𝑎 is taken at a given state 𝑠 , and 𝛾 is a discount factor. It

then estimates𝑄∗ (𝑠, 𝑎) by a parameterized neural network denoted

Algorithm 1: The MARL4TS algorithm
Input: A trajectory𝑇 =< 𝑝1, 𝑝2, ..., 𝑝𝑛 > which is inputted in an online

fashion; A given error tolerance 𝜀𝑡 ;

Output: A simplified trajectory𝑇 ′
with 𝜀 (𝑇 ′) ≤ 𝜀𝑡 ;

1 //Step 1

2 Open a window𝑊 [1, 2];
3 while true do
4 //Step 2

5 Let𝑊 [𝑙, 𝑟] denote the current window;
6 if 𝜖 (𝑝𝑙𝑝𝑟) ≤ 𝜀𝑡 then
7 Mark 𝑝𝑟 as a safe point;

8 if 𝑝𝑟 is the last point, i.e., 𝑝𝑛 then
9 Drop all points between 𝑝𝑙 and 𝑝𝑟 ;

10 Break;
11 end
12 Construct a state 𝑠𝑒 (as in Equation (3));

13 Choose an action 𝑎𝑒 = argmax𝑎 𝑄
∗ (𝑠𝑒 , 𝑎;𝜃𝑒) ;

14 Expand the window to𝑊 [𝑙, 𝑟 + 𝑗] where 𝑎𝑒 = 𝑗 (Round 𝑟 + 𝑗 to

be 𝑛 if 𝑝𝑟+𝑗 will not arrive, i.e., 𝑟 + 𝑗 > 𝑛);

15 else
16 //Step 3

17 Construct a state 𝑠𝑟 (as in Equation (5));

18 Choose an action 𝑎𝑟 = argmax𝑎 𝑄
∗ (𝑠𝑟 , 𝑎;𝜃𝑟) ;

19 Drop all points between 𝑝𝑙 and the chosen safe point indicated by

𝑎𝑟 ;

20 Re-open a window involving the chosen safe point and the point

following the chosen safe point;

21 end
22 end
23 Return trajectory𝑇 ′

consisting of all points that have not been dropped;

by 𝑄∗ (𝑠, 𝑎;𝜃) (for details, please refer to [25]). It finally returns

the policy, which always chooses for a given state 𝑠 the action 𝑎

that maximizes 𝑄∗ (𝑠, 𝑎;𝜃). We denote the estimated 𝑄 functions of

Agent-E and Agent-R by 𝑄∗ (𝑠, 𝑎;𝜃𝑒) and 𝑄∗ (𝑠, 𝑎;𝜃𝑟), respectively.

4.4 The MARL4TS Algorithm
The MARL4TS algorithm follows the three-step process and uses

Agent-E and Agent-R for expanding and re-opening a window,

respectively. We present MARL4TS in Algorithm 1. Specifically, it

first opens a window𝑊 [1, 2] (line 1-2). It then enters a while loop

(line 3-22). Let𝑊 [𝑙, 𝑟] be the current window (line 5). It checks

whether 𝜖 (𝑝𝑙𝑝𝑟) is bounded by the error tolerance. If so, it performs

the following steps (line 7-14). It first marks 𝑝𝑟 as a safe point (line

7). It then terminates the loop if 𝑝𝑟 is the last point by dropping

all the points in the window except for 𝑝𝑙 and 𝑝𝑟 (line 8-11) and

expands the window with Agent-E otherwise (line 12-14). If not,

it chooses a safe point with Agent-R (line 17-18), drops all points

between the first point and the chosen safe point in the window

(line 19) and re-opens a new window involving the chosen safe

point and the point following the chosen safe point (line 20). Finally,

it returns a simplified trajectory involving all points that have not

been dropped (line 23).

We illustrate the MARL4TS algorithm with an example shown

in Figure 3, where the inputted trajectory is shown at the left side.

It first opens a window𝑊 [1, 2]. Since 𝜖 (𝑝1𝑝2) is bounded by 𝜀𝑡 , it

marks 𝑝2 as a safe point and uses Agent-E to expand the window

to𝑊 [1, 3]. Similarly, it expands the window to𝑊 [1, 8] with Agent-

E. Since 𝜖 (𝑝1𝑝8) is not bounded by 𝜀𝑡 , it uses Agent-R to choose

a safe point 𝑝7, drops the points 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6 and re-opens a

window𝑊 [7, 8]. Since 𝜖 (𝑝7𝑝8) is bounded by 𝜀𝑡 and 𝑝8 is the last

Table 1: Dataset statistics.
Statistics Geolife T-Drive Indoor

of trajectories 17,621 10,359 529,397

Total # of points 24,876,978 17,740,902 330,117,253

Ave. # of points per trajectory 1,412 1,713 624

Sampling rate 1s ∼ 5s 177s 0.03s ∼ 0.06s

Average distance 9.96m 623m 0.037m

point, it breaks from the loop and returns the simplified trajectory

𝑇 ′ =< 𝑝1, 𝑝7, 𝑝8 >.

We further develop two techniques for boosting the effectiveness

and efficiency of MARL4TS as follows. First, in Step 3 of the three-

step process, before we choose a safe point, we check for each of the

𝐷 points that follow 𝑝𝑟 , i.e., the last point in the window, whether

it is a safe point. Here, 𝐷 is a hyperparameter. We then focus on

the last 𝐾 safe points among all safe points in the window and

those from the 𝐷 points for defining a state and choosing among

them a safe point for re-opening a window. The rationale is to

consider potentially more safe points for more effective trajectory

simplification, which is verified via experiments. Second, in Step 2

of the three-step process, we impose a constraint that the window to

be expanded has its size bounded by𝐶 . Here,𝐶 is a hyperparameter.

In the case the size of an expanded window exceeds 𝐶 , its right

end would be shifted towards the left until the size reaches 𝐶 . The

rationale is that the cost of checking the error of dropping all points

in a window (except for the first and the last points) depends on

the size of the window, i.e., it is 𝑂 (𝑛) in the worst-case if the size

of a window is not bounded. With a bounded window size, the cost

would be 𝑂 (𝐶). The benefit of this technique for improving the

efficiency is verified in experiments.

Time complexity. The time complexity of the MARL4TS algorithm
is𝑂 (𝑛), where𝑛 denotes the number of points in the inputted trajec-

tory𝑇 , which we analyze as follows. The cost is dominated by those

of Step 2 and Step 3. In Step 2, the cost of one transition consists

of (1) that of checking the error of a segment, which is bounded

by 𝑂 (1) given that 𝐶 is a constant and (2) that of constructing a

state and sampling an action for Agent-E, which is 𝑂 (1). In Step

3, the cost of one transition includes (1) that of constructing the

state based on the last 𝐾 safe points for Agent-R, which is 𝑂 (1)
given that 𝐾 is a constant and the errors of segments have already

been computed during Step 2 and (2) that of sampling an action,

choosing a safe point, dropping points, which is 𝑂 (1). In addition,

Step 2 involves at most 𝑛𝐶 transitions and Step 3 involves no more

transitions than Step 2. Therefore, the time complexity of MARL4TS
is 𝑂 (𝑛𝐶) ×𝑂 (1) = 𝑂 (𝑛).

5 EXPERIMENTS
5.1 Experimental Setup
Dataset.We conduct our experiments on three real-world trajec-

tory datasets, namely Geolife, T-Drive and Indoor, which are widely

used for evaluating the performance of trajectory simplification in

previous work [18, 21, 22] including the recent dedicated evaluation

work [35]. We show the statistics of datasets in Table 1. Specifically,

Geolife
1
records the outdoor trajectories of 182 users in different

transportation modes like walking and driving for a period of five

years. T-Drive
2
tracks the trajectories of 10,357 taxis in Beijing, and

1
http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-

daa38f2b2e13/

2
http://research.microsoft.com/apps/pubs/?id=152883

http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/
http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/
http://research.microsoft.com/apps/pubs/?id=152883

Initial 𝑙 = 1, 𝑟 = 2 and 𝜀𝑡 = 1.0

𝑊 [𝑙, 𝑟] 𝜖 (𝑝𝑙𝑝𝑟) Safe points Agent State Action

𝑊 [1, 2] 𝜖 (𝑝1𝑝2) = 0.0 < 𝜀𝑡 < 𝑝2 > E 𝑠𝑒
1
= {1.0, 2} Expand to 𝑝3

𝑊 [1, 3] 𝜖 (𝑝1𝑝3) = 0.5 < 𝜀𝑡 < 𝑝2, 𝑝3 > E 𝑠𝑒
2
= {1.118, 3} Expand to 𝑝5

𝑊 [1, 5] 𝜖 (𝑝1𝑝5) = 0.5 < 𝜀𝑡 < 𝑝2, 𝑝3, 𝑝5 > E 𝑠𝑒
3
= {1.160, 5} Expand to 𝑝7

𝑊 [1, 7] 𝜖 (𝑝1𝑝7) = 0.5 < 𝜀𝑡 < 𝑝2, 𝑝3, 𝑝5, 𝑝7 > E 𝑠𝑒
4
= {1.177, 7} Expand to 𝑝8

𝑊 [1, 8] 𝜖 (𝑝1𝑝8) = 1.029 > 𝜀𝑡 < 𝑝2, 𝑝3, 𝑝5, 𝑝7 > R 𝑠𝑟
1
= {(0.5, 5), (0.5, 7) } Re-open at 𝑝7

𝑊 [7, 8] 𝜖 (𝑝7𝑝8) = 0.0 < 𝜀𝑡 < 𝑝8 > - - -

Output Return𝑇 ′ =< 𝑝1, 𝑝7, 𝑝8 >

Figure 3: Running example of MARL4TS with PED.

Indoor
3
contains the trajectories of visitors in the "ATC" shopping

center in Osaka, Japan from October 2012 to November 2013.

Baselines. To evaluate the effectiveness and efficiency of the pro-

posed method MARL4TS, we have carefully examined the evalua-

tion paper [35] and the recent literature to cover all baselines that

are proposed or can be adapted for the EB-OTS problem, includ-

ing OPW [23], CISED-S [17], BQS [19, 20], FBQS [19, 20], OPERB [18],

Intersect [21], Angular [8], and Interval [7]. The descriptions
of these algorithm can be found in Section 2.

Parameter Settings. For Agent-E, we use a feedforward neural

network with 2 layers. In the first layer, we use the tanh function

with 23 neurons, and in the second layer, we use the linear function

with 𝐽 neurons as the output corresponding to different actions. In

order to avoid the data scale issues if any, batch normalization is

employed before the activation. For Agent-R, we use a feedforward

neural network with one hidden layer followed by one output layer.

The hidden layer has 25 neurons with the tanh function as the

activation and the output layer has 𝐾 neurons corresponding to

different actions. Before training the neural networks, we shuffle the

states by randomly positioning the𝐾 tuples in each state to improve

the model quality [2]. The default hyperparameters 𝐽 , 𝐾, 𝐷,𝐶 are

set as 2, 5, 5 and 50, respectively. The effects of these parameters

are studied in experiments. We randomly sample 40%, 40%, 2%

trajectories from Geolife, T-Drive, Indoor dataset for training and

choose the best models during the process, and the remaining

trajectories are used for testing. For both agents, the size of the

replay memory 𝑀 is set at 2000. In addition, we train the model

using Adam stochastic gradient descent with an initial learning rate

of 0.01. The minimal 𝜖 is set at 0.1 with decay 0.99 for the 𝜖-greedy

strategy, and the reward discount rate 𝛾 is set at 0.99.

5.2 Experimental Results
(1) Effectiveness evaluation (comparison with existing ap-
proximate algorithms). We randomly sample 1000 trajectories

from a dataset and vary the error tolerance 𝜀𝑡 from 20m to 100m for

SED and PED by following [17, 18], 0.2 radian to 1.0 radian for DAD

by following [21], and 5km/h to 25km/h for SAD by following [27].

Figure 4 shows the average compression ratios of MARL4TS and the

existing algorithms. MARL4TS consistently outperforms all the exist-

ing algorithms under all error measurements due to its data-driven

nature. For example, BOPW is the best baseline for SED, PED and

SAD, and MARL4TS outperforms it by 4% (resp. 5% and 4%) for SED

(resp. PED and SAD); Interval is the best for DAD, and MARL4TS
outperforms it by 3%. Note that the improvement contributes a lot

3
http://www.irc.atr.jp/crest2010_HRI/ATC_dataset/

Table 2: Ablation study of the learned policy (Geolife).
Measurement SED PED

Algorithm Ratio Time (s) Ratio Time (s)

MARL4TS 11.864% 0.88 6.304% 0.46

w/o Agent-E 11.857% 0.97 6.299% 0.56

w/o Agent-R 13.386% 0.61 6.744% 0.33

w/o Agent-E and Agent-R 13.019% 0.70 6.632% 0.36

in practice because the storage overhead of trajectories is generally

huge.

(2) Effectiveness evaluation (ablation study of the learned
policy). To show the effect of the learned policy in MARL4TSmodel,

we conduct an ablation study by replacing the policies of Agent-E,

Agent-R, or both Agent-E and Agent-R with the following pre-

defined rules: it expands a window by including one point to re-

place Agent-E (Step 2) and it chooses the last safe point to replace

Agent-R (Step 3). Table 2 reports the average compression ratio and

running time on 1,000 randomly sampled trajectories from Geolife

(𝜀𝑡 is fixed at 20m) under the SED and PED error. We can see all

these components contribute to the effectiveness or efficiency. For

example, Agent-E improves the efficiency by 9.3% and Agent-R im-

proves the effectiveness by 11.4%. As expected, these components

illustrate a trade-off between the efficiency and effectiveness. The

results based on other error measurements and datasets show a

similar trend and thus omitted.

(3) Efficiency evaluation (varying the trajectory length |𝑇 |).
To evaluate the effect of trajectory length |𝑇 | on efficiency, we

follow [18, 21] by varying |𝑇 | from 20,000 to 100,000. For each

setting, we randomly select 100 trajectories and fix 𝜀𝑡 at 20m for

SED and PED, 0.4 radian for DAD, and 5km/h for SAD. We report

the results of average processing time per point in Figure 5, since a

trajectory is fed point by point in the online scenario. In addition,

we show the sampling rate (1s) of the Geolife dataset with a dotted

line for ease of reference. We observe that MARL4TS is slower than

some baselines that are designed for a specific error (i.e., OPERB
for PED, Intersect, Angular and Interval for DAD), though

they have the same time complexity. This is because these existing

algorithms are tailored for specific error measurements, e.g., OPERB
developed a local distance checkingmethod for PED, while MARL4TS
is designed for some general error measurement. In addition, we

notice MARL4TS is much faster than the opening window algorithms

(i.e., BOPW, NOPW and MOPW) since it employs Agent-E to save some

computation of error checking. Overall, MARL4TS runs faster than
most of existing baselines and would meet the practical needs: for a

trajectory with about 10,000 points, it takes around 0.1ms per point,

which is 10,000 times faster than the sampling rate (1s). The results

http://www.irc.atr.jp/crest2010_HRI/ATC_dataset/

(a) SED Error (b) PED Error (c) DAD Error (d) SAD Error

(e) SED Error (f) PED Error (g) DAD Error (h) SAD Error

(i) SED Error (j) PED Error (k) DAD Error (l) SAD Error

Figure 4: Effectiveness with varying the error tolerance 𝜀𝑡 (Geolife (a)-(d), T-Drive (e)-(h), and Indoor (i) - (l)).

(a) SED Error (b) PED Error (c) DAD Error (d) SAD Error

Figure 5: Efficiency with varying the trajectory length |𝑇 | (Geolife).

on other datasets are qualitatively similar as those reported and are

omitted.

(4) Efficiency evaluation (varying the error tolerance 𝜀𝑡). To
study the efficiency with varying error tolerances 𝜀𝑡 , we set 𝜀𝑡
from 20m to 100m for PED and SED by following [18], 0.2 radian

to 1.0 radian for DAD by following [21], and 5km/h to 25km/h

for SAD on Geolife. For each setting, we randomly sample 100

trajectories with a fixed |𝑇 | at 50,000. Figure 6 shows the results
of average running time. Similarly, MARL4TS is slower than some

algorithms that are specifically designed for one error measurement,

but runs reasonably fast. For example, it takes around 1ms per point

for a trajectory with 50,000 points. The running time for all the

methods slightly increases with 𝜀𝑡 . This is because the window

would be incrementally extended with a larger setting of 𝜀𝑡 , and

the corresponding time cost of checking the window increases.

6 CONCLUSION
In this paper, we study the error-bounded online trajectory simpli-

fication problem called EB-OTS, which is to drop as many points as

possible from a trajectory which is inputted in a streaming manner

(a) SED Error (b) PED Error (c) DAD Error (d) SAD Error

Figure 6: Efficiency with varying the error tolerance 𝜀𝑡 (Geolife).

while the information loss, captured as the “error”, is bounded by

an error tolerance. We propose a multi-agent RL-based method

called MARL4TS. Compared with existing algorithms, MARL4TS is

data-driven and applicable to multiple error measurements. We con-

duct extensive experiments on real-world trajectory datasets, which

show that MARL4TS simplifies trajectories with consistently lower

compression ratios and runs comparably fast. In the future, we plan

to explore the error-bounded trajectory simplification problem in

the batch scenario, i.e., the whole trajectory remains accessible

during the simplification process.

Acknowledgments. This research was supported by the Nanyang

Technological University Start-Up Grant from the College of En-

gineering under Grant M4082302, by the Ministry of Education,

Singapore, under its Academic Research Fund Tier 1 (RG20/19 (S)

and RG114/19 (S)), and by a MOE Tier-2 grant MOE2019-T2-2-181.

REFERENCES
[1] Richard Bellman. 1961. On the approximation of curves by line segments using

dynamic programming. Commun. ACM 4, 6 (1961), 284.

[2] Yoshua Bengio. 2012. Practical recommendations for gradient-based training of

deep architectures. In Neural networks: Tricks of the trade. Springer, 437–478.
[3] Weiquan Cao and Yunzhao Li. 2017. DOTS: An online and near-optimal trajectory

simplification algorithm. Journal of Systems and Software 126 (2017), 34–44.
[4] Chao Chen, Yan Ding, Xuefeng Xie, Shu Zhang, Zhu Wang, and Liang Feng.

2019. TrajCompressor: An online map-matching-based trajectory compression

framework leveraging vehicle heading direction and change. IEEE TITS 21, 5

(2019), 2012–2028.

[5] Yunheng Han, Weiwei Sun, and Baihua Zheng. 2017. COMPRESS: A comprehen-

sive framework of trajectory compression in road networks. TODS 42, 2 (2017),
1–49.

[6] John Edward Hershberger and Jack Snoeyink. 1992. Speeding up the Douglas-
Peucker line-simplification algorithm. University of British Columbia, Department

of Computer Science.

[7] Bingqing Ke, Jie Shao, and Dongxiang Zhang. 2017. An efficient online approach

for direction-preserving trajectory simplification with interval bounds. In MDM.

IEEE, 50–55.

[8] Bingqing Ke, Jie Shao, Yi Zhang, Dongxiang Zhang, and Yang Yang. 2016. An

online approach for direction-based trajectory compression with error bound

guarantee. In APWeb. Springer, 79–91.
[9] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. 2001. An online

algorithm for segmenting time series. In ICDM. IEEE, 289–296.

[10] Jens Kober, J Andrew Bagnell, and Jan Peters. 2013. Reinforcement learning in

robotics: A survey. IJRR 32, 11 (2013), 1238–1274.

[11] Ralph Lange, Frank Dürr, and Kurt Rothermel. 2011. Efficient real-time trajectory

tracking. VLDBJ 20, 5 (2011), 671–694.
[12] Hyun-Rok Lee and Taesik Lee. 2019. Improved cooperative multi-agent reinforce-

ment learning algorithm augmented by mixing demonstrations from centralized

policy. In AAMAS. 1089–1098.
[13] Tianyi Li, Ruikai Huang, Lu Chen, Christian S Jensen, and Torben Bach Pedersen.

2020. Compression of uncertain trajectories in road networks. PVLDB 13, 7

(2020), 1050–1063.

[14] Yexin Li, Yu Zheng, and Qiang Yang. 2019. Efficient and Effective Express via

Contextual Cooperative Reinforcement Learning. In SIGKDD. 510–519.
[15] Yexin Li, Yu Zheng, and Qiang Yang. 2020. Cooperative Multi-Agent Reinforce-

ment Learning in Express System. In CIKM. 805–814.

[16] Kaixiang Lin, Renyu Zhao, Zhe Xu, and Jiayu Zhou. 2018. Efficient large-scale

fleet management via multi-agent deep reinforcement learning. In SIGKDD. 1774–
1783.

[17] Xuelian Lin, Jiahao Jiang, Shuai Ma, Yimeng Zuo, and Chunming Hu. 2019. One-

pass trajectory simplification using the synchronous Euclidean distance. VLDBJ
28, 6 (2019), 897–921.

[18] Xuelian Lin, Shuai Ma, Han Zhang, TianyuWo, and Jinpeng Huai. 2017. One-pass

error bounded trajectory simplification. PVLDB 10, 7 (2017), 841–852.

[19] Jiajun Liu, Kun Zhao, Philipp Sommer, Shuo Shang, Brano Kusy, and Raja Jurdak.

2015. Bounded quadrant system: Error-bounded trajectory compression on the

go. In ICDE. IEEE, 987–998.
[20] Jiajun Liu, Kun Zhao, Philipp Sommer, Shuo Shang, Brano Kusy, Jae-Gil Lee, and

Raja Jurdak. 2016. A novel framework for online amnesic trajectory compression

in resource-constrained environments. IEEE TKDE 28, 11 (2016), 2827–2841.

[21] Cheng Long, Raymond Chi-Wing Wong, and HV Jagadish. 2013. Direction-

preserving trajectory simplification. PVLDB 6, 10 (2013), 949–960.

[22] Cheng Long, Raymond Chi-Wing Wong, and HV Jagadish. 2014. Trajectory

simplification: on minimizing the direction-based error. PVLDB 8, 1 (2014), 49–

60.

[23] Nirvana Meratnia and A Rolf. 2004. Spatiotemporal compression techniques for

moving point objects. In EDBT. Springer, 765–782.
[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).
[25] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

nature 518, 7540 (2015), 529–533.
[26] Jonathan Muckell, Jeong-Hyon Hwang, Vikram Patil, Catherine T Lawson, Fan

Ping, and SS Ravi. 2011. SQUISH: an online approach for GPS trajectory com-

pression. In Proceedings of the 2nd International Conference on Computing for
Geospatial Research & Applications. ACM, 13.

[27] Jonathan Muckell, Paul W Olsen, Jeong-Hyon Hwang, Catherine T Lawson, and

SS Ravi. 2014. Compression of trajectory data: a comprehensive evaluation and

new approach. GeoInformatica 18, 3 (2014), 435–460.
[28] Michalis Potamias, Kostas Patroumpas, and Timos Sellis. 2006. Sampling trajec-

tory streams with spatiotemporal criteria. In SSDBM. IEEE, 275–284.

[29] Martin L Puterman. 2014. Markov Decision Processes.: Discrete Stochastic Dynamic
Programming. John Wiley & Sons.

[30] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[31] Goce Trajcevski, Hu Cao, Peter Scheuermanny, Ouri Wolfsonz, and Dennis Vac-

caro. 2006. On-line data reduction and the quality of history in moving objects

databases. In Proceedings of the 5th ACM international workshop on Data engi-
neering for wireless and mobile access. ACM, 19–26.

[32] Zheng Wang, Cheng Long, and Gao Cong. 2021. Trajectory Simplification with

Reinforcement Learning. In ICDE.
[33] Zheng Wang, Cheng Long, Gao Cong, and Ce Ju. 2019. Effective and efficient

sports play retrieval with deep representation learning. In SIGKDD. 499–509.
[34] ZhengWang, Cheng Long, Gao Cong, and Yiding Liu. 2020. Efficient and effective

similar subtrajectory search with deep reinforcement learning. PVLDB 13, 12

(2020), 2312–2325.

[35] Dongxiang Zhang, Mengting Ding, Dingyu Yang, Yi Liu, Ju Fan, and Heng Tao

Shen. 2018. Trajectory simplification: an experimental study and quality analysis.

PVLDB 11, 9 (2018), 934–946.

[36] Yu Zheng, Xing Xie, Wei-Ying Ma, et al. 2010. Geolife: A collaborative social

networking service among user, location and trajectory. IEEE Data Eng. Bull. 33,
2 (2010), 32–39.

ADDITIONAL EXPERIMENTS
Evaluation Platform.All the methods are implemented in Python

3.6. The implementation of MARL4TS is based on Keras 2.2.0. The

experiments are conducted on a machine with Intel(R) Xeon(R)

CPU E5-1620 v2 @3.70GHz 16.0GB RAM and one Nvidia GeForce

GTX 1070 GPU. The codes and datasets can be downloaded via the

link
4
to reproduce the results.

(1) Training time.With the default setup in Section 5.1, we report

the training time of the MARL4TS model under different error mea-

surements across different datasets in Table 3. It normally takes

from hours to days to train a satisfactory RL model.

(2) Comparison with the exact algorithm SP. We study the

effectiveness of MARL4TS by comparing with the algorithm SP [21],

which is an exact algorithm for the offline version of the ET-OTS

problem (i.e., all points of a trajectory remain accessible throughout

the trajectory simplification process) and has the time complexity

of 𝑂 (𝑛3). The experiment is conducted on small datasets only by

randomly selecting a set of 100 trajectories from Geolife because

SP is very slow. As shown in figure 8, the compression ratio of

MARL4TS is very close to that of SP under SED, PED, DAD and

SAD; however, MARL4TS is faster than SP by around three orders

of magnitude. We omit the results on other datasets since they are

qualitatively similar.

(3) Case study.We present a case study in Figure 9, where the blue

solid lines indicate a raw trajectory and the red points indicate the

points in the simplified trajectories by different algorithms under

SED. We label the compression ratio for each algorithm. The results

clearly show that MARL4TS returns better results than baselines. For

example, the ratio of MARL4TS (i.e., 6.1%) is clearly smaller than

CISED-S (i.e., 9.7%).

(4) Transferability Test.We conduct a transferability test by ap-

plying the model learned from T-Drive dataset to Geolife dataset

directly without any adaptation and vice versa. The results are

reported in Figure 7. We observe that MARL4TS has a good trans-

ferability. The average compression ratios are very close though

the models are learned from different datasets, and consistently

outperform the best baseline (i.e., BOPW).

(5) Effectiveness evaluation (varying parameter 𝐽). In table 4,

we report the effects of hyper-parameter 𝐽 (i.e., the maximum num-

ber of points that could be included for expanding a window) for

MARL4TS on randomly sampled 1000 trajectories from Geolife under

SED. As expected, we observe the compression ratio degrades but

the efficiency improves as 𝐽 increases. This is because with a larger

𝐽 , Agent-E tends to expand more points, which lead to the num-

ber of safe points that are provided to Agent-R for re-opening the

window become fewer and correspondingly the space of possible

simplified trajectories becomes smaller. In addition, the effort of

constructing states and actions becomes less. We also report the

results of a statistic called pruning, which is the relative reduction

of the number of error checks when 𝐽 = 𝑖 compared with when

𝐽 = 1, i.e.,

#𝐴𝐶 𝐽 =1−#𝐴𝐶 𝐽 =𝑖
#𝐴𝐶 𝐽 =1

, where #𝐴𝐶 𝐽 =𝑖 denotes the number of

error checks when 𝐽 = 𝑖 . We choose 𝐽 = 2 as the default setting

since it gives satisfactory effectiveness and efficiency.

4
https://github.com/zhengwang125/EB-OTS

(6) Effectiveness evaluation (varying parameter 𝐾). Table 5

shows impacts of parameter𝐾 for MARL4TS under the SED error. We

randomly sample 1000 trajectories from Geolife and use parameter

𝐾 to control the state space. When 𝐾 is fixed, a state is of a fixed

size. As shown in Table 5, the compression ratio becomes smaller

with the increase of parameter 𝐾 since the state space contains

more safe points, for which the action could have more choices.

As expected, time cost becomes larger as 𝐾 increases. We choose

𝐾 = 5 as the default setting because the setting provides a good

trade-off between efficiency and effectiveness.

(7) Effectiveness evaluation (varying parameter 𝐷). Parame-

ter 𝐷 controls the number of points in a window with a delaying

mechanism in order to contain more safe points for Agent-E to

pick. Table 6 reports the average compression ratio on 1,000 ran-

domly sampled trajectories from Geolife under SED. We observe

that with the increase of 𝐷 , the compression ratio becomes smaller

and the running time becomes larger. This is because introducing

the delayed mechanism is useful for optimizing MARL4TS model.

Meanwhile, as 𝐷 increases, the time cost increases correspondingly,

which is as expected.

(8) Effectiveness evaluation (varying parameter 𝐶). Table 7

shows the effects of the parameter 𝐶 , which is a constraint mech-

anism to limit the maximum size over windows for MARL4TS. We

randomly sample 1000 trajectories from Geolife and report the av-

erage compression ratio under SED. We observe the ratio improves

but the time cost becomes larger as 𝐶 increases. This is consis-

tent with the objective of the constraint mechanism to lower the

time complexity of checking errors while a small 𝐶 would make it

miss some potential candidate points for Agent-R to re-open a new

window.

Table 3: Training time (hours).

Measurement SED PED DAD SAD

Geolife 51.6 36.9 123.6 94.8

T-Drive 33.1 30.1 47.9 35.3

Indoor 29.4 9.7 62.7 54.5

(a) Effectiveness on Geolife (b) Effectiveness on T-Drive

Figure 7: Transferability Test

Table 4: Impacts of parameter 𝐽 for MARL4TS (Geolife).

Parameter 𝐽 = 1 𝐽 = 2 𝐽 = 3 𝐽 = 4 𝐽 = 5

Ratio (SED) 11.857% 11.864% 13.047% 13.379% 13.390%

Time (s) 0.89 0.81 0.78 0.68 0.64

Pruning 0.0% 12.941% 25.313% 29.851% 33.488%

(a) SED Error (b) PED Error (c) DAD Error (d) SAD Error (e) Time (SED)

Figure 8: Comparison with the exact algorithm SP (Geolife).

(a) BOPW (ratio = 6.9%) (b) MOPW (ratio = 9.4%) (c) CISED-S (ratio = 9.7%) (d) MARL4TS (ratio = 6.1%)

Figure 9: Case Study (Geolife).

Table 5: Impacts of parameter 𝐾 for MARL4TS (Geolife).

Parameter 𝐾 = 1 𝐾 = 2 𝐾 = 3 𝐾 = 4 𝐾 = 5 𝐾 = 6 𝐾 = 7 𝐾 = 8 𝐾 = 9 𝐾 = 10

Ratio (SED) 13.386% 13.385% 13.260% 11.869% 11.864% 11.863% 11.857% 11.857% 11.855% 11.854%

Time (s) 0.59 0.65 0.76 0.83 0.90 0.96 1.06 1.11 1.17 1.31

Table 6: Impacts of parameter 𝐷 for MARL4TS (Geolife).

Parameter 𝐷 = 0 𝐷 = 1 𝐷 = 2 𝐷 = 3 𝐷 = 4 𝐷 = 5 𝐷 = 6 𝐷 = 7 𝐷 = 8 𝐷 = 9

Ratio (SED) 13.446% 12.055% 11.987% 11.958% 11.888% 11.864% 11.855% 11.834% 11.805% 11.804%

Time (s) 0.51 0.65 0.67 0.84 0.87 0.88 0.96 1.13 1.17 1.31

Table 7: Impacts of parameter 𝐶 for MARL4TS (Geolife).

Parameter 𝐶 = 10 𝐶 = 20 𝐶 = 30 𝐶 = 40 𝐶 = 50 𝐶 = 60 𝐶 = 70 𝐶 = 80 𝐶 = 90 𝐶 = 100

Ratio (SED) 12.023% 11.901% 11.880% 11.867% 11.864% 11.862% 11.861% 11.860% 11.860% 11.860%

Time (s) 0.42 0.47 0.48 0.53 0.59 0.61 0.63 0.69 0.71 0.74

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	3 PROBLEM STATEMENT
	4 METHODOLOGY
	4.1 MDP for Expanding a Window (Agent-E)
	4.2 MDP for Re-Opening a Window (Agent-R)
	4.3 Learning Policies of MDPs
	4.4 The MARL4TS Algorithm

	5 EXPERIMENTS
	5.1 Experimental Setup
	5.2 Experimental Results

	6 CONCLUSION
	References

