
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Towards Pointsets Representation Learning via
Self-Supervised Learning and Set Augmentation

Pattaramanee Arsomngern, Cheng Long, Supasorn Suwajanakorn, and Sarana Nutanong

Abstract—Deep metric learning is a supervised learning paradigm to construct a meaningful vector space to represent complex
objects. A successful application of deep metric learning to pointsets means that we can avoid expensive retrieval operations on
objects such as documents and can significantly facilitate many machine learning and data mining tasks involving pointsets. We
propose a self-supervised deep metric learning solution for pointsets. The novelty of our proposed solution lies in a self-supervision
mechanism that makes use of a distribution distance for set ranking called the Earth’s Mover Distance (EMD) to generate pseudo
labels and a pointset augmentation method for supporting the learning solution. Our experimental studies on documents, graphs, and
point clouds datasets show that our proposed solutions outperform baselines and state-of-the-art approaches under the unsupervised
settings. The learned self-supervised representation can also be used as a pre-trained model, which can boost downstream tasks with
a fine-tuning step and outperform state-of-the-art language models.

Index Terms—set retrieval, deep metric learning, self-supervised learning, triplet loss, earth mover’s distance
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1 INTRODUCTION

DISTANCE measuring has been used to find the similar-
ity between the query data point and other samples

in the dataset. The calculated distance can be applied in
various machine learning algorithms to make predictions.
However, pointsets, which have been widely used for rep-
resenting documents [1], graphs (as a set of vertex em-
beddings) [2], and 3D models (point clouds) [3], require a
complex distance function to compute a distance between
each sample. In particular, one of the effective distribu-
tion distances for pointsets called Earth Mover’s Distance
(EMD) [4] requires O(n3 log n) per one comparison. Deep
metric learning can alleviate this high computation cost
problem by encoding raw pointsets into new representa-
tions in a Euclidean space with a lower distance measur-
ing cost. Several studies proved that deep metric learning
approaches achieve state-of-the-art results in various tasks,
including image retrieval [5], [6], face recognition [7], [8],
[9], person re-identification [10], [11], trajectory similarity
search [12], and pointsets similarity search [13] in terms
of classification accuracy and computation cost. However,
these techniques mostly require supervision, which cannot
be applied to unlabeled data.

Apart from learning representations from labels, self-
supervised techniques for embedding data points have
recently received growing research attention. These tech-
niques focus on mapping unlabeled images into new rep-
resentations by learning similarities between augmented
views of images (i.e., contrastive learning) [14], [15], [16],
[17], [18]. The main challenge to apply self-supervised learn-
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ing techniques to pointset is the set’s permutation invariant
property. This constraint precludes generic augmentation
techniques such as linear interpolation for applying it with
pointsets directly. On the other hand, some studies try to
learn pointsets in an unsupervised way using the auto-
encoder [19], [20]. However, its representation still has
poorer performance than representation learned from tech-
niques using labels (e.g., deep metric learning [13]).

In this paper, we propose a new deep metric learning
method to learn representations for pointsets in a self-
supervised way. Our proposed method includes a new loss
and an augmentation technique for pointsets. For ease of
understanding, we call our framework Pointset2Vec. The
proposed method can encode any unlabeled pointsets into
a new embedding space that provides the simplicity of dis-
tance calculation and achieves state-of-the-art performance
for pointset representation learning.

Our new loss function utilizes EMD to infer a pseudo-
label for each mini-batch. Instead of training by the deep
metric learning-based technique with triplets constructed
based on the ground-truth labels, which are hard to acquire,
we use triplets generated from pseudo-labels to learn a
new embedding space. Moreover, our loss function is also
compatible with any distance function other than EMD. We
also introduce PointSwap, a new augmentation technique
that randomly swaps elements of two similar sets to gen-
erate a new set. PointSwap enlarges our training set and
extends our loss function to learn the similarity between
the original and augmented pointsets, leading to better
representation performance. Furthermore, we also provide
a comprehensive study of transfer learning strategies to
transfer the representation learned by our loss to a target
problem.

We evaluate our proposed method with documents (set
of word vectors) [1], graphs [21], and point clouds [22]
datasets. The combination of our loss function and
PointSwap achieves state-of-the-art performance in docu-
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ment classification tasks and has comparable performance
in graph and point cloud classification tasks under the
setting of training with unlabeled datasets. Our represen-
tation also has comparable performance with large and
specific natural language models, i.e., RoBERTa [23], when
fine-tuned with fully labeled datasets and partially labeled
datasets (i.e., semi-supervised settings). Furthermore, we
show an adaptation of our learned representation to un-
supervised tasks (i.e., distance approximation and density
estimation) and provide an ablation study of PointSwap to
investigate its effectiveness.

Based on our conference version [13], this extended
work improves the previous work’s performance and fur-
ther demonstrates its generalizability. We demonstrate the
overall contributions of our work along with the newly
introduced elements in this version as follows:

1) Self-supervised loss function: We propose a novel
self-supervised deep metric learning loss function
based on EMD, or any suitable distance. The model
learned using our loss function can map an unla-
beled pointset to a new representation, which helps
avoid the expensive computational cost of distance
calculation.
We further propose an augmentation-based self-
supervised loss, which is inspired by recent studies
of contrastive learning in computer vision. This
augmentation-based loss is newly introduced in this
extended version. The new form of loss serves the
model for learning a representation by maximizing
the similarity between the original and augmented
documents.

2) PointSwap: We find that the representation per-
formance of our previous work, which adopts a
self-supervised triplet loss with triplets generated
from EMD values for learning, could be limited by
EMD retrieval performance on the raw pointsets.
We tackle this issue by introducing augmented
pointsets called PointSwap to generate triplets based
on augmented views concurrently with the EMD-
based triplets. This PointSwap technique is newly
introduced in this extended version.

3) Transfer learning strategies: We introduce transfer
learning strategies to improve the learning per-
formance in downstream tasks for pointsets by
fine-tuning with fully-labeled and partially labeled
datasets.

4) Extensive experiments: We conducted extensive ex-
periments to compare our proposed solution against
state-of-the-art techniques for pointsets in both un-
supervised and supervised settings.
In particular, the following experiments are newly
included in this extended version. We compare our
method to state-of-the-art representation learning in
computer vision (i.e., SimCLR [17]) by implement-
ing a contrastive learning pipeline for pointsets.
Compared to the previous work that has only been
verified on documents, we added experiments on
graph datasets, a point cloud dataset, and a study
on applying chamfer distance for mining triplets in
our loss function. We additionally detail the time

complexity of each competitor in runtime analy-
sis and provide a more comprehensive runtime
comparison between our method and graph neu-
ral network [24]. We also conduct ablation studies
on augmentation choices to investigate the impact
of each augmentation on self-supervised pointset
representation learning. A study of transferring the
learned representation to an unsupervised task is
also added to present the capability of our pre-
trained model on different downstream tasks.

5) New findings and performance improvement (in the

extended version): PointSwap improves the classi-
fication accuracy of our conference version and
becomes a new state-of-the-art unsupervised and
semi-supervised document classification model by
gaining 0.91% and 2.23% in BBCSports dataset and
0.20% and 1.33% in Amazon dataset, respectively.

The rest of this paper is organized as follows. Section 2
presents related techniques. The problem formulation and
the proposed solution are discussed in Sections 3 and 4,
respectively, with the additional application discussed in
Section 5. We then report the experimental setup and the
results in Sections 6 and 7, respectively. Finally, Section 8
concludes the presentation.

2 RELATED WORK

2.1 Pointsets Similarity Search
Pointset is a versatile format to represent unstructured
data such as documents [1], video clips [25], and point
clouds [26]. Various distribution distances have been stud-
ied for applying in pointsets similarity search, e.g., Earth
Mover’s Distance (EMD) [4], Hausdorff Distance, and
Chamfer Distance (CD) [27]. The main challenge of finding
similar pointsets lies in the cost of distance calculation. For
example, using the EMD, which is a well-known measure
for pointsets, we end up with a cubic (or cubic-logarithmic)
complexity with respect to the number of elements per
distance calculation.

Due to the stated challenge, researchers have been ded-
icating attention to improving the efficiency of set simi-
larity retrieval. Traditional approaches include (i) distance
approximation [28], [29], [30]; (ii) pruning [31]. While these
techniques provide an improvement over the original EMD
baseline, they still suffer from issues of computational cost.
Furthermore, distance functions could not be fine-tuned on
the downstream task, e.g., a classification problem. In the
next subsection, we will discuss how the concept of deep
metric learning can address these issues.

2.2 Supervised Deep Metric Learning
Distance-based deep metric learning is a popular technique
to learn an embedding function in a supervised way, such
that the distance between any two samples in the same
class (i.e., positives) are significantly nearer than those be-
tween samples from other classes (i.e., negatives). There
are two main methods for distance-based learning: pair-

based [32] and triplet-based [33]. Let
��f(xa) � f(xp)

�� and��f(xa)� f(xn)
�� be the distance from one sample acting as

an anchor xa to the positive sample xp and the distance from
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x
a to the negative sample x

n, respectively. And let ↵p and
↵n be the positive and negative margins. For the pair-based
method, we try to keep

��f(xa) � f(xp)
�� smaller than ↵p

and
��f(xa) � f(xn)

�� greater than ↵n. For the triplet-based
method, we also use positive and negative pairs. We try to
keep

��f(xa) � f(xn)
�� greater than

��f(xa) � f(xp)
�� by a

given margin ↵. Results from various experiments [5], [7],
[10], [11], [34] show that using a shared reference point in
the triplet-based method provides an improvement over the
pair-based one.

Various studies demonstrate the importance of triplet
sampling. Schroff et al. [7] show that focusing on critical
negatives, i.e., those easy to be mistaken, provides a per-
formance improvement over selecting negatives randomly.
Other investigations on triplet mining include techniques
that make use of the same anchor and positive instances
with different negative instances [5], [11], [34], [35]. In our
work, we employ the triplet loss with a semi-hard negative
sampling [7] and propose a self-supervised method to train
it without labels, which were traditionally required.

2.3 Unsupervised and Self-supervised Representation
Learning
Recently, unsupervised and self-supervised representation
learning has received growing research attention, especially
in the field of computer vision. Dosovitskiy et al. [14]
formulate a self-prediction problem in which each instance
is its own distinct class by using contrastive loss. Wu et
al. [36] introduce a non-parametric network, which has an
improvement over the method from Dosovitskiy et al. [14].
Ye et al. [15] propose a self-supervised method that includes
data augmentation into the training process and maximizing
similarity between augmented images and original images.
However, these methods still perform worse than super-
vised pre-training method using ImageNet labels [15].

He et al. [16] introduce a new learning method that
combines data augmentation [15] and non-parametric net-
work [36] into the training process called MoCo. This
method can surpass the supervised pre-trained model on
downstream tasks. On the other hand, Chen et al. [17]
discard complex non-parametric updates in MoCo [16] and
proposed a simpler training pipeline using two different
augmented views of the original images instead of the
original-augmented pair called SimCLR. Their study also re-
veals that stronger augmentation and larger batch sizes can
increase the representation performance in transfer learning.

More recent works are trying to find more efficient learn-
ing methods. Grill et al. [18] introduce a new training loss
without using negative samples by utilizing non-parametric
updates of [16]. In comparison, Caron et al. [37] remove the
non-parametric updates and redefines positive and negative
terms in the contrastive loss as computed features based on
cluster assignment instead of using features from a projec-
tion function [17] directly. These works [18], [37], [38] can
reduce the large amount of batch size required in previous
studies [17] that use members in a mini-batch as negatives.

The mentioned techniques work well for image re-
trieval and image representation learning tasks without
using labels. Unlike these studies, we propose a novel self-
supervised deep metric learning technique for embedding
unlabeled pointsets, which is not domain-specific.

2.4 Data augmentation for representation learning
Data augmentation is a popular technique for increasing
training data size. With the exploration of self-supervised
and semi-supervised representation learning mentioned in
the previous subsection, data augmentation has been used
for learning representation by maximizing the similarity
between augmentation views (i.e., contrastive learning).
Data augmentation in computer vision tasks can be done by
basic image processing operations (e.g., cropping, resizing,
rotation, distortion, blurring). Dogus et al. [39] proposed
techniques for finding the optimal augmentation policies for
each image dataset. Several works in representation learning
studied in augmentation policies for image representation
learning [17], [18], [37], [38], [40].

In NLP, data augmentation is a crucial factor in the
success of state-of-the-art pre-trained language models. The
augmentation technique called masked language modelling
has been used in self-supervised training in BERT [41] and
RoBERTa [23]. Xie et al. [42] proposed TF-IDF-based word
replacement and used the back-translation method with a
semi-supervised learning pipeline to achieve the state-of-
the-art text classification performance.

Similar to graphs, You et al. [24] introduce graph aug-
mentation techniques, e.g., node dropping for applying in a
contrastive learning pipeline.

For other specific data domains, such as point clouds,
Chen et al. [26] proposed PointMixup, a novel data augmen-
tation method for point clouds using linear interpolation
between two similar point clouds, based on their optimal
assignments. This technique can increase the dataset size,
which is applicable to any pointsets. However, linear in-
terpolation might not generalize to all pointsets in other
domains (e.g., set of words, set of images, set of graph
nodes). We overcome this issue by proposing a general
augmentation technique for pointsets based on swapping
the elements of two similar pointsets. Furthermore, we
apply the augmented pointsets for learning representations
in our proposed self-supervised loss rather than only using
augmentation to enlarge the training set.

2.5 Deep learning on sets
In our work, we make use of deep learning on pointsets.
One of the first challenges of applying a neural network
to process pointsets is the mismatch between the order
invariance of pointsets and the order sensitivity of the
network’s input. An early attempt to address this chal-
lenge provides a specific convention to reorder the elements
before putting them into an LSTM network [43]. Recent
approaches introduce permutation invariance directly into
the model. For example, DeepSets [44] uses an aggregation
function to aggregate encoded features of each set member,
or RepSet [2] represents pointsets using the output from a
network flow matching algorithm. Another area of research
aims to learn pointsets representation in an unsupervised
fashion (i.e., set autoencoder [19], [20]).

One advancement in deep learning on pointsets is
attention-based set encoders [45]. These networks apply a
self-attention mechanism, i.e., Transformer [46], which helps
capture the relationship between set elements. In our study,
we apply the self-attention mechanism of Transformer and
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DeepSets for encoding pointsets and learning a representa-
tion in a self-supervised way.

3 PROBLEM FORMULATION

Consider three pointsets xa = {xa1, xa2, xa3, ...}, xb =
{xb1, xb2, xb3, ...}, and xc = {xc1, xc2, xc3, ...} represented
as finite sets of vectors. Let S(·, ·) and f(·) be a distribution
distance and an embedding function for pointsets, respec-
tively. Our goal is to learn f(·) such that if S(xa, xb) <

S(xa, xc), then ||f(xa)� f(xb)|| < ||f(xa)� f(xc)||. Specif-
ically, the output representation f(x) 2 RF is located in
an embedding space associated with the Euclidean metric.
Given this embedding space, one can solve a retrieval task
or classify a query input, e.g., with k-nearest neighbor
algorithm. The main challenge is how to find f(·) that well
generalizes to downstream tasks from zero training labels.

To achieve this, we try to learn our embedding function
f(·) to resemble the behavior of a distribution distance
function, which has been proven to be effective in pointset
retrieval and classification. We consider a distance function
known as Earth Mover’s Distance (EMD) [1], [4]. The EMD
is a distribution metric for any two pointsets, which cal-
culates the minimum cost to transform one pointset to the
other. To calculate the EMD, we first need to find the optimal
assignment flow F

0 = [f 0
ij ] to move set elements from xa to

xb. The flow can be found using linear programming by
minimizing a work based on an equation in Rubner et al. [4]:

WORK(xa, xb, F
0) =

X

i

X

j

f
0
ijdij (1)

subject to the following conditions:

1) f
0
ij � 0

2)
P

j f
0
ij  wxai

3)
P

i f
0
ij  wxbj

4)
P

i

P
j f

0
ij = min(

P
i wxai ,

P
j wxbj ) ,

where i and j state an entry of each element in pointsets
xa and xb, respectively. wx is the weight of each element in
the pointset x, and dij is the ground distance, e.g., Euclidean
distance between two elements in the two pointsets, xai and
xbj .

Then, we can calculate the EMD between two pointsets
by using the solution from above optimal flow F

0 as:

EMD(xa, xb) =

P
i

P
j f

0
ijdijP

i

P
j f

0
ij

, (2)

With these formulations, EMD can be used to capture
matching elements and the distance between two pointsets.
For example, the study from M.J. Kusner et al. [1] shows
that EMD can retrieve similar sets of word vectors accu-
rately using k-nearest neighbors in the EMD space. They
called a document retrieval framework that uses EMD as
a distance metric as Word Mover’s Distance (WMD). In the
next section, we demonstrate how to utilize EMD to learn an
embedding function in a self-supervised fashion and how to
use EMD to augment pointsets.

4 PROPOSED SOLUTION

In this section, we describe our proposed solution in detail.
For ease of exposition, we use the problem of document
classification as our narration framework. However, our
solution can be applied to any learning problem in which
data entries can be represented as pointsets.

Our key idea is to parameterize the embedding func-
tion as a permutation invariant neural network f✓ , or
Pointset2Vec function, and use the triplet loss [7] with our
pseudo labels to optimize for the embedding space. In the
typical triplet loss optimization with supervision, each “an-
chor” document will be forced to be closer to a document
belonging to the same class and farther away from a docu-
ment of a different class, called the positive and negative, re-
spectively. Our key contribution is a self-supervised method
for identifying the positive and negative pairs associated
with each anchor document without ground-truth labels.
The overview of our proposed solution is shown in Fig. 1.

Inspired by the success of Earth mover’s distance (EMD)
[1] used for document classification, image, and multimedia
retrieval tasks, we propose to use EMD for inferring the
positive and negative pairs. In particular, a document with
a low EMD to an anchor document will be labeled positive,
and a document with a high EMD will be labeled negative.
In addition, we introduce a re-weighting approach that em-
phasizes negative documents that are more likely to belong
to different classes.

To enhance the performance of our loss, we also propose
a new augmentation technique for pointsets, PointSwap.
With PointSwap, we can extend triplet loss to minimize
distances between anchor documents and augmented docu-
ments, similar to the concept of contrastive learning.

For the embedding function, we employ a neural net-
work based on a state-of-the-art architecture in NLP, i.e.,
Transformer [46] and its self-attention mechanism which
achieves permutation invariance suitable for representing
pointsets [3], [44], [45].

4.1 Weighted Self-supervised EMD triplet loss
To train our network with triplet loss, we first need to form a
set of document triplets, each of which consists of an anchor,
a positive, and a negative as shown in Fig. 2. Given a mini-
batch of size n̂, we generate n̂ training triplets by taking each
document xi in the mini-batch as the anchor and taking the
closest document to each anchor in the EMD space as the
positive x

p
i . For the negative, we follow the semi-hard nega-

tive mining strategy from [7]. This strategy mines a negative
based on document embedding from f(·) by choosing a
document closest to the anchor in the embedding space but
also farther away from the anchor than the positive in the
embedding space. Formally, the negative x

n
i is a document

closest to the anchor in the embedding space that satisfies:��f(xa
i )� f(xp

i )
��2
2
<
��f(xa

i )� f(xn
i )
��2
2
. With these training

triplets, we then train our mapping function, parametrized
by a neural network f with the following triplet loss:

L(X) =

1

n̂

n̂X

i=0

h��f(xa
i )� f(xp

i )
��2
2
�
��f(xa

i )� f(xn
i )
��2
2
+ ↵

i

+
,

(3)
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Fig. 1. The overall architecture of our proposed method using document input for illustrative purposes. We first process each unlabeled document
into a set of word vectors, then embed this set into our embedding space with a permutation invariant neural network. This embedding network is
optimized using our triplet loss in a self-supervised fashion through our automatic triplet selection.
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Negative mining

2
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1 Triplet(                     )1 1

1

Embedding space

2

1

2 2

Generated triplets

2

Fig. 2. An illustration of triplet selection. Given an anchor point (yellow
circle), the closest point to this anchor in EMD space is chosen as the
positive (green rectangle). Then, the negative is the closest point to the
anchor that is at least as far way as the distance between the anchor
and the positive (dotted ring) in the embedding space.

where X is the set of documents in each mini-batch, n̂ is the
total number of triplets in each mini-batch, and ↵ is a hyper-
parameter denoting the desired margin between the anchor-
positive and anchor-negative distances in the embedding
space.

One of the challenges of semi-hard negative sampling
without supervision is that we cannot be certain that those
negative documents that are quite close to the positives truly
belong to different classes. This could be especially problem-
atic in our self-supervised setting. One way to alleviate the
effect of mislabeling is to prioritize negative documents that
are more likely to come from different classes, which can be
captured by higher EMDs to their anchors [1]. To achieve
this, we simply re-weight the negative pair distances so that
the more likely negatives are moved farther away than the
less likely ones. In particular, our modified triplet loss has
the following form:

L(X) =

1

n̂

n̂X

i=0

h��f(xa
i )� f(xp

i )
��2
2
� wi

��f(xa
i )� f(xn

i )
��2
2
+ ↵

i

+
,

(4)
where wi is an exponential decay re-weighting factor for the
i

th triplet and is defined as

wi = exp

✓
�EMD(xa

i , x
n
i )

2(c�)2

◆
, (5)

where � is the standard deviation of all pairwise EMD dis-
tances in each mini-batch and c is a scaling hyperparameter
for �. Negative documents whose EMDs are higher will be
given lower wi, and in order to satisfy the margin constrain
of the triplet loss, the network needs to make these negatives
even farther away from their anchors.

We call this loss function Weighted self-supervised triplet

loss or WSSET. Surprisingly, such a simple modification
also consistently outperforms the standard version given
in Eq. (3). In addition, our loss function can also utilize
with distance functions other than EMD. Please refer to our
experimental section for results.

4.2 PointSwap
Following state-of-the-art representation learning stud-
ies [17], [18], [38], learning the function f(·) by maximizing
the similarity between augmentation views of each training
data could improve the representation performance of a
model. However, performing data augmentation on generic
pointsets remains largely unexplored, unlike other struc-
tured data, such as 2D images. There exist a study of data
augmentation on 3D pointsets (i.e., point clouds) [26], but
this study has not been verified in other pointset domains
such as documents and graphs, where their elements are
high dimensional features.

In our framework, we introduce a new augmentation
technique for generic pointset by simply modifying some

elements in the set. Given a document x, we generate an
augmented document x0 by modifying some random word
vectors xi 2 x such that the modified document x

0 still
looks similar to x (i.e., it is still of the same class). To achieve
this, we first find another document relevant to x to perform
the modification. This document will be selected based on
the closest document to x in the EMD space, i.e., xp. Finding
such a x

p requires computing the EMD, which also yields an
optimal assignment flow F

0 between each word vector from
x to x

p. We perform the modification to some xi by finding
its closely related words x

p
j based on the assignment flow.

Given F
0 = [f 0

ij ], the modification to each xi, performed
only with a probability !, is done by setting xi to some
word vector x

p
j whose assignment flow xi ! x

p
j is non-

zero. Formally, we obtain x
0 based on modifying each xi

by:

x
0 = PointSwap(x, xp)

= {x0
0, x

0
1, x

0
2, ..., x

0
k}, where

x
0
i =

(
x
p
j if f 0

ij > 0 and ui < !

xi otherwise,

(6)

where u = u0, u1, ..., uk is a set of uniform samples
from [0, 1] and ! is a probability threshold for performing
word swapping. We call this randomly swapping operation
PointSwap. By performing PointSwap on x with the most
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relevant document x
p, we can ensure that the augmented

result x0 will also be similar to the original one. In addition,
PointSwap is also universal and could be used with any data
entry that can be represented as a finite pointset.

4.2.1 Combining PointSwap to Self-supervised triplet loss

With our proposed PointSwap and the augmented pointsets
x
0, we could improve the self-supervised representation

learning performance of our proposed triplet loss (Eq. (4)).
In particular, we can force the model to learn a represen-
tation by maximizing the similarity between original and
augmented documents, which leads to more generalized
and robust representations, as shown in contrastive learn-
ing studies ( [16], [17], [18], [37]). Specifically, we add the
augmented version of the anchor document x0a

i into Eq. (4)
and assign it as pseudo-positive for forcing the model to
bring the anchor and augmented anchor close together:

L(X) =

1

2n̂

n̂X

i=0

h��f(xa
i )� f(xp

i )
��2
2
� wi

��f(xa
i )� f(xn

i )
��2
2
+ ↵

i

+

+
h��f(xa

i )� f(x0a
i )
��2
2
� w

0
i

��f(xa
i )� f(x0n

i )
��2
2
+ ↵

i

+
,

(7)
For the negative term x

0n
i , we also follow the semi-hard neg-

ative mining by choosing a document closest to the anchor
in the embedding space that satisfies:

��f(xa
i ) � f(x0a
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i )
��2
2
. The anchor-augmented negative pair dis-

tances is also re-weighted by w
0
i in Eq. (5). With PointSwap

and this loss extension, the learned model can improve
representation performance and outperform the state of the
art in document classification in our experiments.

4.3 Self-attention permutation invariant neural network

To model the embedding function f(x) in Eq. (4) and (7) as a
permutation invariant neural network, we follow a general
approach [44] that decomposes the final embedding of a set
into a sum of individual embeddings of its elements. By the
commutative property of addition or aggregation, the final
embedding is thus permutation invariant.

In our model, the neural network that is applied to each
individual element, a word vector w in our case, is modeled
using a self-attention module [46], which we will refer to
as Encoder. The structure of our model is also illustrated in
Fig. 1. Our final embedding function is

f(x) = ⇢

 
X

w2x

ENCODER(w)

!

, (8)

where ⇢ is modeled using three fully-connected layers. Our
self-attention module, Encoder, is a stack of Transformer’s
encoders [46] similar to the one proposed in a state-of-the-
art model BERT [41] in NLP. These encoders help the net-
work understand the inner-set correlation of the documents,
and by stacking them multiple times, we allow the network
to model more complex relationships between each word in
the documents.

5 APPLICATION: TRANSFERRING THE LEARNED
REPRESENTATIONS

With our proposed method in the previous section, we
can construct a neural network that can map any unla-

beled pointsets into an embedding space. However, real-
world problems usually have various kinds of downstream
tasks and datasets. Some of the available datasets could be
provided with labels, whether sufficient for training in a
supervised way or not. We then analyze the capability of our
learned representation that could be fine-tuned on the given
labels to power up the performance of those downstream
tasks.

Instead of training a model for solving a targetted task
from scratch, which could result in overfitting, fine-tuning
a pre-trained representation on the given labels could al-
leviate the issue, as shown in studies on data domains,
e.g., computer vision [17], [18] or NLP [23], [41]. Similar
to these studies, we hypothesize that our learned pointsets
representation is transferable to downstream tasks. Thus,
we introduce our method in terms of a pre-trained model
for using in training strategies as shown in Fig. 3. We split
a strategy to construct a pre-trained model based on the
dataset used in the pre-training step into two ways:

• Internal-data pre-training: To solve the target down-
stream task with a given target dataset, we construct
a pre-trained model on the same dataset in a self-
supervised fashion before fine-tuning on its labels.

• External-data pre-training: We construct a self-
supervised pre-trained model based on our loss for
two steps: pre-training a model on an extra dataset
first, then pre-training the model again on the target
dataset before fine-tuning with the target labels.

With these strategies, we could construct a pre-trained
model for any generic pointsets that could enhance the
performance of any downstream tasks on pointsets. We also
formulate a set of hypotheses forming the basis for our
experimental studies in the later subsection.

1) We expect our learned representation based on our
proposed loss to be informative and can be used
to evaluate downstream tasks on pointsets, with
comparable performance to EMD [1], [4].

2) We expect that the representation from both inter-
nal and external-data pre-trained models should
benefit the fine-tuning step, especially on datasets
with insufficient labeled data or in semi-supervised
settings. Their performance should be better than a
model trained from scratch.

3) We expect the external-data pre-trained model to
outperform other competitors by benefiting from
the learned representation on an external dataset
with a similar distribution to the target dataset.

We have also provided an external-data pre-trained
model on product review texts, which is ready for fine-
tuning with documents in the similar domain. The pre-
trained model and its implementation details will be clar-
ified in the next section.
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Fig. 3. Illustrations of two training strategies. The left figure shows internal-data pre-training pipeline which constructs a pre-trained model from the
target dataset without using labels, before fine-tuning the model with labels. The right figure shows external-data pre-training which first constructs a
pre-trained model from an additional dataset without using labels, then followed by self-supervised pre-training with the target dataset again, which
is similar to the steps of internal-data pre-training.

6 EXPERIMENTAL SETUP

6.1 Datasets

To evaluate our proposed method and extension ideas
proposed in the previous section, we use two types of
pointsets data, i.e., documents and graphs. We use four
datasets for document retrieval and classification tasks [1],
[2]: BBCSports, Twitter, Recipe, and Amazon with the original
train/test splits and randomly choose 10% from the train
set as the validation set. Collectively, these datasets cover a
wide range of characteristics such as easy and small, short and

imbalanced, and challenging. We use classification accuracy
as the main evaluation metric similar to the practice in
the literature [1], [2] and Recall@K metric to measure the
retrieval performance.

• BBCSports is a sports article dataset containing 517
training and 220 testing articles classified into 5 types
of sports. The average number of samples per class
is 147.4; the maximum number of words is 452. This
dataset represents an easy and low-resource scenario.

• Twitter [47] is a set of tweets collected from a so-
cial media platform, Twitter, which contains 2,176
training and 932 testing tweets. Each tweet is labeled
with 3 types of sentiments, i.e., positive, negative, or
neutral. It has an average of 1036 samples per class
and 26 maximum number of words. This dataset
represents a short, challenging, and imbalanced dataset.

(The neutral class alone takes up 60%).
• Recipe is a dataset of cooking instructions which

contains 3,059 training and 1,311 testing instructions
with the maximum number of words of 360. Each
instruction is classified into one of 15 regions of ori-
gin with an average of 291.33 samples per class. This
dataset represents a challenging dataset since most of
the method cannot achieve a classification accuracy
more than 60%.

• Amazon is a dataset of Amazon product reviews
containing 5,600 training and 2,400 testing reviews,
classified into 4 types of products. The average sam-
ples per class is 2,000 with the maximum number of
words of 884. This dataset represents an easy and long

document dataset.

TABLE 1
Graph datasets statistics

Datasets
Properties

#Graphs #Classes Nodes(Avg.) Types

MUTAG 188 2 17.93 Molecules
IMDB-B 1500 2 19.77 Social

NCI1 4110 2 29.87 Molecules
PROTEINS 1113 2 39.06 Bioinformatics

For graph datasets, we use four graph kernel datasets
from TUDatasets [21]: MUTAG, IMDB-B, NCI1, and PRO-

TEINS. The statistical information of each dataset is shown
in Table 1. We split the dataset into 10 folds to perform cross-
validation. For the main evaluation metric, we report mean
classification accuracy and standard deviation of 10 splits as
same as other studies [2], [24].

For point cloud dataset, we use ModelNet40 [22] dataset
for classification tasks with the original train/test splits.

6.2 Implementation
6.2.1 Data preparation
The input document is converted into a set of word vectors
using GoogleNews Word2Vec model with a feature size of
300. We also append the word frequency to the feature
vector, resulting in a feature size of 301. Additionally, we
zero-pad the dimension corresponding to the number of
words in each document so that each document has the
same number of words, i.e., the maximum number of words
in all documents.

For graphs, we represented each graph in the datasets as
an adjacency matrix (a set of nodes). In addition, we zero-
pad the dimension of each node to have the same number
of edges (i.e., the maximum number of edges in all graphs).

For point clouds, we follow PointMixup’s [26] setup by
sampling 1,024 points, normalizing them to a unit sphere,
and randomly jittering each point.

6.2.2 Model architecture
Our Encoder in Section 4.3 uses a stack of 5 Transformer’s
encoders, each of which uses 7 attention heads in the multi-
head attention module for feature of size 301 and a feed-
forward layer with 1,000 hidden nodes. The ⇢ function is
modeled with three fully-connected layers of sizes 512, 256,
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and 64, where only the first two have ReLU activations. We
also normalize the last layer using L2 normalization.

We trained our network with a batch size of 64 using
Adam optimizer with a learning rate of 10�5, �1 = 0.9, �2 =
0.999, ✏ = 10�7 for 1,000 epochs in each experiment and use
the model that has the best accuracy on the validation set for
testing. For Eq. 4 and Eq. 7 losses, we use ↵ = 0.1, c = 7,
and ! = 0.5. For fine-tuning, we use semi-hard negative
mining supervised triplet loss [7] with ↵ = 0.1.

To benchmark our models, we use a distance-weighted
k-nearest neighbor classifier (kNN) with k = 10 to predict
labels in experiments of classification task in Section 7.

6.3 Variations of our proposed models
In this section, we explain variations of our models and
their use cases in experimental studies. We will explain each
variation and its settings based on two different use cases;
unsupervised tasks and supervised tasks.1

6.3.1 Models for unsupervised tasks
In this use case, we compare the following proposed model
with competitors in an unsupervised representation learn-
ing task:

• Ours: This model is trained using weighted self-
supervised EMD triplet loss (Eq. (4)) without using
provided labels.

6.3.2 Models for supervised tasks
For comparing with state-of-the-art supervised pointset
classification methods, we proposed the following varia-
tions:

• Ours+CE/TL: We use this model as a baseline by
training the model using supervised triplet loss
(TL) [7] or cross-entropy loss (CE) with the provided
labels.

• Ours+Int.: We construct this model by fine-tuning
training labels with the Internal-data pre-trained
model mentioned in Section 5. As shown in Fig. 3,
we first perform self-supervised pre-training (Eq. (4))
with the target dataset before fine-tuning with its la-
bels. In fine-tuning step, we re-initialize the weights
of the fully connected layers ⇢ after Encoder in Eq.
(8). Then, we fine-tune the model using supervised
triplet loss with the provided labels. This model
can achieve a better performance than training with
the supervised losses based on the provided labels
directly.

• Ourst+Ext.: We construct this model by fine-tuning
training labels with the External-data pre-trained
model mentioned in Section 5. We use the same
setting as Ours+Int. except that we first pre-train
on an external dataset in a self-supervised fashion
and re-initialize the weights of the fully connected
layers before pre-training with a target dataset. In
our experimental section, we used Consumer Reviews

of Amazon Products dataset on Kaggle as the external

1. Code and data available at https://github.com/vistec-AI/
WSSET/

pre-train data. This dataset contains 28,332 reviews
of the Amazon products. We compare this model
to supervised competitors with external data pre-
training, e.g., language models.

For the ease of understanding, we summarize each variation
and its required steps in Table 2.

In addition, we can choose whether to train each model
pointset augmentation, or apply our proposed PointSwap
(PS), or use competitors’: PointMixup (PM) [26] or Point-
Drop (PD). PointMixup is specifically designed to augment
point clouds using linear interpolation. While PointDrop,
inspired by node dropping methods in graph augmenta-
tion [24], is a method that randomly drops each element in
each set with a certain probability. In the case of training a
model by applying the augmented pointset, we use Eq. (7)
as a loss function with x

0a from the chosen augmentation
method in all self-supervised training stages.

TABLE 2
Variation of our proposed models

Model External Internal Supervised

name pre-training pre-training fine-tuning
Ours X

Ours+CE/TL X
Ours+Int. X X
Ours+Ext. X X X

7 EXPERIMENTAL RESULTS
7.1 Comparison with unsupervised and self-
supervised approaches
In this section, we evaluate our proposed self-supervised
learning technique by using nearest neighbor classification
task against a traditional distances for computing nearest
neighbors (i.e., WMD [1] and Chamfer Distance (CD) [27])
and these following unsupervised/self-supervised repre-
sentation learning approaches:

• We used the unsupervised representation learning
technique proposed by Dosovitskiy et al. [14], called
Exemplar. We applied DeepSets to encode pointsets
for the encoder instead of original implementation
with CNN and image inputs.

• We implemented a direct EMD approximation loss
technique that learns a space on which the Euclidean
distance approximates EMD, called Approx.EMD, us-
ing the same encoder as ours with the following loss:
L(X) =

1
n2

Pn
i,j(EMD(xi, xj)� k f(xi)� f(xj) k22)2

• We also adopt the current state-of-the-art self-
supervised representation learning, contrastive
learning methods, called Cont. for a more extensive
comparison. We implemented a competitor based
on SimCLR [17] method using the same encoder as
ours.

These competitors except Approx.EMD have been de-
signed based on other applications with different losses and
data preparation steps. For a fair comparison, we follow
their original training steps but changed their feature en-
coder to be a baseline pointset encoder, e.g., DeepSets [44]
and the self-attention encoder (see Section 4.3).

Table 3 shows that Ours with and without PointSwap
outperforms CD, Exemplar, Approx.EMD, and variations of

https://github.com/vistec-AI/WSSET/
https://github.com/vistec-AI/WSSET/
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Cont. Ours and the variants perform better than WMD only
on BBCSport. Nevertheless, WMD takes O(n3 log n) for one
distance calculation, while our method has a 905.9 times

lower computation cost. This will be further discussed in
the retrieval performance experiments. Furthermore, Ours
could beat WMD by fine-tuning strategies, which will be
shown in the following subsection on supervised and semi-
supervised experimental settings.

We found that using PointSwap as an augmentation
method achieved higher accuracy than PointMixup, Point-
Drop, and no augmentation for both Ours and Cont. in
most datasets. In particular, the differences between the
performance of PointSwap and other augmentation settings
in Cont. are significant statistically in all datasets. For Ours,
PointSwap outperforms PointMixup for all datasets but
has lower accuracy than PointDrop and no augmentation
in Twitter dataset. However, Cont. with PointSwap still
has poor performance compared to Ours and WMD. One
possible reason is that the augmented pointsets from these
methods may not be suitable for the contrastive learning
pipeline. These issues are also shown in computer vision
studies [17], [37], [40] as contrastive learning requires abla-
tion experiments to find effective augmentation techniques.

Lastly, Approx.EMD has lower performance than our
variations, as mentioned in Section 4 but still outperforms
the other approaches.

TABLE 3
Comparison of our representation with unsupervised and

self-supervised approaches

Methods Aug
Datasets

BBCSport Recipe Amazon Twitter

WMD [1] - 95.0 58.42 92.75 71.49

CD [27] - 80.00 42.48 83.41 66.20
Exemplar [14] - 58.64 33.26 69.79 70.17
Approx.EMD - 93.18 50.13 84.79 70.49
Cont. - 69.09 39.21 74.67 68.26
Cont. PD 78.64 41.95 78.04 70.02
Cont. PM 78.00 40.35 76.75 69.21
Cont. PS 80.45 44.7 83.71 70.17
Ours - 96.36 51.87 92.17 70.71

Ours PD 94.22 48.17 91.48 70.52
Ours PM 96.36 52.10 92.25 68.88
Ours PS 97.27 52.40 92.37 70.28

7.2 Comparison with supervised approaches

We evaluated the fine-tuning performance of internal and
external-data pre-trained models by comparing our fine-
tuning results in document classification tasks with state-of-
the-art supervised learning methods for pointsets and text
classification models.

For the comparison between methods that are trained
without external data shown in the upper part of Table
4, we found that Ours+Int. outperforms all competitors,
including DeepSets, Set transformer [45], RepSet [2], and
fine-tuned contrastive learning model, i.e., Cont.+Int. In
particular, using internal-data pre-trained models can boost
the accuracy of training from scratch settings (i.e., Ours+TL)
for all datasets. Interestingly, using Cont. pre-trained model,
which has poor nearest neighbor accuracy in the unsuper-
vised settings, gains better accuracy than Ours+TL on all
datasets except for Recipe.

To compare Ours+Ext., we fine-tuned two state-of-the-
art language models, BERTBASE and RoBERTaBASE, with
raw text data provided in the dataset except for Recipe,
which lacks raw text inputs. Ours+Ext. with PointSwap
outperforms both competitors as reported in the lower part
of Table 4 and also outperforms the fine-tuned contrastive
learning model, Cont.+Ext.

These results demonstrate the effectiveness of our pre-
trained model for both internal and external pre-training
methods.

For the augmentation choices, pre-training with
PointSwap achieves better accuracy than others for non-
external and external settings, similar to the previous exper-
imental results. However, using PointDrop and PointMixup
shows negative transferring (i.e., has lower performance
than non-transfer learning methods) on Recipe and Amazon
datasets by getting lower accuracy than pre-training with-
out augmentation.

We also found that Cont+Ext achieves lower perfor-
mance than both Cont+Int and the model without transfer
learning, Ours+TL. We hypothesize that the contrastive
learning pipeline may not fit enough for pre-training a
model on external, i.e., out-of-domain data.

TABLE 4
Comparison of our fine-tuned models’ results with other supervised

approaches

Methods Aug
Datasets

BBCSport Recipe Amazon Twitter

DeepSets+CE - 97.7 58.88 94.95 75.42
DeepSets+TL - 99.09 54.3 94.10 73.6
Ours+CE - 97.27 61.00 94.30 76.6
Ours+TL - 97.75 62.30 94.65 77.5
SetTrans [45] - 95.82 57.46 92.82 72.21
RepSet [2] - 98.00 61.43 94.71 74.58
Cont.+Int. - 100.00 59.88 94.88 77.36
Cont.+Int. PD 100.00 59.65 95.04 77.42
Cont.+Int. PM 100.00 60.86 94.96 77.9
Cont.+Int. PS 100.00 61.87 95.08 78.33
Ours+Int. - 100.00 63.16 95.50 78.33
Ours+Int. PD 100.00 59.42 95.33 77.47
Ours+Int. PM 100.00 62.47 95.58 78.43
Ours+Int. PS 100.00 63.16 95.58 78.43

BERTBASE - 99.54 - 95.21 75.85
RoBERTaBASE - 99.09 - 95.65 77.89
Cont.+Ext. - 98.64 53.93 91.5 75.21
Cont.+Ext. PD 99.09 51.85 94.36 76.17
Cont.+Ext. PM 99.09 52.71 94.5 76.50
Cont.+Ext. PS 99.09 56.83 94.54 76.72
Ours+Ext. - 100.00 63.31 95.63 78.11
Ours+Ext. PD 100.00 60.14 95.42 77.97
Ours+Ext. PM 100.00 62.70 95.54 78.11
Ours+Ext. PS 100.00 63.31 95.71 78.33

7.3 Experiments on semi-supervised learning settings
Inspired by previous experiments, we also evaluated the
transferring performance of our pre-trained model by fine-
tuning with partially-labeled datasets (i.e., semi-supervised
setting). We simulated this setting by reducing a labeled
training set into 1%, 3%, 5%, 7%, and 10% out of available
training labels. We compare our methods with a distance-
based baseline (i.e., WMD), RoBERTa, and state-of-the-art
semi-supervised learning technique for text, UDA [42].

Fig. 4 shows trends of classification accuracy and the
number of labels used in the fine-tuning step. Using our
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pre-trained model’s representation can beat competitors in
most settings. In particular, Ours+Int. with PointSwap out-
performs no augmentation version and can achieve 4.94%
difference from RoBERTa in Twitter dataset with 1% labels
and 5% difference in BBCSport dataset at 5% labels. How-
ever, RoBERTa got higher accuracy than ours with 1% labels
in Amazon dataset. This could be because Amazon reviews
are similar to the pre-trained dataset used in the language
model.

Interestingly, both internal and external pre-trained
models have comparable results in all settings. We hy-
pothesize that using self-supervised representation from the
dataset in the same domain, regardless of external data, is
sufficient for solving supervised tasks with small numbers
of labeled data.

One remarkable finding is that fine-tuning such a small
number of labels with our pre-trained model could make
Ours+Int. and Ext. variants perform better than WMD. This
could be an example to demonstrate our representation’s
strength, which can be fine-tuned with any target problem
even with a low resource of labeled data. On the other hand,
fine-tuning WMD on a target problem is non-trivial.

7.4 Experiments on graph datasets
We also evaluate our self-supervised learning method for
pointsets on graphs classification tasks. We show a compar-
ison against the supervised pointset encoder, RepSet, and
state-of-the-art self-supervised graph representation learn-
ing, GraphCL [24].

With our self-supervised representation, we achieve
comparable results to both RepSet and GraphCL on all
four datasets, as shown in Table 5. It is also interesting
to note that compared to the method without augmen-
tation, PointSwap gains mean accuracies at 2.61%, 1.35%,
10.93%, and 6.38% in MUTAG, IMDB-B, NCI1, and PRO-
TEINS datasets, respectively. At the same time, PointMixup
has lower accuracy than no augmentation in MUTAG and
IMDB-B, while PointDrop achieves a comparable result to
PointSwap. This finding is similar to the study [24] that al-
ready demonstrates the benefits of node dropping technique
on graph learning problems.

Our pre-trained model also benefits fine-tuning with
partially-labeled graph datasets as shown in Table 6. We
sample 10% of the training labels in the graph datasets for
fine-tuning the internal-data pre-trained model. The results
show that our pre-trained model can boost the supervised
baseline (i.e., Ours+CE) accuracies. Pre-training our model
using PointSwap still outperforms PointMixup, and has
comparable results with PointDrop. Moreover, the results of
Ours+Int. with PointSwap also has comparable results with
GraphCL for all datasets.

These results demonstrate the ability of our learning
method, both proposed loss and PointSwap, which could
be applied to not just a set of word vectors but also other
domains of pointsets.

7.5 Experiments on point cloud datasets and Chamfer
Distance
Not only graph datasets, but we also additionally evaluated
our proposed loss in the point cloud classification task. We

TABLE 5
Comparison of mean classification accuracy and standard deviation

conducted on a 10-fold cross-validation split graph datasets with other
set-based and graph-based approaches

Method
Datasets

MUTAG IMDB-B NCI1 PROTEINS

RepSet 88.63±0.86 71.46±0.91 - 73.04±0.86
GraphCL 86.80±1.34 71.14±0.44 77.87±0.41 74.39±0.45

Ours 91.66±3.46 70.45±2.38 65.39±0.76 68.50±4.87
Ours+PD 91.68±3.04 71.9±3.48 75.58±1.38 74.24±3.67
Ours+PM 90.53±5.24 70.35±3.08 70.53±2.63 73.57±2.53
Ours+PS 93.05±4.52 71.75±2.89 76.32±1.53 74.88±2.13

TABLE 6
Comparison of mean classification accuracy and standard deviation

conducted on a 10-fold cross-validation split with other general-based
and graph-based approaches on graph datasets with 10% label

propagation

Methods
Datasets (10% labeled)

NCI1 PROTEINS

Ours+CE 58.89±3.15 69.70±3.25
GraphCL [24] 74.63±0.25 74.17±0.34

Ours+Int. 71.02±2.43 70.41±2.04
Ours+Int.+PD 73.52±2.50 73.10±3.16

Ours+Int.+PM 71.50±2.69 72.03±2.32
Ours+Int.+PS 73.68±2.54 72.16±2.15

also show a study on Chamfer Distance (CD), which has
remarkable performance in measuring similarity between
two point clouds in several studies.

Table 7 shows that using CD with kNN achieves better
accuracy than EMD. By comparing the distance calculation
time per point cloud pair, CD also has a faster computation
complexity of O(n2) while EMD is O(n3 log n).

We also conducted an experiment to show the effec-
tiveness of varying the distance function (i.e., CD and
EMD) used for mining triplets in our loss (Fig. 2). In this
experiment, we follow PointMixup [26] by changing the
encoder to PointNet++ [48] and train with our loss proposed
in Section 4.1 and fine-tuning the pre-trained model with
given labeled data using triplet loss. We found that learning
representation with EMD results in higher accuracy than
CD. Similar to a semi-supervised setting with 10% labels,
fine-tuning a pre-trained model on EMD also leads to higher
accuracy.

Interestingly, using CD in our loss could not achieve
better accuracy as computing nearest neighbors by the kNN
algorithm. Nevertheless, CD still has a lower calculation
complexity than EMD, plus the accuracy gap is small. Thus,
using CD in the pipeline can help reduce the training time
with some performance trade-offs. More information on the
trade-off between CD and EMD can be found in Appendix
A.

By comparing each augmentation setting, PointSwap
could boost classification accuracy from no augmentation
in self-supervised and semi-supervised settings. PointSwap
has slightly lower accuracy than PointMixup [26] in both
settings. Nevertheless, PointMixup is a specialized method
for point cloud data, which does not generalize well to
pointsets in other domains as shown in the previous experi-
ments. While PointSwap could achieve classification accura-
cies gaining on all selected three domains of pointsets (i.e.,
documents, graphs, and point clouds). Another interesting
point is that PointSwap could also boost the performance
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Fig. 4. This figure reports kNN accuracies on semi-supervised settings explained in Section 7.3, which simulately reduce the label propagation
of available training labels used in the fine-tuning step. Solid lines represent approaches that do not use any external data, while dashed lines
represent approaches that do.

TABLE 7
Effect of varying augmentation and distance used for mining triplet in

our proposed loss. The experiments were conducted on the
ModelNet40 dataset in unsupervised and semi-supervised settings by

fine-tuning a pre-trained model with 10% label propagation.

Methods Aug Distance Unsup Semi-sup (10%)

Distance - EMD 77.87 -
CD 75.85 -

TL - - - 59.60

Ours

- EMD 60.12 67.24
CD 58.99 66.20

PM EMD 63.08 68.11

CD 62.39 67.26

PS EMD 61.06 67.54

CD 60.45 66.89

of a generic supervised point cloud classification baseline
without augmentation and outperforms PointMixup [26].
This experiment can be found in Appendix B.

7.6 Experiments on approximation and unsupervised
tasks

In this subsection, we demonstrate how our pre-trained
model can be extended to improve other target tasks, i.e.,
kernel density estimation in EMD space. To achieve this,
we first need to fine-tune our self-supervised pre-trained
model to output a representation in Euclidean space, where
each sample has a distance to another sample as equal
to EMD(·). We could do this by fine-tuning with direct
EMD approximation loss, which has been used to train the
baseline, Approx.EMD presented in Section 7.1 previously.

Table 8 shows the comparison between Approx.EMD
and our fine-tuned models, Ours+Int.(EMD) and
Ours+Ext.(EMD). Mean squared error (MSE) shows
the error between our approximated distance and the
ground truth EMD values. Both of our models can achieve
lower MSE than the baseline, except Ours+Ext.(EMD) that
got higher error on Twitter and Ours+Int.(EMD) on Recipe.
These results demonstrate the benefits of transferring
learned representation to other objectives, which is not
limited to only the supervised fine-tuning as shown in the
previous experiments.

To evaluate the performance of distance approximated
from our model, we use density estimation as the down-
stream task. We compare the discrepancy (relative error) of
the approximation from models against the Gaussian kernel
density estimation from the ground truth EMD, using the

following formula: G(x;�) = 1p
2⇡�

e
� x2

2�2 with � of 1. The
estimations are calculated from kNNs with the k value of
10.

Similar to MSE, both of our models got lower discrep-
ancy than the baseline, except Ours+Ext.(EMD) on Twitter.
This clearly shows that the benefit of having a more accurate
EMD approximation method can translate to more accurate
kernel density estimation results.

TABLE 8
Comparison of mean squared error between our approximated distance
and the ground truth EMD values and density estimation discrepancy

with neural-network based EMD approximation approaches

Methods
Datasets

BBCSport Recipe Amazon Twitter

Mean squared error

Approx.EMD .0100 .0037 .0347 .0035
Ours+Int.+PS(EMD) .0100 .0054 .0112 .0030

Ours+Ext.+PS(EMD) .0093 .0029 .0086 .0041
Mean density estimation discrepancy (%)

Approx.EMD 6.249 2.206 20.072 2.846
Ours+Int.+PS(EMD) 6.195 2.679 4.581 2.534

Ours+Ext.+PS(EMD) 6.023 2.078 4.091 3.247

7.7 Experiments on retrieval performance
Following pointsets retrieval [13] and deep metric learn-
ing [15], [34] works, we evaluated the retrieval performance
of learned representation by measuring Recall@K on top-K
similarity search and showing computation time compared
to distance-based and neural network-based methods.

Table 9 shows Recall@K between competitors men-
tioned in Section 7.1 and our methods. Ours and Ours
with PointSwap outperform Approx.EMD in all settings
and also achieve higher recall over WMD at lower K on
BBCSports and Amazon datasets. Interestingly, PointDrop
shows comparable retrieval results to PointSwap and no
augmentation on Twitter dataset. This finding is similar to
classification accuracies evaluated in Section 7.1. For Recipe,
our methods also achieve comparable Recall@K to WMD.
This demonstrates the ability to learn a good embedding
space with zero labels using our self-supervised loss.

In some settings, Ours + PointSwap might have lower
retrieval performance (i.e., Recall@k) than Ours. This is
because PointSwap, which is based on modifying some
elements in the original set using another relevant set. In
particular, a selected relevant set from the EMD space
might have a chance to belong to a different class from
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the original one, resulting in an augmented set with some
biases from other classes. Hence, our model learned from
these biased datasets might generate biased representation
(i.e., have similar attributes to representations of different
classes). Giving a query to perform searching in such a
biased representation pool might result in more incorrect
retrieval results appearing in top k.

With these challenges regarding the robustness of our
PointSwap, a more robust set augmentation technique could
be an interesting topic for further investigation.

We also show the average query time on documents
and graphs database. For documents, we choose Amazon
dataset to evaluate our approach against WMD [1], which is
a special case of the classic EMD (O(n3 log n) ) [4], threshold
EMD (O(n2 log n)) [28] and three neural network-based
methods, BERT [41], RoBERTa [23], and RepSet [2]. For
graphs, we do a comparison with graph neural network-
based method, GraphCL [24] on NCI1 dataset. A time
complexity comparison between each competitor has been
provided in Appendix A. All of the studies were conducted
on Intel Xeon E5-2698 v4 2.20GHz with 20-core multipro-
cessing for distance calculation and NVIDIA Tesla V100 for
neural network inference.

Fig. 5 shows that our approach is the fastest method
among the competitors. However, BERT and RoBERTa use a
tokenizer to process raw text, which is faster than Word2Vec
in other approaches. Nonetheless, both BERT and RoBERTa
take a longer time to encode a query to a feature vector
than our model since our model has 4.9M parameters while
BERT and RoBERTa have 110M and 125M parameters, re-
spectively. At the same time, RepSet, which uses a set-based
neural network, also has a longer network inference time
than ours.

In the distance calculation phase, the neural network
approaches (i.e., ours and language models) which use
Euclidean distance are 39.625 times faster than Threshold
EMD and 905.9 times than WMD.

While Fig. 6 also shows that our approach has a better
inference time than GraphCL, which yields better graph
classification performance but is 29.5 times slower than ours.

These results demonstrate the potential of our self-
supervised learning method, which could be used for
pointset retrieval with comparable performance and faster
computing time than EMD-based approaches and neural
network-based competitors.

7.8 Study on pointsets data augmentation
This section shows a comprehensive study of PointSwap
by evaluating it against other pointset augmentation tech-
niques.

7.8.1 Effect of augmentation hyperparameters
We first study the behavior of PointSwap, PointDrop, and
PointMixup, regarding their controllable parameter ! in
Eq. 6 for PointSwap, dropout probability for PointDrop,
and mix ratio � for PointMixup. We varied ! and � from
0.1, 0.3, 0.5, 0.7, to 1.0, where lower values of ! and �

mean that the augmented set x
0a is mostly similar to its

original x
a, and higher ! and � mean that each element

in x
0a has been mostly modified by elements in x

p based

TABLE 9
Comparison of Recall@K with other unsupervised and self-supervised

approaches

BBCSports R@5 R@15 R@30 R@45 R@60

WMD [1] 7.28 24.31 46.98 66.79 84.05

Approx.EMD 8.01 21.89 36.17 46.25 54.19
Ours 9.10 25.64 45.59 58.97 78.11

Ours+PD 7.87 22.46 39.85 51.81 61.18
Ours+PM 8.81 24.59 42.61 55.03 64.17
Ours+PS 8.95 25.51 45.42 57.78 76.27
Recipe R@25 R@50 R@100 R@200 R@400

WMD [1] 4.45 8.30 15.20 27.18 48.11

Approx.EMD 3.54 6.42 11.54 20.75 37.13
Ours 4.19 7.73 13.82 23.96 40.65

Ours+PD 3.06 5.76 10.65 19.60 36.12
Ours+PM 4.02 7.36 13.16 23.08 39.62
Ours+PS 4.20 7.73 13.87 23.99 40.38
Amazon R@50 R@100 R@300 R@500 R@700

WMD [1] 6.58 12.87 36.09 57.19 76.63

Approx.EMD 5.13 9.77 26.60 39.76 49.98
Ours 6.92 13.40 35.95 52.24 63.48
Ours+PD 6.56 12.80 35.65 52.15 62.48
Ours+PM 6.79 13.10 34.82 50.95 60.26
Ours+PS 6.89 13.29 36.24 53.17 64.20

Twitter R@50 R@100 R@200 R@300 R@500

WMD [1] 5.90 11.62 22.89 33.99 55.85

Approx.EMD 5.73 11.19 21.93 32.37 53.35
Ours 5.78 11.35 22.00 32.58 53.56
Ours+PD 5.79 11.32 22.19 32.61 53.64

Ours+PM 5.77 11.37 22.16 32.58 53.26
Ours+PS 5.79 11.37 22.19 32.64 53.60

on the optimal assignments. To evaluate this, we conducted
experiments on the document (BBCSport and Recipe) and
graph (MUTAG and IMDB-B) datasets using unsupervised
pointset classification tasks.

Table 10 shows that ! = 0.5 is the best parameter. In
addition, using ! = 0.1 gains the lowest accuracy, which
could imply that using low ! would have lower accuracy
than the no augmentation version. For PointDrop, using
dropout probabilities of 0.5 and 0.7 on document and graph
datasets can achieve the best accuracies, respectively. While
in PointMixup, � has peak accuracy between � = 0.5
and 0.7. Based on these results, we use ! = 0.5, dropout
probability = 0.5 for documents and 0.7 for graphs, and
� = 0.5 to compare with other competitors for the following
experiments.

7.8.2 Comparison between PointSwap and baseline aug-
mentation methods

We then compare PointSwap, PointDrop, PointMixup, and
other baseline pointsets augmentation methods against a
model without augmentation.

We implemented three variants of PointSwap based on
two techniques used in the method described in Section 4.2:
i) Nearest EMD: We select one similar pointset of the anchor
pointset based on its nearest one in EMD space, i.e., positive.
ii) Optimal assignment: This technique swaps each element
in the pair based on its optimal assignments from EMD
calculation (see Eq. (1)). The three variants are as follow:

• The first variant selects a pair for anchor randomly
and swaps each element without assignment.

• The second variant also selects a pair randomly but
swaps each element based on an assignment.
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Fig. 5. These graphs show the average time consumption for each step in similarity search on Amazon dataset from a given query. Note that we
use a log scale on the overall retrieval time and distance calculation time. Ours is the fastest approach in the overall retrieval time and even faster
than the state-of-the-art neural network BERT while achieving with comparable accuracy.

Fig. 6. These graphs show the average time consumption for each step in similarity search on NCI1 dataset from a given query. Ours is faster than
the state-of-the-art graph neural network GraphCL.

• The third variant selects a pair based on its nearest
EMD of the anchor but swaps each element without
assignment.

Each variant was trained using Eq. (7) for unsupervised
settings and semi-supervised settings using 5% of labeled
data from document datasets. There is also a summary in
Table 11 for showing how each variant differs from the
other.

Table 11 also shows a summary of accuracy gained
relative to the no augmentation version (i.e., Eq. (4)) for
each augmentation technique. We found that PointSwap
achieves the highest accuracy among other methods in
all datasets in the unsupervised setting. We also observed
that the first variant obtains the lowest accuracy, while the
second, third variants, and PointDrop perform differently
on different datasets. Interestingly, these variants and Point-
Drop, which obtain lower performance in the unsupervised
setting, can achieve positive gains on some datasets in the
semi-supervised settings. These performance gains demon-
strate the benefit of pre-trained models with augmentation,
regardless of their poor performance when directly evalu-
ating the embedding space in the self-supervised learning
step.

Nevertheless, PointSwap and PointMixup, which did
not negatively affect the accuracy evaluated in the self-
supervised learning step, can achieve better accuracy for
all datasets in fine-tuning steps than the no augmentation
baseline.

In Table 12, we show samples of augmented words using
each augmentation technique on document datasets. The
sampled augmented words from the three baselines show
that all of them are unrelated. PointMixup can generate the
same words with the interpolated word vectors but also
unrelated words. Interestingly, we found that PointSwap’s
augmented words are mostly synonyms or somehow related
words. We hypothesize that using synonyms instead of
interpolated vectors could lead to better representation. This
hypothesis could also happen in graphs, as replacing the
anchor node with its similar node (i.e., PointSwap) has

Fig. 7. Figure shows the effectiveness of our re-weighting negative terms
on recall@K by tuning the hyperparameter c in Eq.5.

better results than shifting edges (i.e., PointMixup) as shown
in the graph experiments in Section 7.4.

7.9 Hyperparameter study
We conducted a study to demonstrate the effectiveness of
re-weighting negatives by varying the hyperparameter c

in Eq.5 on Recipe, which is the most challenging dataset
among all 4 datasets. Higher c means less effect of re-
weighting. We observe that for all Recall@K , c = 7 to c = 13
have significantly better recall rates than higher c values as
shown in Fig. 7. The results show that prioritizing negative
pairs based on EMD could help the network learn with
samples that are more likely to belong to different classes.

8 CONCLUSION

We have proposed a self-supervised deep metric learning
approach for pointsets, which enables effective representa-
tion learning on unlabeled datasets. The key idea of our
method is the use of EMD to generate pseudo labels for
triplet loss training, and a re-weighting technique that en-
courages larger separation between certain negative pairs
deemed more likely to come from different classes. We have
also proposed a new augmentation technique for pointsets,
called PointSwap, which randomly swaps an element in
one pointset and another element in a similar set. Our
experiments show that our learned representation can be
used for fine-tuning with downstream tasks and produce
results superior to other supervised competitors, including
an NLP-specific approach based on a state-of-the-art lan-
guage model. In addition, our method is shown to be the
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TABLE 10
Effect of varying augmentation methods’ probability threshold ! and � on document and graph datasets. Mean classification accuracy and

standard deviation conducted on a 10-fold cross-validation split are shown for graph datasets.

!/� 0.1 0.3 0.5 0.7 1.0
PointSwap (PS)

BBCsport 89.18 94.27 97.27 93.66 96.36

Recipe 47.02 50.99 52.40 51.14 51.87

MUTAG 89.99±4.68 90.01±3.58 93.05±4.52 88.61±4.53 91.66±3.46

IMDB-B 69.33±2.68 71.25±2.34 71.75±2.89 70.11±2.03 70.45±2.38
PointDrop (PD)

BBCsport 86.36 91.65 94.22 93.97 -
Recipe 42.33 44.52 48.17 46.08 -
MUTAG 88.89±4.24 90.00±4.11 85.55±5.37 91.68±3.04 -
IMDB-B 69.33±2.68 69.20±1.56 69.7±0.87 71.9±3.48 -

PointMixup (PM) [26]

BBCsport 87.26 93.82 96.36 93.00 96.36

Recipe 46.80 51.14 51.68 52.10 51.87

MUTAG 88.69±5.18 88.57±6.53 90.53±5.24 89.44±7.49 91.54±2.98

IMDB-B 68.55±3.75 69.50±3.61 70.72±1.72 70.35±3.08 70.45±2.38

TABLE 11
Comparison of accuracy gaining from no augmentation self-supervised learning between training with PointSwap and its other variations on

unsupervised and semi-supervised settings.

Augmentation

methods

Nearest

EMD

Optimal

assignment

Datasets (Unsupervised) Datasets (5% labeled)

BBCSport Recipe Amazon Twitter BBCSport Recipe Amazon Twitter

(1) - - -12.27 -11.06 -13.25 -1.26 -3.82 -2.36 0.75 3.03
(2) - X -16.36 -5.72 -18.75 -0.65 -2.46 0.84 1 2.82
(3) X - -5.45 -7.17 -5.55 -0.94 -1.55 -0.84 0.58 2.82

PointDrop - - -2.14 -3.70 -0.69 -0.19 0.27 0.69 1.07 2.82
PointMixup [26] X X 0.00 0.23 0.08 -1.83 0.27 2.52 1.33 1.53

PointSwap X X 0.91 0.53 0.2 -0.43 0.27 2.75 1.33 3.25

TABLE 12
The generated augmented word vectors using three baselines, PointMixup, and PointSwap

Datasets Original words
Augmentation methods

(1) (2) (3) PointSwap PointMixup [26]

BBCSports

olympic s european olympic olympics line
congratulated number learn personal enjoyed game

bangladesh liverpool i win spinners bangladesh
refused head pieces told denies refused

Recipe

remove food large turns leave low
bowl cups long tea tail bowl
above noodles - bowl low sheet
brown increase accomplishment fix gray olives

Twitter

eyes i now details screen screen
antitrust here use none racketeering microsoft

own with - by personal developed
appstore quit slew the iphone is

fastest among all the competitors. As future work, we plan
to further generalize this approach to other pointsets data
or other distance functions and investigate more robust set
augmentation methods.
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networks,” in NeurIPS, 2019.

[21] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and
M. Neumann, “Tudataset: A collection of benchmark datasets for
learning with graphs,” in ICML 2020 Workshop on Graph Represen-

tation Learning and Beyond, 2020.
[22] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,

“3d shapenets: A deep representation for volumetric shapes,” in
CVPR, pp. 1912–1920, 2015.

[23] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A ro-
bustly optimized bert pretraining approach,” arXiv preprint

arXiv:1907.11692, 2019.
[24] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph

contrastive learning with augmentations,” in NeurIPS, vol. 33,
2020.

[25] J. Yang, P. Ren, D. Zhang, D. Chen, F. Wen, H. Li, and G. Hua,
“Neural aggregation network for video face recognition,” in
CVPR, pp. 5216–5225, 2017.

[26] Y. Chen, V. T. Hu, E. Gavves, T. Mensink, P. Mettes, P. Yang, and
C. G. M. Snoek, “Pointmixup: Augmentation for point clouds,”
Lecture Notes in Computer Science, 2020.

[27] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf,
“Parametric correspondence and chamfer matching: Two new
techniques for image matching,” in IJCAI, pp. 659–663, 1977.

[28] O. Pele and M. Werman, “Fast and robust earth mover’s dis-
tances,” in ICCV, pp. 460–467, 2009.

[29] M.-H. Jang, S.-W. Kim, C. Faloutsos, and S. Park, “A linear-time
approximation of the earth mover’s distance,” in CIKM, 2011.

[30] I. Assent, A. Wenning, and T. Seidl, “Approximation techniques
for indexing the earth mover’s distance in multimedia databases,”
in ICDE, pp. 11–11, IEEE, 2006.

[31] Y. Tang, L. H. U, Y. Cai, N. Mamoulis, and R. Cheng, “Earth
mover’s distance based similarity search at scale,” VLDB, 2013.

[32] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in CVPR,
vol. 1, pp. 539–546 vol. 1, 2005.

[33] E. Hoffer and N. Ailon, “Deep metric learning using triplet net-
work,” in SIMBAD, 2015.

[34] B. Yu and D. Tao, “Deep metric learning with tuplet margin loss,”
ICCV, pp. 6489–6498, 2019.

[35] Y. Gao, Y.-F. Li, S. Chandra, L. Khan, and B. Thuraisingham,
“Towards self-adaptive metric learning on the fly,” WWW ’19,
p. 503–513, 2019.

[36] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learn-
ing via non-parametric instance discrimination,” CVPR, pp. 3733–
3742, 2018.

[37] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin,
“Unsupervised learning of visual features by contrasting cluster
assignments,” 2020.

[38] X. Chen and K. He, “Exploring simple siamese representation
learning,” in CVPR, June 2021.

[39] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le,
“Autoaugment: Learning augmentation strategies from data,” in
CVPR, June 2019.

[40] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. E. Hinton,
“Big self-supervised models are strong semi-supervised learners,”
in NeurIPS, 2020.

[41] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” ArXiv, vol. abs/1810.04805, 2019.

[42] Q. Xie, Z. Dai, E. Hovy, M.-T. Luong, and Q. V. Le, “Unsupervised
data augmentation for consistency training,” 2019.

[43] O. Vinyals, S. Bengio, and M. Kudlur, “Order matters: Sequence to
sequence for sets,” CoRR, vol. abs/1511.06391, 2016.

[44] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos, R. Salakhutdinov,
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We provide additional clarifications and experiments
in this supplementary material. We present a study of an
alternative distance choice, Chamfer Distance, in our loss
function in Appendix A. In Appendix B, we demonstrate
the effectiveness of our proposed augmentation technique,
PointSwap, in a standard supervised point cloud classifica-
tion task. Finally, Appendix C details the time complexity of
each competitor shown in the runtime comparison (Section
7.7).

APPENDIX A
STUDY OF CHAMFER DISTANCE IN DIFFERENT DO-
MAINS OF DATASETS

Chamfer distance (CD) [1] is a well-known technique for
measuring the similarity between two non-weighted distri-
butions, especially for point clouds and computer vision-
related problems. CD only requires O(n2) to compute the
directed distance from set a to set b, which is faster than our
selected distribution distance (i.e., EMD with O(n3 log n)).
With these advantages of CD, we conducted an experiment
to show the effectiveness of CD on various pointset datasets.

Table 1 shows a comparison between CD and EMD for
doing k-nearest neighbor classification with k = 10 on
documents, point clouds, and graphs datasets. We find that
CD has better accuracies than EMD on point clouds, as ex-
pected, and one graph dataset. However, EMD outperforms
CD on all four document datasets. This might be because
EMD can utilize the weights of the set members, i.e., word
frequencies, in the calculation step, while CD can not.

By combining with the experiment results in Section 7.5
in the main paper, we find that both CD and EMD have
comparable performance when applying our proposed self-
supervised loss. Thus, using CD in the pipeline can help
reduce the training time with some performance trade-offs.
On the other hand, EMD can be preferred if each set member
has an associated weight.

• P. Arsomngern, S. Suwajanakorn, and S. Nutanong are with School of
Information Science and Technology, Vidyasirimedhi Institute of Science
and Technology, Thailand. E-mail: {pattaramanee.a s19, supasorn.s,
snutanon}@vistec.ac.th

• C. Long is with School of Computer Science and Engineering, Nanyang
Technological University, Singapore. E-mail:c.long@ntu.edu.sg

TABLE 1
kNN accuracies for each competitor, EMD and CD

Datasets Distances
EMD CD

BBCSports 95.00 80.00
Recipe 58.42 42.48

Amazon 92.75 83.41
Twitter 71.49 66.20

ModelNet40 75.85 77.87
MUTAG 63.82 65.95
IMDB-B 63.00 50.10

APPENDIX B
APPLYING POINTSWAP IN SUPERVISED POINT
CLOUD CLASSIFICATION PIPELINE

We show the results of using PointSwap on the ModelNet40
dataset in a supervised point cloud classification pipeline in
the PointMixup study [2]. In this pipeline, we follow their
open-access implementation on GitHub1 by using Point-
Net++ [3] encoder without their proposed ManifoldMixup.
We use � = 0.4 for PointMixup and ! = 0.2 for PointSwap.
Note that running their provided implementation has lower
accuracies than the results reported in their paper [2].

Table 3 shows that both PointMixup and PointSwap
outperform the no augmentation variant. Interestingly,
PointSwap can achieve better accuracy than PointMixup,
which is consistent with comparisons in documents and
graphs datasets shown in Sections 7.1, 7.2, and 7.4. This sug-
gests that PointSwap can be used with any finite pointset.

APPENDIX C
TIME COMPLEXITIES OF EACH COMPETITOR

Table 2 shows the time complexities of all competitors
that have been evaluated on the retrieval experiments
in Section 7.7. We split the comparison into three stages
of retrieval; network inference, distance calculation, and
database lookup. We also provide the total complexity of all
three steps. For network inference, BERT [6], RoBERTa [7],
and Ours use the same Vaswani et al.’s Transformer [10],
which has O(n2) time complexity, where n is the number
of members in sets. RepSet [8] uses MLP and bipartite

1. https://github.com/yunlu-chen/PointMixup

https://github.com/yunlu-chen/PointMixup
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TABLE 2
Time complexities of each approach in each retrieval process.

Methods Time complexity per query
Network inference Distance calculation Database retrieval Total

WMD [4] - O(n3 log(n)) O(D) O(Dn
3 log(n))

EMD [5] - O(n2 log(n)) O(D) O(Dn
2 log(n))

BERT [6] O(n2) O(n) O(D) O(Dn
2)

RoBERTa [7] O(n2) O(n) O(D) O(Dn
2)

RepSet [8] O(nm) O(n) O(D) O(Dnm)
GraphCL [9] O(n2) O(n) O(D) O(Dn

2)
Ours O(n2) O(n) O(D) O(Dn

2)

TABLE 3
Comparison of classification accuracies with other point cloud

augmentation choices

Methods Accuracy
No augmentation 91.25

PointMixup [2] 91.34
PointSwap 91.61

matching algorithm, which takes O(nm), where m is the
number of edges between set members and their proposed
hidden sets. In the worst scenario, where hidden sets are
the same size as the query set, m would be equal to n

2. In
the case of GraphCL [9], it uses GIN [11] architecture, which
has graph convolutional operations with time complexity
O(m) [12] (i.e., n2). We can conclude that all competitors,
including ours, have the same inference time complexity,
except RepSet.

All mentioned neural network competitors could gener-
ate a feature vector in the Euclidean space, which takes only
O(n) to calculate the distance between two features.

WMD [4] and threshold EMD [5], which do not re-
quire network inferencing, have the distance calculation
complexities O(n3 log(n)) and O(n2 log(n)), respectively.
By performing a set retrieval on a database with D entries,
WMD and approximate EMD have the largest computation
complexity among the others.
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