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ABSTRACT
Enumerating maximal 𝑘-biplexes (MBPs) of a bipartite graph has

been used for applications such as fraud detection. Nevertheless,

there usually exists an exponential number of MBPs, which brings

up two issues when enumerating MBPs, namely the effectiveness

issue (many MBPs are of low values) and the efficiency issue (enu-

merating all MBPs is not affordable on large graphs). Existing pro-

posals of tackling this problem impose constraints on the number

of vertices of each MBP to be enumerated, yet they are still not

sufficient (e.g., they require to specify the constraints, which is

often not user-friendly, and cannot control the number of MBPs

to be enumerated directly). Therefore, in this paper, we study the

problem of finding 𝐾 MBPs with the most edges called MaxBPs,

where 𝐾 is a positive integral user parameter. The new proposal

well avoids the drawbacks of existing proposals (i.e., the number of

MBPs to be enumerated is directly controlled and the MBPs to be

enumerated tend to have high values since they have more edges

than the majority of MBPs). We formally prove the NP-hardness

of the problem. We then design two branch-and-bound algorithms,

among which, the better one called FastBB improves the worst-case

time complexity to 𝑂∗ (𝛾𝑛
𝑘
), where 𝑂∗ suppresses the polynomials,

𝛾𝑘 is a real number that relies on 𝑘 and is strictly smaller than

2, and 𝑛 is the number of vertices in the graph. For example, for

𝑘 = 1, 𝛾𝑘 is equal to 1.754. We further introduce three techniques

for boosting the performance of the branch-and-bound algorithms,

among which, the best one called PBIE can further improve the time

complexity to𝑂∗ (𝛾𝑑3

𝑘
) for large sparse graphs, where 𝑑 is the maxi-

mum degree of the graph (note that 𝑑 << 𝑛 for sparse graphs). We

conduct extensive experiments on both real and synthetic datasets,

and the results show that our algorithm is up to four orders of mag-

nitude faster than all baselines and finding MaxBPs works better

than finding all MBPs for a fraud detection application.
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1 INTRODUCTION
Bipartite graph is an important type of data structure where ver-

tices are divided into two disjoint sets at two sides and each edge

connects a vertex at one side and another at the other side. Bipar-

tite graphs have been widely used for modeling the interactions

between two types of entities in many real applications, with the

entities being vertices and the interactions being edges. Some exam-

ples include commenting interactions between users and articles in

social media [47], purchasing interactions between customers and

products in E-commerce [33], visiting interactions between users

and websites in web applications [3], etc.

A bipartite subgraph is called a 𝑘-biplex if each vertex at one

side disconnects at most 𝑘 vertices at the other side, where 𝑘 is

often a small positive integer [30, 44, 45]. 𝑘-biplex has been used

to capture dense/cohesive subgraphs in a given bipartite graph for

solving practical problems such as anomaly detection [11, 43], on-

line recommendation [13, 28] and community search [14, 36]. For

example, in e-commerce platforms, some agents are paid to pro-

mote the ranks of certain products by coordinating a group of fake

users to post fake comments. The subgraphs induced by these fake

users and the products they promote would be dense and likely to

be 𝑘-biplexes [11].

Motivations. There are a few studies on the problem of enumer-

ating maximal 𝑘-biplexes (MBPs) [30, 44, 45]. Nevertheless, there

usually exist an exponential number of MBPs, which brings two

issues of enumerating all MBPs. First, not all MBPs carry essential

information (e.g., those MBPs with few vertices are often deemed

not interesting [30]). Second, the process of enumerating all MBPs

is costly (e.g., according to existing studies [44], enumerating all

MBPs on large graphs is not affordable). To mitigate these issues,

existing studies [45] impose some constraints on the number of

vertices at each of the two sides of a MBP to be enumerated, e.g.,

they enumerate only MBPs with at least a certain number vertices

at each side (which we call large MBPs). While this strategy makes

it possible to control the number of MBPs to be enumerated, it

achieves the goal only in an indirect way and introduces an addi-

tional issue of requiring to set proper thresholds of the number

of vertices. In cases where users have no prior knowledge about
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the thresholds, they would find it not user-friendly. They can try

different thresholds, but then the enumeration processes would run

multiple times and bring up the time costs.

Motivated by these issues, in this paper, we study the problem

of finding 𝐾 MBPs with the most edges among large MBPs, where

𝐾 is an integral parameter. We call each of these MBPs a maximum
𝑘-biplex (MaxBP). Compared with existing studies on 𝑘-biplexes,

the problem of finding MaxBPs enjoys three advantages. First, each

MaxBP to be found has more edges than those that are not returned,

and thus the found MBP is of more significance. In our experiments,

we verify this via a case study, which shows that a method based

on MaxBPs provides F1 score up to 0.99 for a fraud detection task.

Second, it provides a direct control on the number of MBPs to be

found without the need of making multiple trials of enumeration.

Third, compared with alternative proposals, e.g., finding the first 𝐾
MBPs (as existing studies [45] do) or finding 𝐾 MBPs with the most

vertices, our solution to the problem of finding MaxBPs would re-

turn MBPs that are more balanced, which are deemed to be superior

over imbalanced structures [23].

Baseline Methods. Given the fact that MaxBPs are the MBPs with

the most edges, we can adapt the existing algorithms of enumer-

ating large MBPs, namely iMB [44] and iTraversal [45], to find

the MaxBPs and yield the following two baseline methods. The

first one called iMBadp adapts iMB [44] (a branch-and-bound al-

gorithm) by incorporating additional pruning techniques which

prune those branches that cannot hold any MBP with more edges

than the 𝐾 MaxBPs found so far. The second baseline called iTradp
simply runs iTraversal [45] (a reverse search based algorithm)

and returns 𝐾 MaxBPs since iTraversal cannot be equipped with

additional pruning techniques easily. Nevertheless, iMBadp has its

efficiency highly rely on the pruning techniques and iTradp needs

to explore all large MBPs, which is time-consuming. Both of them

have the worst-case time complexity of 𝑂∗ (2𝑛), where 𝑛 is the

number of vertices in the given bipartite graph and 𝑂∗ suppresses
polynomials. Furthermore, we can adapt those existing algorithms

of enumerating large maximal 𝑘-plexes, which are counterparts of

MBPs on general graphs. Here, a 𝑘-plex is a subgraph with each

vertex disconnecting at most 𝑘 vertices in the subgraph. Therefore,

the third baseline method called FPadp adapts FaPlexen [51] (the
algorithm for enumerating large maximal 𝑘-plexes with the num-

ber of vertices at least a threshold) with some additional pruning

techniques that are tailored for MBPs. Still, FPadp is inferior to the

new algorithms we will introduce in this paper both theoretically

and empirically.

New Methods.We first introduce a branch-and-bound algorithm

called BasicBB, which is based on a conventional and widely-used

branching strategy that we call Bron-Kerbosch (BK) branching [4].

The BK branching recursively partitions the search space (i.e., the

set of all possible MBPs) to multiple sub-spaces via branching.
BasicBB has the worst-case time complexity 𝑂 (𝑛 · 𝑑 · 2𝑛) (i.e.,
𝑂∗ (2𝑛)), where 𝑑 is the maximum degree of the graph. This time

complexity is the same as those of the baseline methods. We then

introduce a new branching strategy called Symmetric-BK (Sym-BK)
branching, which is symmetric to the BK branching but better suits

our problem of finding MaxBPs. We further present our method for

determining an ordering of vertices, which is critical for Sym-BK

branching.We finally introduce a new branch-and-bound algorithm

called FastBB, which is based on the Sym-BK branching. FastBB
has its worst-case time complexity𝑂 (𝑛 ·𝑑 ·𝛾𝑛

𝑘
) (i.e.,𝑂∗ (𝛾𝑛

𝑘
)), where

𝛾𝑘 is strictly smaller than 2 and depends on the setting of 𝑘 . For

example, when 𝑘 = 1, 𝛾𝑘 is 1.754. This is a remarkable theoretical

improvement over the prior solutions given that many existing

algorithms of enumerating subgraphs are based on BK branching

and have the worst-case time complexity of 𝑂∗ (2𝑛) [30, 39, 44].
In addition, we adapt two existing techniques for boosting the

efficiency and scalability of the branch-and-bound (BB) algorithms

including BasicBB and FastBB. They share the idea of constructing
multiple problem instances of finding MaxBPs each on a smaller

subgraph. Specifically, the first technique, called progressive bound-
ing (PB), is adapted from an existing study of finding the biclique

with the most edges [23]. The second technique, called inclusion-
exclusion (IE), is adapted from the decomposition technique, which

has been widely used for enumerating and finding subgraph struc-

tures [5, 7, 40]. PB improves the practical performance of a BB algo-

rithm only while IE improves both the theoretical time complexity

(for certain sparse graphs) and the practical performance. We then

present PBIE, which combines PB and IE naturally. PBIE enjoys

the benefits of both PB and IE. We note that all these techniques

are orthogonal to the BB algorithms, i.e., any of these techniques,

namely PB, IE, and PBIE, can be used to boost the efficiency and/or

scalability of BasicBB and FastBB. To the best of our knowledge,
this is first time that PB and IE are combined naturally.

Contributions. Our major contributions are summarized below.

• We study the problem of finding MaxBPs, and formally prove

the NP-hardness of the problem.

• We propose an efficient branch-and-bound algorithm, called

FastBB, which is based on a novel Sym-BK branching strategy. In

particular, FastBB achieves the state-of-the-art worst-case time

complexity 𝑂 (𝑛 · 𝑑 · 𝛾𝑛
𝑘
) with 𝛾𝑘 < 2.

• We further introduce a combined framework, called PBIE, to
further boost the performance of FastBB. PBIE combines two

adapted frameworks, namely the progressive bounding frame-

work PB and the inclusion-exclusion based framework IE. When

PBIE is used with FastBB, the worst-time time complexity be-

comes 𝑂 (𝑑4 · 𝛾𝑑3

𝑘
). Note that this is better than that of FastBB

on certain graphs (e.g., those sparse graphs with 𝑑 << 𝑛).

• We conduct extensive experiments using both real and synthetic

datasets, and the results show that (1) the proposed algorithms

are up to four orders of magnitude faster than all baselines and

(2) finding MaxBPs work better in a fraud detection task than

enumerating MBPs.

Roadmap. The rest of this paper is organized below. Section 2

defines the problem and shows its NP-hardness. Section 3 presents

the branch-and-bound algorithms BasicBB and FastBB. Section 4

presents the frameworks PB, IE and PBIE. We conduct extensive

experiments in Section 5. Section 6 reviews the related work and

Section 7 concludes the paper.

2 PROBLEM DEFINITION
Let𝐺 = (𝐿∪𝑅, 𝐸) be an undirected and unweighted bipartite graph,

where 𝐿 and 𝑅 are two disjoint vertex sets and 𝐸 is an edge set. For

the graph 𝐺 , we use 𝑉 (𝐺), 𝐿(𝐺), 𝑅(𝐺), and 𝐸 (𝐺) to denote its set
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of vertices, left side, right side and set of edges, respectively, i.e.,

𝑉 (𝐺) = 𝐿 ∪ 𝑅, 𝐿(𝐺) = 𝐿, 𝑅(𝐺) = 𝑅, and 𝐸 (𝐺) = 𝐸. Given 𝑋 ⊆ 𝐿
and 𝑌 ⊆ 𝑅, we use 𝐺 [𝑋 ∪ 𝑌 ] to denote the induced (bipartite)

graph of 𝐺 , i.e., 𝐺 [𝑋 ∪ 𝑌 ] includes the set of vertices 𝑋 ∪ 𝑌 and

the set of edges between 𝑋 and 𝑌 . All subgraphs considered in this

paper are induced subgraphs. We use 𝐻 or (𝑋,𝑌 ) as a shorthand of
𝐻 = 𝐺 [𝑋 ∪ 𝑌 ].

Given 𝑣 ∈ 𝐿, we use Γ(𝑣, 𝑅) (resp. Γ(𝑣, 𝑅)) to denote the set of

neighbours (resp. non-neighbours) of 𝑣 in 𝑅, i.e., Γ(𝑣, 𝑅) = {𝑢 |
(𝑣,𝑢) ∈ 𝐸 and 𝑢 ∈ 𝑅} (resp. Γ(𝑣, 𝑅) = {𝑢 | (𝑣,𝑢) ∉ 𝐸 and 𝑢 ∈ 𝑅}).
We define 𝛿 (𝑣, 𝑅) = |Γ(𝑣, 𝑅) | and 𝛿 (𝑣, 𝑅) = |Γ(𝑣, 𝑅) |. We use 𝑑 to

denote the maximum degree of vertex in 𝐺 . We have symmetric

definitions for each vertex 𝑢 ∈ 𝑅. Next, we review the definition of

𝑘-biplex [44].

Definition 1 (𝑘-biplex [44]). Given a graph 𝐺 = (𝐿, 𝑅, 𝐸), a
positive integer 𝑘 , 𝑋 ⊆ 𝐿 and 𝑌 ⊆ 𝑅, a subgraph 𝐺 [𝑋 ∪ 𝑌 ] is said to
be a 𝑘-biplex if 𝛿 (𝑣, 𝑌 ) ≤ 𝑘 , ∀𝑣 ∈ 𝑋 and 𝛿 (𝑢,𝑋 ) ≤ 𝑘 , ∀𝑢 ∈ 𝑌 .

A 𝑘-biplex𝐻 is said to be maximal if there is no other 𝑘-biplex𝐻 ′

containing𝐻 , i.e.,𝑉 (𝐻 ) ⊆ 𝑉 (𝐻 ′). Large real graphs usually involve
numerous maximal 𝑘-biplexes and most of them highly overlap.

In this paper, we aim to find 𝐾 maximal 𝑘-biplexes with the most

edges, where𝐾 is a positive integral user-parameter. In addition, we

consider two size constraints 𝜃𝐿 and 𝜃𝑅 on each maximal 𝑘-biplex

𝐻 to be found, namely |𝐿(𝐻 ) | ≥ 𝜃𝐿 and |𝑅(𝐻 ) | ≥ 𝜃𝑅 . These con-
straints would help to filter out some skewed maximal 𝑘-biplexes,

i.e., the number of vertices at one side is extremely larger than that

at the other side. To guarantee that all found maximal 𝑘-biplexes

are connected, we further require 𝜃𝐿 ≥ 2𝑘 + 1 and 𝜃𝑅 ≥ 2𝑘 + 1
based on the following lemma.

Lemma 1. A 𝑘-biplex 𝐻 is connected if |𝐿(𝐻 ) | ≥ 2𝑘 + 1 and
|𝑅(𝐻 ) | ≥ 2𝑘 + 1.

Proof. This can be proved by contradiction. Suppose 𝐻 is not

connected and is partitioned into two connected components,

namely 𝐻1 and 𝐻2. We derive the contradiction by showing that 𝐻

is not a 𝑘-biplex: for a vertex 𝑣1 in 𝐿(𝐻1), it disconnects more than 𝑘

vertices, i.e., 𝛿 (𝑣1, 𝑅(𝐻 )) ≥ |𝑅(𝐻2) | ≥ 𝑘 + 1. Specifically, we derive
𝛿 (𝑣1, 𝑅(𝐻 )) ≥ |𝑅(𝐻2) | since 𝑣1 from 𝐻1 disconnects all vertices in

𝐻2 based on the assumption, and we derive |𝑅(𝐻2) | ≥ 𝑘 + 1 by (1)

for a vertex 𝑣2 in 𝐿2, |𝑅(𝐻2) | ≥ 𝛿 (𝑣2, 𝑅(𝐻 )) since all neighbours
of 𝑣2 within 𝐻 reside in 𝑅(𝐻2) based on the assumption and (2)

𝛿 (𝑣2, 𝑅(𝐻 )) ≥ 𝑅(𝐻 ) − 𝑘 ≥ 2𝑘 + 1 − 𝑘 ≥ 𝑘 + 1 since 𝑣2 disconnects
at most 𝑘 vertices (𝐻 is a 𝑘-biplex) and 𝑅(𝐻 ) ≥ 2𝑘 + 1. □

We formalize the problem studied in this paper as follows.

Problem 1 (Maximum 𝑘-biplex Search). Given a bipartite graph
𝐺 = (𝐿 ∪ 𝑅, 𝐸), four positive integers 𝐾 > 0, 𝑘 > 0, 𝜃𝐿 ≥ 2𝑘 + 1
and 𝜃𝑅 ≥ 2𝑘 + 1, the maximum 𝑘-biplex search problem aims to
find 𝐾 maximal 𝑘-biplexes such that each found maximal 𝑘-biplex
𝐻 satisfies that |𝐿(𝐻 ) | ≥ 𝜃𝐿 , |𝑅(𝐻 ) | ≥ 𝜃𝑅 and |𝐸 (𝐻 ) | is larger than
|𝐸 (𝐻 ′) | for any other maximal 𝑘-biplex 𝐻 ′ that is not returned.

In this paper, we use MBP and MaxBP as a shorthand of a maxi-

mal 𝑘-biplex and one of the 𝐾 maximal 𝑘-biplexes with the most

edges, respectively.

+{𝑣𝑣1} +{𝑣𝑣2} +{𝑣𝑣3} +{𝑣𝑣𝑖𝑖} +{𝑣𝑣|𝐶𝐶|}
-∅ -{𝑣𝑣1} -{𝑣𝑣1, 𝑣𝑣2} -{𝑣𝑣1, … , 𝑣𝑣𝑖𝑖−1} -{𝑣𝑣1, … , 𝑣𝑣|𝐶𝐶|−1}

𝐵𝐵 = (𝑆𝑆,𝐶𝐶,𝐷𝐷)
𝐵𝐵1 𝐵𝐵2 𝐵𝐵3 𝐵𝐵𝑖𝑖 𝐵𝐵|𝐶𝐶|

All MBPs including 𝑣𝑣𝑖𝑖 MBPs excluding 𝑣𝑣𝑖𝑖
(a) BK Branching

-{𝑣𝑣1} -{𝑣𝑣2} -{𝑣𝑣𝑖𝑖} -{𝑣𝑣|𝐶𝐶|}
+∅ +{𝑣𝑣1} +{𝑣𝑣1, … , 𝑣𝑣𝑖𝑖−1} +{𝑣𝑣1, … , 𝑣𝑣|𝐶𝐶|−1}

𝐵𝐵 = (𝑆𝑆,𝐶𝐶,𝐷𝐷)

-∅
+{𝑣𝑣1, … , 𝑣𝑣|𝐶𝐶|}

𝐵𝐵1 𝐵𝐵2 𝐵𝐵𝑖𝑖 𝐵𝐵|𝐶𝐶| 𝐵𝐵|𝐶𝐶|+1

All MBPs excluding 𝑣𝑣𝑖𝑖 MBPs including 𝑣𝑣𝑖𝑖
(b) Sym-BK Branching

Figure 1: Illustration of two branching strategies. Each node
denotes a branch (𝑆,𝐶, 𝐷). The notation “+” means to include
a vertex by adding it 𝑆 and “-” means to exclude a vertex by
adding it to 𝐷 .

NP-hardness. The maximum 𝑘-biplex search problem is NP-hard,

which we present in the following lemma (with its proof provided

in Section 8 ).

Lemma 2. The maximum 𝑘-biplex search problem is NP-hard.

Remarks. In the following sections (Section 3 and Section 4), we

focus on the setting of 𝐾 = 1 (i.e., the problem becomes to find a

MBP with the maximum number of edges) when presenting the

algorithms for ease of presentation. We note that these algorithms

can be naturally extended for general settings of 𝐾 with minimal

efforts (i.e., we maintain 𝐾 MaxBPs instead of 1MaxBP found so far

throughout the algorithm for pruning) and are tested in Section 5.

3 BRANCH-AND-BOUND ALGORITHMS
We first introduce a branch-and-bound algorithm called BasicBB,
which is based on a conventional and widely-used branching strat-

egy that we call Bron-Kerbosch (BK) branching [4], in Section 3.1.

BasicBB has the worst-case time complexity 𝑂 ( |𝑉 | · 𝑑 · 2 |𝑉 |). We

then introduce a new branching strategy called Symmetric-BK (Sym-
BK) branching, which is symmetric to the BK branching but better

suits our problem of finding MaxBP, in Section 3.2. We further

present our method for determining an ordering of vertices, which

is critical for Sym-BK branching, in Section 3.3. We finally intro-

duce a new branch-and-bound algorithm called FastBB, which is

based on Sym-BK branching, and analyze its time complexity in Sec-

tion 3.4. FastBB has its worst-case time complexity𝑂 ( |𝑉 | ·𝑑 ·𝛾 |𝑉 |
𝑘
),

where 𝛾𝑘 is strictly smaller than 2 and depends on the setting 𝑘 . For

example, when 𝑘 = 1, 𝛾𝑘 is 1.754.

3.1 A BK Branching based Branch-and-Bound
Algorithm: BasicBB

Our first attempt is to adapt the seminal Bron-Kerbosch (BK) algo-

rithm [4]. It recursively partitions the search space (i.e., the set of

all possible MBPs) to multiple sub-spaces via branching. Specifically,
each sub-space is represented by a triplet of three sets (𝑆,𝐶, 𝐷) as
explained below.
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• Partial set 𝑆 . Set of the vertices that must be included in every

MBP within the space.

• Candidate set 𝐶. Set of the vertices that can be included in 𝑆 in

order to form a MBP within the space.

• Exclusion set 𝐷 . Set of vertices thatmust not be included in any

MBP within the space.

We further denote by 𝑆𝐿 , 𝐶𝐿 , and 𝐷𝐿 the left side of 𝑆 , 𝐶 , and 𝐷 ,

respectively, and define 𝑆𝑅 , 𝐶𝑅 , and 𝐷𝑅 similarly for the right side.

The recursive process of the BK algorithm starts from the full

search space with 𝑆 = ∅,𝐶 = 𝑉 , and 𝐷 = ∅. Consider the branching
step at a current branch 𝐵 = (𝑆,𝐶, 𝐷). Let ⟨𝑣1, 𝑣2, ..., 𝑣 |𝐶 |⟩ be a

sequence of the vertices in 𝐶 . The branching step would partition

the space to |𝐶 | sub-spaces (and correspondingly |𝐶 | branches),
where the 𝑖𝑡ℎ branch, denoted by 𝐵𝑖 = (𝑆𝑖 ,𝐶𝑖 , 𝐷𝑖 ), includes 𝑆 and
𝑣𝑖 and excludes 𝑣1, 𝑣2, ..., 𝑣𝑖−1. Formally, for 1 ≤ 𝑖 ≤ |𝐶 |, we have
𝑆𝑖 = 𝑆∪{𝑣𝑖 }; 𝐷𝑖 = 𝐷∪{𝑣1, 𝑣2, ..., 𝑣𝑖−1}; 𝐶𝑖 = 𝐶−{𝑣1, 𝑣2, ..., 𝑣𝑖 } (1)

For illustration, consider Figure 1(a). Note that 𝐶𝑖 and 𝐷𝑖 can be

further refined by removing those vertices that cannot be included

to 𝐺 [𝑆𝑖 ] to form a 𝑘-biplex.

We call the above branching strategy BK branching. BK branch-

ing essentially corresponds to a recursive binary branching process.

It first splits the current branch into two branches, one including 𝑣1
(this is the branch 𝐵1) and the other excluding 𝑣1. Then, it further

splits the latter into two branches, one including 𝑣2 (this is the

branch 𝐵2) and the other excluding 𝑣2. It continues the process

until the last branch, which excludes 𝑣1, 𝑣2, ..., 𝑣 |𝐶 |−1 and includes

𝑣 |𝐶 | (this corresponds to the branch 𝐵 |𝐶 |), is formed. In particular,

the branches 𝐵1, 𝐵2, ..., 𝐵𝑖 cover all MBPs including 𝑣𝑖 and branches

𝐵𝑖+1, ..., 𝐵 |𝐶 | cover those excluding 𝑣𝑖 , as indicated by the dashed

line in Figure 1(a).

We note that BK branching relies on an ordering of vertices in

the candidate set 𝐶 , i.e., ⟨𝑣1, 𝑣2, ..., 𝑣 |𝐶 |⟩, for producing branches.

In this paper, we follow the existing studies [1, 48] and use the

non-decreasing vertex degree ordering (where vertices are ranked in

a non-decreasing order of their degrees in 𝑆 ∪𝐶 , i.e., 𝛿 (𝑣𝑖 , 𝑆 ∪𝐶) ≤
𝛿 (𝑣 𝑗 , 𝑆 ∪ 𝐶) for any 𝑖 < 𝑗 ) since this would help with effective

pruning as shown empirically. We note that normally the ordering

does not affect the worst-case theoretical time complexity of the

algorithm based on BK branching.

During the recursive search process, some pruning techniques

can be applied. Let 𝐵 = (𝑆,𝐶, 𝐷) be a branch. First, branch 𝐵 can

be pruned if 𝑆 is not a 𝑘-biplex since (1) each partial set in the

search space corresponding to this branch is a superset of 𝑆 and

(2) based on the hereditary property of 𝑘-biplex, any superset of a

non-𝑘-biplex is not a 𝑘-biplex. Second, branch 𝐵 can be pruned if an

upper bound of the left side (resp. the right side) of a 𝑘-biplex in the

space is smaller than 𝜃𝐿 (resp. 𝜃𝑅 ) based on the problem definition.

Third, branch 𝐵 can be pruned if an upper bound of the number of

edges in a 𝑘-biplex in the space is smaller than the largest one of

a 𝑘-biplex known so far. Fourth, branch 𝐵 can be pruned if there

exists a vertex in 𝐷 such that including this vertex to each 𝑘-biplex

in the space would still result in a 𝑘-biplex. We will elaborate on

these pruning rules in detail in Section 3.4. Finally, the recursive

process of the BK algorithm terminates at a branch 𝐵 = (𝑆,𝐶, 𝐷) if
𝐺 [𝑆 ∪𝐶] is a 𝑘-biplex since 𝐺 [𝑆 ∪𝐶] would be the MaxBP within

the space of the branch.

We call this BK algorithm, which is a branch-and-bound algo-

rithm based on BK branching and the aforementioned four pruning

techniques, BasicBB, and present its pseudo-code in Algorithm 1.

Similar to many existing algorithms that are based on BK branching,

the worst-case time complexity of BasicBB is 𝑂 ( |𝑉 | · 𝑑 · 2 |𝑉 |) (i.e.,
𝑂∗ (2 |𝑉 |)) [30, 44], though its practical performance can be boosted

by the the pruning techniques.

Algorithm 1: The branch-and-bound algorithm based on

BK branching: BasicBB

Input: A graph𝐺 (𝐿 ∪ 𝑅, 𝐸) , 𝑘 , 𝜃𝐿 and 𝜃𝑅

Output: The maximal 𝑘-biplex 𝐻 ∗ with the most edges

1 𝐻 ∗ ← 𝐺 [∅]; // Global variable

2 BasicBB-Rec( ∅, 𝐿 ∪ 𝑅, ∅) ; return 𝐻 ∗;

3 Procedure BasicBB-Rec(𝑆,𝐶, 𝐷)
/* Termination */

4 if 𝐺 [𝑆 ∪𝐶 ] is 𝑘-biplex then
5 𝐻 ∗ ← 𝐺 [𝑆 ∪𝐶 ] if |𝐸 (𝐺 [𝑆 ∪𝐶 ]) | > |𝐸 (𝐻 ∗) |; return;

/* Pruning */

6 if any of pruning conditions is satisfied (details in Section 3.4)
then return ;

/* BK Branching */

7 Create |𝐶 | branches 𝐵𝑖 = (𝑆𝑖 ,𝐶𝑖 , 𝐷𝑖 ) based on Equation (1);

8 for each branch 𝐵𝑖 do
9 BasicBB-Rec(𝑆𝑖 ,𝐶𝑖 , 𝐷𝑖 ) ;

3.2 A New Branching Strategy: Sym-BK
Branching

We observe that there exists a branching strategy, which is natural

and symmetric to BK branching. Specifically, consider the branch-

ing step at a current branch 𝐵 = (𝑆,𝐶, 𝐷). Let ⟨𝑣1, 𝑣2, ..., 𝑣 |𝐶 |⟩ be a
sequence of the vertices in 𝐶 . This branching step would partition

the space to ( |𝐶 | + 1) sub-spaces (and correspondingly ( |𝐶 | + 1)
branches), where the 𝑖𝑡ℎ branch, denoted by 𝐵𝑖 = (𝑆𝑖 ,𝐶𝑖 , 𝐷𝑖 ), in-
cludes 𝑆 and 𝑣1, 𝑣2, ..., 𝑣𝑖−1 and excludes 𝑣𝑖 . Here, 𝑣0 and 𝑣 |𝐶 |+1 both
correspond to null. Formally, for 1 ≤ 𝑖 ≤ |𝐶 | + 1, we have

𝑆𝑖 = 𝑆∪{𝑣1, 𝑣2, ..., 𝑣𝑖−1}; 𝐷𝑖 = 𝐷∪{𝑣𝑖 }; 𝐶𝑖 = 𝐶−{𝑣1, 𝑣2, ..., 𝑣𝑖 } (2)

For illustration, consider Figure 1(b). Note that 𝐶𝑖 and 𝐷𝑖 can be

further refined by removing those vertices that cannot be included

to 𝐺 [𝑆𝑖 ] to form a 𝑘-biplex.

We call the above branching strategy symmetric-BK (Sym-BK)
branching. Sym-BK branching corresponds to another recursive

binary branching process, which is symmetric to that of the BK

branching. Specifically, it first splits the current branch into two

branches, one excluding 𝑣1 (this is the branch 𝐵1) and the other

including 𝑣1. Then, it further splits the latter into two branches,

one excluding 𝑣2 (this is the branch 𝐵2) and the other including

𝑣2. It continues the process until the last branch, which includes

𝑣1, 𝑣2, ..., 𝑣 |𝐶 | (this corresponds to the branch 𝐵 |𝐶 |+1), is formed. In

particular, the branches 𝐵1, 𝐵2, ..., 𝐵𝑖 cover all MBPs excluding 𝑣𝑖
and branches 𝐵𝑖+1, ..., 𝐵 |𝐶 |+1 cover those including 𝑣𝑖 , as indicated
by the dashed line in Figure 1(b).
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𝑢𝑢0 𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4

𝑣𝑣0 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4

𝑢𝑢5 𝑢𝑢6

(a) Input graph used throughout the paper

-𝑢𝑢1 -𝑢𝑢2 -𝑢𝑢4 -𝑢𝑢5 -𝑢𝑢3 -𝑢𝑢6 -𝑣𝑣1 -𝑣𝑣2 -𝑣𝑣3 -𝑣𝑣4 -∅
+∅ +𝑢𝑢1 +{𝑢𝑢1,𝑢𝑢2}

𝐵𝐵1 𝐵𝐵2 𝐵𝐵3 𝐵𝐵4 𝐵𝐵11
𝐵𝐵 = (𝑆𝑆,𝐶𝐶,𝐷𝐷)

+{𝑢𝑢1,𝑢𝑢2,𝑢𝑢4}
(b) Case 1 (𝑆 = {𝑢0, 𝑣0}, 𝐶 = {𝑢1, 𝑢2, 𝑢4, 𝑢5, 𝑢3, 𝑢6, 𝑣1, 𝑣2, 𝑣3, 𝑣4} and

𝐷 = ∅)

-𝑢𝑢3 -𝑣𝑣1 -𝑣𝑣2 -𝑣𝑣3 -𝑢𝑢6 -𝑣𝑣4 -∅
+∅ +𝑢𝑢3 +{𝑢𝑢3,𝑣𝑣1}

𝐵𝐵1′ 𝐵𝐵2′ 𝐵𝐵3′
𝐵𝐵7′

𝐵𝐵3 = (𝑆𝑆3,𝐶𝐶3,𝐷𝐷3)

+{𝑢𝑢3,𝑣𝑣1, 𝑣𝑣2}

𝐵𝐵4′ 𝐵𝐵5′ 𝐵𝐵6′

+{𝑢𝑢3,𝑣𝑣1, 𝑣𝑣2,𝑣𝑣3}
(c) Case 2 (𝑆3= {𝑢0, 𝑣0, 𝑢1, 𝑢2}, 𝐶3= {𝑢3, 𝑣1, 𝑣2, 𝑣3, 𝑢6, 𝑣4} and

𝐷3= {𝑢4, 𝑢5})
Figure 2: Illustration of Sym-BK branching (𝑘 = 2).

Sym-BK branching vs. BK branching. They are symmetric to

each other and both of them are natural branching strategies. They

differ in that among two branches formed by a binary branching

based on a vertex, BK branching recursively partitions the branch

excluding the vertex while Sym-BK recursively partitions one in-
cluding the vertex. Sym-BK branching produces one more branch

than BK branching at each branching step (i.e., |𝐶 | + 1 branches vs.
|𝐶 | branches), but this difference of one extra branch is negligible

given that there can be many branches produced at the branching

step. Compared with BK branching, Sym-BK branching has the

following advantages when adopted for our problem of finding the

MaxBP.

First, at each branching step, it would produce branches with

bigger partial sets 𝑆𝑖 (note that the 𝑖𝑡ℎ branch by Sym-BK branching

involves |𝑆 | + (𝑖 − 1) vertices in the partial set while that by BK

branching involves |𝑆 | + 1 vertices). Consequently, the produced
branch would have a larger chance to be pruned due to the heredi-

tary property of 𝑘-biplex (if a set of vertices is not a 𝑘-biplex, then

none of its supersets is, but not vice versa). Second, the partial set of

the 𝑗𝑡ℎ branch, i.e., 𝑆 𝑗 , is always a superset of that of the 𝑖
𝑡ℎ

branch,

i.e., 𝑆𝑖 , for any 𝑗 > 𝑖 . Consequently, if 𝑆𝑖 is not a 𝑘-biplex (which

means the branch 𝐵𝑖 can be pruned), then all branches following 𝐵𝑖
can be pruned (since their partial sets are supersets of 𝑆𝑖 and thus

they are not 𝑘-biplexes either based on the hereditary property).

To illustrate, consider the example in Figure 2. One branching

step of Sym-BK branching is shown in Figure 2(b). The fourth

branch has the partial set of 𝑆4 = {𝑢0, 𝑣0, 𝑢1, 𝑢2, 𝑢4}, which is not a 𝑘-
biplex. All the following branches have their partial sets as supersets

of 𝑆4, and thus they can be pruned immediately (as indicated by

the shaded color in the figure).

In fact, with Sym-BK branching and a carefully-designed order-

ing of vertices (details will be introduced in Section 3.3), our new

branch-and-bound algorithm FastBB would have the worst-case

time complexity of 𝑂 ( |𝑉 | · 𝑑 · 𝛾 |𝑉 |
𝑘
) with 𝛾𝑘 < 2, which is strictly

smaller than that of the BasicBB algorithm based on BK branching

(details will be introduced in Section 3.4).

Remarks. In [51], the authors design a branching strategy, which

performs one of two branching operations at a branch depending

on the situation: (1) generating two branches based on a single
vertex in 𝐶 (i.e., one including and the other not including this

vertex) and (2) generating at most ( |𝐶 | + 1) branches based on all

vertices in 𝐶 with pruning. We call this branching strategy hybrid
branching. Our Sym-BK branching is superior over hybrid branch-

ing for our problem in two aspects. First, Sym-BK branching has

a more simplified form. Second, the branch-and-bound algorithm

based on Sym-BK branching has lower worst-case time complexity

theoretically (details are in Section 3.4) and runs faster empirically
(details are in Section 5).

3.3 Sym-BK Branching: Ordering of Vertices
The Sym-BK branching relies on an ordering of the vertices in 𝐶 .

Recall that in the branches 𝐵1, 𝐵2, ..., 𝐵 |𝐶 |+1 generated by Sym-BK

branching, the partial set of a branch 𝐵 𝑗 is always a superset of that

of a preceding branch 𝐵𝑖 (𝑖 < 𝑗 ). Therefore, our idea is to figure

out a small subset 𝐶 ′ of vertices in 𝐶 such that including them

collectively to the partial set 𝑆 would violate the 𝑘-biplex definition.

We then put these vertices before other vertices in the ordering.

In this way, the branch with the partial set of 𝑆 ∪ 𝐶 ′ and all the

following branches can be pruned directly. We elaborate on this

idea in detail next.

We notice that 𝐺 [𝑆 ∪ 𝐶] is not a 𝑘-biplex since otherwise the

recursion would terminate at this branch. It means that there exists

at least a vertex in 𝑆 ∪𝐶 , which has more than 𝑘 disconnections

within 𝐺 [𝑆 ∪ 𝐶]. Without loss of generality, we assume that the

vertex is from the left side and denote it by 𝑣 ∈ 𝑆𝐿 ∪𝐶𝐿 . Consider
the set of vertices that disconnect 𝑣 in 𝐶𝑅 , i.e., Γ(𝑣,𝐶𝑅). We know

that including Γ(𝑣,𝐶𝑅) to 𝑆 collectively would violate the 𝑘-biplex

definition. Specifically, if 𝑣 is already in 𝑆𝐿 , i.e., 𝑣 ∈ 𝑆𝐿 , we can

include at most 𝑘 − 𝛿 (𝑣, 𝑆𝑅) vertices from Γ(𝑣,𝐶𝑅) to 𝑆 without

violating the 𝑘-biplex definition; and if 𝑣 is not yet in 𝑆𝐿 , i.e., 𝑣 ∈
𝐶𝐿 , we can include 𝑣 together with at most 𝑘 − 𝛿 (𝑣, 𝑆𝑅) vertices
from Γ(𝑣,𝐶𝑅) to 𝑆 without violating the 𝑘-biplex definition. For the
simplicity of notations, we define

𝑎 = 𝑘 − 𝛿 (𝑣, 𝑆𝑅); 𝑏 = 𝛿 (𝑣,𝐶𝑅). (3)

Intuitively, 𝑎 means the greatest possible number of disconnections

that 𝑣 can have when including more vertices from 𝐶 to 𝑆 for

forming MBPs. Note that we have 0 ≤ 𝑎 ≤ 𝑘 (since 𝑆 is a 𝑘-biplex

and thus 𝛿 (𝑣, 𝑆𝑅) ≤ 𝑘) and 𝑎 < 𝑏 (since𝑏−𝑎 = 𝛿 (𝑣, 𝑆𝑅∪𝐶𝑅)−𝑘 > 0).

Based on 𝑣 , we define an ordering of the vertices in 𝐶 .

Case 1: 𝑣 ∈ 𝑆𝐿 . In this case, we define the ordering as follows.

⟨𝑢1, 𝑢2, ..., 𝑢𝑏 , 𝑢𝑏+1, ..., 𝑢 |𝐶 |⟩, (4)

where 𝑢1, 𝑢2, ..., 𝑢𝑏 are vertices from Γ(𝑣,𝐶𝑅) in any order and

𝑢𝑏+1, 𝑢𝑏+2, ..., 𝑢 |𝐶 | are vertices from𝐶−Γ(𝑣,𝐶𝑅) in any order. Based

on this ordering, the branch 𝐵𝑎+2 would have the partial set 𝑆 ∪
{𝑢1, 𝑢2, ..., 𝑢𝑎+1}, which is not a 𝑘-biplex (since 𝑣 would have more

than 𝑘 disconnections). Therefore, branches 𝐵𝑎+2, 𝐵𝑎+3, ..., 𝐵 |𝐶 |+1
can be pruned and only the first (𝑎 + 1) branches, namely

𝐵1, 𝐵2, ..., 𝐵𝑎+1, would be kept. To illustrate, we consider a branch

with 𝑆 = {𝑢0, 𝑣0}, 𝐷 = ∅ and 𝐶 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑣1, 𝑣2, 𝑣3, 𝑣4}
for finding a MaxBP with 𝑘 = 2 from the input graph in Figure 2(a).
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Based on 𝑣0 in 𝑆 that disconnects 3 vertices, i.e., {𝑢1, 𝑢2, 𝑢4}, we
define the ordering ⟨𝑢1, 𝑢2, 𝑢4, 𝑢5, 𝑢3, 𝑢6, 𝑣1, 𝑣2, 𝑣3, 𝑣4⟩ for Sym-BK

branching as shown in Figure 2(b). The branches 𝐵4, ..., 𝐵11 can be

pruned since 𝐵4 has the partial set {𝑢0, 𝑢1, 𝑢2, 𝑢4, 𝑣0} not a 𝑘-biplex
(𝑣0 has more than 𝑘 = 2 disconnections).

Case 2: 𝑣 ∈ 𝐶𝐿 . In this case, we define the ordering as follows.

⟨𝑣,𝑢1, 𝑢2, ..., 𝑢𝑏 , 𝑢𝑏+2, ..., 𝑢 |𝐶 |⟩, (5)

where 𝑢1, 𝑢2, ..., 𝑢𝑏 are vertices from Γ(𝑣,𝐶𝑅) in any order and

𝑢𝑏+2, 𝑢𝑏+2, ..., 𝑢 |𝐶 | are vertices from 𝐶 − Γ(𝑣,𝐶𝑅) − {𝑣} in any or-

der. Based on this ordering, the branch 𝐵𝑎+3 would have the par-

tial set as 𝑆 ∪ {𝑣,𝑢1, 𝑢2, ..., 𝑢𝑎+1}, which is not a 𝑘-biplex (since

𝑣 would have more than 𝑘 disconnections). Therefore, branches

𝐵𝑎+3, 𝐵𝑎+4, ..., 𝐵 |𝐶 |+1 can be pruned and only the first (𝑎 + 2)
branches, namely 𝐵1, 𝐵2, ..., 𝐵𝑎+2, would be kept. To illustrate,

we consider another branch 𝐵3 with 𝑆3 = {𝑢0, 𝑢1, 𝑢2, 𝑣0}, 𝐶3 =

{𝑢3, 𝑢6, 𝑣1, 𝑣2, 𝑣3, 𝑣4} and 𝐷3 = {𝑢4, 𝑢5} in Figure 2(c). Based on

𝑢3 in 𝐶 that disconnects 3 vertices, i.e., {𝑣1, 𝑣2, 𝑣3}, we define the
ordering ⟨𝑢3, 𝑣1, 𝑣2, 𝑣3, 𝑢6, 𝑣4⟩ for Sym-BK branching as shown in

Figure 2(c). The branches 𝐵′
5
, 𝐵′

6
and 𝐵′

7
can be pruned since 𝐵′

5
has

the partial set as {𝑢0, 𝑢1, 𝑢2, 𝑢3, 𝑣0, 𝑣1, 𝑣2, 𝑣3} not a 𝑘-biplex (𝑢3 has
more than 𝑘 = 2 disconnections).

We note that there could be multiple vertices, which have more

than 𝑘 disconnections among 𝑆 ∪ 𝑅, and for each of them, we

can define an ordering as above. We call these vertices candidate
pivots and the vertex that we pick for defining an ordering the pivot.
An immediate question is: which one should we select as the pivot
among the candidate pivots? To answer this question, we quantify

the benefits of specifying the ordering based on a specific candidate

pivot 𝑣 . There are two benefits (for simplicity, we discuss the case

of 𝑣 ∈ 𝑆𝐿 only, and the other case is similar and thus omitted).

Benefit 1: ( |𝐶 | − 𝑎) branches, namely 𝐵𝑎+2, 𝐵𝑎+3, ..., 𝐵 |𝐶 |+1, are
pruned for 𝑣 . Therefore, the smaller 𝑎 is, the larger the Benefit 1 is.

Benefit 2: For Branch 𝐵𝑎+1, we have |𝐶𝑎+1 | ≤ |𝐶 | − 𝑏 since (1)𝐶𝑎+1
is updated to be 𝐶 − {𝑢1, 𝑢2, ..., 𝑢𝑎+1} (please refer to Equation (4))

and (2) the vertices 𝑢𝑎+2, 𝑢𝑎+3, ..., 𝑢𝑏 can be further excluded from

𝐶𝑎+1 since including each of these vertices to 𝑆𝑎+1 would violate the
𝑘-biplex definition. Therefore, the larger 𝑏 is, the larger the Benefit

2 is. In summary, for a vertex with a smaller 𝑎 and/or a larger 𝑏,
the overall benefits would be more significant. Therefore, we select

the candidate pivot 𝑣 with the largest (𝑏 − 𝑎) = 𝛿 (𝑣, 𝑆𝑅 ∪𝐶𝑅) − 𝑘
as the pivot. Equivalently, it would select the candidate pivot with

the most disconnections within 𝑆 ∪𝐶 . Furthermore, to achieve a

better worst-case time complexity (details will be introduced in

Section 3.4), we first select the pivot among the pivot candidates in

𝑆 if possible; otherwise, we select one among those in 𝐶 .

To illustrate, we consider again the example in Figure 2. For a

branch 𝐵 in Figure 2(b), 𝑣0 would be selected as the pivot since 𝑣0
in 𝑆 has the number of disconnections more than 𝑘 and the greatest

among other vertices in 𝑆 . For another branch 𝐵3 in Figure 2(c), 𝑢3
would be selected as the pivot since (1) every vertex in 𝑆 disconnects

less than 𝑘 vertices and (2) 𝑢3 has the number of disconnections

more than 𝑘 and the greatest among other vertices in 𝐶 .

Remarks.We remark that the branch-and-bound method in [51]

selects the pivot with the smallest degree among all candidate pivots

in 𝑆 ∪𝐶 , from which our strategy differs in two aspects. First, we

select the pivot with the most disconnections as discussed above.

Note that the pivot with the most disconnections could be different

from that with the smallest degree in bipartite graphs. Second, we

prioritize 𝑆 for selecting a pivot. The intuition behind is that (1) the

worst-case running time of Case 1 (i.e., branching based on a pivot

from 𝑆) is strictly smaller than that of Case 2 and (2) it would help

to further improve the time complexity of Case 2 (details are in the

proof of Theorem 1 in Section 3.4).

3.4 A Sym-BK Branching based
Branch-and-Bound Algorithm: FastBB

Based on the Sym-BK branching strategy and the aforementioned

pruning techniques (details will be presented in this section), we

design a branch-and-bound algorithm, called FastBB. The pseudo-
code of FastBB is presented in Algorithm 2. FastBB differs from

BasicBB only in the branching step (i.e., Lines 7 - 10 of Algorithm 2).

Next, we elaborate on the pruning conditions (Line 6 in Algorithm 2)

in detail.

Pruning conditions. Let 𝐵 = (𝑆,𝐶, 𝐷) be a branch. We first define

𝜏𝐿 = min𝑢∈𝑆𝑅 𝛿 (𝑢, 𝑆𝐿 ∪𝐶𝐿) +𝑘 and 𝜏𝑅 = min𝑣∈𝑆𝐿 𝛿 (𝑣, 𝑆𝑅 ∪𝐶𝑅) +𝑘 ,
which can be verified to be the upper bound of the number of

vertices at the left side and that at the right side of a MBP covered

by the branch 𝐵, respectively. We can prune the branch 𝐵 if any of

the following four conditions is satisfied.

(1) 𝑆 is not a 𝑘-biplex.

(2) 𝜏𝐿 < 𝜃𝐿 or 𝜏𝑅 < 𝜃𝑅 .

(3) |𝐸 (𝐺 [𝑆 ∪𝐶]) | ≤ |𝐸 (𝐻∗) | or 𝜏𝐿 × 𝜏𝑅 ≤ |𝐸 (𝐻∗) |, where 𝐻∗ is the
MaxBP found so far.

(4) There exists a vertex 𝑣 ∈ 𝐷𝐿 such that 𝛿 (𝑣, 𝑆𝑅 ∪𝐶𝑅) ≤ 𝑘 and

{𝑤 ∈ 𝑆𝑅 ∪𝐶𝑅 | 𝛿 (𝑤, 𝑆𝐿 ∪𝐶𝐿) ≥ 𝑘} ⊆ Γ(𝑣, 𝑅) or symmetrically

there exists such a vertex 𝑢 ∈ 𝐷𝑅 .

Condition (1) holds because of the hereditary property of 𝑘-biplex,

Condition (2) is based on the size constraints of the two sides of

MaxBP to be found, Condition (3) is based on the objective of the

problem (i.e., to maximize the number of edges in a MBP), and

Condition (4) holds because all 𝑘-biplexes covered by this branch (if

any) would not be maximal (since an additional vertex 𝑣 or 𝑢 can be

included in each of them without violating the 𝑘-biplex definition).

Worst-case time complexity. The worst-case time complexity of

FastBB is strictly better than than of BasicBB, which we show in

the following theorem.

Theorem 1. Given a bipartite graph 𝐺 , FastBB finds the MaxBP
in time 𝑂 ( |𝑉 | · 𝑑 · 𝛾 |𝑉 |

𝑘
) where 𝛾𝑘 is the largest positive real root of

𝑥𝑘+4 − 2𝑥𝑘+3 + 𝑥2 − 𝑥 + 1 = 0. For example, when 𝑘 = 1, 2 and 3,
𝛾𝑘 = 1.754, 1.888 and 1.947, respectively.

Proof. We give a sketch of the proof and put the details in

the appendix. We recursively maintain two arrays to record the

degree of each vertex 𝑣 within 𝐺 [𝑆] or 𝐺 [𝑆 ∪ 𝐶], i.e., 𝛿 (𝑣, 𝑆) or
𝛿 (𝑣, 𝑆 ∪𝐶). Then, the recursion of FastBB-Rec runs in polynomial

time 𝑂 ( |𝑉 | · 𝑑). Specifically, the time cost is dominated by the part

of checking pruning condition (4) in line 6. This part has two steps,

namely finding all those vertices with at least 𝑘 disconnections

from 𝑆 ∪𝐶 in 𝑂 ( |𝑆 ∪𝐶 |) time and checking the pruning condition
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Algorithm 2: The branch-and-bound algorithm based on

Sym-BK branching: FastBB

Input: A graph𝐺 (𝐿 ∪ 𝑅, 𝐸) , 𝑘 , 𝜃𝐿 and 𝜃𝑅

Output: The maximal 𝑘-biplex 𝐻 ∗ with the most edges

1 𝐻 ∗ ← 𝐺 [∅]; // Global variable

2 FastBB-Rec( ∅, 𝐿 ∪ 𝑅, ∅) ; return 𝐻 ∗;

3 Procedure FastBB-Rec(𝑆,𝐶, 𝐷)
/* Termination */

4 if 𝐺 [𝑆 ∪𝐶 ] is a 𝑘-biplex then
5 𝐻 ∗ ← 𝐺 [𝑆 ∪𝐶 ] if |𝐸 (𝐺 [𝑆 ∪𝐶 ]) | > |𝐸 (𝐻 ∗) | and return

/* Pruning */

6 if any of pruning conditions is satisfied then return ;

/* Sym-BK Branching */

7 Select a pivot vertex 𝑣 and determine an ordering based on 𝑣

(Section 3.3);

8 if 𝑣 ∈ 𝑆 then Create 𝑎 + 1 branches {𝐵1, 𝐵2, ..., 𝐵𝑎+1 }
(Equation (2) and (4)) ;

9 else if 𝑣 ∈ 𝐶 then
10 Create 𝑎 + 2 branches {𝐵1, 𝐵2, ..., 𝐵𝑎+2 } (Equation (2) and

(5));

11 for each created branch 𝐵𝑖 do
12 FastBB-Rec(𝑆𝑖 ,𝐶𝑖 , 𝐷𝑖 )

(4) for each vertex in 𝐷 in 𝑂 ( |𝐷 | · 𝑑) time, where |𝑆 ∪𝐶 | and |𝐷 |
are both bounded by 𝑂 ( |𝑉 |).

Next, we analyze the number of recursions. Let 𝑇 (𝑛) be the

largest number of recursions where 𝑛 = |𝐶 |. We have two cases.

Case 1 (𝑣 ∈ 𝑆).We remove 𝑖 vertices from 𝐶 in 𝐵𝑖 (1 ≤ 𝑖 ≤ 𝑎) and
𝑏 vertices from 𝐶 in 𝐵𝑎+1 in the worst-case. Hence, we have

𝑇1 (𝑛) ≤
𝑎∑︁
𝑖=1

𝑇1 (𝑛 − 𝑖) +𝑇1 (𝑛 − 𝑏). (6)

As discussed earlier, we have 𝑎 ≤ 𝑘 and 𝑎 < 𝑏. It is easy to verify

that we reach the maximum of𝑇1 (𝑛) when 𝑎 = 𝑘 and 𝑏 = 𝑘 + 1. We

thus have𝑇1 (𝑛) ≤
∑𝑘
𝑖=1𝑇1 (𝑛−𝑖)+𝑇1 (𝑛−𝑘−1). By solving this linear

recurrence, the worst-case running time is𝑂 ( |𝑣 | ·𝑑 ·𝛾 |𝑉 |
𝑘
) where 𝛾𝑘

is the largest positive real root of 𝑥𝑘+2 − 2𝑥𝑘+1 + 1 = 0. For example,

𝛾𝑘 = 1.618, 1.839 and 1.928 when 𝑘 = 1, 2 and 3, respectively.

Case 2 (𝑣 ∈ 𝐶).We remove 𝑖 vertices from 𝐶 in 𝐵𝑖 (1 ≤ 𝑖 ≤ 𝑎 + 1)
and 𝑏 + 1 vertices from𝐶 in 𝐵𝑎+2 in the worst-case. Hence, we have

𝑇2 (𝑛) ≤
𝑎+1∑︁
𝑖=1

𝑇2 (𝑛 − 𝑖) +𝑇2 (𝑛 − 𝑏 − 1) . (7)

Assume 𝑣 ∈ 𝐶𝐿 , we consider two scenarios, i.e., 𝛿 (𝑣, 𝑆𝑅∪𝐶𝑅) ≥ 𝑘+2
and 𝛿 (𝑣, 𝑆𝑅 ∪𝐶𝑅) = 𝑘 + 1.
• For Scenario 1, we can imply 𝑎 ≤ 𝑘 and 𝑏 > 𝑎 + 1. When 𝑎 = 𝑘

and 𝑏 = 𝑘 +2,𝑇2 (𝑛) reaches the maximum. Hence, the worst-case

running time is 𝑂 ( |𝑉 | · 𝑑 · 𝛾 |𝑉 |
𝑘
) where 𝛾𝑘 is the largest positive

real root of 𝑥𝑘+4 − 2𝑥𝑘+3 + 𝑥2 − 𝑥 + 1 = 0. For example, when

𝑘 = 1, 2 and 3, we have 𝛾𝑘 = 1.754, 1.888 and 1.947, respectively.

• For Scenario 2, we can imply 𝑎 ≤ 𝑘 and 𝑏 > 𝑎. When 𝑎 = 𝑘

and 𝑏 = 𝑘 + 1, 𝑇2 (𝑛) reaches the maximum. Thus the worst-case

running time is 𝑂 ( |𝑉 | · 𝑑 · 𝛾 |𝑉 |
𝑘
) where 𝛾𝑘 is the largest positive

real root of 𝑥𝑘+3 − 2𝑥𝑘+2 + 1 = 0. For example, when 𝑘 = 1, 2 and

3, we have 𝛾𝑘 = 1.839, 1.928 and 1.966, respectively.

The idea of remaining proof is to show that the analysis of Scenario

2 can be further improved based on our pivot selection strategy.

Specifically, Scenario 2 would have the worst-case time complex-

ity smaller than that of Scenario 1, and thus the worst-case time

complexity of FastBB would be bounded by Scenario 1. □

Space complexity. The space complexity of FastBB is 𝑂 (𝐾 · (𝑑 +
𝑘) + 𝑘 · |𝑉 |), which is linear to the size of the input bipartite graph

given parameters 𝐾 and 𝑘 . The first term 𝑂 (𝐾 · (𝑑 + 𝑘)) is the
space cost of storing the returned top-𝐾 MaxBPs (each has the size

bounded by 2×(𝑑+𝑘) since otherwise it involves at least 2×(𝑑+𝑘)+1
vertices and would not be a 𝑘-biplex due to the fact that (1) it has

the size of one side at least 𝑑 +𝑘 + 1 and (2) there would be a vertex
from the other side which disconnects at least 𝑘 + 1 vertices since 𝑑
is the maximum degree of vertex in𝐺). The second term𝑂 (𝑘 · |𝑉 |) is
the space cost of the branch-and-bound search process. Specifically,

the space cost of the search process is dominated by that of storing

the vertex orderings (Equation (4) or (5)) in all recursions. To reduce

the space cost, instead of storing the ordering of all vertices in 𝐶 ,

we store that of only those vertices that are before others in the

ordering, i.e., the first 𝑎 + 1 (resp. 𝑎 + 2) vertices of Equation (4)

(resp. (5)) depending on the cases. This is because it creates the

first 𝑎 + 1 or 𝑎 + 2 branches only. Considering 𝑎 ≤ 𝑘 , we know that

the space cost of storing the vertex ordering in one recursion is

bounded by 𝑂 (𝑘). Furthermore, it can be verified that the number

of recursions is bounded by 𝑂 ( |𝑉 |) (since whenever the number of

recursions increases by one, at least one vertex is removed from

𝐶 and 𝐶 ⊆ 𝑉 ). In summary, the overall space cost of storing the

ordering of vertices is 𝑂 (𝑘 · |𝑉 |).

Remark 1. The baselinemethod FPadp, which adapts the FaPlexen

method in [51], has the worst-case time complexity𝑂 ( |𝑉 | ·𝑑 · 𝛽 |𝑉 |
𝑘
),

where 𝛽𝑘 is the largest positive real root of 𝑥𝑘+3 − 2𝑥𝑘+2 + 1 = 0.

We compare between FPadp and FastBB’s time complexities: (1)

the polynomial in both complexities (i.e., the time cost for each

recursion) is𝑂 ( |𝑉 | ·𝑑) since both algorithms are branch-and-bound

based and (2) the exponential factors in FastBB’s time complexity

are strictly smaller than those of FPadp, e.g., 𝛾1 = 1.754 vs. 𝛽1 =

1.839, 𝛾2 = 1.888 vs. 𝛽2 = 1.928 and 𝛾3 = 1.947 vs. 𝛽3 = 1.966 for

𝑘 = 1, 2, and 3, respectively. The differences in the exponential

factors are due to the differences in the strategies of branching and

ordering vertices (i.e., FastBB uses the Sym-BK branching while

FPadp uses a hybrid branching; FastBB prioritizes 𝑆 over 𝐶 when

selecting a pivot for deciding the ordering of vertices while FPadp
does not).

Remark 2. We notice that the delay measure, i.e., the longest

running time between any two consecutive outputs, is often used

for evaluating enumeration algorithms [45, 48]. In our problem

setting, all solutions can only be confirmed and returned in one

shot at the end due to its optimization nature. For such optimization-

oriented settings [5, 17, 23, 50], the delay measure is not suitable

since it would be equal to the total running time trivially.
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4 EFFICIENCY AND SCALABILITY BOOSTING
TECHNIQUES

In this section, we further introduce three techniques for boosting

the efficiency and scalability of the branch-and-bound (BB) algo-
rithms introduced in Section 3, namely progressive bounding (PB) in
Section 4.1, inclusion-exclusion (IE) in Section 4.2, and PBIE, which
combines PB and IE, in Section 4.3.

4.1 Progressive Bounding Framework: PB
PB is adapted from an existing study of finding the biclique with

the maximum number of edges [23]. The major idea of PB is to

run a BB algorithm multiple times, and for each time, it imposes

appropriate constraints on the MBP to be found, including lower

and upper bounds of the number of vertices on both the left and

right sides of the MBP. Then, it returns the MBP with the most

edges found at different times. With the constraints captured by

the lower and upper bounds, there are two benefits, namely (1) the

BB algorithm can be run on a reduced graph instead of the original

one and (2) the efficiency of the BB algorithm on the reduced graph

can be further boosted with additional pruning techniques based

on the upper bounds. Note that the pruning techniques are based

on the lower bounds 𝜃𝐿 and 𝜃𝑅 only in the BB algorithms.

Let 𝐻∗ be the MaxBP with the maximum 𝐸 (𝐻∗). We have the

following prior knowledge about the number of vertices at the left

and right sides of 𝐻∗, i.e., |𝐿(𝐻∗) | and |𝑅(𝐻∗) |.

𝜃𝐿 ≤ |𝐿(𝐻∗) | ≤𝛿𝑅𝑚𝑎𝑥 + 𝑘 ; 𝜃𝑅 ≤ |𝑅(𝐻∗) | ≤𝛿𝐿𝑚𝑎𝑥 + 𝑘. (8)

where 𝛿𝑅𝑚𝑎𝑥 = max𝑢∈𝑅𝛿 (𝑢, 𝐿) and 𝛿𝐿𝑚𝑎𝑥 = max𝑣∈𝐿 𝛿 (𝑣, 𝑅). The
lower bounds 𝜃𝐿 and 𝜃𝑅 are inherited from the problem definition.

The upper bounds of 𝛿𝑅𝑚𝑎𝑥 + 𝑘 and 𝛿𝐿𝑚𝑎𝑥 + 𝑘 can be verified easily

and the proofs for them are thus omitted. We denote by 𝐿𝐵𝑖
𝐿
, 𝑈𝐵𝑖

𝐿
,

𝐿𝐵𝑖
𝑅
, and 𝑈𝐵𝑖

𝑅
the lower bound and upper bound of the number of

vertices at the left and right sides, respectively, which the PB would

use to capture the constraints at the 𝑖𝑡ℎ time. Then, PB would set

these bounds progressively as follows.

𝐿𝐵𝑖𝐿 = max{𝐿𝐵𝑖−1𝐿 /2, 𝜃𝐿}; 𝑈𝐵
𝑖
𝐿 = 𝐿𝐵𝑖−1𝐿 ; (9)

𝐿𝐵𝑖𝑅 = max{|𝐸 (𝐻∗𝑖−1) |/𝑈𝐵
𝑖
𝐿, 𝜃𝑅}; 𝑈𝐵

𝑖
𝑅 = 𝛿𝐿𝑚𝑎𝑥 + 𝑘 ; (10)

where 𝐿𝐵0
𝐿
= 𝛿𝑅𝑚𝑎𝑥 + 𝑘 and 𝐻∗

𝑖−1 is the MBP found at the (𝑖 − 1)𝑡ℎ
time and 𝐻∗

0
can be set as 𝐺 [∅]. Essentially, it (1) splits the range

of possible values of |𝐿(𝐻∗) |, namely [𝜃𝐿, 𝛿𝑅𝑚𝑎𝑥 + 𝑘], into intervals

with lengths decreasing logarithmically, (2) uses the boundaries of
the intervals as lower and upper bounds of |𝐿(𝐻∗) |, and (3) then

uses the upper bound of |𝐿(𝐻∗) | and the MBP with the most edges

found so far to further tighten the lower bound of |𝑅(𝐻∗) |. Note
that it would generate 𝑂 (log(𝛿𝑅𝑚𝑎𝑥 + 𝑘)) sets of constraints.

It would then run the BB algorithm for each set of constrains

captured by 𝐿𝐵𝑖
𝐿
,𝑈 𝐵𝑖

𝐿
, 𝐿𝐵𝑖

𝑅
,𝑈 𝐵𝑖

𝑅
in the order of 𝑖 = 1, 2, .... At the

𝑖𝑡ℎ time, it utilizes the lower and upper bounds as follows. First, it

reduces the graph by computing the ( |𝐿𝐵𝑖
𝑅
− 𝑘 |, |𝐿𝐵𝑖

𝐿
− 𝑘 |)-core of

𝐺 since according to [44, 45], any MBP with at least |𝐿𝐵𝑖
𝐿
| vertices

at the left side and |𝐿𝐵𝑖
𝑅
| vertices at the right side must reside in the

( |𝐿𝐵𝑖
𝑅
−𝑘 |, |𝐿𝐵𝑖

𝐿
−𝑘 |)-core of𝐺 . Second, when it runs a BB algorithm,

it prunes a branch 𝐵 = (𝑆,𝐶, 𝐷) if |𝑆𝐿 | > |𝑈𝐵𝑖𝐿 | or |𝑆𝑅 | > 𝑈𝐵
𝑖
𝑅
.

In summary, PB runs a BB algorithm multiple times, each time on

a reduced graph. Hence, PB would boost the practical performance

of a BB algorithm.

4.2 Inclusion-Exclusion based Framework: IE
IE is adapted from the decomposition technique, which has been

widely used for enumerating and finding subgraph structures [5, 7,

40, 51]. The major idea of IE is to partition the graph into multi-

ple ones (which may overlap) and run a BB algorithm on each of

the subgraphs. Finally, it returns among the found MBPs the one

with the most edges. Specifically, it partitions the graph 𝐺 to |𝐿 |
subgraphs, namely 𝐺𝑖 = (𝐿𝑖 , 𝑅𝑖 , 𝐸𝑖 ) for 1 ≤ 𝑖 ≤ |𝐿 |, as follows.

𝐿𝑖 = Γ2 (𝑣𝑖 , 𝐿) − {𝑣1, ..., 𝑣𝑖−1}; (11)

𝑅𝑖 =
⋃
𝑣∈𝐿𝑖

Γ(𝑣, 𝑅); (12)

𝐸𝑖 = {(𝑣,𝑢) |𝑣 ∈ 𝐿𝑖 , 𝑢 ∈ 𝑅𝑖 , (𝑣,𝑢) ∈ 𝐸} (13)

where 𝐿 = {𝑣1, 𝑣2, ..., 𝑣 |𝐿 |} and Γ2 (𝑣𝑖 , 𝐿) denotes the set of 2-hop

neighbors of 𝑣𝑖 in 𝐿. We note that the number of vertices in 𝐺𝑖 , i.e.,

|𝐿𝑖 | + |𝑅𝑖 |, is bounded by 𝑑3, where 𝑑 is maximum degree of the

graph 𝐺 . We verify that the MaxBP 𝐻∗ must reside in one of the

subgraphs formed as above (for which the proof could be found in

the appendix ). Furthermore, the MBP found in𝐺𝑖 would include 𝑣𝑖
and exclude 𝑣1, 𝑣2, ..., 𝑣𝑖−1.

Moreover, it prunes the following vertices from a subgraph 𝐺𝑖 .

• 𝑣 ∈ 𝐿𝑖 with 𝛿 (𝑣, 𝑅𝑖 ) < 𝜃𝑅 − 𝑘 or |Γ(𝑣, 𝑅𝑖 ) ∩ Γ(𝑣𝑖 , 𝑅) | < 𝜃𝑅 − 2𝑘 ;
• 𝑢 ∈ 𝑅𝑖 with 𝛿 (𝑢, 𝐿𝑖 ) < 𝜃𝐿 − 𝑘 .
The correctness of pruning the vertices as above can be verified

by contradiction with the size constraints based on 𝜃𝐿 and 𝜃𝑅 (the

detailed proof can be found in the appendix ).

Finally, it runs the BB algorithm on each graph 𝐺𝑖 with some

vertices pruned by starting from the branch 𝐵𝑖 = (𝑆𝑖 ,𝐶𝑖 , 𝐷𝑖 ) with
𝑆𝑖 = {𝑣𝑖 }, 𝐷𝑖 = {𝑣1, 𝑣2, ..., 𝑣𝑖−1}, and 𝐶𝑖 = 𝑉 (𝐺𝑖 ) − {𝑣1, 𝑣2, ..., 𝑣𝑖 }. It
then returns the MBP with the most edges among all MBPs found.

With the IE framework, the time complexity of a BB algorithm
can be improved in certain cases. For example, it improves the time

complexity of FastBB from 𝑂 ( |𝑉 | · 𝑑 · 𝛾 |𝑉 |
𝑘
) to 𝑂 ( |𝐿 | · 𝑑3 · 𝛾𝑑3

𝑘
) for

certain sparse graphs (e.g., those with 𝑑3 < |𝑉 |).

4.3 Combining PB and IE: PBIE
We observe that the PB and IE frameworks can be naturally com-

bined for our problem of finding the MaxBP. Specifically, we can

first use PB to construct multiple reduced graphs 𝐺𝑖 with corre-

sponding constraints of lower and upper bounds of the number of

vertices at the left and right sides of a graph. Then, when for each

reduced graph𝐺𝑖 , we further use IE to construct |𝐿(𝐺𝑖 ) | subgraphs
𝐺
𝑣𝑗
𝑖

for 𝑣 𝑗 ∈ 𝐿(𝐺𝑖 ) with some vertices pruned if possible. Finally,

we invoke a BB algorithm (e.g., FastBB) on each subgraph𝐺
𝑣𝑗
𝑖

with

the constraints and return the MBP with the most edges among all

found MBPs. The pseudo-code of PBIE is presented in Algorithm 3.

Time complexity. The time cost is dominated by part of invoking

FastBB (line 3-11). There are at most 𝑂 (log(𝛿𝑅𝑚𝑎𝑥 + 𝑘)) iterations
(line 3-11). For each iteration, it constructs at most𝑂 ( |𝐿 |) subgraphs.
Hence, FastBB is invoked by at most 𝑂 (log(𝛿𝑅𝑚𝑎𝑥 + 𝑘) · |𝐿 |) times.
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Algorithm 3: Combine PB and IE: PBIE (for FastBB)

Input: A graph𝐺 (𝐿, 𝑅, 𝐸) , 𝑘 , 𝜃𝐿 and 𝜃𝑅

Output: The maximal 𝑘-biplex 𝐻 ∗ with the most edges

1 𝐻 ∗
0
← ∅; 𝐿𝐵0

𝐿
← 𝛿𝑅𝑚𝑎𝑥 + 𝑘 ; 𝑖 ← 1;

2 while true do
3 Set 𝐿𝐵𝑖

𝐿
,𝑈𝐵𝑖

𝐿
, 𝐿𝐵𝑖

𝑅
,𝑈𝐵𝑖

𝑅
according to Equations (9) and (10);

4 if 𝑈𝐵𝑖
𝐿
≤ 𝜃𝐿 then

5 return 𝐻 ∗
𝑖−1;

6 Compute a reduced graph𝐺𝑖 as the

( |𝐿𝐵𝑖
𝑅
− 𝑘 |, |𝐿𝐵𝑖

𝐿
− 𝑘 |)-core of𝐺 ;

7 𝐻 ∗
𝑖
← 𝐻 ∗

𝑖−1;

8 for 𝑣𝑗 ∈ 𝐿 (𝐺𝑖 ) do
9 Construct a subgraph𝐺

𝑣𝑗
𝑖

based on Equations (11 - 13)

with some vertices further pruned;

10 𝐻 ∗
𝑖
← invoke a FastBB algorithm with𝐺

𝑣𝑗
𝑖
, 𝑘 , the

lower/upper bounds, and 𝐻 ∗
𝑖
;

11 𝑖 ← 𝑖 + 1;
12 return 𝐻 ∗

𝑖−1;

Besides, the number of vertices in𝐺
𝑣𝑗
𝑖+1 is bounded by𝑂 (𝑑

3). There-
fore, the time complexity of PBIE (when used for boosting FastBB)

is𝑂 (log(𝛿𝑅𝑚𝑎𝑥 +𝑘) · |𝐿 | ·𝑑4 ·𝛾𝑑
3

𝑘
) where 𝛾𝑘 is a real number strictly

smaller than 2 (refer to Theorem 1 for details). We remark that the

large graphs in real applications are usually sparse and have 𝑑 far

smaller than the total number of vertices.

5 EXPERIMENTS
Datasets. We use both real and synthetic datasets in our exper-

iments. The real datasets and their statistics are summarized in

Table 1 (http://konect.cc/) where the edge density of a bipartite

graph𝐺 (𝐿 ∪𝑅, 𝐸) is defined as 2× |𝐸 |/( |𝐿 | + |𝑅 |) and 𝑑 denotes the

maximum degree. Note that these real graphs are usually sparse

overall yet with some dense subgraphs (e.g., the maximum degree

at least 16 and up to 12,189) since they follow the power-low dis-

tribution. The Erdös-Réyni (ER) synthetic datasets are generated

by first creating a certain number of vertices and then randomly

adding a certain number of edges between pairs of vertices. We

set the number of vertices and edge density as 100k and 20 for

synthetic datasets, respectively, by default.

Baselines. We compare our algorithm PBIE+FastBB with three

baselines, namely iMBadp [44], FPadp [51] and iTradp [45]. Specif-
ically, PBIE+FastBB adopts the combined framework PBIE and

employs the improved algorithm FastBB within the framework.

iMBadp and iTradp correspond to the adaptions of existing algo-

rithms designed for enumerating large MBPs, namely iMB [44] and

iTraversal [45]. Specifically, iMBadp adopts the BK branching for

each side of a bipartite graph and is equipped with the pruning tech-

niques developed in this paper. iTradp follows a reverse search [6]

method and cannot be equipped with the pruning techniques devel-

oped in Section 3.4 (since they are not compatible with the reverse

search framework). FPadp corresponds to a branch-and-bound al-

gorithm with the hybrid branching strategy [51] and the pruning

techniques developed in this paper. Furthermore, FPadp inherits

FaPlexen [51] and employs the IE framework.
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Figure 3: Comparison on all real datasets (𝑘 = 1)

We remark that all baseline methods are partial enumeration

based methods, i.e., they do not enumerate all MBPs for finding the

MaxBPs. This is because (1) their original versions were designed to

enumerate only those MBPs with sizes at least some threshold but

not all MBPs (as specified in the introduction section) and (2) they

are enhanced by the four pruning conditions introduced in this

paper as much as possible for pruning MBPs that are not MaxBPs

(as specified above).

Settings. All algorithms were written in C++ and run on a machine

with a 2.66GHz CPU and 32GB main memory running CentOS. We

set the time limit (INF) as 24 hours and use 4 representative datasets

as default ones, i.e., Writer, Location, DBLP and Google, which cover

various graph scales. We set both 𝜃𝐿 and 𝜃𝑅 as 2𝑘+1 and both𝐾 and

𝑘 as 1 by default. Our code, data and additional experimental results

are available at https://github.com/KaiqiangYu/SIGMOD23-MaxBP.

5.1 Comparison among algorithms
All datasets.We compare all algorithms on various datasets and

show the running time in Figure 3. Besides, we report the number

of vertices and the number of edges, denoted by 𝑉 (𝐻 ) and |𝐸 (𝐻 ) |,
respectively, within the returned MaxBP in Table 1. We have the

following observations. First, the found MaxBPs are usually suffi-

ciently large to be meaningful (e.g., with at least 41 and up to 11,248

edges). Second, PBIE+FastBB outperforms all other algorithms on

all datasets. This is consistent with our theoretical analysis that

the worst-case running time of PBIE+FastBB is smaller than that

of other algorithms. Third, PBIE+FastBB can handle all datasets

within INF while others cannot finish on large datasets, e.g., Ama-

zon and Google, which demonstrates its scalability. This is mainly

because the framework PBIE would quickly locate the MaxBP at

several smaller subgraphs while dramatically pruning many un-

fruitful vertices so as to reduce the search space.

Varying 𝐾 . The results of finding 𝐾 MaxBPs are shown in Figure 4.

PBIE+FastBB outperforms other algorithms by around 2-5 orders

of magnitude. Besides, it has the running time clearly rise as 𝐾

increases compared to other algorithms. Possible reasons include

(1) FastBB would explore more MBPs to find the 𝐾 MaxBPs as 𝐾

grows and (2) PBIE becomes less effective as 𝐾 grows. In addition,

iTradp has the running time almost not changed with 𝐾 since it

needs to explore almost all MBPs without any powerful pruning.

Varying 𝑘 . The results are shown in Figure 5. PBIE+FastBB sig-

nificantly outperforms other algorithms by up to five orders of

magnitude. In addition, it has the running time first increase and

then decrease as 𝑘 grows. Possible reasons include: (1) the num-

ber of 𝑘-biplexes increases exponentially with 𝑘 , which causes the

increase of the running time; (2) the thresholds 𝜃𝐿 and 𝜃𝑅 (i.e.,
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Table 1: Real datasets
Dataset Category |𝐿 | |𝑅 | |𝐸 | Density 𝑑 |𝑉 (𝐻 ) | |𝐸 (𝐻 ) |
Divorce Feature 9 50 225 7.62 37 23 87

Cities Feature 46 55 1342 26.4 54 43 437

Cfat Biology 200 200 1537 7.66 16 13 41

Opsahl Authorship 2,865 4,558 16,910 4.58 116 19 87

Writer Authorship 89,356 46,213 144,340 2.12 246 38 136

YouTube Affiliation 94,238 30,087 293,360 4.72 7,591 319 945

Location Feature 172,091 53,407 293,697 2.60 12,189 287 849

Actors Affiliation 127,823 383,640 1,470,404 5.64 646 117 341

IMDB Affiliation 303,617 896,302 3,782,463 5.72 1,590 192 564

DBLP Authorship 1,425,813 4,000,150 8,649,016 3.18 951 127 369

Amazon Rating 6,703,391 957,764 12,980,837 3.28 9,990 2,255 1,1248

Google Hyperlink 17,091,929 3,108,141 14,693,125 1.46 2,318 44 120
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(a) Varying 𝐾 (Writer) (b) Varying 𝐾 (Location)
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Figure 4: Comparison by varying 𝐾 (𝑘 = 1)
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(a) Varying 𝑘 (Writer) (b) Varying 𝑘 (Location)
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(c) Varying 𝑘 (DBLP) (d) Varying 𝑘 (Google)

Figure 5: Comparison by varying 𝑘

2𝑘 + 1 by default) increase with 𝑘 and correspondingly the pruning

techniques that are based on 𝜃𝐿 ’s and 𝜃𝑅 become more effective.

Varying 𝜃𝐿 and 𝜃𝑅 thresholds. The results are shown in Figure 6.

PBIE+FastBB outperforms all other algorithms by achieving up to

around 1000× speedup. Besides, the running time of all algorithms

decreases as 𝜃𝐿 and 𝜃𝑅 grow. The reason is two-fold: (1) the search

space (e.g., the number of large 𝑘-biplexes with the size of each side

at least 𝜃𝐿 and 𝜃𝑅 ) decreases as 𝜃𝐿 and 𝜃𝑅 grow and (2) the pruning

rules are more effective for larger 𝜃𝐿 ’s and 𝜃𝑅 ’s.
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Figure 6: Comparison by varying 𝜃 = 𝜃𝐿 = 𝜃𝑅 (𝑘 = 1)

Varying # of vertices (synthetic datasets). The results are shown
in Figure 7(a). PBIE+FastBB outperforms other algorithms by

achieving at least 10× speedup and can handle the largest datasets

with 1 million vertices and 10 million edges within INF while others

cannot. Besides, the speedup increases as the graph become larger.

This is mainly because PBIE would prune more unfruitful vertices

when locating the MaxBP in several smaller subgraphs. In addition,

the results are well aligned with the theoretical results, i.e., the

worst-case time complexity of PBIE+FastBB is exponential wrt 𝑑3

while that of others is exponential wrt |𝑉 |. Hence, PBIE+FastBB
has larger speed-ups as the graph scale becomes larger (where 𝑑

remains almost the same due to the fixed edge density, i.e., 20).

Varying edge density (synthetic datasets).The results are shown
in Figure 7(b). PBIE+FastBB achieves at least 10× speedup com-

pared with other algorithms. In addition, the speedup decreases as

the graph becomes denser. The reason is that the maximum degree

of the bipartite graph, i.e.,𝑑 , increases as the graph becomes denser.

5.2 Performance study
Comparison among various enumeration schemes. We study

the effect of various enumeration schemes, namely FastBB,
BasicBB, FPadp, iMBadp, and iTradp. We note that all of them
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Figure 7: Comparison on synthetic datasets (𝑘 = 1)
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Figure 8: Comparison among various enumeration schemes

are run with the framework PBIE for fair comparison. In partic-

ular, BasicBB adopts the classic BK branching and uses the non-

decreasing vertex ordering. The results are shown in Figure 8(a)

and (b) for varying 𝑘 , and (c) and (d) for varying 𝜃 = 𝜃𝐿 = 𝜃𝑅 .

First, FastBB outperforms other algorithms, which demonstrates

the superiority of proposed Sym-BK branching scheme. Besides, the

achieved speedup decreases with 𝜃 since the search space (e.g., the

number of large MBPs with the size of each side at least 𝜃𝐿 and 𝜃𝑅 )

decreases as 𝜃𝐿 and 𝜃𝑅 grow. Second, the algorithms following the

BK branching perform better than iTradp that follows a reverse

search method. The reason is that the later one cannot be enhanced

with effective pruning rules as branch-and-bound algorithms.

Comparison among frameworks. We study the effect of dif-

ferent frameworks and compare four different versions, namely

(1) FastBB: without any framework, (2) IE+FastBB: with adapted

framework IE, (3) PB+FastBB: with adapted progressive bound-

ing framework PB, and (4) PBIE+FastBB: with proposed combined

framework. We note that all frameworks adopt FastBB for fair com-

parison. The results are shown in Figure 9(a) and (b) for varying 𝑘 ,

and (c) and (d) for varying 𝜃 = 𝜃𝐿 = 𝜃𝑅 . First, both IE+FastBB and

PB+FastBB outperform FastBB, which demonstrates the efficiency

and scalability of adapted frameworks. Moreover, PBIE+FastBB
performs the best and can handle all datasets and settings within

INF. This is because PBIE can significantly reduce the size of the

original graph (details can be found in the appendix ). Second,

PB+FastBB performs better than IE+FastBB. This is because PB
can quickly locate the MaxBP at a much smaller subgraph. Third,

the speedup decreases as 𝜃 grows. As discussed earlier, the search

space gets smaller with 𝜃 and thus the frameworks would have less

effects on the running time.
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Figure 9: Comparison among frameworks

5.3 Case study: Fraud Detection
We investigate two cohesive models, namely maximal 𝑘-biplex and

maximum 𝑘-biplex, for a fraud detection task [15] on the Software

dataset [27]. The dataset contains 459,436 reviews on 21,663 soft-

wares by 375,147 users. We consider the random camouflage attack

scenario [15] where a fraud block with 1K fake users (“K” means a

thousand), 1K fake softwares, 50K fake comments, and 50K camou-

flage comments, is injected to the dataset. Specifically, we randomly

generate the fake comments (resp. camouflage comments) between

pairs of fake users and fake products (resp. real products). We note

that this attack can be easily conducted in reality to help fake users

evade the detection, e.g., fake users are coordinated to deliberately

post comments on some real products [15]. We then find MaxBPs

and MBPs from the bipartite graph, and classify all users and prod-

ucts involved in the found subgraphs as fake items and others as

real ones.

We measure the running time and F1 score, and show the results

in Figure 10 where 𝜃𝐿 is fixed at 4.

• Varying 𝜃𝑅 . We find the 2000 MaxBPs (denoted by “MaxBP

(2000)”), first-2000 MBPs (denoted by “MBP (2000)”), i.e., the first

2000 MBPs yielded by the algorithm, and all MBPs (denoted by

“MBP (All)”) with 𝜃𝑅 varying from 3 to 6, and show the results

in Figure 10(a). We have the following observations. (1) MaxBP

(2000) achieves the best F1 score (0.99) when 𝜃𝑅 = 5 among all

methods. (2) Both MBP (2000) and MBP (All) achieve their best

F1 scores, 0.80 and 0.87, respectively, when 𝜃𝑅 = 5. (3) Under

the setting with the best F1 scores, i.e., 𝜃𝑅 = 5, MaxBP (2000)

and MBP (2000) run comparably fast and both of them run faster

than MBP (All). For (1) and (2), the reason could be that the fraud

blocks tend to reside in large MBPs with more edges, and for (3),

the reason could be that MaxBP (2000) and MBP (2000) need to

explore a set of some but not all MBPs.

• Varying 𝐾 . We find the 𝐾 MaxBPs (denoted by “MaxBP (K)”)

and the first-𝐾 MBPs (denoted by “MBP (K)”) with 𝜃𝑅 = 5 since

it give the best F1 scores, and show the results in Figure 10(b).

We have the following observations. (1) MaxBP (K) has the F1

score higher than MBP (K) on all settings, and achieves the best

F1 score at 𝐾 = 2000. (2) MaxBP (K) provides a better trade-off

between F1 score and running time than MBP (K), e.g., MaxBP

(K) provides a F1 score 0.94 with the running time 512 seconds
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Figure 10: Case Study: Fraud Detection

at 𝐾 = 1000 while MBP (K) provides a similar F1 score 0.91 with

the running time 1512 seconds at 𝐾 = 16000.

In summary, MaxBP outperforms MBP for fraud detection in terms

of F1 score and the running time, as shown in Figure 10.

We have also explored methods of enumerating maximal bi-

cliques and maximum bicliques for this case study. We found that

the best F1-score achieved by enumerating maximal bicliques (with

𝜃𝑅 = 4) and that of finding the maximum bicliques (with 𝜃𝑅 = 4)

are 0.48 and 0.54, respectively. In particular, when 𝜃𝑅 ≥ 5, there are

few large bicliques, and thus both methods have the recall close to

0. This is mainly because biclique requires full connections among

vertices, which is usually too strict.

6 RELATEDWORK
We find that the maximum 𝑘-biplex search problem was recently

studied in [22]. Some summary of the similarities and differences

between [22] and our paper include: (1) [22] and our paper propose

the maximum 𝑘-biplex search problem concurrently and indepen-

dently; (2) both [22] and our paper prove the NP-hardness of the

problem, yet they use different NP complete problems; (3) the solu-

tion in [22] has the time complexity of 𝑂∗ (2 |𝑉 |) while our FastBB
algorithm has the time complexity of𝑂∗ (𝛾 |𝑉 |

𝑘
) with 𝛾𝑘 < 2; and (4)

the solutions in this paper run significantly faster than that in [22].

Some more details of the comparison can be found in the appendix.

We review other related work as follows.

Cohesive bipartite structures. Recently, many studies have been

conducted on finding cohesive subgraphs of bipartite graphs, in-

cluding bicliques [1, 5, 18, 23, 26, 42, 48], (𝛼, 𝛽)-cores [19], quasi-
bicliques [16, 17, 21, 37], 𝑘-biplexes [30, 44, 45], 𝑘-bitrusses [35, 52],

etc. Biclique is a bipartite graph where any vertex at one side con-

nects all vertices at the other side. Recent works on biclique focus

on enumerating maximal bicliques [1, 18, 48]. Given a bipartite

graph, (𝛼, 𝛽)-core is the maximal subgraph where any vertex at

one side connects a certain number of vertices (i.e., 𝛼 or 𝛽) at the

other side. It has many applications, including recommendation

systems [9] and community search [14, 36]. Existing works of 𝑘-

biplexes focus on enumerating large maximal 𝑘-biplex [30, 44]. A

𝑘-bitruss [35, 52] is a bipartite graph where each edge is contained

in at least 𝑘 butterflies, where a butterfly corresponds to a complete

2×2 biclique [34]. In the literature, there are two types of quasi-

biclique, i.e., (1) 𝛿-quasi-biclique [21] is a bipartite graph 𝐺 (𝐿, 𝑅, 𝐸)
where each vertex in 𝐿 (resp. 𝑅) misses at most 𝛿 · |𝑅 | (resp. 𝛿 · |𝐿 |)
edges with 𝛿 ∈ [0, 1)) and (2) 𝛾-quasi-biclique [17, 41] is a bipar-

tite graph 𝐺 (𝐿, 𝑅, 𝐸) that can miss at most 𝛾 · |𝐿 | · |𝑅 | edges with
𝛾 ∈ [0, 1). Existing works of quasi-bicliques focus on finding sub-

graphs with a certain density and degree [20, 25]. In this paper, we

focus on 𝑘-biplex since it (1) imposes strict enough requirements on

connections within a subgraph and tolerates some disconnections

and (2) satisfies the hereditary property, which facilitates efficient

solutions. In [45], a case study of fraud detection on e-commerce

platforms is conducted, which shows that 𝑘-biplex works better

than some other cohesive subgraph structures including biclique,

(𝛼, 𝛽)-core, and 𝛿-quasi-biclique for the application.
Maximum biclique search. The maximum biclique search prob-

lem has attracted much attention in recent years [5, 8, 12, 23, 24,

29, 31, 38, 46, 49, 50]. In general, there are three lines of works,

namely maximum edge biclique search (MEBS) [8, 23, 29, 31] which

finds a biclique 𝐻∗ such that 𝐸 (𝐻∗) is maximized, maximum ver-

tex biclique search (MVBS) [12] which finds a biclique 𝐻∗ such
that 𝑉 (𝐻∗) is maximized and maximum balanced biclique search

(MBBS) [5, 24, 38, 46, 49, 50] which finds a biclique 𝐻∗ such that

𝑉 (𝐻∗) is maximized and 𝐿(𝐻∗) = 𝑅(𝐻∗). First, the MEBS problem

is NP-hard, for which many techniques have been proposed. Au-

thors in [8, 31] adopt the integer linear programming techniques to

find a MEB, which is not scalable for large bipartite graphs. A recent

study [23] proposes a progressive bounding framework to deal with

large bipartite graphs. Besides, a Monte Carlo algorithm is proposed

in [29], which finds a MEB with a fixed probability. Second, the

MVBS problem can be solved in polynomial time by finding a maxi-

mummatching [12]. Third, theMBBS problem is NP-hard, for which

both exact methods and approximate methods have been developed.

To be specific, exact methods proposed in [5, 24, 50] are branch-

and-bound algorithms which use the widely-used Bron-Kerbosch

(BK) branching [4]. Besides, approximate methods include [38, 46]

which introduce a local search framework to find an approximate

MBB, [2, 32] which convert MBBS into a maximum independent

set problem and adopt approximate algorithms for the indepen-

dent set problem, and [49] which proposes a heuristic algorithm

with tabu search and graph reduction. In summary, there are two

types of solutions, namely exact methods and approximate methods.

For exact algorithms, most of them follow the branch-and-bound

framework and use the BK branching strategy. However, based on

our experimental results, BK branching strategy performs worse

than our proposed Sym-BK branching strategy for the problem of

finding MaxBP. For approximate methods, they cannot be adapted

to find the MaxBP exactly.

Maximum quasi-biclique search. The maximum quasi-biclique

search problem aims to find a 𝛾-quasi-biclique or 𝛿-quasi-biclique

𝐻∗ such that𝑉 (𝐻∗) is maximized, which is a NP-hard problem [16,

21]. [16, 17] use mixed integer programming to find a maximum 𝛾-

quasi-biclique exactly, which cannot handle large datasets. [21, 37]

propose greedy algorithms to find an approximate maximum 𝛿-

quasi-biclique, which cannot be adapted to find the MaxBP exactly.

7 CONCLUSION
In this paper, we study themaximum𝑘-biplex search problem, which

is to find 𝐾 maximal 𝑘-biplexes with the most edges. We propose

two branch-and-bound algorithms, among which the better one

FastBB is based on a novel Sym-BK branching strategy and achieves

better worst-case time complexity than adaptions of existing algo-

rithms. We further develop frameworks to boost the efficiency and

scalability of the branch-and-bound algorithms including FastBB.
Extensive experiments are conducted on real and synthetic datasets
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to demonstrate the efficiency of our algorithms and the effectiveness

of proposed techniques. In the future, we plan to develop efficient

parallel algorithms for the maximum 𝑘-biplex search problem and

explore the possibility of adapting our algorithms to find other

types of maximum cohesive subgraphs in bipartite graphs.

8 PROOF OF LEMMA 2
We prove by showing a polynomial reduction from a well-known

NP-complete problem, namely maximum clique search, to the maxi-

mum 𝑘-biplex search problem with 𝜃𝐿 = 𝜃𝑅 = 0, 𝑘 = 1, and 𝐾 = 1.

We define their decision problems as follows.

• CLIQUE: given a general graph𝐺 = (𝑉 , 𝐸) and a positive integer

𝛼 , does 𝐺 contain a clique with at least 𝛼 vertices?

• BIPLEX: given a bipartite graph G = (L∪R, E) and two positive
integers 𝑘 and 𝛼 ′, does G contain a 𝑘-biplex with at least 𝛼 ′

edges?

Let 𝐺 = (𝑉 , 𝐸) and 𝛼 be the inputs of an instance of CLIQUE.

W.l.o.g., we assume that 𝛼 = 1

2
|𝑉 | is a positive integer. This can be

achieved with some inflation tricks. Specifically, (1) if the original

input 𝛼 is smaller than
1

2
|𝑉 | (which can be a fractional number), we

add to𝐺 a new vertex 𝑣 and |𝑉 | edges between 𝑣 and other vertices.
Obviously, every clique would include 𝑣 , increasing 𝛼 by 1 but

1

2
|𝑉 |

by 0.5. (2) If 𝛼 > 1

2
|𝑉 |, we add to 𝐺 a new vertex 𝑣 with no edges.

Clearly, every clique would not include 𝑣 , increasing 1

2
|𝑉 | by 0.5

only. By repeating above two steps, we can make 𝛼 = 1

2
|𝑉 | finally.

Now, we construct an instance of BIPLEX (with 𝑘 = 1) with

G = (L ∪ R, E) and 𝛼 ′. To be specific,

L = 𝑉 and R = 𝐸 ∪𝑊 ∪𝑈 , |𝑊 | = 1

2

𝛼 (𝛼 − 5), |𝑈 | = 2𝛼

where 𝑊 ∪ 𝑈 is a set of new elements and |𝑉 | = 2𝛼 . Assume

𝑉 = {𝑣1, ..., 𝑣2𝛼 } and𝑈 = {𝑢1, ..., 𝑢2𝛼 }. We have

E = E(G[𝑉 ∪ 𝐸]) ∪ E(G[𝑉 ∪𝑊 ]) ∪ E(G[𝑉 ∪𝑈 ])
= {(𝑣, 𝑒) | 𝑣 ∈ 𝑉 , 𝑒 ∈ 𝐸, 𝑣 ∉ 𝑒} ∪ {(𝑣,𝑤) | 𝑣 ∈ 𝑉 ,𝑤 ∈𝑊 }

∪{(𝑣𝑖 , 𝑢 𝑗 ) | 𝑣𝑖 ∈ 𝑉 ,𝑢 𝑗 ∈ 𝑈 , 𝑖 ≠ 𝑗},

𝛼 ′ =
1

2

𝛼3 + 3

2

𝛼2 − 𝛼.

To guarantee |𝑊 | ≥ 0, we assume 𝛼 ≥ 5 which can be achieved

with the inflation tricks. The above construction can be finished in

polynomial time.

We then show that 𝐺 has a clique with at least 𝛼 vertices iff G
has a 1-biplex with at least 𝛼 ′ edges. We consider the following two

cases.

Case 1:𝐺 has a clique𝐺 [𝐶] with 𝛼 vertices, i.e.,𝐶 ⊆ 𝑉 and |𝐶 | = 𝛼 .
Consider 𝑋 = 𝑉 \𝐶 and 𝑌 = 𝐸 (𝐺 [𝐶]) ∪𝑊 ∪ 𝑈 . We prove this

case by showing that G[𝑋 ∪ 𝑌 ] is a 1-biplex with 𝛼 ′ edges. To be

specific, for each vertex 𝑣 ∈ 𝑋 , we know: (1) vertex 𝑣 connects all
vertices from 𝐸 (𝐺 [𝐶]) since 𝑣 is not an endpoint of any edge in

𝐸 (𝐺 [𝐶]), thereby yielding |𝑋 | × |𝐸 (𝐺 [𝐶]) | edges in total; (2) vertex

𝑣 connects all vertices from𝑊 based on the construction, yielding

|𝑋 | × |𝑊 | edges in total; and (3) vertex 𝑣 disconnects exactly one

vertex in𝑈 based on the construction, yielding |𝑋 | × (|𝑈 | −1) edges
in total. For each vertex 𝑢 ∈ 𝑌 , we can similarly verify that vertex

𝑢 disconnects no more than one vertex from 𝑋 . In summary, we

have a 1-biplex G[𝑋 ∪ 𝑌 ] with
|E(G[𝑋 ∪ 𝑌 ]) | = |𝑋 | × |𝐸 (𝐺 [𝐶]) | + |𝑋 | × |𝑊 | + |𝑋 | × (|𝑈 | − 1),

where |𝑋 | = 𝛼 , |𝐸 (𝐺 [𝐶]) | = 1

2
𝛼 (𝛼 − 1), |𝑊 | = 1

2
𝛼 (𝛼 − 5) and

|𝑈 | = 2𝛼 . Therefore, |E(G[𝑋 ∪ 𝑌 ]) | is exactly 𝛼 ′.
Case 2: 𝐺 does not have a clique with at least 𝛼 vertices. If no 1-

biplex is found inG, the proof is finished. Otherwise, letG[𝑋∪𝑌 ] be
an arbitrary 1-biplex inG such that𝑋 ⊆ L and𝑌 ⊆ R. We finish the

proof by showing that |E(G[𝑋 ∪𝑌 ]) | < 𝛼 ′. To estimate |E(G[𝑋 ∪
𝑌 ]) |, we divide 𝑌 into two disjoint parts 𝑌0 ∪ 𝑌1, i.e., vertices in 𝑌0
connect all vertices from 𝑋 and vertices in 𝑌1 disconnect exactly

one vertex from 𝑋 . For 𝑌0, we have: (1) it includes all vertices from

𝐸 (𝐺 [𝑉 \𝑋 ]) ⊆ 𝐸 since every edge in 𝐸 (𝐺 [𝑉 \𝑋 ]) has no endpoint

in 𝑋 ; (2) it includes all vertices from𝑊 based on our construction;

and (3) it includes |𝑉 \𝑋 | vertices from 𝑈 (with 𝑋 = {𝑣1, ..., 𝑣 |𝑋 |},
vertices in {𝑢 |𝑋 |+1, ..., 𝑢2𝛼 } would connect all vertices from𝑋 based

on our construction). For 𝑌1, it includes at most |𝑋 | vertices since
otherwise there exists at least a vertex in𝑋 that disconnects at least

2 vertices based on the pigeonhole principle. This contradicts to

the definition of 1-biplex G[𝑋 ∪ 𝑌 ]. In summary, we have

|E(G[𝑋 ∪ 𝑌 ]) | = |𝑋 | × |𝑌0 | + (|𝑋 | − 1) × |𝑌1 |
≤ |𝑋 |×(|𝐸 (𝐺 [𝑉 \𝑋 ]) |+ |𝑊 |+ |𝑉 \𝑋 |) + (|𝑋 |−1)×|𝑋 | (14)

Let 𝑥 = |𝑋 |. We have 0 ≤ 𝑥 ≤ 2𝛼 and consider two cases.

Case 2.1: 𝛼 < 𝑥 ≤ 2𝛼 . Let 𝑦 = 𝑥 − 𝛼 (0 < 𝑦 ≤ 𝛼). We have |𝑋 | =
𝛼 + 𝑦 and |𝑉 \𝑋 | = 𝛼 − 𝑦. Moreover, we can obtain |𝐸 (𝐺 [𝑉 \𝑋 ]) | ≤
1

2
|𝑉 \𝑋 | ( |𝑉 \𝑋 | − 1) = 1

2
(𝛼 − 𝑦) (𝛼 − 𝑦 − 1) where the equality

holds iff 𝐺 [𝑉 \𝑋 ] is a clique. According to equation (14), we have

|E(G[𝑋 ∪ 𝑌 ]) | ≤ (𝛼 + 𝑦) [ 1
2
(𝛼 − 𝑦) (𝛼 − 𝑦 − 1) + 1

2
𝛼2 − 5

2
𝛼 + 2𝛼 −

(𝛼 + 𝑦)] + (𝛼 + 𝑦 − 1) (𝛼 + 𝑦) which reduces to

|E(G[𝑋 ∪ 𝑌 ]) | − 𝛼 ′ ≤ 1

2

𝑦 [𝑦2 − (𝛼 − 1)𝑦 − 𝛼 − 2] .

It is easy to verify that𝑦2− (𝛼−1)𝑦−𝛼−2 is negative for 0 ≤ 𝑦 ≤ 𝛼 .
Therefore, we have |E(G[𝑋 ∪ 𝑌 ]) | < 𝛼 ′.
Case 2.2: 0 ≤ 𝑥 ≤ 𝛼 . Let 𝑦 = 𝛼 − 𝑥 (0 ≤ 𝑦 ≤ 𝛼). We have

|𝑋 | = 𝛼 − 𝑦 and |𝑉 \𝑋 | = 𝛼 + 𝑦. Since |𝑉 \𝑋 | = 2𝛼 − 𝑥 ≥ 𝛼 and 𝐺

does not have a clique with at least 𝛼 vertices, it is easy to verify

that |𝐸 (𝐺 [𝑉 \𝑋 ]) | < 1

2
|𝑉 \𝑋 | ( |𝑉 \𝑋 | − 1) − 𝑦 since otherwise there

exists a clique with at least 𝛼 vertices in 𝐺 (note that the right

term can be regarded as a process of iteratively removing 𝑦 edges

from a clique with |𝑉 \𝑋 | vertices and after removing an edge, the

maximum clique in the remaining graph has its size decrease by

at most 1, which yields a clique with |𝑉 \𝑋 | − 𝑦 = 𝛼 + 𝑦 − 𝑦 = 𝛼

vertices). According to equation (14), we have |E(G[𝑋 ∪ 𝑌 ]) | <
(𝛼−𝑦) [ 1

2
(𝛼+𝑦) (𝛼+𝑦−1)−𝑦+ 1

2
𝛼2− 5

2
𝛼+2𝛼−(𝛼−𝑦)]+(𝛼−𝑦−1) (𝛼−𝑦)

which reduces to

|E(G[𝑋 ∪ 𝑌 ]) | − 𝛼 ′ < 1

2

𝑦 [−𝑦2 − (𝛼 − 3)𝑦 − 𝛼 + 2] .

It is easy to verify that 𝑦 [−𝑦2 − (𝛼 − 3)𝑦 − 𝛼 + 2] ≤ 0 for 0 ≤ 𝑦 ≤ 𝛼
and 𝛼 ≥ 5. We thus have |E(G[𝑋 ∪ 𝑌 ]) | < 𝛼 ′.

9 ACKNOWLEDGEMENT
The research is supported by the Ministry of Education, Singapore,

under its Academic Research Fund (Tier 2 Award MOE-T2EP20221-

0013 and Tier 1 Award (RG77/21)). Any opinions, findings and

conclusions or recommendations expressed in this material are

those of the author(s) and do not reflect the views of the Ministry

of Education, Singapore.



SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA Kaiqiang Yu and Cheng Long

REFERENCES
[1] Aman Abidi, Rui Zhou, Lu Chen, and Chengfei Liu. 2020. Pivot-based Maximal

Biclique Enumeration. In Proc. Int. Joint Conf. Artif. Intell., IJCAI 2020. 3558–3564.
[2] Ahmad A. Al-Yamani, S. Ramsundar, and Dhiraj K. Pradhan. 2007. A Defect

Tolerance Scheme for Nanotechnology Circuits. IEEE Trans. Circuits Syst. I Regul.
Pap. 54-I, 11 (2007), 2402–2409.

[3] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and

Christos Faloutsos. 2013. Copycatch: stopping group attacks by spotting lockstep

behavior in social networks. In Proceedings of the 22nd international conference
on World Wide Web. 119–130.

[4] Coen Bron and Joep Kerbosch. 1973. Algorithm 457: finding all cliques of an

undirected graph. Commun. ACM 16, 9 (1973), 575–577.

[5] Lu Chen, Chengfei Liu, Rui Zhou, Jiajie Xu, and Jianxin Li. 2021. Efficient Exact

Algorithms for Maximum Balanced Biclique Search in Bipartite Graphs. In Proc.
ACM SIGMOD Int. Conf. Manage. Data. 248–260.

[6] Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. 2008. Generating all maximal

induced subgraphs for hereditary and connected-hereditary graph properties. J.
Comput. Syst. Sci. 74, 7 (2008), 1147–1159.

[7] Alessio Conte, Tiziano De Matteis, Daniele De Sensi, Roberto Grossi, Andrea

Marino, and Luca Versari. 2018. D2K: Scalable Community Detection in Massive

Networks via Small-Diameter k-Plexes. In Proc. 24th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining. 1272–1281.

[8] Milind Dawande, Pinar Keskinocak, Jayashankar M Swaminathan, and Sridhar

Tayur. 2001. On bipartite and multipartite clique problems. Journal of Algorithms
41, 2 (2001), 388–403.

[9] Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis. 2017. Efficient

fault-tolerant group recommendation using alpha-beta-core. In Proceedings of the
2017 ACM on Conference on Information and Knowledge Management. 2047–2050.

[10] Fedor V Fomin and Petteri Kaski. 2013. Exact exponential algorithms. Commun.
ACM 56, 3 (2013), 80–88.

[11] Siva Charan Reddy Gangireddy, Cheng Long, and Tanmoy Chakraborty. 2020.

Unsupervised Fake News Detection: A Graph-based Approach. In Proceedings of
the 31st ACM Conference on Hypertext and Social Media. 75–83.

[12] Michael R Garey and David S Johnson. 1979. Computers and intractability. Vol. 174.
freeman San Francisco.

[13] Stephan Günnemann, Emmanuel Müller, Sebastian Raubach, and Thomas Seidl.

2011. Flexible Fault Tolerant Subspace Clustering for Data with Missing Values.

In 11th IEEE International Conference on Data Mining, ICDM 2011. 231–240.
[14] Yang Hao, Mengqi Zhang, Xiaoyang Wang, and Chen Chen. 2020. Cohesive Sub-

graph Detection in Large Bipartite Networks. In SSDBM 2020: 32nd International
Conference on Scientific and Statistical Database Management. ACM, 22:1–22:4.

[15] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos

Faloutsos. 2016. FRAUDAR: Bounding Graph Fraud in the Face of Camouflage.

In Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining. ACM, 895–904.

[16] Dmitry I. Ignatov. 2019. Preliminary Results on Mixed Integer Programming

for Searching Maximum Quasi-Bicliques and Large Dense Biclusters. In Supple-
mentary Proceedings of ICFCA 2019 Conference and Workshops (CEUR Workshop
Proceedings, Vol. 2378). CEUR-WS.org, 28–32.

[17] Dmitry I Ignatov, Polina Ivanova, and Albina Zamaletdinova. 2018. Mixed In-

teger Programming for Searching Maximum Quasi-Bicliques. In International
Conference on Network Analysis. Springer, 19–35.

[18] Kyle Kloster, Blair D Sullivan, and Andrew van der Poel. 2019. Mining maximal

induced bicliques using odd cycle transversals. In Proceedings of the 2019 SIAM
International Conference on Data Mining. SIAM, 324–332.

[19] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou.

2020. Efficient (𝛼 ,𝛽)-core computation in bipartite graphs. The VLDB Journal 29,
5 (2020), 1075–1099.

[20] Hsiao-Fei Liu, Chung-Tsai Su, and An-Chiang Chu. 2013. Fast Quasi-biclique

Mining with Giraph. In IEEE International Congress on Big Data, BigData Congress
2013. IEEE Computer Society, 347–354.

[21] Xiaowen Liu, Jinyan Li, and Lusheng Wang. 2008. Quasi-bicliques: Complexity

and Binding Pairs. In Computing and Combinatorics, 14th Annual International
Conference, COCOON 2008, Vol. 5092. Springer, 255–264.

[22] Wensheng Luo, Kenli Li, Xu Zhou, Yunjun Gao, and Keqin Li. 2022. Maximum

Biplex Search over Bipartite Graphs. In 2022 IEEE 38th International Conference
on Data Engineering (ICDE). IEEE, 898–910.

[23] Bingqing Lyu, Lu Qin, Xuemin Lin, Ying Zhang, Zhengping Qian, and Jingren

Zhou. 2020. Maximum biclique search at billion scale. Proceedings of the VLDB
Endowment (2020).

[24] Ciaran McCreesh and Patrick Prosser. 2014. An Exact Branch and Bound Al-

gorithm with Symmetry Breaking for the Maximum Balanced Induced Biclique

Problem. In Integration of AI and OR Techniques in Constraint Programming
International Conference, Helmut Simonis (Ed.), Vol. 8451. Springer, 226–234.

[25] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos E.

Tsourakakis, and Shen Chen Xu. 2015. Scalable Large Near-Clique Detection

in Large-Scale Networks via Sampling. In Proc. ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining. ACM, 815–824.

[26] Arko Provo Mukherjee and Srikanta Tirthapura. 2016. Enumerating maximal

bicliques from a large graph using mapreduce. IEEE Transactions on Services
Computing 10, 5 (2016), 771–784.

[27] Jianmo Ni. 2018. Amazon Review Data. https://nijianmo.github.io/amazon/index.

html

[28] Ardian Kristanto Poernomo and Vivekanand Gopalkrishnan. 2009. Towards

efficient mining of proportional fault-tolerant frequent itemsets. In Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining. 697–706.

[29] Eran Shaham, Honghai Yu, and Xiao-Li Li. 2016. On finding the maximum edge

biclique in a bipartite graph: a subspace clustering approach. In Proceedings of
the 2016 SIAM International Conference on Data Mining. SIAM, 315–323.

[30] Kelvin Sim, Jinyan Li, Vivekanand Gopalkrishnan, and Guimei Liu. 2009. Mining

maximal quasi-bicliques: Novel algorithm and applications in the stock market

and protein networks. Statistical Analysis and Data Mining 2, 4 (2009), 255–273.

[31] Melih Sözdinler and Can Özturan. 2018. Finding Maximum Edge Biclique in

Bipartite Networks by Integer Programming. In 2018 IEEE International Conference
on Computational Science and Engineering (CSE). IEEE, 132–137.

[32] Mehdi Baradaran Tahoori. 2006. Application-independent defect tolerance of

reconfigurable nanoarchitectures. ACM J. Emerg. Technol. Comput. Syst. 2, 3
(2006), 197–218.

[33] Jun Wang, Arjen P De Vries, and Marcel JT Reinders. 2006. Unifying user-

based and item-based collaborative filtering approaches by similarity fusion. In

Proceedings of the 29th annual international ACM SIGIR conference on Research
and development in information retrieval. 501–508.

[34] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2019. Vertex

Priority Based Butterfly Counting for Large-scale Bipartite Networks. Proc. VLDB
Endow. 12, 10 (2019), 1139–1152.

[35] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2020. Efficient

Bitruss Decomposition for Large-scale Bipartite Graphs. In Proc. 36th IEEE Int.
Conf. Data Eng., ICDE 2020. IEEE, 661–672.

[36] Kai Wang, Wenjie Zhang, Xuemin Lin, Ying Zhang, Lu Qin, and Yuting Zhang.

2021. Efficient and Effective Community Search on Large-scale Bipartite Graphs.

In Proc. 36th IEEE Int. Conf. Data Eng., ICDE 2021. IEEE, 85–96.
[37] Lusheng Wang. 2013. Near optimal solutions for maximum quasi-bicliques.

Journal of Combinatorial Optimization 25, 3 (2013), 481–497.

[38] YiyuanWang, Shaowei Cai, and Minghao Yin. 2018. New heuristic approaches for

maximum balanced biclique problem. Information Sciences 432 (2018), 362–375.
[39] Zhuo Wang, Qun Chen, Boyi Hou, Bo Suo, Zhanhuai Li, Wei Pan, and Zachary G

Ives. 2017. Parallelizing maximal clique and k-plex enumeration over graph data.

J. Parallel and Distrib. Comput. 106 (2017), 79–91.
[40] ZhengrenWang, Yi Zhou, Mingyu Xiao, and Bakhadyr Khoussainov. 2022. Listing

Maximal k-Plexes in Large Real-World Graphs. (2022), 1517–1527.

[41] Changhui Yan, J Gordon Burleigh, and Oliver Eulenstein. 2005. Identifying

optimal incomplete phylogenetic data sets from sequence databases. Molecular
phylogenetics and evolution 35, 3 (2005), 528–535.

[42] Jianye Yang, Yun Peng, and Wenjie Zhang. 2022. (p,q)-biclique counting and

enumeration for large sparse bipartite graphs. Proceedings of the VLDB Endowment
(2022).

[43] Kaiqiang Yu and Cheng Long. 2021. Graph Mining Meets Fake News Detection.

In Data Science for Fake News. Springer, 169–189.
[44] Kaiqiang Yu, Cheng Long, P Deepak, and Tanmoy Chakraborty. 2021. On Efficient

Large Maximal Biplex Discovery. IEEE Transactions on Knowledge and Data
Engineering (2021).

[45] Kaiqiang Yu, Cheng Long, Shengxin Liu, and Da Yan. 2022. Efficient Algorithms

for Maximal 𝑘-Biplex Enumeration. In Proc. ACM SIGMOD Int. Conf. Manage.
Data.

[46] Bo Yuan, Bin Li, Huanhuan Chen, and Xin Yao. 2015. A New Evolutionary

Algorithm with Structure Mutation for the Maximum Balanced Biclique Problem.

IEEE Trans. Cybern. 45, 5 (2015), 1040–1053.
[47] Xichen Zhang and Ali A Ghorbani. 2020. An overview of online fake news: Char-

acterization, detection, and discussion. Information Processing & Management 57,
2 (2020), 102025.

[48] Yun Zhang, Charles A Phillips, Gary L Rogers, Erich J Baker, Elissa J Chesler,

and Michael A Langston. 2014. On finding bicliques in bipartite graphs: a novel

algorithm and its application to the integration of diverse biological data types.

BMC bioinformatics 15, 1 (2014), 110.
[49] Yi Zhou and Jin-Kao Hao. 2017. Combining tabu search and graph reduction to

solve the maximum balanced biclique problem. CoRR abs/1705.07339 (2017).

[50] Yi Zhou, André Rossi, and Jin-Kao Hao. 2018. Towards effective exact methods for

the Maximum Balanced Biclique Problem in bipartite graphs. European Journal
of Operational Research 269, 3 (2018), 834–843.

[51] Yi Zhou, Jingwei Xu, Zhenyu Guo, Mingyu Xiao, and Yan Jin. 2020. Enumerating

Maximal k-Plexes with Worst-Case Time Guarantee. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020. 2442–2449.

[52] Zhaonian Zou. 2016. Bitruss Decomposition of Bipartite Graphs. In Database
Systems for Advanced Applications - 21st International Conference, DASFAA 2016,
Vol. 9643. Springer, 218–233.

https://nijianmo.github.io/amazon/index.html
https://nijianmo.github.io/amazon/index.html


Maximum 𝑘-Biplex Search on Bipartite Graphs: A Symmetric-BK Branching Approach SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA

k=1 k=2 k=3 k=4
100

101

102

103

104

Ru
nn

in
g 

tim
e 

(s
ec

) PBIE+FastBB
PBIE+SymBK

k=1 k=2 k=3 k=4
101

102

103

104

INF

Ru
nn

in
g 

tim
e 

(s
ec

) PBIE+FastBB
PBIE+SymBK

(a) Varying 𝑘 (DBLP) (b) Varying 𝑘 (Google)

=3 =4 =5 =6 =7
10 1

100

101

102

103

Ru
nn

in
g 

tim
e 

(s
ec

) PBIE+FastBB
PBIE+SymBK

=3 =4 =5 =6 =7
10 2

100

102

104
INF

Ru
nn

in
g 

tim
e 

(s
ec

) PBIE+FastBB
PBIE+SymBK

(c) Varying 𝜃 (DBLP, 𝑘=1) (d) Varying 𝜃 (Google, 𝑘=1)

Figure 11: Comparison among various orderings

G1 G2 G3 G4 G5 G6 G7 G8
Subgraph Gi produced at i-th round of PB

101

102

103

104

105

Nu
m

be
r o

f v
er

tic
es

0 200 400 600 800

102

103

104

105

Nu
m

be
r o

f v
er

tic
es G8

G7

G6 

Subgraph Gi
vj produced by PBIE

(a) PB (DBLP) (b) PBIE (DBLP)

Figure 12: Performance of PBIE on reducing graph size

A ADDITIONAL EXPERIMENTAL RESULTS
Comparison among various orderings of vertices for Sym-
BK branching. We consider the Sym-BK branching and study

the effect of various orderings of the vertices in 𝐶 . We compare

two vertex orderings for the Sym-BK branching, (1) FastBB: the
Sym-BK branching with the proposed ordering and (2) SymBK: the
Sym-BK branching with the non-decreasing vertex ordering (where

vertices are ranked in an ascending order of their degrees in 𝑆 ∪𝐶 ,
i.e., 𝛿 (𝑣𝑖 , 𝑆 ∪ 𝐶) ≤ 𝛿 (𝑣 𝑗 , 𝑆 ∪ 𝐶) for any 𝑖 < 𝑗 ). We note that the

non-decreasing vertex ordering would help with effective pruning

as shown empirically [1, 48]. The results are shown in Figure 11.

PBIE+FastBB outperforms PBIE+SymBK on various settings and

datasets, which demonstrates the superiority of our proposed or-

dering for the Sym-BK branching.

The performance of PBIE on reducing graph size. Recall that
PBIE partitions the graph to multiple smaller ones. We study the

effect of PBIE on reducing the scale of graph. To this end, we report

the size of 𝐺𝑖 (which is produced at the 𝑖-th round of PB at line

6 of Algorithm 3) in Figure 12(a), and the size of 𝐺
𝑣𝑗
𝑖

(which is a

subgraph of 𝐺𝑖 and formed as a partition of 𝐺𝑖 by IE based on

vertex 𝑣 𝑗 at line 9 of Algorithm 3) in Figure 12(b). Note that for

PBIE, we finally run FastBB on each subgraph 𝐺
𝑣𝑗
𝑖
. We observe

that the reduced graph 𝐺
𝑣𝑗
𝑖

is significantly smaller than (around

0.1% of) 𝐺𝑖 and (around 0.01% of) the original graph (i.e., DBLP),

which has more than 5 million vertices.

B WORST-CASE TIME COMPLEXITY
ANALYSIS

The worst-case time complexity of FastBB is strictly better than

than of BasicBB based on Theorem 1 (in Section 3.4). Below we

provide a detailed analysis.

Theorem 1. Given a bipartite graph𝐺 , FastBB finds the MaxBP
in time 𝑂 ( |𝑉 | · 𝑑 · 𝛾 |𝑉 |

𝑘
) where 𝛾𝑘 is the largest positive real root of

𝑥𝑘+4 − 2𝑥𝑘+3 + 𝑥2 − 𝑥 + 1 = 0. For example, when 𝑘 = 1, 2 and 3,
𝛾𝑘 = 1.754, 1.888 and 1.947, respectively.

Proof. We recursively maintain two arrays to record the degree

of each vertex 𝑣 within𝐺 [𝑆] and𝐺 [𝑆 ∪𝐶], i.e., 𝛿 (𝑣, 𝑆) and 𝛿 (𝑣, 𝑆 ∪
𝐶). Then, each recursion of FastBB-Rec runs in polynomial time

𝑂 ( |𝑉 | · 𝑑). Specifically, the time cost is dominated by the part of

checking pruning condition (4) in line 6 of Algorithm 2. This part

has two steps, namely finding all those vertices with at least 𝑘

disconnections from 𝑆 ∪ 𝐶 in 𝑂 ( |𝑆 ∪ 𝐶 |) time and checking the

pruning condition (4) for each vertex in 𝐷 in𝑂 ( |𝐷 | ·𝑑) time, where

|𝑆 ∪𝐶 | and |𝐷 | are both bounded by 𝑂 ( |𝑉 |).
Next, we analyze the number of recursions. Let 𝑇 (𝑛) be the

largest number of recursions where 𝑛 = |𝐶 |. We have two cases.

Case 1 (𝑣 ∈ 𝑆).We remove 𝑖 vertices from 𝐶 in 𝐵𝑖 (1 ≤ 𝑖 ≤ 𝑎) and
𝑏 vertices from 𝐶 in 𝐵𝑎+1 in the worst-case. Hence, we have

𝑇1 (𝑛) ≤
𝑎∑︁
𝑖=1

𝑇1 (𝑛 − 𝑖) +𝑇1 (𝑛 − 𝑏). (15)

As discussed earlier, we have 𝑎 ≤ 𝑘 and 𝑎 < 𝑏. It is easy to verify

that we reach the maximum of𝑇1 (𝑛) when 𝑎 = 𝑘 and 𝑏 = 𝑘 + 1. We

thus have𝑇1 (𝑛) ≤
∑𝑘
𝑖=1𝑇1 (𝑛−𝑖)+𝑇1 (𝑛−𝑘−1). By solving this linear

recurrence, the worst-case running time is𝑂 ( |𝑣 | ·𝑑 ·𝛾 |𝑉 |
𝑘
) where 𝛾𝑘

is the largest positive real root of 𝑥𝑘+2 − 2𝑥𝑘+1 + 1 = 0. For example,

𝛾𝑘 = 1.618, 1.839 and 1.928 when 𝑘 = 1, 2 and 3, respectively.

Case 2 (𝑣 ∈ 𝐶).We remove 𝑖 vertices from 𝐶 in 𝐵𝑖 (1 ≤ 𝑖 ≤ 𝑎 + 1)
and 𝑏 + 1 vertices from𝐶 in 𝐵𝑎+2 in the worst-case. Hence, we have

𝑇2 (𝑛) ≤
𝑎+1∑︁
𝑖=1

𝑇2 (𝑛 − 𝑖) +𝑇2 (𝑛 − 𝑏 − 1) . (16)

Assuming 𝑣 ∈ 𝐶𝐿 , we consider two scenarios, namely, 𝛿 (𝑣, 𝑆𝑅 ∪
𝐶𝑅) ≥ 𝑘 + 2 and 𝛿 (𝑣, 𝑆𝑅 ∪𝐶𝑅) = 𝑘 + 1.
• For Scenario 1, we can imply 𝑎 ≤ 𝑘 and 𝑏 > 𝑎 + 1. When 𝑎 = 𝑘

and 𝑏 = 𝑘 +2,𝑇2 (𝑛) reaches the maximum. Hence, the worst-case

running time is 𝑂 ( |𝑉 | · 𝑑 · 𝛾 |𝑉 |
𝑘
) where 𝛾𝑘 is the largest positive

real root of 𝑥𝑘+4 − 2𝑥𝑘+3 + 𝑥2 − 𝑥 + 1 = 0. For example, when

𝑘 = 1, 2 and 3, we have 𝛾𝑘 = 1.754, 1.888 and 1.947, respectively.

• For Scenario 2, we can imply 𝑎 ≤ 𝑘 and 𝑏 > 𝑎. When 𝑎 = 𝑘

and 𝑏 = 𝑘 + 1, 𝑇2 (𝑛) reaches the maximum. Thus the worst-case

running time is 𝑂 ( |𝑉 | · 𝑑 · 𝛾 |𝑉 |
𝑘
) where 𝛾𝑘 is the largest positive

real root of 𝑥𝑘+3 − 2𝑥𝑘+2 + 1 = 0. For example, when 𝑘 = 1, 2 and

3, we have 𝛾𝑘 = 1.839, 1.928 and 1.966, respectively.

The idea of remaining proof is to show that the analysis of

Scenario 2 can be further improved based on our pivot selection

strategy. Consequently, Scenario 2 would has the worst-case time

complexity smaller than Scenario 1, and thus the worst-case time

complexity of FastBB would be bounded by that of Scenario 1.

We first show two pruning rules designed based on our pivot

selection strategy, which would help to improve the analysis of

Scenario 2. Intuitively, these pruning rules are built upon branch

𝐵1 (formed based on Equation (5)) and try to move from 𝐶1 to 𝑆1
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more vertices so as to reduce the number of potential branches to

be created with the branching at 𝐵1. The rationale behind is that

(1) after excluding pivot 𝑣 at 𝐵1, vertices in 𝐶 that disconnect to 𝑣 ,

i.e., Γ(𝑣,𝐶𝑅), would disconnect one vertex fewer at the other side

of 𝑆 ∪𝐶 − {𝑣} and (2) these vertices are thus more likely to appear

in the MaxBP to be found in 𝐵1. To be specific, we have following

two pruning rules (wlog, assume 𝑣 ∈ 𝐶𝐿).
Pruning 1. Move from 𝐶1 to 𝑆1 all vertices in Γ(𝑣,𝐶𝑅), if the fol-
lowing two conditions are satisfied.

(i) Pivot 𝑣 disconnects exactly 𝑘 + 1 vertices in 𝑆𝑅 ∪ 𝐶𝑅 (i.e.,

𝛿 (𝑣, 𝑆𝑅 ∪𝐶𝑅) = 𝑘 + 1), and
(ii) For every vertex 𝑢 in 𝐶𝑅 that disconnects to 𝑣 , vertex 𝑢

disconnects no more than 𝑘 vertices from 𝑆𝐿 ∪𝐶𝐿 (i.e., ∀𝑢 ∈
Γ(𝑣,𝐶𝑅), 𝛿 (𝑢, 𝑆𝐿 ∪𝐶𝐿) ≤ 𝑘).

Proof of Pruning 1. This can be proved by contradiction. As-

sume that the MaxBP 𝐻 to be found in 𝐵1 does not include a ver-

tex 𝑤 ∈ Γ(𝑣,𝐶𝑅). We derive the contradiction by showing that

𝐺 [𝑉 (𝐻 ) ∪ {𝑣}] is a 𝑘-biplex which has more edges than 𝐻 (note

that the MaxBP found in this branch cannot include 𝑣 since 𝑣

has been excluded). Specifically, (1) for a vertex 𝑢 ∈ 𝐿(𝐻 ), we
have 𝛿 (𝑢, 𝑅(𝐻 )) ≤ 𝑘 since 𝐻 is a 𝑘-biplex; (2) for 𝑣 , we have

𝛿 (𝑣, 𝑅(𝐻 )) ≤ 𝛿 (𝑣, 𝑆𝑅∪𝐶𝑅\{𝑤}) ≤ 𝛿 (𝑣, 𝑆𝑅∪𝐶𝑅)−1 ≤ (𝑘+1)−1 = 𝑘
since 𝑅(𝐻 ) ⊆ 𝑆𝑅 ∪𝐶𝑅\{𝑤} (note that 𝐻 is a subgraph of𝐺 [𝐶 ∪ 𝑆]
and 𝐻 does not include 𝑤 by assumption), vertex 𝑤 disconnects

vertex 𝑣 and 𝛿 (𝑣, 𝑆𝑅 ∪𝐶𝑅) is exactly 𝑘 + 1 based on the pruning con-

dition (i); (3) for a vertex𝑢 ∈ 𝑆𝑅∩𝑅(𝐻 ), we have 𝛿 (𝑢, 𝐿(𝐻 )∪{𝑣}) ≤
𝛿 (𝑢, 𝑆𝐿 ∪𝐶𝐿) ≤ 𝑘 since 𝐿(𝐻 ) ∪ {𝑣} ⊆ 𝑆𝐿 ∪𝐶𝐿 and every vertex in

𝑆𝑅 disconnects no more than 𝑘 vertices from 𝑆𝐿 ∪𝐶𝐿 based on the

pivot selection; (4) for a vertex 𝑢 ∈ 𝐶𝑅 ∩ 𝑅(𝐻 ), if 𝑢 connects 𝑣 , we

have 𝛿 (𝑢, 𝐿(𝐻 ) ∪ {𝑣}) ≤ 𝛿 (𝑢, 𝐿(𝐻 )) ≤ 𝑘 since 𝐻 is a 𝑘-biplex. If 𝑢

disconnects 𝑣 , we have 𝛿 (𝑢, 𝐿(𝐻 ) ∪ {𝑣}) ≤ 𝛿 (𝑢, 𝑆𝐿 ∪𝐶𝐿) ≤ 𝑘 based

on 𝐿(𝐻 ) ∪ {𝑣} ⊆ 𝑆𝐿 ∪𝐶𝐿 and pruning condition (ii).

Example 1. To illustrate, we consider again the example in Fig-
ure 2. We consider a branch 𝐵′

3
with 𝑆 ′

3
= {𝑣0, 𝑢0, 𝑢1, 𝑢2}, 𝐶 ′

3
=

{𝑢3, 𝑢6, 𝑣1, 𝑣2, 𝑣3, 𝑣4} and 𝐷 ′
3
= {𝑢4, 𝑢5} shown in Figure 2(c). We

then select 𝑢3 as the pivot based on our pivot selection strategy. Con-
sider the branch to be created by excluding 𝑢3 based on Equation (5),
we observe that pruning 1 is triggered since (1) pivot 𝑢3 disconnects 3
vertices from the other side of 𝑆 ′

3
∪𝐶 ′

3
, i.e., {𝑣1, 𝑣2, 𝑣3} and each vertex

in {𝑣1, 𝑣2, 𝑣3} disconnects 2 vertices from the other side of 𝑆 ′
3
∪𝐶 ′

3
, i.e.,

{𝑢3, 𝑢6}. Therefore, {𝑣1, 𝑣2, 𝑣3} can be directly included to 𝑆 ′
3
.

Pruning 2. Move from Γ(𝑣,𝐶𝑅) to 𝑆1 those vertices each of which

𝑢 satisfies the following two conditions.

(a) 𝑢 disconnects no more than 𝑘 + 1 vertices from 𝑆𝐿 ∪𝐶𝐿 (i.e.,

𝛿 (𝑣, 𝑆𝐿 ∪𝐶𝐿) ≤ 𝑘 + 1), and
(b) For every vertex 𝑣 in 𝐶𝐿\{𝑣} that disconnects to 𝑢, vertex

𝑣 disconnects no more than 𝑘 vertices from 𝑆𝑅 ∪ 𝐶𝑅 (i.e.,

∀𝑣 ∈ Γ(𝑢,𝐶𝐿\{𝑣}), 𝛿 (𝑣, 𝑆𝑅 ∪𝐶𝑅) ≤ 𝑘).
We define I to be the set of those vertices such that I ⊆ Γ(𝑣,𝐶𝑅).
Proof of Pruning 2. We prove it by contradiction. Assume that

the MaxBP 𝐻 to be found in 𝐵1 does not include a vertex 𝑤 ∈ 𝐼 .
We derive the contradiction by showing that𝐺 [𝑉 (𝐻 ) ∪ {𝑤}] is a 𝑘-
biplex. Specifically, (1) for a vertex𝑢 ∈ 𝑅(𝐻 ), we have 𝛿 (𝑢, 𝐿(𝐻 )) ≤

𝑘 since 𝐻 is a 𝑘-biplex; (2) for vertex 𝑤 , we have 𝛿 (𝑤, 𝐿(𝐻 )) ≤
𝛿 (𝑤, 𝑆𝐿 ∪ 𝐶𝐿\{𝑣}) ≤ 𝛿 (𝑤, 𝑆𝐿 ∪ 𝐶𝐿) − 1 ≤ (𝑘 + 1) − 1 = 𝑘 since

𝐿(𝐻 ) ⊆ 𝑆𝐿 ∪𝐶𝐿\{𝑣} (note that 𝐻 is a subgraph of 𝐺 [𝑆 ∪𝐶] and 𝑣
has been excluded), vertex 𝑤 disconnects vertex 𝑣 and 𝛿 (𝑤, 𝑆𝐿 ∪
𝐶𝐿) ≤ 𝑘 + 1 based on the pruning condition (a); (3) for a vertex

𝑢 ∈ 𝑆𝐿 ∩ 𝐿(𝐻 ), we have 𝛿 (𝑢, 𝑅(𝐻 ) ∪ {𝑤}) ≤ 𝛿 (𝑢, 𝑆𝑅 ∪ 𝐶𝑅) ≤ 𝑘
since 𝑅(𝐻 ) ∪ {𝑤} ⊆ 𝑆𝑅 ∪𝐶𝑅 and every vertex in 𝑆𝐿 disconnects

no more than 𝑘 vertices from 𝑆𝑅 ∪𝐶𝑅 based on the pivot selection;

and (4) for a vertex 𝑢 ∈ 𝐶𝐿 ∩ 𝐿(𝐻 ), if 𝑢 connects 𝑤 , we have

𝛿 (𝑢, 𝑅(𝐻 ) ∪ {𝑤}) = 𝛿 (𝑢, 𝑅(𝐻 )) ≤ 𝑘 since 𝐻 is a 𝑘-biplex. If 𝑢

disconnects 𝑤 , we have 𝛿 (𝑢, 𝑅(𝐻 ) ∪ {𝑤}) ≤ 𝛿 (𝑢, 𝑆𝑅 ∪ 𝐶𝑅) ≤ 𝑘

since 𝑅(𝐻 ) ∪ {𝑤} ⊆ 𝑆𝑅 ∪𝐶𝑅 and pruning condition (b).

We then improve the analysis of Scenario 2 by using measure-

and-conquer techniques [10]. Specifically, we propose a novel func-

tion𝑇3 (𝜌) for bounding the maximum number of recursions, which

assigns different weights to the vertices in 𝐶:

𝑇3 (𝜌), 𝜌 = 𝑛≤𝑘 ×𝑤1 + 𝑛𝑘+1 ×𝑤2, 0 < 𝑤1 < 𝑤2 ≤ 1, (17)

where 𝑛≤𝑘 (resp. 𝑛𝑘+1) is the number of vertices with no more

than 𝑘 (resp. exactly 𝑘 + 1) disconnections in 𝐶 . We remark that

the previous function 𝑇2 (𝑛) assigns the equal weight, i.e., 1, to all

vertices in𝐶 . The new proposed function is motivated by following

observations/intuitions, namely (1) 𝐺 [𝑆 ∪ 𝐶] in Scenario 2 is a

(𝑘 + 1)-biplex and would become a 𝑘-biplex if no vertex in 𝑆 ∪𝐶
disconnects 𝑘 + 1 vertices at the other side, and (2) those vertices

with 𝑘 + 1 disconnections have higher effects on the analysis while

vertices with no more than 𝑘 disconnections is of less importance.

We call a vertex with exactly 𝑘 + 1 disconnections a boundary
vertex. Wlog, assume that 𝑣 ∈ 𝐶𝐿 and there are 𝑥 boundary vertices

in Γ(𝑣,𝐶𝑅). We derive 𝑥 ≥ 1 in the worst-case (since otherwise

Pruning 1 is triggered). Wlog, assume the first 𝑘+1−𝑥 (resp. the last
𝑥) vertices in Γ(𝑣,𝐶𝑅) are non-boundary vertices (resp. boundary

vertices). Consider the worst case where 𝑎 = 𝑘 , 𝑏 = 𝑘 + 1, and
neither pruning 1 nor pruning 2 would be triggered, we analyze

𝑘 + 2 branches by 𝑇3 (𝜌) below.
• For 𝐵1, we exclude only a boundary vertex 𝑣 in the worst case.

After branching, those 𝑥 boundary vertices in Γ(𝑣,𝐶𝑅) would
disconnect 𝑘 vertices from 𝑆𝐿 ∪𝐶𝐿\{𝑣} (since they all disconnect
𝑣). Therefore, the number of recursions of 𝐵1 is

𝑇3 (𝜌 − (𝑤2 −𝑤1)𝑥 −𝑤2). (18)

• For the remaining branches, i.e., {𝐵2, 𝐵3, ..., 𝐵𝑘+2}, recall that 𝐵𝑖
(𝑖 ≥ 2) includes vertices {𝑣,𝑢1, ..., 𝑢𝑖−2} and excludes vertex 𝑢𝑖−1.
For each branch 𝐵𝑖 , we have (1) a boundary vertex 𝑣 is removed,

(2) except 𝑣 , there exists at least a boundary vertex disconnected

to 𝑢𝑖−1 (since otherwise Pruning 2 would be triggered) and it

would disconnect to 𝑘 vertices after excluding 𝑢𝑖−1, and (3) for

each branch 𝐵𝑖 in {𝐵2, ..., 𝐵𝑘+2−𝑥 }, it removes 𝑖 − 1 vertices, i.e.,
{𝑢1, ..., 𝑢𝑖−1}, from 𝐶 to 𝑆 , each of which has the weight𝑤1. For

each branch 𝐵𝑖 in {𝐵𝑘+3−𝑥 , ..., 𝐵𝑘+2}, it removes 𝑘 + 2−𝑥 vertices

with weight𝑤1 and 𝑖 − (𝑘 + 2 − 𝑥) vertices with weight𝑤2 from

𝐶 to 𝑆 . In summary, for each branch 𝐵𝑖 in {𝐵2, ..., 𝐵𝑘+2−𝑥 }, we
have

𝑇3 (𝜌 −𝑤2 − (𝑤2 −𝑤1) −𝑤1) = 𝑇3 (𝜌 −𝑤1𝑖 − (2𝑤2 −𝑤1)) . (19)
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Figure 13: Comparison on all real datasets (𝑘 = 1)
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Figure 14: Comparison by varying 𝐾 (𝑘 = 1)

For each branch 𝐵𝑖 in {𝐵𝑘+3−𝑥 , ..., 𝐵𝑘+2}, we have
𝑇3 (𝜌 −𝑤2 − (𝑤2 −𝑤1) −𝑤1 (𝑘 + 2 − 𝑥) −𝑤2 (𝑖 − (𝑘 + 2 − 𝑥)))

= 𝑇3 (𝜌 −𝑤1 (𝑘 + 1 − 𝑥) −𝑤2𝑖 − (2𝑤2 −𝑤1)). (20)

Therefore, for the number of recursions in Scenario 2, we have

𝑇3 (𝜌) ≤ 𝑇3 (𝜌 − (𝑤2 −𝑤1)𝑥 −𝑤2) +
𝑘+1−𝑥∑︁
𝑖=1

𝑇3 (𝜌 −𝑤1𝑖 − (2𝑤2 −𝑤1))

+
𝑥∑︁
𝑖=1

𝑇3 (𝜌 −𝑤1 (𝑘 + 1 − 𝑥) −𝑤2𝑖 − (2𝑤2 −𝑤1)). (21)

It is easy to verify that we reach the maximum of 𝑇3 (𝜌) when
𝑥 = 1. In the following analysis, we set𝑤1 = 0.36 and𝑤2 = 1. Hence,

the worst-case running time is 𝑂 (𝛾𝜌
𝑘
) where 𝜌 ≤ |𝑉 | and 𝛾𝑘 is the

largest positive real root of 𝑥0.36𝑘+3.64 − 𝑥0.36𝑘+2.64 − 𝑥0.36𝑘+2 −
𝑥0.36𝑘+1.64 +𝑥0.36𝑘+1.28 +𝑥0.36𝑘+1 +𝑥1.36 +1 = 0. For example, when

𝑘 = 1, 2 and 3, we have 𝛾𝑘 = 1.753, 1.866 and 1.945. Hence, the time

complexity in Scenario 2 is better than that in Scenario 1. □

C ADDITIONAL PROOFS IN SECTION 4
We prove the correctness of claims mentioned in Section 4.2.

Claim 1. Given |𝐿 | subgraphs, namely 𝐺𝑖 = (𝐿𝑖 , 𝑅𝑖 , 𝐸𝑖 ) for 1 ≤ 𝑖 ≤
|𝐿 | formed based on Equation (11)-(13), the MaxBP 𝐻∗ must reside in
one of the subgraphs.

Proof. Assume that 𝑣𝑖 is the vertex with the smallest index in

𝐻∗. We show that𝐻∗ would be found in𝐺𝑖 formed as above, which

can be proved by contradiction. Suppose that such a𝐻∗ is not in𝐺𝑖 ,

which means 𝐿(𝐻∗) − 𝐿𝑖 ≠ ∅ or 𝑅(𝐻∗) − 𝑅𝑖 ≠ ∅. We thus consider

following two cases.

• Case 1 𝐿(𝐻∗) − 𝐿𝑖 ≠ ∅. Assume that a vertex 𝑣 ∈ 𝐿(𝐻∗) −
𝐿𝑖 . We derive the contradiction by showing that 𝐻∗ is not a
𝑘-biplex since vertex 𝑣 disconnects more than 𝑘 vertices, i.e.,

𝛿 (𝑣, 𝑅(𝐻∗)) ≥ 𝛿 (𝑣𝑖 , 𝑅(𝐻∗)) = |𝑅(𝐻∗) | −𝛿 (𝑣𝑖 , 𝑅(𝐻∗)) ≥ 𝜃𝑅 −𝑘 ≥
(2𝑘 + 1) − 𝑘 = 𝑘 + 1 (note that (1) 𝛿 (𝑣, 𝑅(𝐻∗)) ≥ 𝛿 (𝑣𝑖 , 𝑅(𝐻∗))
since 𝑣 is not a 2-hop neighbor of 𝑣𝑖 by assumption and thus

disconnects 𝑣𝑖 ’s neighbors in 𝑅(𝐻∗), (2) |𝑅(𝐻∗) | ≥ 𝜃𝑅 ≥ 2𝑘 + 1
by the definition of problem and (3) 𝛿 (𝑣𝑖 , 𝑅(𝐻∗)) ≤ 𝑘 since 𝐻∗ is
a 𝑘-biplex and includes vertex 𝑣𝑖 ).

• Case 2 𝑅(𝐻∗) − 𝑅𝑖 ≠ ∅. Assume that a vertex 𝑢 ∈ 𝑅(𝐻∗) −
𝑅𝑖 . We derive the contradiction by showing that 𝐻∗ is not a 𝑘-
biplex since𝑢 disconnectsmore than𝑘 vertices, i.e., 𝛿 (𝑢, 𝐿(𝐻∗)) =
|𝐿(𝐻∗) | ≥ 𝜃𝐿 ≥ 2𝑘 + 1 (note that 𝛿 (𝑢, 𝐿(𝐻∗)) = |𝐿(𝐻∗) | since (1)
𝐿(𝐻∗) ⊆ 𝐿𝑖 otherwise we can finish the proof based on Case 1

and (2)𝑢 disconnects all vertices in 𝐿(𝐻∗) based on the definition

of 𝑅𝑖 ).

Based on the above two cases, we finish the proof. □

Claim 2. Given subgraph 𝐺𝑖 (1 ≤ 𝑖 ≤ |𝐿 |) formed based on Equa-
tion (11)-(13), the following vertices from a subgraph can be pruned
from 𝐺𝑖 without missing the MaxBP to be found in 𝐺𝑖 .
• 𝑣 ∈ 𝐿𝑖 with 𝛿 (𝑣, 𝑅𝑖 ) < 𝜃𝑅 − 𝑘 or |Γ(𝑣, 𝑅𝑖 ) ∩ Γ(𝑣𝑖 , 𝑅) | < 𝜃𝑅 − 2𝑘 ;
• 𝑢 ∈ 𝑅𝑖 with 𝛿 (𝑢, 𝐿𝑖 ) < 𝜃𝐿 − 𝑘 .

Proof. The idea is to show that these vertices cannot appear in

the MaxBP𝐻 to be found in𝐺𝑖 . This can be proved by contradiction.

In general, there are three cases.

• Case 1. Assume that 𝐻 includes a vertex 𝑣 ∈ 𝐿𝑖 such that

𝛿 (𝑣, 𝑅𝑖 ) < 𝜃𝑅 − 𝑘 . We derive the contradiction by showing

that 𝐻 is not a 𝑘-biplex since vertex 𝑣 disconnects more than

𝑘 vertices from 𝑅(𝐻 ), i.e., 𝛿 (𝑣, 𝑅(𝐻 )) = |𝑅(𝐻 ) | − 𝛿 (𝑣, 𝑅(𝐻 )) >
𝜃𝑅 − (𝜃𝑅 − 𝑘) = 𝑘 .
• Case 2. Assume that 𝐻 includes a vertex 𝑣 ∈ 𝐿𝑖 such that

|Γ(𝑣, 𝑅𝑖 ) ∩ Γ(𝑣𝑖 , 𝑅) | < 𝜃𝑅 − 2𝑘 . We derive the contradiction by

showing that 𝐻 is not a 𝑘-biplex since vertex 𝑣 disconnects more

than 𝑘 vertices from 𝑅(𝐻 ), i.e., 𝛿 (𝑣, 𝑅(𝐻 )) > 𝛿 (𝑣𝑖 , 𝑅(𝐻 )) − (𝜃𝑅 −
2𝑘) ≥ (|𝑅(𝐻 ) | −𝑘) − (𝜃𝑅 − 2𝑘) ≥ (𝜃𝑅 −𝑘) − (𝜃𝑅 − 2𝑘) = 𝑘 (note

that (1) 𝛿 (𝑣, 𝑅(𝐻 )) > 𝛿 (𝑣𝑖 , 𝑅(𝐻 )) − (𝜃𝑅 −2𝑘) since 𝑣 has less than
𝜃𝑅−2𝑘 common neighbors with 𝑣𝑖 in 𝑅 and thus connects at most

𝜃𝑅 − 2𝑘 vertices at Γ(𝑣𝑖 , 𝑅(𝐻 )) and (2) 𝛿 (𝑣𝑖 , 𝑅(𝐻 )) ≥ |𝑅(𝐻 ) | − 𝑘
since 𝐻 is a 𝑘-biplex).

• Case 3. Assume that 𝐻 includes a vertex 𝑢 ∈ 𝑅𝑖 such that

𝛿 (𝑢, 𝐿𝑖 ) < 𝜃𝐿 −𝑘 . We derive the contradiction by showing that 𝐻

is not a 𝑘-biplex since vertex 𝑢 disconnects more than 𝑘 vertices

from𝐿(𝐻 ), i.e.,𝛿 (𝑢, 𝐿(𝐻 )) = |𝐿(𝐻 ) |−𝛿 (𝑢, 𝐿(𝐻 )) > 𝜃𝐿−(𝜃𝐿−𝑘) =
𝑘 .

Combining the above three cases, we thus finish the proof. □
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(c) Varying 𝑘 (DBLP) (d) Varying 𝑘 (Google)

Figure 15: Comparison by varying 𝑘
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(a) Varying 𝜃 (Writer) (b) Varying 𝜃 (Location)
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Figure 16: Comparison by varying 𝜃 = 𝜃𝐿 = 𝜃𝑅 (𝑘 = 1)
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(a) Varying # of vertices (b) Varying edge density

Figure 17: Comparison on synthetic datasets (𝑘 = 1)

D COMPARISONWITH MBS-CORE [22]
We notice that [22] studies the following maximum 𝑘-biplex search

problem. Given a positive integer 𝑘 > 0 and the size constraint

𝑆 ≥ 2𝑘 + 1, it finds the 𝑘-biplex with the largest number of edges

and the number of vertices at each side at least 𝑆 . Essentially, this

problem corresponds to our problem under the setting of 𝐾 = 1.

In [22], the authors prove the NP-hardness of the problem and de-

velop an algorithm called MBS-Core. MBS-Core consists of two sub-

procedures, namely a progressive bounding framework called Core
and a branch-and-bound enumeration algorithm called MBS. It first
partitions the whole graph to multiple smaller ones via Core, and
then runs MBS on each of them in a certain order. Specifically, Core
is a variant of the progressive bounding framework and adapted

from an existing study of finding the biclique with the maximum

number of edges [19]. MBS is adapted from the existing BK-based

algorithm iMB [44], which is proposed for enumerating large MBPs.

We refer to [22] for the details of the MBS-Core algorithm.

We compare our algorithm PBIE+FastBB with MBS-Core on var-

ious datasets and settings. The default experimental settings are

specified in Section 5. The source code of MBS-Core is obtained

from the authors of [22]. In addition, we set 𝑆 = 𝜃 for MBS-Core.
The experimental results of running time are shown in Figure 13

for varying datasets, Figure 14 for varying 𝐾 , Figure 15 for varying

𝑘 , Figure 16 for varying 𝜃 , and Figure 17 for synthetic datasets.

We have two observations. First, PBIE+FastBB can finish on

all datasets and settings while MBS-Core cannot finish within

INF on Youtube and Location. Second, PBIE+FastBB outperforms

MBS-Core on all datasets and under all settings and achieves up to

100× speedup.
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