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Abstract. We study the uniform nonsingularity property recently proposed by the
authors and present its applications to nonlinear complementarity problems over a sym-
metric cone. In particular, by addressing theoretical issues such as the existence of New-
ton directions, the boundedness of iterates and the nonsingularity of B-subdifferentials,
we show that the non-interior continuation method proposed by Xin Chen and Paul
Tseng and the squared smoothing Newton method proposed by Liqun Qi, Defeng Sun
and Jie Sun are applicable to a more general class of nonmonotone problems. Interest-
ingly, we also show that the linear complementarity problem is globally uniquely solvable
under the assumption of uniform nonsingularity.

1. Introduction

We consider the problem of finding, for a given continuously differentiable trans-
formation f : E 7→ E and some given closed convex cone K ⊆ E, an x ∈ K satisfying

(1) x ≥K 0, f(x) ≥K♯ 0 and ⟨x, f(x)⟩ = 0,

where E is a Euclidean space with inner product ⟨⋅, ⋅⟩ and K♯ is the closed dual cone

{s ∈ E : ⟨s, x⟩ ≥ 0 ∀x ∈ K}.
We use x ≥K y (respectively, x >K y) to mean x− y ∈ K (respectively, x− y ∈ int(K)).
We shall denote the problem of finding x ∈ K satisfying (1) by NCPK(f). When f is
affine, i.e., f(x) = l(x) + q for some linear transformation l : E → E and some vector
q ∈ E, the problem NCPK(f) reduces to LCPK(l, q) or LCPK(M, q), where M is a matrix
representation of l. In this case, the problem is called a linear complementarity problem
over the cone K. We may also drop the subscript K when the cone is ℝn

+.
There recently has been much work on numerical methods for solving NCPK(f), in-

cluding smoothing Newton methods [6, 8, 10, 16, 19, 22, 26], interior-point method [27],
and non-interior continuation methods [11, 20]. It is noted that a common feature among
these papers is the assumption of the monotonicity when K is different from ℝn

+. This
assumption is somehow quite natural since it provides a sufficient condition to guarantee
the existence of Newton direction as well as the boundedness of iterates encountered in
those numerical approaches. A question which is of general theoretical interest is whether
one can extend the existing well-developed algorithms for more general problems other
than monotone problems.

In the literature of linear complementarity, a class of nonmonotone LCP(M, q) which
has been well solved is the P-LCPs, i.e., the matrix M is a P-matrix [13]. Numerical
approaches for NCP(f) has also been extensively studied based on the concept of P-
function. See, e.g., [14]. Accordingly, there has been some considerable effort to extend
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the concept of P-property to transformations over a general Euclidean space. Gener-
alized from LCPs, a so called P-type properties was introduced by Gowda and Song
[17] in identifying a class of nonmonotone semidefinite linear complementarity problems
(SDLCPs). Later, their P-type properties have been extended to transformations over
Euclidean Jordan algebras [18]. It is, however, not clear whether any numerical algo-
rithms can be designed based on their P-type properties. In a recent paper, Chen and Qi
[7] proposed the Cartesian P-property and showed that the merit function approach and
smoothing method can be applied to a class of nonmonotone SDLCPs, namely Cartesian
P-SDLCPs. Though they have shown that several impressive results such as the GUS-
(global unique solvability-)property and the local Lipschitzian property of the solution
map can be carried over from LCPs to Cartesian P-SDLCPs, the concept of Cartesian
P-property differs from strict monotonicity only when the cone K is a symmetric cone
that can be written as a direct sum K1 ⊕ ⋅ ⋅ ⋅ ⊕K� of at least two irreducible symmetric
cones.

In the current paper, we explore the uniform nonsingularity property introduced
by the authors in [12] and study its applications to smoothing/continuation methods for
NCPK(f). We show, in Theorem 3.1, that uniform nonsingularity is weaker than
the uniform Cartesian P-property in general. Then, we demonstrate that both the
non-interior continuation method [11] and the squared smoothing Newton method [26]
are actually applicable to more general problems other than monotone problems. For
the non-interior continuation method, we establish the existence of Newton direction and
the boundedness of iterates and hence extend Chen-Tseng’s algorithm to problems with
our uniform nonsingularity property. Two key issues for the quadratic convergence
of the squared smoothing Newton method are the strong semismoothness and the non-
singularity of the B-subdifferential of the squared smoothing function. With uniform
nonsingularity, we are able to relax the condition on the Jacobian, and yet show that
all elements in the B-subdifferential are nonsingular. Moreover, instead of focusing on the
squared smoothing function, we extend the result to a class of smooth approximations
based on the Chen and Mangasarian smoothing functions. Meanwhile, we show that the
LCPK(l, q) has the GUS-property if l is uniformly nonsingular. The GUS-property
follows from the fact that every solution of the LCPK(l, q) is the limit of a convergent
trajectory (see Theorem 5.1).

The rest of the paper is organized as follows. In the next section, we briefly review
relevant concepts in the theory of Euclidean Jordan algebras. In Section 3, we investi-
gate the relations among uniform nonsingularity, Cartesian P-property and strong
monotonicity. In Section 4 we present the applications of uniform nonsingularity to
two numerical approaches for solving complementarity problems. In Section 5, we show
that uniform nonsingularity implies the GUS-property of the LCPK . We draw the
conclusion in Section 6.

2. Euclidean Jordan algebras

In this section, we review concepts in the theory of Euclidean Jordan algebras that are
necessary for the purpose of this paper. Interested readers are referred to Chapters II–IV
of [15] for a more comprehensive discussion on the theory of Euclidean Jordan algebras.

Definition 2.1 (Jordan algebra). An algebra (J, ∘) over the field ℝ or ℂ is said to be a
Jordan algebra if it is commutative and the endomorphisms y 7→ x∘ y and y 7→ (x∘x) ∘ y
commute for each x ∈ J.
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Definition 2.2 (Euclidean Jordan algebra). A finite dimensional Jordan algebra (J, ∘)
with unit e is said to be Euclidean if there exists a positive definite symmetric bilinear
form on J that is associative; i.e., J has an inner product ⟨⋅, ⋅⟩ such that

⟨x ∘ y, z⟩ = ⟨y, x ∘ z⟩ ∀x, y, z ∈ J.

Henceforth, (J, ∘) shall denote a Euclidean Jordan algebra, and e shall denote
its unit. We shall identify J with a Euclidean space equipped with the inner product
⟨⋅, ⋅⟩ in the above definition. For each x ∈ J, we shall use lx to denote the Lyapunov
transformation y 7→ x ∘ y, and use Px to denote 2l2x− lx∘x. By the definition of Euclidean
Jordan algebra, lx, whence Px, is self-adjoint under ⟨⋅, ⋅⟩. The linear transformation Px

is called the quadratic representation of x.

Definition 2.3 (Jordan frame). An idempotent of J is a nonzero element c ∈ J satisfying
c ∘ c = c. An idempotent is said to be primitive if it cannot be written as the sum of two
idempotents. Two idempotents c and d are said to be orthogonal if c ∘ d = 0. A complete
system of orthogonal idempotents is a set of idempotents that are pair-wise orthogonal
and sum to the unit e. A Jordan frame is a complete system of primitive idempotents.
The number of elements in any Jordan frame is an invariant called the rank of J (see
paragraph immediately after Theorem III.1.2 of [15]).

Remark 2.1. Orthogonal idempotents are indeed orthogonal with respect to the inner
product ⟨⋅, ⋅⟩ since

⟨c, d⟩ = ⟨c ∘ e, d⟩ = ⟨e, c ∘ d⟩ .
Primitive idempotents have unit norm.

Henceforth, r shall denote the rank of J.

Theorem 2.1 (Spectral decomposition (of type II)). Each element x of the Euclidean
Jordan algebra (J, ∘) has a spectral decomposition (of type II)

x =
r
∑

i=1

�ici,

where �1 ≥ ⋅ ⋅ ⋅ ≥ �r (with their multiplicities) are uniquely determined by x, and
{c1, . . . , cr} ⊂ J forms a Jordan frame.

The coefficients �1, . . . , �r are called the eigenvalues of x, and they are denoted by
�1(x), . . . , �r(x).

Proof. See Theorem III.1.2 of [15]. □

Remark 2.2. Two elements share the same Jordan frames in their spectral decomposi-
tions precisely when they operator commute [15, Lemma X.2.2]; i.e., when the Lyapunov
transformations lx and ly commute.

Theorem 2.2 (Characterization of symmetric cones). A cone is symmetric if and only
if it is linearly isomorphic to the interior of the cone of squares

K(J) := {x ∘ x : x ∈ J}
of a Euclidean Jordan algebra (J, ∘). Moreover, the interior int(K(J)) of the cone of
squares coincides with the following equivalent sets:

(i) the set {x ∈ J : lx is positive definite under ⟨⋅, ⋅⟩};
(ii) the set {x ∈ J : �i(x) > 0 ∀i}.

Proof. See Theorems III.2.1 and III.3.1 of [15]. □

3



Henceforth, K shall denote the cone of squares K(J).
The cone of squares K(J) can alternatively be described as the set of elements with

nonnegative eigenvalues (see proof of Theorem III.2.1 of [15]), whence every symmet-
ric cone can be identified with the set of elements with positive eigenvalues in certain
Euclidean Jordan algebra.

For each idempotent c ∈ J, the only possible eigenvalues of lc are 0, 1
2
and 1; see

Theorem III.1.3 of [15]. We shall use J(c, 0), J(c, 1
2
) and J(c, 1) to denote the eigenspaces

of lc corresponding to the eigenvalues 0, 1
2
and 1, respectively. If � is not an eigenvalue

of lc, then we use the convention J(c, �) = {0}.
Theorem 2.3 (Peirce decomposition). Given a Jordan frame {c1, . . . , cr}, the space J

decomposes into the orthogonal direct sum

J =
⊕

1≤i≤j≤r

Jij ,

where Jii := J(ci, 1) = ℝci and Jij := J(ci,
1
2
)∩J(cj ,

1
2
) for i < j, such that the orthogonal

projector onto Jii is Pci, and that onto Jij is 4lcilcj . Moreover, for any index set I ⊆
{1, . . . , r}, the subspaces J1 =

⊕

i≤j, i,j∈I Jij and J0 =
⊕

i≤j, i,j /∈I Jij are subalgebras of J,

and they are orthogonal in the sense that J1 ∘ J0 = {0}.
The decomposition of x ∈ J into

x =

r
∑

i=1

xici +
∑

(i,j):1≤i<j≤r

xij

with xici = Pci(x) and xij = 4lci(lcj (x)) is called its Peirce decomposition with respect to
the Jordan frame {c1, . . . , cr}.
Proof. See Theorem IV.2.1 and Proposition IV.1.1 of [15]. □

Remark 2.3. It is straightforward to check that if {c1, . . . , cr} is the Jordan frame in
a spectral decomposition x =

∑

�i(x)ci of x, then the Peirce decomposition of x with
respect to {c1, . . . , cr} coincide with this spectral decomposition.

We end this section with the following note.

Remark 2.4. Every Euclidean Jordan algebra can be written as a direct sum of simple
ideals (see, e.g., [15, Proposition III.4.4]), each of which is a Euclidean Jordan algebra
under the induced inner product. This means that every symmetric cone can be written
as the orthogonal direct sum of irreducible symmetric cones.

Henceforth, J = J1⊕ ⋅ ⋅ ⋅⊕ J� shall denote the decomposition of J into simple
ideals, Kv shall denote the irreducible symmetric cone K(Jv), and xv shall
denote the component of the element x ∈ J in Jv.

3. Positive generalized eigenvalue property

In the theory of LCPs [13], the P-property of a matrix plays a very important role and
it can be defined in a number of ways. Here, we summarize below some known equivalent
conditions for a matrix M ∈ ℝn×n to be a P-matrix:

(1) Every principal minor of M is positive.
(2) For every nonzero x ∈ ℝn, there is an index i ∈ {1, 2, . . . , n} such that

xi(Mx)i > 0.

(3) LCP(M, q) has a unique solution for every q ∈ ℝn [24].
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(4) There exists � > 0 such that ∥(M +D)x∥ ≥ �∥x∥ for every nonnegative definite
diagonal matrix D and any x ∈ ℝn [12, Lemma 4.1].

The above last characterization of a P-matrix as being uniformly nonsingular under
the addition of nonnegative D was used by the authors as the basis of definition of a
P-type property for transformations on Euclidean Jordan algebras in [12]. We recall this
definition, and call it the uniform nonsingularity.

Definition 3.1. The transformation f : J → J is said to be uniformly nonsingular
if there exists � > 0 such that for any d1, . . . , dr ≥ 0, any dij ≥ 0, any Jordan frame
{c1, . . . , cr} and any x, y ∈ J,

∥

∥

∥
f(x)− f(y) +

∑

di(xi − yi)ci +
∑

dij(xij − yij)
∥

∥

∥
≥ �∥x− y∥.

In the case when K is polyhedral, uniform nonsingularity lies between the concept
of P-property and uniform P-property (see Proposition 4.1 in [12]). For the discussions
below, we list several more definitions.

Definition 3.2. A transformation f : J → J is said to satisfy

∙ strong monotonicity if there exists � > 0 such that for every x, y ∈ J,

⟨x− y, f(x)− f(y)⟩ ≥ �∥x− y∥2;
∙ the uniform Cartesian P-property if there exists � > 0 such that for any x, y ∈ J,

max
v=1,...,�

⟨(x− y)v, (f(x)− f(y))v⟩ ≥ �∥x− y∥2;

∙ the uniform Jordan P-property if there exists � > 0 such that for any x, y ∈ J,

�1((x− y) ∘ (f(x)− f(y))) ≥ �∥x− y∥2;
∙ the uniform P-property if there exists � > 0 such that for any x, y ∈ J with x−y
operator commuting with f(x)− f(y),

�1((x− y) ∘ (f(x)− f(y))) ≥ �∥x− y∥2.
Remark 3.1. When f is a strongly monotone scalar function we also say that it is strongly
increasing. When f is a linear transformation, strong monotonicity reduces to strict
monotonicity: ⟨x− y, f(x)− f(y)⟩ ≤ 0 =⇒ x = y.

Remark 3.2. The uniform Cartesian P-property is a straightforward extension of the
one introduced by Chen and Qi in [7]. When f is linear, the uniform Cartesian P-
property reduces to the Cartesian P-property : maxv=1,...,� ⟨(x− y)v, (f(x)− f(y))v⟩ ≤
0 =⇒ x = y.

Remark 3.3. When f is linear, the uniform Jordan P-property reduces to the Jordan

P-property : (x− y) ∘ (f(x)− f(y)) ≤K 0 =⇒ x = y.
Similarly, when f is linear, the uniform P-property reduces to the P-property :

x− y and f(x)− f(y) operator commute

(x− y) ∘ (f(x)− f(y)) ≤K 0

}

=⇒ x = y.

For a linear transformation l : J → J, the Cartesian P-property implies uniform
nonsingularity (see Proposition 4.5 in [12]). The next proposition shows an analogous
result for nonlinear transformations.

Theorem 3.1. If f has the uniform Cartesian P-property, then it is uniformly non-

singular.
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Proof. Assume that f has the uniform Cartesian P-property. Then for any x, y ∈ J

there exists v ∈ {1, ..., �} such that

⟨(x− y)v, (f(x)− f(y))v⟩ ≥ �∥x− y∥2.
Let cv1, . . . , c

v
rv ∈ Jv be any Jordan frame and let xv =

∑

xv
i c

v
i +

∑

xv
ij , yv =

∑

yvi c
v
i +

∑

yvij, f(x)v =
∑

f v
i c

v
i +

∑

f v
ij and f(y)v =

∑

gvi c
v
i +

∑

gvij be Peirce decompositions.
Then it follows from the inequality above that

∑

(xv
i −yvi )(f

v
i −gvi )≥0

(xv
i − yvi )(f

v
i − gvi ) +

∑

⟨xv
ij−yvij ,f

v
ij−gvij⟩≥0

〈

xv
ij − yvij , f

v
ij − gvij

〉

≥
∑

(xv
i − yvi )(f

v
i − gvi ) +

∑

〈

xv
ij − yvij, f

v
ij − gvij

〉

= ⟨(x− y)v, (f(x)− f(y))v⟩ ≥ �∥x− y∥2.
Thus either there exists an index {̄ such that (xv

{̄ − yv{̄ )(f
v
{̄ − gv{̄ ) ≥ �

r2
∥x − y∥2, or there

exists a pair of indices (̄{, |̄) such that
〈

xv
{̄|̄ − yv{̄|̄, f

v
{̄|̄ − gv{̄|̄

〉

≥ �
r2
∥x − y∥2. In the former

case, we have

min
di,dij≥0

∥

∥

∥f(x)− f(y) +
∑

di(xi − yi)ci +
∑

dij(xij − yij)
∥

∥

∥

≥ min
dvi ,d

v
ij≥0

∥

∥

∥
fv(x)− fv(y) +

∑

dvi (x
v
i − yvi )c

v
i +

∑

dvij(x
v
ij − yvij)

∥

∥

∥

=

⎛

⎜

⎜

⎜

⎜

⎝

∑

(xv
i −yvi )(f

v
i −gvi )≥0

(f v
i − gvi )

2 +
∑

⟨xv
ij−yvij ,f

v
ij−gvij⟩≥0

∥f v
ij − gvij∥2

+
∑

⟨xv
ij−yvij ,f

v
ij−gvij⟩<0

min
dvij≥0

∥f v
ij − gvij + dvij(x

v
ij − yvij)∥2

⎞

⎟

⎟

⎟

⎟

⎠

1/2

≥ ∣f v
{̄ − gv{̄ ∣ ≥

∣f v
{̄ − gv{̄ ∣∣xv

{̄ − yv{̄ ∣
∥x− y∥ ≥ �

r2
∥x− y∥.

The latter case is similarly established. □

In general, the converse of Theorem 3.1 is not true; e.g., when K is polyhedral, the
uniform Cartesian P-property coincides with the uniform P-property, which is not im-
plied by uniform nonsingularity (see [12, Example 4.1]). On the other hand, the next
proposition shows that the converse does hold for Löwner’s operators. Given a scalar
valued function � : ℝ → ℝ, the corresponding Löwner’s operator is defined by

x ∈ J 7→
r
∑

i=1

�(�i(x))ci,

where x =
∑r

i=1 �i(x)ci is any spectral decomposition. We shall denote it by �J.

Theorem 3.2. For the Löwner’s operator �J, the following are equivalent.

(1) � is strongly increasing;
(2) �J has strong monotonicity.
(3) �J has the uniform Cartesian P-property;
(4) �J is uniformly nonsingular;
(5) �J has the uniform Jordan P-property;
(6) �J has the uniform P-property.
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Proof. (1) =⇒ (2): See Theorem 9 in [23].
(2) =⇒ (3): In general, strong monotonicity implies the uniform Cartesian P-

property as

⟨x− y, f(x)− f(y)⟩ =
�
∑

v=1

⟨(x− y)v, (f(x)− f(y))v⟩

≤ � max
v=1,...,�

⟨(x− y)v, (f(x)− f(y))v⟩ .

(3) =⇒ (4): It follows from Theorem 3.1.
(4) =⇒ (1): By using multiples of the unit e and the choices di = d and dij = 0 for all

i, j in the definition of uniform nonsingularity, we deduce that for any d ≥ 0 and any
x > y,

∣�(x)− �(y) + d(x− y)∣∥e∥ = ∥�J(xe)− �J(ye) + d(x− y)e∥ ≥ �(x− y)∥e∥.

Hence �(x) ≥ �(y) for any x > y. Moreover, with d = 0, we get �(x) − �(y) =
∣�(x)− �(y)∣ ≥ �(x− y); i.e., � is strongly increasing.

The implications (2) =⇒ (5) =⇒ (6) follows from [30, Proposition 3.1].
(6) =⇒ (1): By using multiples of the unit e in the definition of the uniformP-property,

we deduce that for any x > y,

(�(x)− �(y))(x− y) = �1((�J(xe)− �J(ye)) ∘ (x− y)e) ≥ �(x− y)2.

□

Next, we consider another special transformation, namely the Lyapunov transforma-
tion.

Theorem 3.3. For the Lyapunov transformation la, the following are equivalent:

(1) a ∈ int(K);
(2) la has strict monotonicity;
(3) la has the Cartesian P-property;
(4) la is uniformly nonsingular;
(5) la has the Jordan P-property;
(6) la has the P-property.

Proof. (1) =⇒ (2): It follows from Theorem 2.2.
(2) =⇒ (3): See proof of Theorem 3.2.
(3) =⇒ (4): See Proposition 4.5 in [12].
(4) =⇒ (6): It follows from [12, Proposition 4.4].
(6) =⇒ (1): Let a =

∑

�i(a)ci be a spectral decomposition. Let I− be the index set
{i : �i(a) ≤ 0}, which is empty if and only if a ∈ int(K); see Theorem 2.2. Consider
x =

∑

i∈I
−

ci, which is zero if and only if I− is empty. Noting that x and la(x) operator
commute and

x ∘ la(x) =
∑

i∈I
−

�i(a)ci ≤K 0,

we deduce that if la satisfies the P-property, then x must be zero, which eventually leads
to a ∈ int(K).

The implication (2) =⇒ (5) =⇒ (6) follows from [18, Theorem 11], □
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4. Applications to nonlinear complementarity problems

4.1. Smoothing Approximation. In [5], Chen and Mangasarian introduced a class of
smoothing functions p(�, z) to approximate the plus function z+ := max{0, z} by double
integrating a probability density function d with parameter � > 0, so that p(�, z) →
z+ =: p(0, z) as � ↓ 0. It turns out that their proposal laid down a basis for many
smoothing algorithms for solving complementarity problems; see, e.g., [1, 3, 4, 9, 25] and
the references therein. In this section, we focus on a subclass of the Chen-Mangasarian
smoothing functions to be used for the smoothing/continuation method mentioned in the
introductory section. In particular, we assume that the probability density function has
the following properties.

(A1) d(t) is symmetric and piecewise continuous with finite number of pieces.

(A2) E[∣t∣]d(t) =
∫ +∞
−∞ ∣t∣d(t)dt = B < +∞.

(A3) d(t) has an infinite support.

Under assumptions (A1) and (A2), the function p(�, z) is equivalent to defining

(2) p(�, z) =

∫ z

−∞
(z − t)d(�, t)dt (� > 0),

where d(�, t) := 1
�
d( t

�
); see proof of Proposition 2.1 of [5].

We summarize below some useful properties of the function p(�, z).

Proposition 4.1. Let d(t) satisfy (A1)–(A3). The following properties hold for the
function p(�, z) defined in (2).

(1) p(�, z) is convex and continuously differentiable.
(2) limz→−∞ p(�, z) = 0, limz→∞ p(�, z)/z = 1, 0 < ∂

∂z
p(�, z) < 1 for all � > 0.

(3) 0 < ∂
∂�
p(�, z) < B for all z ∈ ℝ.

(4) For each z ∈ ℝ, the function � ∈ ℝ++ 7→ p(�, z) is Lipschitz continuous; more-
over, the Lipschitz constant is uniformly bounded above by B over all z ∈ ℝ.

Proof. The first two conclusions have been shown in Proposition 1 of [4]. A straightfor-
ward calculation shows that

∂

∂�
p(�, z) =

∫ +∞

z/�

td(t)dt.

Thus, the third conclusion follows immediately from assumptions (A1) and (A2), whence
the last conclusion follows from the Mean Value Theorem. □

The following are two well-known smoothing functions derived from probability density
functions satisfying assumptions (A1)–(A3).

Example 4.1. Neural network smoothing function [5].

p(�, z) = z + � log(1 + e−
z
� ),

where d(t) = e−t/(1 + e−t)2.

Example 4.2. Chen-Harker-Kanzow-Smale (CHKS) function [2, 21, 28].

p(�, z) = (z +
√

z2 + 4�)/2,

where d(t) = 2/(t2 + 4)
3

2 .
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Henceforth, we shall assume that the smoothing function p(�, z) is defined
with a density function satisfying (A1)–(A3).

With the help of the Chen and Mangasarian smoothing functions, we can define the
smoothing approximation of the Euclidean projector ProjK(z) as the Löwner’s operator

(3) pJ(�, ⋅) : z ∈ J 7→
r
∑

i=1

p(�, �i(z))ci,

where z =
∑r

i=1 �i(z)ci is a spectral decomposition of z. For instance, the Löwner’s
operator obtained from the CHKS smoothing function is

pJ(�, z) = (z +
√

z2 + 4�e)/2,

where
√
x denotes the unique y ∈ int(K) with y2 = x.

We formally state several well-known results on the smooth approximation pJ(�, z) in
the following proposition.

Proposition 4.2 (Proposition 3.2 of [12]). The following statements are true.

(a) lim�↓0 pJ(�, z) = ProjK(z).
(b) pJ(�, z) is continuously differentiable.
(c) For each � > 0, the Jacobian of the map z 7→ pJ(�, z) is

w 7→
∑

diwici +
∑

dijwij

where z =
∑

�i(z)ci is a spectral decomposition, w =
∑

wici+
∑

wij is the Peirce
decomposition, di =

∂
∂�
p(�, �i(z)) and

dij =

{

p(�,�i(z))−p(�,�j(z))

�i(z)−�j(z)
if �i(z) ∕= �j(z),

∂
∂�
p(�, �i(z)) if �i(z) = �j(z).

Moreover, di, dij ∈ (0, 1).
(d) For each � ≥ 0 and each b >K 0, pJ(�, z) = b has a unique solution.

4.2. Numerical Methods. In this subsection, we apply uniform nonsingularity to
two numerical approaches for solving complementarity problems.

4.2.1. Non-interior continuation method. In [11], Chen and Tseng developed a non-
interior continuation method for solving monotone SDCPs. Later, Chen and Qi [7]
showed that Chen-Tseng’s algorithm can be applied to the Cartesian P-SDLCPs. In
this section, we demonstrate that uniform nonsingularity ensures the boundedness of
neighborhoods as well as the nonsingularity of the Jacobian used in the non-continuation
method, and hence extend Chen-Tseng’s algorithm to a more general class of nonmono-
tone and nonlinear problems.

Using the fix-point formulation and the smoothing projection function pJ, the algorithm
uses the equation H�(x, y) = 0, where

H�(x, y) = (��(x, y), f(x)− y)

and ��(x, y) = x− pJ(�, x− y), to approximate (1).

Lemma 4.1. Fix any � ∈ ℝ++, any x, y, u, v ∈ J. We have that �� is continuously
differentiable and

J��(x, y)(u, v) =
∑

((1− di)ui + divi)ci +
∑

((1− dij)uij + dijvij),
9



where x − y =
∑

�i(x − y)ci is a spectral decomposition, u =
∑

uici +
∑

uij and v =
∑

vici +
∑

vij are Peirce decompositions, di =
∂
∂�
p(�, �i(x− y)) and

dij =

{

p(�,�i(x−y))−p(�,�j (x−y))

�i(x−y)−�j (x−y)
if �i(x− y) ∕= �j(x− y),

∂
∂�
p(�, �i(x− y)) if �i(x− y) = �j(x− y).

Proof. It follows from Proposition 4.2 and the Chain Rule. □

For a fixed � > 0, each step of the Chen-Tseng’s algorithm solves the equation
JH�(x, y)(u, v) = (r, s) for some (r, s) ∈ J × J to update the Newton direction, and
then decreases the parameter. For the convergence analysis, we need the following neigh-
borhood

(4) N� := {(�, x, y) ∈ ℝ++ × J× J : ∥H�(x, y)∥ ≤ ��},
where � ∈ ℝ++ is a constant.

With the assumption of monotonicity replaced by the Cartesian P-property, Chen
and Qi [7] established the nonsingularity of the Jacobian JH�(x, y) and the boundedness
of the neighborhood above for the SDLCP. Here, we further relax the Cartesian P-
property requirement by uniform nonsingularity.

First, we address the boundedness of the neighborhood N�. Instead of verifying those
conditions in [11], we give a direct proof under the assumption of uniform nonsingu-
larity.

Proposition 4.3. If f(x) is uniformly nonsingular, then the set

{(�, x, y) ∈ N� : 0 < � ≤ �0}
is bounded for any � > 0 and �0 > 0.

Proof. Suppose on the contrary that there exist �, �0 > 0 and a sequence (�k, x
k, yk) ∈ N�

with 0 < �k ≤ �0 and ∥xk∥ → ∞. By (4), for each k, we have that

(5) ∥xk − pJ(�k, x
k − yk)∥ ≤ ��k,

and

(6) ∥f(xk)− yk∥ ≤ ��k.

Then by the uniform nonsingularity of f , it must happen that ∥f(xk) − f(0)∥ ≥
�∥xk∥ → ∞, which together with (6) implies that ∥yk∥ → ∞.

Let xk−yk =
∑

�i(x
k−yk)cki be a spectral decomposition, and let xk =

∑

xk
i c

k
i +
∑

xk
ij ,

yk =
∑

yki c
k
i +

∑

ykij, and f(xk) =
∑

fk
i c

k
i +

∑

fk
ij be Peirce decompositions. Since

xk − yk =
∑

�i(x
k − yk)cki =

∑

(xk
i − yki )c

k
i +
∑

(xk
ij − ykij) are both Peirce decompositions

with respect to {ck1, . . . , ckr}, it follows that �i(x
k−yk) = xk

i −yki and xk
ij = ykij. Therefore

pJ(�k, x
k−yk) =

∑

p(�k, x
k
i −yki )c

k
i , and thus (5) implies that {∥xk

ij∥}, whence {∥ykij∥}, is
bounded for all i, j, which further implies that {∥fk

ij∥} is bounded, and that the index set

I := {i : {xk
i } is unbounded} is nonempty. Observe that p(�k, �i(x

k − yk)) ≥ 0. Hence,
by taking a subsequence if necessary, we obtain that that xk

i → +∞ for all i ∈ I.
Consider the bounded sequence {x̃k :=

∑

i/∈I x
k
i c

k
i +

∑

xk
ij}. Let f(xk) − f(x̃k) =

∑

g̃ki c
k
i +

∑

g̃kij be a Peirce decomposition. Consider another bounded sequence
{

x̂k := x̃k +
∑

i/∈I

"

∣g̃ki ∣+ 1
g̃ki c

k
i +

∑ "

∥g̃kij∥+ 1
g̃kij

}

,

10



where " = 1
2
. Let f(xk) − f(x̂k) =

∑

ĝki c
k
i +

∑

ĝkij be a Peirce decomposition. For

i ∈ I, let dki = max
{

0,− g̃ki
xk
i

}

; for i /∈ I, let dki = 1
"
(∣g̃ki ∣ + 1). Let dkij =

1
"
(∥g̃kij∥ + 1) for

1 ≤ i < j ≤ r. By construction, dki ≥ 0 and dkij > 0. Recall uniform nonsingularity:

∥

∥

∥

∥

∥

∥

∥

∥

∑

ĝki c
k
i +

∑

ĝkij +
∑

i∈I
dki x

k
i c

k
i

−
∑

i/∈I
dki

"

∣g̃ki ∣+ 1
g̃ki c

k
i −

∑

dkij
"

∥g̃kij∥+ 1
g̃kij

∥

∥

∥

∥

∥

∥

∥

∥

≥ �∥xk − x̂k∥,

which simplifies to
∥

∥

∥

∥

∥

∥

f(x̃k)− f(x̂k) +
∑

i∈I,g̃ki >0

g̃ki c
k
i

∥

∥

∥

∥

∥

∥

≥ �∥xk − x̂k∥.

As k → +∞, the right hand side tends to +∞ while {(f(x̃k), f(x̂k))} remains bounded.
Thus, by taking a subsequence if necessary, we conclude that there is a index i ∈ I such
that ∣g̃ki ∣ → +∞ and gki > 0 for all k; i.e., there is some index i with xk

i → +∞ and
g̃ki → +∞. For this i, since f(x̃k) is bounded, g̃ki → +∞ implies fk

i → +∞. Therefore
yki → +∞ by (6), and hence it follows that

xk
i − p(�k, x

k
i − yki ) ≥ xk

i −B�k − (xk
i − yki )

+ = min{xk
i , y

k
i } − B�0 → +∞,

where we have used Proposition 4.1 in the inequality. This contradicts (5). □

Next, we establish the nonsingularity of the Jacobian over the neighborhood with the
aid of the following lemma.

Lemma 4.2. If f is uniformly nonsingular and bounded Jacobian on the open subset
Ω ⊆ J, then there exists � > 0 such that for any x ∈ Ω, any u ∈ J, any Jordan frame
{c1, . . . , cr}, and any di, dij ∈ [0, 1], it holds

∥

∥

∥

∑

(dif
u
i + (1− di)ui) ci +

∑

(

dijf
u
ij + (1− dij)uij

)

∥

∥

∥
≥ �∥u∥,

where u =
∑

uici +
∑

uij and Jf(x)u =
∑

fu
i ci +

∑

fu
ij are Peirce decompositions.

Proof. Let m ≥ 1 be an upper bound on ∥Jf(x)∥ over Ω. Fix an arbitrary x ∈ Ω and
an arbitrary Jordan frame {c1, . . . , cr}. Since Ω is open, there exists � > 0 such that any
x + u ∈ Ω whenever ∥u∥ ≤ �. The uniform nonsingularity of f gives an � > 0 such
that

min
di,dij≥0

∥

∥

∥

∥

∑

(

gi − fi
t

+ diui

)

ci +
∑

(

gij − fij
t

+ dijuij

)∥

∥

∥

∥

≥ �∥u∥

for each u ∈ J and each t ∈ (0, �∥u∥/(∥u∥ + 1)) (so that x + tu ∈ Ω), where f(x) =
∑

fici +
∑

fij , f(x + tu) =
∑

gici +
∑

gij are Peirce decompositions. Without loss of
generality, we assume � ≤ 1. Taking limit as t ↓ 0 then gives

(7) min
di,dij≥0

∥

∥

∥

∑

(fu
i + diui) ci +

∑

(

fu
ij + dijuij

)

∥

∥

∥
≥ �∥u∥

for each u ∈ J. Fix an arbitrary nonzero u ∈ J and let

�̄ :=
1

∥u∥ min
di,dij∈[0,1]

∥

∥

∥

∑

(dif
u
i + (1− di)ui)ci +

∑

(dijf
u
ij + (1− dij)uij)

∥

∥

∥
.
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Evaluating the above minimum value leads to

(8) �̄2∥u∥2 =
∑

uifu
i ≥0

min{∣fu
i ∣, ∣ui∣}2 +

∑

⟨uij ,fu
ij⟩≥min{∥fu

ij∥,∥uij∥}2
min{∥fu

ij∥, ∥uij∥}2

+
∑

⟨uij ,fu
ij⟩<min{∥fu

ij∥,∥uij∥}2
∥uij − pij∥2.

where, for simplicity of notation, pij denotes the projection Projℝ+(uij−fu
ij)

uij. We shall

show that �̄ ≥ min{ 1
4r2

, �
4r(1+mr2)

}, whence proving the proposition. From here onwards,

suppose that �̄ < 1
4r2

.
Consider the perturbation ū =

∑

ūici +
∑

ūij, where

ūi =

{

− �
4mr3

∥u∥fu
i

∣fu
i ∣+1

if ∣ui∣ ≤ �̄∥u∥,
ui otherwise;

and ūij =

⎧









⎨









⎩

− �
4mr3

∥u∥fu
ij

∥fu
ij∥+1

if ∥uij∥ ≤ �̄∥u∥,
pij if ∥uij∥ > �̄∥u∥ and

∥uij − pij∥ ≤ �̄∥u∥,
uij otherwise.

Under the assumption �̄ < 1
4r2

and � ≤ 1, it holds ∥u− ū∥ ≤ (r2�̄ + �
4mr

)∥u∥ < 1
2
∥u∥;

so that ȳ ∈ S, ∥fu − f ū∥ ≤ (mr2�̄ + �
4r
)∥u∥ and

(9) ∥ū∥ ≥ ∥u∥ − ∥u− ū∥ >
1

2
∥u∥.

We now deduce an upper bound on mindi,dij≥0∥f ū +
∑

diūici +
∑

dijūij∥ in terms of

�̄∥u∥. First, consider the term mindi≥0∣f ū
i + diūi∣. If ∣ui∣ ≤ �̄∥u∥, then

(10)

min
di≥0

∣f ū
i + diūi∣ ≤ min

di≥0
∣fu

i + diūi∣+ ∣fu
i − f ū

i ∣

= ∣fu
i − f ū

i ∣ ≤ ∥fu − f ū∥ ≤
(

mr2�̄+
�

4r

)

∥u∥,

where the equality follows from ūif
u
i < 0 when fu

i ∕= 0. If ∣ui∣ > �̄∥u∥, then we deduce
from (8) that either uif

u
i < 0 or ∣fu

i ∣ ≤ �̄∥u∥. In the former case, the inequality (10) still
holds since ūi = ui by definition. In the latter, a similar inequality holds:

min
di≥0

∣f ū
i + diūi∣ ≤ min

di≥0
∣fu

i + diūi∣+ ∣fu
i − f ū

i ∣ ≤ ∣fu
i ∣+ ∣fu

i − f ū
i ∣ ≤

(

�̄+mr2�̄+
�

4r

)

∥u∥.

Next, consider the term mindij≥0∣f ū
ij+dijūij∣. If ∣uij∣ ≤ �̄∥u∥, then as before, mindij≥0∥f ū

ij+

dijūij∥ ≤ (mr2�̄ + �
4r
)∥u∥ by the definition of ūij. If ∣uij∣ > �̄∥u∥, then we deduce that

either
〈

uij, f
u
ij

〉

< min{∥fu
ij∥, ∥uij∥}2 and ∥uij − pij∥ ≤ �̄∥u∥, or ∥fu

ij∥ ≤ �̄∥u∥. In the
former case, ūij = pij ∈ ℝ+(uij − fu

ij) has negative inner product with fu
ij , whence the

minimum of ∥fu
ij + dij ūij∥ over dij ≥ 0 is attained at dij =

1
∥pij∥∥Projℝ+(−pij)

fu
ij∥ with the

value

∥fu
ij − Projℝ+(fu

ij−uij)
fu
ij∥

= ∥fu
ij − Projℝ(fu

ij−uij) f
u
ij∥

=
∥

∥ fu
ij − uij + uij − Projℝ(fu

ij−uij)
(fu

ij − uij + uij)
∥

∥

=
∥

∥ fu
ij − uij − Projℝ(fu

ij−uij)(f
u
ij − uij) + uij − Projℝ(fu

ij−uij) uij

∥

∥

=
∥

∥ fu
ij − uij − Projℝ(fu

ij−uij)(f
u
ij − uij) + uij − Projℝ+(uij−fu

ij)
uij

∥

∥

= ∥uij − pij∥ ≤ �̄∥u∥.
12



In the latter, mindij≥0∥fu
ij + dijūij∥ ≤ ∥fu

ij∥ ≤ �̄∥u∥. Thus in either cases,

min
dij≥0

∥f ū
ij + dijūij∥ ≤ min

dij≥0
∥fu

ij + dijūij∥+ ∥fu
ij − f ū

ij∥

≤ �̄∥u∥+ ∥fu
ij − f ū

ij∥ ≤
(

�̄+mr2�̄+
�

4r

)

∥u∥.

In summary, ((1 +mr2)�̄+ �
4r
)∥u∥ is an upper bound on all terms, whence leading to

min
di,dij≥0

∥

∥

∥
f ū +

∑

diūici +
∑

dijūij

∥

∥

∥
≤ r

(

(1 +mr2)�̄+
�

4r

)

∥u∥

< 2r
(

(1 +mr2)�̄+
�

4r

)

∥ū∥,

where the last inequality follows from (9). Finally, it follows from (7) that 2r((1+mr2)�̄+
�
4r
) ≥ �, whence �̄ ≥ �

4r(1+mr2)
. □

Proposition 4.4. Let C be a compact subset of J. If f is uniformly nonsingular,
then for any � ∈ ℝ++, and any (x, y) ∈ C × J the Jacobian JH�(x, y) is nonsingular.
Moreover, we have that

sup
(�,x,y)∈ℝ++×C×J

∥JH�(x, y)
−1∥ < ∞.

Proof. Since f is continuously differentiable, its Jacobian is uniformly bounded on the
compact set C̄ := {x + u : x ∈ C, ∥u∥ ≤ 1}. Thus by Lemma 4.2, the uniform
nonsingularity of f implies that for any x ∈ C ⊂ int(C̄), any u ∈ J, any Jordan frame
{c1, . . . , cr}, and any di, dij ∈ [0, 1], it holds

(11)
∥

∥

∥

∑

(dif
u
i + (1− di)ui) ci +

∑

(

dijf
u
ij + (1− dij)uij

)

∥

∥

∥
≥ �∥u∥,

where Jf(x)u =
∑

fu
i ci +

∑

fu
ij is the Peirce decomposition.

We now show that for any (�, x, y) ∈ ℝ++×C×J, the linear system JH�(x, y)(u, v) = 0
only has the trivial solution; i.e., zero is the only solution of the following linear system

J��(x, y)(u, v) = 0, Jf(x)u− v = 0.

Eliminating v from above equation, we obtain from Lemma 4.1 that

∑

(dif
u
i + (1− di)ui)ci +

∑

(dijf
u
ij + (1− dij)uij) = 0

where x − y =
∑

�i(x − y)ci is a spectral decomposition, and u =
∑

uici +
∑

uij and
Jf(x)u =

∑

fu
i ci +

∑

fu
ij are Peirce decompositions, and di, dij ∈ (0, 1). It is easy to see

that u = 0 follows immediately from (11), and thus v = Jf(u) = 0.
Now we know that for any (r, s) ∈ J× J, there is a unique (u, v) ∈ J× J such that

∑

(divi + (1− di)ui)ci +
∑

(dijvij + (1− dij)uij) = r, Jf(u)− v = s.

Let v =
∑

vici+
∑

vij , r =
∑

rici+
∑

rij and s =
∑

sici+
∑

sij be Peirce decompositions
Eliminating v and rearranging the above equation, we get

∑

(dif
u
i + (1− di)ui)ci +

∑

(dijf
u
ij + (1− dij)uij) =

∑

(ri + disi)ci +
∑

(rij + dijsij),
13



Since 0 < di, dij < 1, it follows that
∥

∥

∥

∑

(ri + disi)ci +
∑

(rij + dijsij)
∥

∥

∥

2

≤
(

∥r∥+
∥

∥

∥

∑

disici +
∑

dijsij

∥

∥

∥

)2

≤ 2

(

∥r∥2 +
∥

∥

∥

∑

disici +
∑

dijsij

∥

∥

∥

2
)

≤ 2(∥r∥2 + ∥s∥2).

Together with (11), we deduce that ∥u∥ ≤
√
2
�

√

∥r∥2 + ∥s∥2. Thus

∥v∥ ≤ m∥u∥+ ∥s∥ ≤
(√

2

�
m+ 1

)

√

∥r∥2 + ∥s∥2,

where m is an upper bound on the continuous transformation x 7→ ∥Jf(x)∥ over the
compact set C. Consequently ∥JH�(x, y)

−1∥ is uniformly bounded over {(�, x, y) ∈ N� :
� ∈ (0, �0]}. □

Due to Proposition 4.4 and 4.3, we conclude by Proposition 1 in [11], the following.

Theorem 4.1. If the transformation f : J → J is uniformly nonsingular, then the
Chen-Tseng’s algorithm, when applied to NCPK(J)(f), is globally convergent with linear
convergence rate.

4.2.2. Squared smoothing Newton method. The squared smoothing Newton method de-
signed for solving nonsmooth matrix equations in [26] achieves a quadratic convergence
rate applied to SDCPs. Two essential concepts for the convergence analysis are the strong
semismoothness and the nonsingularity of B-subdifferential of the squared smoothing
function. To establish this, they used the condition that the Jacobian of the problem is
positive definite on the affine hull of the critical cone at the solution. In this section, we
replace this assumption by uniform nonsingularity and extend the convergence result
for a class of smoothing functions.

Let G(�, x) := x−pJ(�, x−f(x)), then G is continuously differentiable at each (�, x) ∈
ℝ++ × J. The squared smoothing Newton method uses the merit function �(�, x) :=
∥E(�, x)∥2 for the line search, where

E(�, x) :=

[

�
G(�, x)

]

.

First, we establish the nonsingularity of the Jacobian of E.

Proposition 4.5. Suppose that f is uniformly nonsingular. Then the Jacobian
JE(�, x) is nonsingular for all (�, x) ∈ ℝ++ × J. Moreover, if C is a compact sub-
set of J, then there exists 
 > 0 such that for any (�, x) ∈ ℝ++ × C and (�, ℎ) ∈ ℝ× J,
it holds that

(12) ∥JE(�, x)(�, ℎ)∥ ≥ 
∥(�, ℎ)∥.
Proof. Fix any (�, x) ∈ ℝ++ × C. Suppose that there exists (�, ℎ) ∈ ℝ × J such that
JE(�, x)(�, ℎ) = 0, i.e.,

(13)

[

�
�∇�G(�, x) + JxG(�, x)ℎ

]

= 0,

or equivalently,

� = 0, JxG(�, x)ℎ = 0.
14



Let x−f(x) =
∑

�ici be a spectral decomposition. Let ℎ =
∑

ℎici+
∑

ℎij and Jf(x)ℎ =
∑

fℎ
i ci +

∑

fℎ
ij be Peirce decompositions. We deduce from Lemma 4.2 that

∥JxG(�, x)ℎ∥ =
∥

∥

∥

∑

(dif
ℎ
i + (1− di)ℎi)ci +

∑

(dijf
ℎ
ij + (1− dij)ℎij)

∥

∥

∥
≥ �∥ℎ∥.

Thus, JxG(�, x)ℎ = 0 implies that ℎ = 0, and hence JE(�, x) is nonsingular.

“Moreover”: Take m ≥ 1 such that ∥∇�G(�, x)∥ ≤ √
rB ≤ m, � ≥ 1

m
, and

√

1− 1
m8 >

1
m2 .

If � ≥ 1
m4∥(�, ℎ)∥, then it follows from (13) that

∥JE(�, x)(�, ℎ)∥ = ∥(�, �∇�G(�, x) + JxG(�, x)ℎ)∥ ≥ 1

m4
∥(�, ℎ)∥.

If � < 1
m4∥(�, ℎ)∥, then we have ∥ℎ∥ ≥

√

1− 1
m8∥(�, ℎ)∥, whence

∥JE(�, x)(�, ℎ)∥ ≥ ∥�∇�G(�, x) + JxG(�, x)ℎ∥ ≥ ∥JxG(�, x)ℎ∥ − ∥�∇�G(�, x)∥

≥
(

1

m

√

1− 1

m8
− 1

m3

)

∥(�, ℎ)∥ ≥ 1

m3
∥(�, ℎ)∥.

Hence, (12) is satisfied by taking 
 = 1
m4 . □

For the quadratic convergence of the squared smoothing method, one of the key issues
is the nonsingularity of the B-subdifferential of E at (0, x). Since E is locally Lipschitz
continuous, it is differentiable almost everywhere by Rademacher’s theorem. Let DE be
the set of points at which E is differentiable. The B-subdifferential of E at (0, x), denoted
∂BE(�, x), is defined by

∂BE(0, x) =
{

lim
k→∞

JE(�k, xk) : (�k, xk) ∈ DE, (�k, xk) → (0, x)
}

.

Proposition 4.6. If f is uniformly nonsingular, then every U ∈ ∂BE(0, x) is non-
singular.

Proof. Let U be an element of ∂BE(0, x). According to the definition of B-subdifferential
of E, there is a sequence {(�k, xk)} ⊂ DE converging to (0, x) such that

U = lim
k→∞

JE(�k, xk).

Since E is continuously differentiable, we may assume that �k > 0 for all k by replacing
�k with �k + 1

k
. Since xk converges to x, all xk will be in some compact set containing x.

Thus, by Proposition 4.5,

∥U(�, ℎ)∥ = lim
k→∞

∥JE(�k, xk)(�, ℎ)∥ ≥ 
∥(�, ℎ)∥ ∀(�, ℎ) ∈ ℝ× J

implying that U is nonsingular. □

The other key condition, namely the strong semismoothness of E at (0, x), follows
from the strong semismoothness of the projection function over a symmetric cone (see
Proposition 3.3 in [29]) and the additional assumption that f has locally Lipschitz Jaco-
bian. Thus, combining Propositions 4.5 and 4.6, we conclude by Theorem 4.2 of [26], the
following.

Theorem 4.2. If the transformation f : J → J is uniformly nonsingular, then the
Qi-Sun-Sun’s squared smoothing Newton method, when applied to NCPK(J)(f) is globally
convergent. If, in addition, f has Lipschitz continuous Jacobian around the solution, then
the algorithm converges quadratically around the solution.
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We conclude this section by pointing out that the conclusions above is not restricted to
the squared smoothing function—it is applicable to a whole class of smoothing functions.

5. GUS-property

In this section, we study the unique solvability of NCPK(f) under the assumption
uniform nonsingularity of the nonlinear transformation f : J → J. This leads to the
GUS-property of the linear transformation l : J → J under uniform nonsingularity.

Definition 5.1. A linear transformation l : J → J is said to have the globally unique
solvability- (GUS-)property if LCPK(l, q) is uniquely solvable for every q ∈ J.

To motivate the research, we consider the map H : ℝ+ × J → J defined by

(14) (�, z) 7→ (1− �)f(pJ(�, z))− pJ(�,−z) + �b,

where pJ(�, z) is the smoothing approximation of ProjK(z) defined in (3), and b ∈ J

is fixed. This map is a homotopy between z 7→ b − pJ(1,−z) and z 7→ f(ProjK(z)) +
Proj−K(z). When b >K 0 and � ∈ (0, 1] is fixed, we refer the equation H(�, z) = 0 as the
smoothing normal map equation (SNME). When � = 1, the SNME pJ(1,−z) = b has a
unique solution by part (d) of Proposition 4.2. In the limit � ↓ 0, the SNME reduces to
the normal map equation (NME) f(ProjK(z)) + Proj−K(z) = 0, which gives a solution
to the NCPK(f) via x = ProjK(z). This homotopy was used in a recent paper [12] to
describe and analyze a continuation method for NCPK(f).

The following lemma extracted from [12] will be used in proving our main result for
this section.

Lemma 5.1 (Proposition 5.3 of [12]). If f is uniformly nonsingular, then for each
fixed b >K 0,

(a) the SNME has a unique solution z(�) for each � ∈ (0, 1];
(b) the set T := {(�, z(�)) : � ∈ (0, 1]} is bounded;
(c) every accumulation point (0, z∗) of T gives a solution z∗ to the NME.

Basically, the above result shows that under uniform nonsingularity, the set T is
bounded and forms a smooth trajectory. Moreover, it has at least one accumulation point
as the parameter � decreases to zero along the trajectory, and every accumulation point
is a solution of the NME. However, we have not ruled out the possibility of multiple
accumulation points. By exploiting uniform nonsingularity, we next show that T
actually converges, and that every solution of the NME is the limit of the trajectory with
b = e, whence establish the unique solvability of f .

We begin with the following lemma, which is a refinement of [12, Proposition 5.2].

Lemma 5.2. If f is uniformly nonsingular and C ⊂ J is compact, then there exists
� > 0 such that for all (�, z) ∈ (0, 1

2
]× C it holds that

∥JzH(�, z)w∥ ≥ �∥w∥,
for any w ∈ J.

Proof. The transformation pJ is continuous on the compact set [0, 1
2
] × C and f is con-

tinuously differentiable. Hence the set pJ([0,
1
2
] × C) is compact, and the Jacobian Jf

is uniformly bounded, say by m, on this compact set; i.e., ∥Jf(pJ(�, z))∥ ≤ m for all
(�, z) ∈ [0, 1

2
]× C.

16



Fix any (�, z) ∈ (0, 1
2
)×C and let z =

∑r
i=1 �ici be a spectral decomposition. For any

w ∈ J, we have

(15) JzH(�, z)w = (1− �)Jf(pJ(�, z))
[

∑

diwici +
∑

dijwij

]

+
∑

(1− di)wici +
∑

(1− dij)wij

where w =
∑

wici +
∑

wij is a Peirce decomposition, di =
∂
∂�
p(�, �i) and

dij =

{

p(�,�i)−p(�,�j)

�i−�j
if �i ∕= �j,

∂
∂�
p(�, �i) if �i = �j,

with di ∈ (0, 1) and dij ∈ (0, 1). Let y =
∑

diwici +
∑

dijwij. Then, in the Peirce
decomposition y =

∑

yici +
∑

yij we have yi = diwi and yij = dijwij. Rewriting (15) in
terms of y gives

JzH(�, z)w = (1− �)Jf(pJ(�, z))y +
∑ 1− di

di
yici +

∑ 1− dij
dij

yij

with 1−di
di

,
1−dij
dij

> 0.

Since f is uniformly nonsingular, it follows that

(1− �)

∥

∥

∥

∥

f(pJ(�, z) + ty)− f(pJ(�, z))

t
+
∑ 1− di

di(1− �)
yici +

∑ 1− dij
dij(1− �)

yij

∥

∥

∥

∥

≥ �(1− �)∥y∥ ≥ �

2
∥y∥,

which, in the limit as t → 0, becomes

∥JzH(�, z)w∥ =

∥

∥

∥

∥

(1− �)Jf(pJ(�, z))y +
∑ 1− di

di
yici +

∑ 1− dij
dij

yij

∥

∥

∥

∥

≥ �

2
∥y∥.

If ∥y∥ ≥ 1
2+m

∥w∥, then it follows from the above inequality that

∥JzH(�, z)w∥ ≥ �

2(2 +m)
∥w∥.

Suppose ∥y∥ < 1
2+m

∥w∥. Observe that (15) can also be rewritten as

JzH(�, z)w = (1− �)Jf(pJ(�, z))y + w − y,

which implies that

∥JzH(�, z)w∥ = ∥(1− �)Jf(pJ(�, z))y + w − y∥

≥ ∥w∥ − ∥y∥ − 1

2
∥Jf(pJ(�, z))y∥ ≥ 1

2
∥w∥.

The proposition follows by taking � = min{1
2
, �
2(2+m)

}. □

Theorem 5.1. If f is uniformly nonsingular, then NCPK(f) has a unique solution.

Proof. Assume that f is uniformly nonsingular. The existence of solution to NCPK(f)
is guaranteed by Lemma 5.1. To prove uniqueness, we shall show that the trajectory
T = {(�, z(�)) : � ∈ (0, 1

2
]}, where z(�) is the unique solution to the SNME with b = e,

converges as � ↓ 0; and that every solution to NCPK(f) (together with � = 0) is an
accumulation point of T , whence its limit.

In this proof, H refers to the transformation defined by (14) with b = e.
17



Differentiating H(�, z(�)) = 0 with respect to � gives

∇�H(�, z(�)) + JzH(�, z(�))∇z(�) = 0.

By part (b) of Lemma 5.1, the trajectory T is bounded. Together with the continuity of pJ
and f , this implies that {∥f(pJ(�, z))∥ : (�, z) ∈ T} is bounded, say by d. The transfor-
mation f is continuously differentiable, whence its Jacobian Jf is uniformly bounded, say
by m, on the compact set cl(pJ(T )). Observe that ∥∇�pJ(�, x)∥2 =

∑r
i=1

∂
∂�
p(�, �i(x))

2 ≤
rB2 by part (4) of Proposition 4.1. Therefore for all � ∈ (0, 1

2
],

∥∇�H(�, z(�))∥ =

∥

∥

∥

∥

(1− �)Jf(pJ(�, z(�)))[∇�pJ(�, z(�))]

− f(pJ(�, z(�)))−∇�pJ(�,−z(�)) + e

∥

∥

∥

∥

≤ ∥(1− �)Jf(pJ(�, z(�)))[∇�pJ(�, z(�))]∥
+ ∥f(pJ(�, z(�)))∥+ ∥∇�pJ(�,−z(�))∥+ ∥e∥

≤ m
√
rB + d+

√
rB + ∥e∥ =: d̄,

which together with Lemma 5.2 and the compactness of cl(T ), implies ∥∇�z(�)∥ =

∥−JzH(�, z(�))−1∇�H(�, z(�))∥ ≤ d̄
�
. For any �1, �2 ∈ (0, 1

2
], it follows that

∥z(�1)− z(�2)∥ =

∥

∥

∥

∥

∫ 1

0

(�1 − �2)∇�z(�1 + t(�2 − �1))dt

∥

∥

∥

∥

≤ d̄

�
∣�1 − �2∣,

which shows that the trajectory T is Cauchy, whence convergent, as � ↓ 0.
Now, let z∗ be a solution to NCPK(f); i.e., z

∗ satisfies H(0, z) = 0. Let z∗ =
∑

�i(z
∗)ci

be a spectral decomposition, and denote the index sets {i : �i(z
∗) > 0} and {i : �i(z

∗) ≤
0} by I+ and I−, respectively. Recall from Theorem 2.3 that under the Jordan frame
{c1, . . . , cr}, J decomposes into the orthogonal direct sum J =

⊕

1≤i≤j≤r Jij such that

the subspaces J+ :=
⊕

i,j∈I+ Jij and J− :=
⊕

i,j∈I
−

Jij are Jordan subalgebras. Denote

by l+ the linear transformation x 7→ ProjJ+ Jf(z∗)x on J+. The linear transformation
l+ is invertible. If not, then there exists 0 ∕= x ∈ J+ such that l+(x) = 0; hence for the
perturbation

y" := x− "
∑

i∈I
−

1

∣li∣+ 1
lici − "

∑

i,j∈I
−

1

∥lij∥+ 1
lij − "

∑

(i,j)∈I+×I
−

1

∥lij∥+ 1
lij (" > 0),

where x =
∑

i∈I+ xici+
∑

i,j∈I+ xij and Jf(z∗)x =
∑

i∈I
−

lici+
∑

i,j∈I
−

lij+
∑

(i,j)∈I+×I
−

lij
are Peirce decompositions, and the nonnegative numbers

d"i :=

{

0 if i ∈ I+,

(∣li∣+ 1)/" otherwise,
and d"ij :=

{

0 if i, j ∈ I+,

(∥lij∥+ 1)/" otherwise,

we have
∥

∥

∥
Jf(z∗)x+

∑

d"iy
"
i ci +

∑

d"ijy
"
ij

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∑

i∈I
−

(li + d"iy
"
i )ci +

∑

i,j∈I
−

(lij + d"ijy
"
ij) +

∑

(i,j)∈I+×I
−

(lij + d"ijy
"
ij)

∥

∥

∥

∥

∥

∥

= 0,

so that
∥

∥

∥
Jf(z∗)y" +

∑

d"iy
"
i ci +

∑

d"ijy
"
ij

∥

∥

∥
= ∥Jf(z∗)x− Jf(z∗)y"∥

≤ ∥Jf(z∗)∥ ∥x− y"∥ <
�

2
∥x∥ < �∥y"∥
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for all " > 0 sufficiently small, contradicting the uniform nonsingularity of f . Let
c+ ∈ J+ denote the unit

∑

i∈I+ ci of J+, and let w ∈ J+ denote its pre-image under

l+. Similarly denote by c− ∈ J− the unit e − c+ =
∑

i∈I
−

ci of J−. For �, �̄ > 0 with �
sufficiently small,

z∗ − �w − �̄c− =
∑

i∈I+

�i(z
∗)ci − �w +

∑

i∈I
−

(�i(z
∗)− �̄)ci

has
∑

i∈I+ �i(z
∗)ci − �w ∈ int(K(J+)) and

∑

i∈I
−

(�i(z
∗)− �̄)ci ∈ − int(K(J−)), whence

H(0, z∗ − �w − �̄c−) = f(ProjK(z
∗ − �w − �̄c−))− ProjK(−z∗ + �w + �̄c−)

= f

⎛

⎝

∑

i∈I+

�i(z
∗)ci − �w

⎞

⎠+
∑

i∈I
−

(�i(z
∗)− �̄)ci

= H(0, z∗)− �Jf(z∗)w − �̄
∑

i∈I
−

ci + o(�)

= −�c+ − �(Jf(z∗)w − ProjJ+ Jf(z∗)w)− �̄c− + o(�).

Let Jf(z∗)w =
∑

l̄ici +
∑

l̄ij be the Peirce decomposition. By [15, Lemma VI.3.1], the
image of H(0, z∗ − �w − �̄c−) under the Frobenius transformation at −∑(i,j)∈I+×I

−

l̄ij is

−�c+ − �̄c− − �
∑

i,j∈I
−

l̄ij −
�

4
ProjJ

−

⎛

⎝

∑

(i,j)∈I+×I
−

l̄ij

⎞

⎠

2

+ o(�).

Since (c+, c−) ∈ int(K(J+)) × int(K(J−)), this image is in − int(K) when both � and
�/�̄ are sufficiently small. By [15, Proposition VI.3.2] and the fact that the inverse of a
Frobenius transformation is a Frobenius transformation, it follows that H(0, z∗ − �w −
�̄c−) <K 0 when �, �̄ > 0 has �/�̄ and �̄ sufficiently small, say when �̄ ∈ (0, �̄0] and
� ∈ (0, ��̄]. In fact, �0 and � can be chosen so that

H(0, z∗ − ��̄w − �̄c−) ≤K −�̄x̄ <K 0

whenever �̄ ∈ (0, �̄0], where x̄ denotes half of the image of �c+ + c− + �
∑

i,j∈I
−

l̄ij +

�ProjJ
−

(
∑

(i,j)∈I+×I
−

l̄ij)
2/4 under the Frobenius transformation at

∑

(i,j)∈I+×I
−

l̄ij. For

convenience of notation, we shall denote the sum z∗−��̄w−�̄c− by z∗
�̄
. It is straightforward

to deduce from Proposition 4.2 and the continuous differentiability of f that H is locally
Lipschitz at (0, z∗) over ℝ+×J, say ∥H(�1, z

∗+x)−H(�2, z
∗+y)∥ ≤ lH(∣�1−�2∣+∥x−y∥)

for all (�1, x), (�2, y) ∈ ℝ+×J with �1, �2 ≤ "̄ and ∥x∥, ∥y∥ ≤ "̄ with "̄ ≤ 1
2
. Let �̄ be the

constant given in Lemma 5.2 with the compact set C as the closure of the set of solutions
to the SNME over all � ∈ (0, 1

2
] and all b >K 0 with ∥b−e∥ ≤ lH +(2l2H∥�w+c−∥)/�r(x̄).

Given an arbitrary " > 0, pick a positive

�̄ < min

{

�̄0,
2"̄lH
�r(x̄)

,
"�̄

2lH∥�w + c−∥+ �r(x̄)
,

"̄

∥�w + c−∥
,

"

2∥�w + c−∥

}

.

Observe that ∥z∗
�̄
− z∗∥ < "̄, so that the Lipschitz bound ∥H(0, z∗

�̄
)∥ ≤ �̄lH∥�w + c−∥

holds. For �̄ := �̄�r(x̄)/(2lH), we have �̄ ∈ (0, "̄) ⊆ (0, 1
2
),

H(�̄, z∗�̄ ) ≤K H(0, z∗�̄ ) + ∥H(�̄, z∗�̄ )−H(0, z∗�̄ )∥e ≤K −�̄x̄+
lH �̄

�r(x̄)
x̄ = − �̄

2
x̄ <K 0
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and

∥H(�̄, z∗�̄ )∥ ≤ ∥H(0, z∗�̄ )∥+ lH �̄ ≤ �̄

(

lH∥�w + c−∥+
�r(x̄)

2

)

,

so that Δb := − 1
�̄
H(�̄, z∗

�̄
) >K 0 satisfies

∥Δb∥ ≤ ∥H(�̄, z∗
�̄
)−H(0, z∗

�̄
)∥

�̄
+

∥H(0, z∗
�̄
)∥

�̄

≤ lH +
lH �̄∥�w + c−∥
�̄�r(x̄)/(2lH)

= lH +
2l2H∥�w + c−∥

�r(x̄)

and �̄∥Δb∥ ≤ �̄(lH∥�w + c−∥ + �r(x̄)/2) < "�̄/2. With a slight abuse of notation, for
each fixed b >K 0, let z(b) denote the unique solution to the SNME with � = �̄. Observe
that z(e) = z(�̄) and z(e +Δb) = z∗

�̄
. Differentiating

(1− �̄)[f(pJ(�̄, z(b))) + q]− pJ(�̄,−z(b)) + �̄b = 0

with respect to b then gives

JzH(�̄, z(b))Jbz(b) + �̄I = 0,

where I is the identity map. Thus, since z(e + tΔb) ∈ C for all t ∈ [0, 1], we may apply
Lemma 5.2 to conclude that

∥z∗�̄ − z(�̄)∥ = ∥z(e +Δb)− z(e)∥

=

∥

∥

∥

∥

∫ 1

0

Jbz(e + tΔb)Δbdt

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ 1

0

−�̄JzH(�̄, z(e + tΔb))−1Δbdt

∥

∥

∥

∥

≤ �̄

�̄
∥Δb∥ <

"

2
,

whence ∥z∗ − z(�̄)∥ ≤ ∥z∗ − z∗
�̄
∥ + ∥z∗

�̄
− z(�̄)∥ < ". Since " > 0 is arbitrary, this shows

that (0, z∗) is a accumulation point of the trajectory T . □

Corollary 5.1. If l is uniformly nonsingular, then l has the GUS-property.

6. Conclusion

In this paper, we studied uniform nonsingularity and it relation with other existing
P-type properties for transformations defined on Euclidean Jordan algebras. We demon-
strated that the non-interior continuation method and the squared smoothing method
converges globally when applied to nonlinear complementarity problems under the as-
sumption of uniform nonsingularity. Lastly, we showed that the unique solvability of
a nonlinear complementarity problem is implied by the uniform nonsingularity of the
nonlinear transformation. However, it is still unclear to us if the converse is true.
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