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Abstract. We present a target-following framework for semidefinite programming, which
generalizes the target-following framework for linear programming. We use this framework to
build weighted path-following interior-point algorithms of three distinct flavors: short-step,
predictor-corrector, and large-update. These algorithms have worst-case iteration bounds
that parallel their counterparts in linear programming. We further consider the problem of
finding analytic centers given a pair of primal-dual strictly feasible solutions. An algorithm
that moves towards the analytic center prior to reducing the duality gap has a better iteration
bound than the weighted path-following algorithms. In the case of linear programming, this
bound is also an improvement over existing similar algorithms.
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1. Introduction

The target-following framework was first introduced by Mizuno [8] for linear comple-
mentarity problems and Jansen, Roos, Terlaky and Vial [6] for linear programming as a
unifying framework for various primal-dual path-following algorithms and algorithms that
find analytic centers. The essential ingredient of this framework is the target map (x, s) 7→
[x1s1, . . . ,xnsn]T , defined for each pair of positive n-vectors (x, s). An important feature of
the target map is its bijection between the primal-dual strictly feasible region and the cone
of positive n-vectors Rn

++ [6, 7], whence identifying the primal-dual strictly feasible region
with the relatively simple cone Rn

++ known as the target space (or v-space). Interior-point
algorithms based on the target map are known as target-following algorithms, which are
conceptually simple when viewed as following a sequence of targets in the target space.

Various attempts were made to generalize the concept of target maps to semidefinite
programming (SDP) [10, 11, 17], symmetric cone programming [5, 21] and general convex
conic programming [22]. We present a target map and a target-following framework for SDP,
from which we derive weighted path-following algorithms and target-following algorithms
with provable polynomial worst-case iteration bounds. Our target map is based on the
notion of Cholesky weighted analytic centers first introduced by the author in [3].

In recent reports [2, 3], the author analyzed the convergence behavior of the weighted
central paths corresponding to the Cholesky weighted centers. In these reports, the study of
Cholesky weighted centers were mainly motivated by homogeneous cone programming: the
central path for a homogeneous cone programming problem coincide with certain weighted
central path of a particular SDP-representation of the problem.

In this paper, we explore a different aspect of Cholesky weighted centers: the target map
derived from these weighted centers. We present a generic target-following framework based
on this target map, and analyze the iteration complexity of target-following algorithms based
on two distinct choices of search directions, and weighted path-following algorithms of three
distinct flavors.
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1.1. Organization of material. This paper is organized as follows.
We begin section 2 with a generic target-following framework based on the target map

derived from Cholesky weighted centers. These weighted centers were first introduced by
the author in [3], and are related to a notion of weighted centers studied by Monteiro and
Zanjácomo [12] in a general framework. We present a different perspective on these weighted
centers that relates them with analytic centers of larger SDP problems which we called
expanded SDP problems. We define a measure of proximity to the Cholesky weighted centers
based on the l2-proximity measure for the expanded SDP problems. We also show that search
directions for the expanded SDP problems, which translate naturally to search directions for
the original SDP problems, can be efficiently computed. However the computation of search
directions in each iteration may require the solving for Θ(n3) real variables, in contrast with
O(n2) variables in a regular path-following algorithm.

This issue is addressed in section 3, where we reduce the size of the Newton system
to match that of a typical Newton system in a regular path-following algorithm. This is
achieved with a specific choice of search directions, which we called the Cholesky search
directions. We then use these search directions in our target-following framework to produce
a target-following algorithm. We further consider three weighted path-following algorithms:
a short-step algorithm, a predictor-corrector algorithm and a large-update algorithm. Our
analyses on these algorithms show that the first two take O(

√
nρ) iterations to improve the

duality gap by a fixed fraction, while the last algorithm takes O(n
√

ρ) iterations. Here ρ
denotes the ratio of the average weight to the smallest weight. These bounds parallel their
counterparts in linear programming. These search directions were discussed in a general
framework by Burer and Monteiro [1], with which they built a long-step path-following
algorithm. Their analysis was based on the derivatives of the map (X,S) 7→ LT

SXLS, where
LS denotes the Cholesky factor of S. In contrast, we use the local Lipschitz property of the
Cholesky factorization X 7→ LX.

In section 4, we investigate the application of our target-following framework in the ap-
proximation of analytic centers. We work in a subset of the target space containing only
diagonal matrices, hence our investigation is very closely related, and directly applicable,
to the work of Mizuno [8] on linear complementarity problems and the work of Jansen et.
al. [6] on linear programming. From a given pair of primal-dual strictly feasible solutions,
we generate a finite sequence of targets towards the pair of solution on the central path
with the same duality gap as the given pair. Using a technique first developed by Todd [18]
for linear programming, and subsequently used by Nesterov and Todd [15], and Nemirovski
and Nesterov [14] for general convex conic programming, we derive an upper bound on the
number of targets in the sequence. For SDP problems, we obtained the improved worst-case
iteration bound O(

√
n log ρ). For linear programming problems, this bound is an improve-

ment over the existing best bound O(
√

n(log ρ + log ρ̃)), where ρ̃ ∈ [1, n] denotes the ratio
of the largest weight to the average weight (see [6, 8]).

1.2. Notations and conventions. Throughout this paper, we use the following notations
and conventions.

We use uppercase bold letters (e.g., X,L, etc.) to denote matrices, and use lowercase bold
letters (e.g., y,b, etc.) to denote vectors.
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The space of real n-vectors is denoted by Rn, and the cone of vectors in Rn with nonnega-
tive (resp., positive) entries is denoted by Rn

+ (resp., Rn
++). The cone of vectors in Rn

++ with
entries in nonincreasing order is denoted by Rn

↓,++.
The space of real n-by-n matrices is denoted by Mn. We equip Mn with the inner product

• : (A,B) ∈Mn ×Mn 7→ tr(ATB). The induced norm ‖·‖F is the Frobenius norm.
Cartesian product of matrix spaces Mn1 × · · · ×Mnk is equipped with the inner product

(A, B) 7→
k∑

l=1

Al •Bl.

The transposes, inverses, products and Cholesky factors of tuples in the Cartesian product
are defined componentwise.

The subspace of lower triangular (resp., upper triangular) matrices in Mn is denoted by
Ln (resp., Un).

For any matrix M ∈Mn, the unique lower triangular matrix L satisfying M−L ∈ Un and
Lii = Mii/2 for i = 1, . . . , n, is denoted by 〈〈M〉〉. For any matrix M ∈ Mn, we denote by
MH the symmetric matrix M + MT . Consequently 〈〈M〉〉H denotes the unique symmetric
matrix whose entries in the lower triangular part coincide with those of M.

For any symmetric, positive definite matrix X ∈ Sn
++, its unique Cholesky factor (i.e., the

unique lower triangular matrix L ∈ Ln with positive diagonal entries satisfying LLT = X)
is denoted by LX.

The group of orthonormal matrices in Mn is denoted by On.
The space of symmetric matrices of order n is denoted by Sn, and the cone of symmetric,

positive semidefinite (resp., positive definite) matrices of order n is denoted by Sn
+ (resp.,

Sn
++).
The subspace of diagonal matrices in Sn is denoted by Dn, and its intersection with Sn

+ and
Sn

++ are, respectively, denoted by Dn
+ and Dn

++. The cone of matrices in Dn
++ with diagonal

entries in nonincreasing order is denoted by Dn
↓,++.

For each diagonalizable matrix M ∈Mn, we denote by λ(M) the vector of eigenvalues of
M in nonincreasing order.

For any m-by-n matrix M and any subsets of indices I ⊆ {1, . . . , m} and J ⊆ {1, . . . , n},
the sub-matrix of M with row indices in I and column indices in J is denoted by MIJ . If
I = {i} (resp., J = {j}) is a singleton, we may also write i (resp., j) in place of {i} (resp.,
{j}). For any matrix M, we denote by [M]i the square sub-matrix M{1,...,i},{1,...,i}.

The zero matrix and the identity matrix of appropriate size (in the context used) are
denoted, respectively, by 0 and I. The vector of ones of appropriate size (in the context
used) is denoted by 1.

For each linear map A : E → F between two Euclidean spaces, A
H : F → E denotes its

adjoint map.
For each sequence x1, . . . , xn of real numbers, Diag(x1, . . . , xn) denotes the diagonal matrix

in Dn with x1, . . . , xn on its diagonal. For each matrix M ∈Mn, we denote by diag(M) the
vector [M11, . . . ,Mnn]

T ∈ Rn.
For each pair of real numbers (x, y), we denote by x ∨ y the greater of the two.
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2. Target-Following Framework

We consider the following pair of primal-dual SDP problems:

inf
X

C •X

subject to Ak •X = bk (1 ≤ k ≤ m), X ∈ Sn
+,

(SDP )

and

sup
S,y

bTy

subject to

m∑

k=1

ykAk + S = C, S ∈ Sn
+,

(SDD)

where A1, . . . ,Am,C ∈ Sn and b ∈ Rm are given.

We assume there exists primal-dual strictly feasible solutions (X̂, Ŝ); i.e., a pair of primal-
dual feasible solutions in Sn

++ × Sn
++.

Consider the target map T : Sn
++ × Sn

++ → Sn
++ defined by

(X,S) 7→ QDQT ,

where QTXSQ = D + U ∈ Un is a Schur-decomposition of XS with diag(U) = 0, and
D ∈ Dn

↓,++.

Theorem 1. The map T is well defined. Moreover, it is a bijection between the cone Sn
++

and the set of primal-dual strictly feasible solutions of the primal-dual pair (SDP , SDD).

Proof. See [3, Theorem 10]. �

Using the target map T , we propose the following general framework for target-following
algorithms:

Algorithm 1. (Target-following framework for SDP)
Given a pair of primal-dual strictly feasible solutions (Xin,Sin).

(1) Find a target W+ ∈ Sn
++ close to T (Xin,Sin). Set (X+,S+) = (Xin,Sin).

(2) Repeat the following:
(a) Pick W++ ∈ Sn

++ close to W+.
(b) Compute a pair of primal-dual strictly feasible solutions (X++,S++) that approx-

imates T
−1(W++).

(c) Update (X+,S+)← (X++,S++) and W+ ←W++.

The two main steps in this framework are the choosing of W++ and the computation of
approximate solutions (X++,S++). The sequence of W++ chosen is called the sequence of
targets, and the sequence approximate solutions (X++,S++) computed is called the sequence
of iterates.

In the next section, we consider the problem of computing the next pair of iterates. Fol-
lowing that, we address the issue of choosing the next target W++.
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2.1. Expanded semidefinite programming problems. For the sake of clarity, we as-
sume that W++ is the diagonal matrix D++ ∈ Dn

↓,++. This is without any loss of generality
as we can transform our primal-dual SDP problems via the orthonormal similarity transfor-
mation

(X,S) 7→ (QTXQ,QTSQ),

where Q ∈ On is such that QTW++Q = D++ is a diagonalization of W++.
Consider the pair of Cholesky weighted centers T

−1(D++): the unique pair of matrices
(X,S) satisfying

Ak •X = bk (1 ≤ k ≤ m), X ∈ Sn
++,

m∑

k=1

ykAk + S = C, S ∈ Sn
++,

LT
SXLS = D++.

(CPD++
)

Suppose further that all entries in D++ are rational numbers. Then there exists a positive
real number κ and positive integers w1, . . . , wn such that D++ = κ Diag(w1, . . . , wn). Recall
that w1 ≥ · · · ≥ wn. For each l ∈ {1, . . . , n− 1}, let πl denote the difference wl − wl+1, and
let πn = wn. Let L denote the index set {l : πl > 0}. Note that L ⊇ {n} is nonempty.

Let S denote the Cartesian product

S1 × · · · × S1

︸ ︷︷ ︸
π1 copies

×S2 × · · · × S2

︸ ︷︷ ︸
π2 copies

× · · · × Sn × · · · × Sn

︸ ︷︷ ︸
πn copies

,

and let Pl denote the index set
{

1 +
∑l−1

j=1 πj, . . . ,
∑l

j=1 πj

}
for each l ∈ {1, . . . , n} so that

the p-th component Xp of any element X ∈ S is a matrix in Sl whenever p ∈ Pl. Note that Pl

is empty when l /∈ L. Let S+ and S++ denote cones of S containing elements with positive
semidefinite and positive definite components, respectively.

Define the injective linear map E : Sn → S by

X 7→ ([X]1, . . . , [X]1︸ ︷︷ ︸
π1 copies

, [X]2, . . . , [X]2︸ ︷︷ ︸
π2 copies

, . . . , [X]n, . . . , [X]n︸ ︷︷ ︸
πn copies

).

Its adjoint map E
H satisfies

(EH(X))ij =
n∑

l=i∨j

∑

p∈Pl

(Xp)ij (1 ≤ i, j ≤ n).

Let A1, . . . , Am and C denote, respectively, E(A1), . . . , E(Am) and E(C). Consider the
expanded primal-dual SDP problems

inf
X

w1∑

p=1

Cp • Xp

subject to

w1∑

p=1

(Ak)p • Xp = bk (1 ≤ k ≤ m), X ∈ S+,

(S̃DP )
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and
sup
S,y

bTy

subject to
m∑

k=1

yk(Ak)p + Sp = Cp (1 ≤ p ≤ w1), S ∈ S+.
(S̃DD)

Let us look at the pair of analytic centers (X(κI), S(κI)) of the pair of problems (S̃DP ,

S̃DD): the unique pair of tuples (X, S) satisfying the central path equations
w1∑

p=1

(Ak)p • Xp = bk (1 ≤ k ≤ m), X ∈ S++,

m∑

k=1

yk(Ak)p + Sp = Cp (1 ≤ p ≤ w1), S ∈ S++,

〈〈XpSp〉〉H = κI (1 ≤ p ≤ w1).

Let X̂ and Ŝ denote, respectively, E
H(X(κI)) and E

−1(S(κI)). It is straightforward to check

that v ∈ Rn 7→ vT X̂v, whence X̂, is positive definite, and that Ak • X̂ = bk for each

k ∈ {1, . . . , m}. Thus X̂ is strictly feasible for (SDP ). Also, Ŝ = S(κI)w1
∈ Sn

++ and∑m

k=1 yk(Ak)w1
+ S(κI)w1

= Cw1
shows that Ŝ is strictly feasible for (SDD). Moreover, the

bilinear equations in the central path equations imply that 〈〈X̂Ŝ〉〉H = D++, or equivalently,

LT

Ŝ
X̂L

Ŝ
= D++.

Thus (EH(X(κI)), E−1(S(κI))) is the pair of Cholesky weighted centers T
−1(D++).

This observation allows us to view Cholesky weighted centers as (unweighted) analytic
centers of a pair of larger primal-dual SDP problems. Moreover, all existing path-following
algorithms and their analyses apply directly to Cholesky weighted centers via this observa-
tion.

It is immediately clear that without further exploitation of the special structures of the
expanded problems, this approach is ill-advised as dim(S) =

∑n

l=1 wll, the size of the ex-
panded pair, is (generally) much larger than dim(Sn) =

∑n

l=1 l, the size of the original pair.
This much larger size affects computational complexity of the resulting algorithm in two
ways:

(1) the step size at each iteration, hence the worst-case iteration bound, and
(2) the complexity of the computation of search directions.

2.1.1. Proximity measure. We shall use the following measure of proximity to analytic centers
of the expanded SDP problems:

d̃2 : (X, S; µ) ∈ S++ × S++ × R++ 7→ µ−1

(
w1∑

p=1

‖λ(XpSp)− µ1‖22

) 1

2

= µ−1

(
w1∑

p=1

‖LT
Sp

XpLSp
− µI‖2F

) 1

2

.
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The definition of d̃2 only requires S ∈ S++. Moreover, we can extend its definition continu-

ously to include all S ∈ S+ \ S++. Thus d̃2 is well defined over S × S+ × R++.
This leads to the following measure of proximity to T

−1(D++):

(X,S) 7→ inf
X

{
d̃2(X, E(S); κ) : E

H(X) = X
}

.

We compute the infimum in Lemma 2 using the following lemma.

Lemma 1. Suppose that u1 ≥ · · · ≥ un > un+1 = 0, (X,S) ∈ Sn × Sn
++, and µ > 0. Then

for every sequence of symmetric matrices {Xl ∈ Sl}nl=1 satisfying

Xij =

n∑

l=i∨j

(ul − ul+1)(Xl)ij (1 ≤ i, j ≤ n), (2.1)

it holds

n∑

l=1

(ul − ul+1)‖[LS]Tl Xl[LS]l − µI‖2F ≥
n∑

i,j=1

u−1
i∨j((L

T
SXLS)ij − µuiIij)

2

=
∥∥∥(D− 1

2 〈〈LT
SXLS − µD〉〉)H

∥∥∥
2

F
,

where D denotes the diagonal matrix Diag(u1, . . . , un). Moreover, equality holds if and only
if

Xl = [LS]−T
l [(D−1〈〈LT

SXLS〉〉)H ]l[LS]−1
l ∀l ∈ L, (2.2)

where L denotes the set {l : ul > ul+1}.

Proof. For each l ∈ L, let Zl = [LS]Tl Xl[LS]l. In terms of Zl,

n∑

l=1

(ul − ul+1)‖[LS]Tl Xl[LS]l − µI‖2F

=
∑

l∈L

(ul − ul+1)
l∑

i,j=1

((Zl)ij − µIij)
2

=

n∑

i,j=1

∑

l∈L, l≥i∨j

(ul − ul+1)((Zl)ij − µIij)
2.

Using Cauchy’s inequality, we bound, for each i, j ∈ {1, . . . , n},
∑

l∈L, l≥i∨j

(ul − ul+1)((Zl)ij − µIij)
2

≥
(

∑

l∈L, l≥i∨j

(ul − ul+1)

)−1( ∑

l∈L, l≥i∨j

(ul − ul+1)((Zl)ij − µIij)

)2

. (2.3)
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The first part of the lemma then follow from

∑

l∈L, l≥i∨j

(ul − ul+1)(Zl)ij =

n∑

l=i∨j

(ul − ul+1)

l∑

ı̃=i

l∑

̃=j

(LS)̃ıi(Xl)̃ı̃(LS)̃j

=

n∑

ı̃=i

n∑

̃=j

n∑

l=i∨j

(ul − ul+1)(LS)̃ıi(Xl)̃ı̃(LS)̃j

=
n∑

ı̃=i

n∑

̃=j

(LS)̃ıiXı̃̃(LS)̃j = (LT
SXLS)ij,

for all i, j ∈ {1, . . . , n}.
Equality in (2.3) holds if and only if

(Zl)ij = (Z
l̃
)ij ∀l, l̃ ∈ L ∩ {i ∨ j, . . . , n};

i.e., there exists Z ∈ Sn such that

Zl = [Z]l ∀l ∈ L. (2.4)

By (2.1), any Z ∈ Sn satisfying the above set of equations must also satisfy

Xij =
∑

l∈L, l≥i∨j

(ul − ul+1)([LS]−T
l [Z]l[LS]−1

l )ij (1 ≤ i, j ≤ n). (2.5)

Let F : Sn → ⊕
l∈L Sl be restriction of the map X 7→ ([X]1, . . . , [X]n) to the subspace⊕

l∈L Sl. Consider the following inner product on
⊕

l∈L Sl:

(A, B) 7→
∑

l∈L

(ul − ul+1)Al •Bl.

Under this inner product, the adjoint F
H of F satisfies

(FH(X))ij =
n∑

l=i∨j

(ul − ul+1)(Xl)ij (1 ≤ i, j ≤ n),

hence (2.5) is equivalent to X = F
H(F(LS)−T F(Z)F(LS)−1). For all W ∈ Sn,

F
H(F(LS)T

F(Z)F(LS)) •W =
∑

l∈L

(ul − ul+1)[Z]l • [LS]l[W]l[LS]Tl

=
∑

l∈L

(ul − ul+1)[Z]l • [LSWLT
S ]l

= (LT
SF

H(F(Z))LS) •W,

hence (2.5) is equivalent to X = L−T
S F

H(F(Z))L−1
S . The map F is clearly injective, hence

(FH ◦F)−1 is bijective. Subsequently the only Z ∈ Sn satisfying (2.5) is

(FH ◦F)−1(LT
SXLS) = (D−1〈〈LT

SXLS〉〉)H ,

where the equality follows from F
H ◦F : V ∈ Sn 7→ (D〈〈V〉〉)H . Consequently equality in

(2.3) holds if and only if (2.2) holds. �
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Lemma 2. Suppose (X,S) ∈ Sn × Sn
++ and µ > 0. Then

inf
X

{
d̃2(X, E(S); µ) : E

H(X) = X
}

= d̃2

(
E(LS)−T

E((κD−1
++〈〈LT

SXLS〉〉)H)E(LS)−1, E(S); µ
)

= µ−1

(
n∑

i,j=1

w−1
i∨j((L

T
SXLS)ij − µwiIij)

2

) 1

2

= µ−1
∥∥∥(
√

κD
− 1

2

++〈〈LT
SXLS − µκ−1D++〉〉)H

∥∥∥
F

.

Proof. Let S = E(S) and let X ∈ (EH)−1(X) be arbitrary. For each l ∈ L, it follows from
the convexity of the square of the Frobenius norm that

1

πl

∑

p∈Pl

∥∥∥LT
Sp

XpLSp
− µI

∥∥∥
2

F
=

1

πl

∑

p∈Pl

∥∥LT
[S]l

XpL[S]l
− µI

∥∥2

F
≥
∥∥LT

[S]l
XlL[S]l

− µI
∥∥2

F
,

where Xl denotes the average π−1
l

∑
p∈Pl

Xp. Since X is arbitrary, it follows

inf
X

{
d̃2(X, E(S); µ) : E

H(X) = X
}

= inf
X

{
d̃2(X, E(S); µ) : E

H(X) = X, Xp = Xq ∀p, q ∈ Pl, ∀l ∈ L
}

.

Thus we may assume without loss of generality that for each l ∈ L and all p ∈ Pl, Xp = Xl.
The lemma then follows from Lemma 1. �

The following lemma shows that under the proximity measure

(X,S) ∈ Sn × Sn
+ 7→ inf

X

{
d̃2(X, E(S); κ) : E

H(X) = X
}

= κ−1

(
n∑

i,j=1

w−1
i∨j((L

T
SXLS)ij − κwiIij)

2

) 1

2

,
(2.6)

solutions on the boundary of the primal-dual feasible regions are at a distance at least
√

wn

from T
−1(D++). This suggests scaling the measure (2.6) by w

− 1

2
n .

Lemma 3. If u1 ≥ · · · ≥ un > 0, µ > 0, and Z ∈ Sn, then

n∑

i,j=1

u−1
i∨j(Zij − µuiIij)

2 ≥
n∑

i=1

u−1
i (λ(Z)i − µui)

2 .

Consequently

inf

{
µ−1

n∑

i,j=1

u−1
i∨j(Zij − µuiIij)

2 : Z ∈ Sn
+ \ Sn

++

}
= µun.
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Proof. By expanding both sides of the desired inequality, it is clear that we only need to
bound the sum

∑n

i,j=1 u−1
i∨jZ

2
ij from below by

∑n

i=1 u−1
i λ(Z)2

i . Since Z2 is symmetric, there

exists an orthogonal matrix Q ∈ On such that Z2 = QDiag(λ(Z))2QT , which leads to



(Z2)11
...

(Z2)nn


 =



Q2

11 · · · Q2
1n

...
. . .

...
Q2

n1 · · · Q2
nn







λ(Z)2
1

...
λ(Z)2

n


 ,

where the matrix on the right side of the above equation is doubly-stochastic. By the Hardy,
Littlewood and Pólya theorem [4], we have

l∑

i=1

(Z2)ii ≤
l∑

i=1

λ(Z)2
i

for all l ∈ {1, . . . , n}. Consequently by writing

n∑

i,j=1

u−1
i∨jZ

2
ij = u−1

n

n∑

i,j=1

Z2
ij −

n−1∑

l=1

(u−1
l+1 − u−1

l )

l∑

i,j=1

Z2
ij,

and using the upper bounds

l∑

i,j=1

Z2
ij ≤

l∑

i=1

(Z2)ii ≤
l∑

i=1

λ(Z)2
i (1 ≤ l ≤ n),

we conclude the desired inequality
n∑

i,j=1

u−1
i∨jZ

2
ij ≥

n∑

i=1

u−1
i λ(Z)2

i ,

hence proving the theorem. �

We shall use the scaled proximity measure d2 : Sn × Sn
+ ×Dn

↓,++ → R defined by

(X,S;D) 7→ D
− 1

2
nn

(
n∑

i,j=1

D−1
i∨j,i∨j

(
(LT

SXLS)ij −Dij

)2
) 1

2

= D
− 1

2
nn

∥∥∥(D− 1

2 〈〈LT
SXLS −D〉〉)H

∥∥∥
F

.

(2.7)

Note that we do not restrict D to have rational entries only. When we restrict D to be a
positive multiple of the identity matrix I, the proximity measure naturally reduces to the
standard l2-proximity measure.

When D has rational entries with D = κ Diag(w1, . . . , wn), κ positive and w1, . . . , wn

integers, this proximity measure can be written

d2(X,S;D) = w
− 1

2
n inf

X

{
d̃2(X, E(S); κ) : E

H(X) = X
}

= w
− 1

2
n d̃2(E(LS)−T

E((κD−1〈〈LT
SXLS〉〉)H)E(LS)−1, E(S); κ).

(2.8)
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In the context of the expanded SDP problems, the scaling factor w
− 1

2
n corresponds to the use

of a larger neighborhood size, hence allowing for larger step sizes, or full steps with farther
targets. This scaling factor is further justified in the following theorem.

Theorem 2. Suppose that α ∈ [0, 1] 7→ (Xα,Sα, µα) ∈ Sn × Sn × R++ is continuous with
(X0,S0) ∈ Sn

++ × Sn
++. If there exist D ∈ Dn

↓,++ and β < 1 such that

µ−1
α ‖(D− 1

2 〈〈LT
Sα

XαLSα
− µαD〉〉)H‖F ≤ β

√
Dnn (2.9)

whenever Sα ∈ Sn
++, then (Xα,Sα) ∈ Sn

++ × Sn
++ for all α ∈ [0, 1].

Proof. Let α̂ = inf{α ∈ [0, 1] : (Xα,Sα) /∈ Sn
++ × Sn

++}. Suppose on the contrary α̂ ≤ 1. By
the continuity assumption, α̂ > 0. Under the hypothesis (2.9),

n∑

i,j=1

D−1
i∨j,i∨j

(
(LT

Sα
XαLSα

)ij − µαDij

)2 ≤ β2Dnnµ
2
α

for all 0 ≤ α < α̂, and subsequently

lim inf
α→α̂

n∑

i,j=1

µ−1
α D−1

i∨j,i∨j

(
(LT

Sα
XαLSα

)ij − µαDij

)2 ≤ β2Dnnµα̂ < Dnnµα̂.

On the other hand, Lemma 3 implies

lim inf
α→α̂

n∑

i,j=1

µ−1
α D−1

i∨j,i∨j

(
(LT

Sα
XαLSα

)ij − µαDij

)2 ≥ Dnnµα̂,

a contradiction. �

2.1.2. Search directions. In this section, we discuss the computation of search directions.

Once again, we use the pair of expanded SDP problems (S̃DP , S̃DD) for our purpose. As
discussed in the preceding section, we may (and should) use

(X+, S+) = (E(LS+
)−T

E((κD−1
++〈〈LT

S+
X+LS+

〉〉)H)E(LS+
)−1, E(S+))

= argmin
X,S

{
d̃2(X, S; κ) : (X+,S+) = (EH(X), E−1(S))

}

as the pair of current iterates for the expanded SDP problems.
The pair of search directions (∆X,∆S) for the expanded SDP problems is obtained by

linearizing the constraints

Hl(Xp, Sp) = κI (l ∈ L, p ∈ Pl)

at (X+, S+), for some maps {Hl : Sl
++ × Sl

++ 7→ Sl : l ∈ L} satisfying

Hl(X,S) = µI ⇐⇒ XS = µI
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for all µ > 0. In other words, (∆X,∆S) solves

w1∑

p=1

(Ak)p • (∆X)p = 0 (1 ≤ k ≤ m), (2.10a)

m∑

k=1

(∆y)k(Ak)p + (∆S)p = 0 (1 ≤ p ≤ w1), (2.10b)

DHl((X+)p, (S+)p)((∆X)p, (∆S)p) = κI−Hl((X+)p, (S+)p) (l ∈ L, p ∈ Pl), (2.10c)

where DHl((X+)p, (S+)p) denotes the gradient of Hl at ((X+)p, (S+)p); i.e., the linear map

(U,V) ∈ Sl × Sl 7→ ∂XHl((X+)p, (S+)p)[U] + ∂SHl((X+)p, (S+)p)[V].

This linear system has 2
∑n

l=1 wll+m = Θ(
∑

l∈L πll
2) variables. The pair of search directions

for the original SDP problems is then given by

(∆X,∆S) = (EH(∆X), E−1(∆S)).

By the choice of X+, there exists, for each l ∈ L, (X+)l ∈ Sl such that

(X+)l = (X+)p (p ∈ Pl).

By symmetry, it follows that there is a search direction ∆X such that for each l ∈ L,

(∆X)p = ∆X(l) (p ∈ Pl)

for some ∆X(l) ∈ Sl. Thus we may compute the search directions by solving the smaller
system

n∑

l=1

πl[Ak]l •∆X(l) = 0 (1 ≤ k ≤ m), (2.11a)

m∑

k=1

(∆y)kAk + ∆S = 0, (2.11b)

DHl((X+)l, (S+)l)(∆X(l), [∆S]l) = κI−Hl((X+)l, (S+)l) (l ∈ L), (2.11c)

where (S+)l denotes [S+]l, and set

(∆X)ij =
∑

l∈L, l≥i∨j

πl(∆X(l))ij (2.12)

for each i, j ∈ {1, . . . , n}. This system has Θ(
∑

l∈L l2) = O(n3) variables. The number of
variables is actually Ω(n3) in certain cases; e.g., when L = {1, . . . , n}.

It is necessary for the above system to have unique solution so that the search directions
are well defined. Since distinct solutions of the above system give distinct solutions to (2.10),
this requirement is satisfied by (2.10) having unique solution. Typically, sufficient conditions
for this is given by (X+, S+) ∈ S++×S++, and at times together with the existence of some
µ > 0 such that

‖λ((X+)p(S+)p)− µ1‖∞ ≤ γµ ∀p ∈ {1, . . . , w1},
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where γ ∈ (0, 1) is given. As S+ ∈ Sn
++ implies S+ ∈ S++, the above condition is sufficient

for X+ ∈ S++. The following lemma shows that this condition is satisfied when (X+,S+) is
sufficiently close to T

−1(D++).

Lemma 4. It holds

‖λ((X+)p(S+)p)− κ1‖2 ≤ κd2(X+,S+;D++)

for all p ∈ {1, . . . , w1}.

Proof. By definition,

κd2(X+,S+;D++) = w
− 1

2
n

(
w1∑

p=1

‖LT
(S+)p

(X+)pL(S+)p
− κI‖2F

) 1

2

≥ w
− 1

2
n

(
∑

p∈Pn

‖LT
(S+)p

(X+)pL(S+)p
− κI‖2F

) 1

2

= ‖V − κI‖F ,

where V denotes the matrix (κD−1
++〈〈LT

SXLS〉〉)H . Consequently for any p ∈ {1, . . . , w1},

κd2(X+,S+;D++) ≥ ‖V − κI‖F ≥ ‖[V]l − κI‖F
= ‖LT

(S+)p
(X+)pL(S+)p

− κI‖F
= ‖λ((X+)p(S+)p)− κ1‖2,

where l ∈ L is such that p ∈ Pl. �

2.2. Choice of targets. Suppose that the pair of input matrices (Xin,Sin) satisfies

LT
Sin

XinLSin
∈ Dn

↓,++.

This is without loss of generality if we apply the orthonormal similarity transformation
defined by the orthogonal matrix that upper-triangularizes the product XinSin to both primal
and dual SDP problems.

We first consider the task of picking the initial target W+. Using the proximity measure
d2, the proximity of T (Xin,Sin) to W+ can be quantified by

d2(Q
T
+XinQ+,QT

+SinQ+;D+),

where Q+ ∈ On and D+ ∈ Dn
↓,++ are such that QT

+W+Q+ = D+ is a diagonalization of W+.
By Lemma 3, for each fixed D+ ∈ Dn

↓,++, the above measure is minimized at Q+ = I. Thus
it makes sense to pick W+ ∈ Dn

↓,++. Henceforth, we shall assume that W+ is the diagonal
matrix D+ ∈ Dn

↓,++.
We now consider the task of picking the next target W++. Once again, the next tar-

get W++ should thus be chosen so that d2(Q
T
++X+Q++,QT

++S+Q++;D++) can be readily

bounded, where Q++ ∈ On and D++ ∈ Dn
↓,++ are such that QT

++W++Q++ = D++ is a
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diagonalization of W++. An natural criterion would be the size of d2(W++, I;D+). Once
again, since Lemma 3 implies that

inf{d2(Q
TD++Q, I;D+) : Q ∈ On} = d2(D++, I;D+)

= (D+)
− 1

2
nn ‖D++D

− 1

2

+ −D
1

2

+‖F ,

it makes sense to choose W++ ∈ Dn
↓,++.

With these choices of targets, we can use the following lemma to get an upper bound on
d2(X+,S+;D++) in terms of d2(X+,S+;D+) and d2(D++, I;D+).

Lemma 5. If d2(X+,S+;D+) ≤ β and (D+)
− 1

2
nn ‖D++D

− 1

2

+ −D
1

2

+‖F ≤ δ for some β, δ ∈ (0, 1),
then

d2(X+,S+;D++) ≤ β + δ

1− δ
.

Proof. For simplicity of notation, let Z denote the product LT
S+

X+LS+
. From definition,

d2(X+,S+;D++)

= (D++)
− 1

2
nn

(
n∑

i,j=1

(D++)−1
i∨j,i∨j (Zij − (D++)ij)

2

) 1

2

≤ (D++)
− 1

2
nn

(
n∑

i,j=1

(D+)−1
i∨j,i∨j (Zij − (D++)ij)

2

) 1

2

max
i=1,...,n

√
(D+)ii√
(D++)ii

with
(

n∑

i,j=1

(D+)−1
i∨j,i∨j (Zij − (D++)ij)

2

) 1

2

≤
(

n∑

i,j=1

(D+)−1
i∨j,i∨j (Zij − (D+)ij)

2

) 1

2

+ ‖D++D
− 1

2

+ −D
1

2

+‖F

=
√

(D+)nn

(
d2(X+,S+;D+) + (D+)

− 1

2
nn ‖D++D

− 1

2

+ −D
1

2

+‖F
)

.

If (D+)
− 1

2
nn ‖D++D

− 1

2

+ −D
1

2

+‖F ≤ δ, then

δ ≥ (D+)
− 1

2
nn




n∑

i=1

(
(D++)ii√

(D+)ii

−
√

(D+)ii

)2



1

2

≥
∣∣∣∣
(D++)ii

(D+)ii

− 1

∣∣∣∣

for all i ∈ {1, . . . , n}, and hence

min
i=1,...,n

√
(D++)ii√
(D+)ii

≥
√

1− δ.
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Consequently,

d2(X+,S+;D++) ≤ (D++)
− 1

2
nn

√
(D+)nn(β + δ) max

i=1,...,n

√
(D+)ii√
(D++)ii

≤ β + δ

1− δ

under the hypotheses of the lemma. �

3. Target-Following Framework Based on Cholesky Search Directions

In this section, we highlight a choice of search directions whose Newton system can be
further reduced in size.

Consider the maps Hl : Sl
++ × Sl

++ 7→ Sl defined by

Hl : (X,S) 7→ LT
SXLS.

Note that Hn(X,S) = D is precisely the defining equation for the weighted centers T
−1(D)

for each D ∈ Dn
↓,++. The gradient DHl(X,S) of Hl at (X,S) is given by

(U,V) 7→ LT
SULS +

(
LT

SXLS〈〈L−1
S VL−T

S 〉〉
)

H
.

We shall use this choice of Hl in the linear system (2.10) with

(X+, S+) = (E(LS+
)−T

E((κD−1
++〈〈LT

S+
X+LS+

〉〉)H)E(LS+
)−1, E(S+))

= argmin
X,S

{
d̃2(X, S; κ) : (X+,S+) = (EH(X), E−1(S))

}
.

This gives

w1∑

p=1

(Ak)p • (∆X)p = 0 (1 ≤ k ≤ m), (3.1a)

m∑

k=1

(∆y)k(Ak)p + (∆S)p = 0 (1 ≤ p ≤ w1), (3.1b)

κ[Z]l + LT
(S+)p

(∆X)pL(S+)p

+
(
κ[Z]l〈〈L−1

(S+)p
(∆S)pL

−T
(S+)p

〉〉
)

H
= κI (l ∈ L, p ∈ Pl), (3.1c)

where Z denotes the matrix (D−1
++〈〈LT

S+
X+LS+

〉〉)H , so that

κ[Z]l = LT
(S+)p

(X+)pL(S+)p

for each l ∈ L and each p ∈ Pl. The corresponding pair of search directions for the original
SDP problems is called the pair of Cholesky search directions, and is given by

(∆X,∆S) = (EH(∆X), E−1(∆S)).
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Adding up (3.1c) over all l ∈ L and all p ∈ Pl gives

Ak •∆X = 0 (1 ≤ k ≤ m), (3.2a)
m∑

k=1

(∆y)kAk + ∆S = 0, (3.2b)

V + LT
S+

∆XLS+
+
(
V〈〈L−1

S+
∆SL

−T
S+
〉〉
)

H
= D++, (3.2c)

where V denotes LT
S+

X+LS+
. Thus we may compute the pair of search directions (∆X,∆S)

by solving a linear system with only O(n2) variables. Moreover, we do not require that D++

has rational entries for this system to be well defined. Not surprisingly, this system is the
linearization of (CPD++

).
The algorithm based on the Cholesky search directions is the following:

Algorithm 2. (Target-following algorithm based on Cholesky search directions)
Given a pair of primal-dual strictly feasible solutions (Xin,Sin) with T (Xin,Sin) ∈ Dn

↓,++,
and the required accuracy ε > 0.

(1) Find a target D+ ∈ Dn
↓,++ satisfying d2(Xin,Sin;D+) ≤ β for some β ∈ (0, 1). Set

(X+,S+) = (Xin,Sin).
(2) While X+ • S+ > ε(Xin • Sin),

(a) Pick target D++ ∈ Dn
↓,++ satisfying

(D+)
− 1

2
nn

∥∥∥D++D
− 1

2

+ −D
1

2

+

∥∥∥
F
≤ δ

for some δ ∈ (0, 1).
(b) Solve (3.2) and set (X++,S++) = (X+ + ∆X,S+ + ∆S).
(c) Update (X+,S+)← (X++,S++) and D+ ← D++.

(3) Output (Xout,Sout) = (X+,S+).

3.1. Analysis of algorithm. For the analysis of this algorithm, we focus on each iteration
of the algorithm.

We write D++ = Diag(w1, . . . , wn), where w1, . . . , wn ∈ R++. Note that we no longer
require the wi’s to be integers. Let πl denote wl − wl+1 for l ∈ {1, . . . , n− 1}, let πn denote
wn, and let L denote {l : πl > 0}. For each l ∈ L, let Xl and Sl denote, respectively,
[LS+

]−T
l [(D−1

++〈〈LT
S+

X+LS+
〉〉)H ]l[LS+

]−1
l and [S+]l.

We further simplify (3.2) to

Ãk • ∆̃X = 0 (1 ≤ k ≤ m), (3.3a)
m∑

k=1

(∆y)kÃk + ∆̃S = 0, (3.3b)

V + ∆̃X +
(
V〈〈∆̃S〉〉

)
H

= D++, (3.3c)

where ∆̃X and ∆̃S denote, respectively, LT
S+

∆XLS+
and L−1

S+
∆SL

−T
S+

, and Ãk denotes

L−1
S+

AkL
−T
S+

for each k ∈ {1, . . . , m}. For each α ∈ R, let X̃α and S̃α denote, respectively,
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the sums V + α∆̃X and I + α∆̃S. It is easy to check that for each α satisfying S̃α ∈ Sn
++, it

holds d2(Xα,Sα;D) = d2(X̃α, S̃α;D).
Consider the following linear system:

n∑

l=1

πl[Ãk]l • ∆̃X(l) = 0 (k = 1, . . . , m), (3.4a)

m∑

k=1

(∆y)kÃk + ∆̃S = 0, (3.4b)

[Z]l + ∆̃X(l) +
(
[Z]l〈〈[∆̃S]l〉〉

)
H

= I (l ∈ L), (3.4c)

which is actually (2.11) with Ak = Ãk and ((X+)l, (S+)l) = (Xl, Sl). Thus the solution of
this system is related to the solution of (3.3) via (2.12).

We shall now derive an upper bound on the error in the linearization (3.1). The following
bound on the Newton step is useful.

Lemma 6. If d2(X+,S+;D++) ≤ γ for some γ ∈ (0, 1/
√

2), and ∆̂X(l) ∈ Sl (l ∈ L) and

∆̂S ∈ Sn satisfy ∑

l∈L

πl tr ∆̂X(l)[∆̂S]l ≥ 0

and

∆̂X(l) +
(
[Z]l〈〈[∆̂S]l〉〉

)
H

= Ml (l ∈ L)

for Z = (D−1
++〈〈LT

S+
X+LS+

〉〉)H , and some Ml ∈ Sl (l ∈ L), then

max

{
∑

l∈L

πl‖∆̂X(l)‖2F ,
∑

l∈L

πl‖[∆̂S]l‖2F

}
≤ 1

(1−
√

2γ)2

∑

l∈L

πl‖Ml‖2F .

Proof. Since

w−1
n

n∑

i,j=1

wi∨j

(
w−1

i∨jVij − Iij

)2 ≥
n∑

i,j=1

(
w−1

i∨jVij − Iij

)2
= ‖Z− I‖2F

it follows that

‖Z− I‖F ≤ γ. (3.5)

By summing the following inequalities

max{‖∆̂X(l)‖2F , ‖[∆̂S]l‖2F} ≤ ‖∆̂X(l) + [∆̂S]l‖2F − tr ∆̂X(l)[∆̂S]l (l ∈ L),

we deduce, using
∑

l∈L πl tr ∆̂X(l)[∆̂S]l ≥ 0, that

max

{
∑

l∈L

πl‖∆̂X(l)‖2F ,
∑

l∈L

πl‖[∆̂S]l‖2F

}
≤
∑

l∈L

πl‖∆̂X(l) + [∆̂S]l‖2F .
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It then follows from ∆̂X(l) +
(
[Z]l〈〈[∆̂S]l〉〉

)
H

= Ml (l ∈ L) and the triangle inequality on

the 2-norm of Rn that
(

max

{
∑

l∈L

πl‖∆̂X(l)‖2F ,
∑

l∈L

πl‖[∆̂S]l‖2F

}) 1

2

≤
(
∑

l∈L

πl‖Ml‖2F

) 1

2

+

(
∑

l∈L

πl

∥∥∥
(
([Z]l − I)〈〈[∆̂S]l〉〉

)
H

∥∥∥
2

F

) 1

2

.

Using (3.5) we estimate
∥∥∥
(
([Z]l − I)〈〈[∆̂S]l〉〉

)
H

∥∥∥
F
≤ 2

∥∥∥([Z]l − I)〈〈[∆̂S]l〉〉
∥∥∥

F

≤ 2γ
∥∥∥〈〈[∆̂S]l〉〉

∥∥∥
F
≤
√

2γ
∥∥∥[∆̂S]l

∥∥∥
F

.

Consequently
(

max

{
∑

l∈L

πl‖∆̂X(l)‖2F ,
∑

l∈L

πl‖[∆̂S]l‖2F

}) 1

2

≤
(
∑

l∈L

πl‖Ml‖2F

)1

2

+
√

2γ

(
∑

l∈L

πl

∥∥∥[∆̂S]l

∥∥∥
2

F

) 1

2

proves the lemma. �

In addition, we require the following local Lipschitz constant of Cholesky factorization.

Lemma 7. If ∆ ∈ Sn satisfies ‖∆‖F ≤ 1/2, then

‖LI+∆ − I‖F ≤
√

2‖∆‖F .

Proof. Let ∆L(t) denote the lower triangular matrix LI+t∆ − I. Note that

∆L(t)H + ∆L(t)∆L(t)T = t∆.

For t ∈ [0, 1], we have

t‖∆‖F = ‖∆L(t)H + ∆L(t)∆L(t)T‖F
≥ ‖∆L(t)H‖F − ‖∆L(t)∆L(t)T‖F
≥
√

2‖∆L(t)‖F − ‖∆L(t)‖2F .

(3.6)

Solving this quadratic in ‖∆L(t)‖F gives

‖∆L(t)‖F ≤
1√
2
−
√

1

2
− t‖∆‖F or ‖∆L(t)‖F ≥

1√
2

+

√
1

2
− t‖∆‖F .

Since ∆L(t), whence ‖∆L(t)‖F , is continuous in t, it follows that

‖∆L(t)‖F ≤
1√
2
−
√

1

2
− t‖∆‖F
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whenever t‖∆‖F ≤ 1/2. Under the hypothesis ‖∆‖F ≤ 1/2, this indeed hold for t = 1, thus

‖LI+∆ − I‖F ≤
1√
2
−
√

1

2
− ‖∆‖F ≤

1√
2
.

Finally, applying this upper bound in (3.6) with t = 1 gives

‖∆‖F ≥
√

2‖LI+∆ − I‖F −
1√
2
‖LI+∆ − I‖F =

1√
2
‖LI+∆ − I‖F

as required. �

Lemma 8. If d2(X+,S+;D++) ≤ γ for some γ ∈ (0, 1/
√

2), then the linear system (3.4),
with the matrix I in (3.4c) replaced by σI for some σ ∈ [0, 1], has a unique solution

(∆̃X(l), ∆̃S,∆y). Moreover for every α ∈ [0, min{1, (1 −
√

2γ)/(2χ)}], it holds S̃l,α ∈ Sl
++

for all l ∈ L, and

w
− 1

2
n

(
∑

l∈L

πl

∥∥∥LT

S̃l,α
X̃l,αL

S̃l,α
− µαI

∥∥∥
2

F

) 1

2

≤ (1− α)γ + α2 χ2(7 + 5γ)

(1−
√

2γ)2
+ 2α3 χ3

(1−
√

2γ)3
, (3.7)

where X̃l,α, S̃l,α and µα denote, respectively, the sums [Z]l + α∆̃X(l), I + α[∆̃S]l and (1 −
α + ασ), and

χ =

{
σd2(X+,S+; σD++) if σ > 0,
(
w−1

n

∑
l∈L πl ‖[Z]l‖2F

) 1

2 if σ = 0.

Proof. Since the system (3.4) is square, Lemma 6 shows that it has unique solution whenever
d2(X+,S+;D++) < 1/

√
2.

For Ml = σI− [Z]l (l ∈ L), we have

∑

l∈L

πl‖Ml‖2F =
∑

l∈L

πl

l∑

i,j=1

(w−1
i∨jVij − σIij)

2

=
n∑

i,j=1

n∑

l=i∨j

πl(w
−1
i∨jVij − σIij)

2

=
n∑

i,j=1

wi∨j

(
w−1

i∨jVij − σIij

)2 ≤ wnχ
2.

It thus follows from Lemma 6 that

w−1
n max

{
n∑

l=1

πl‖∆̃X(l)‖2F ,

n∑

l=1

πl‖[∆̃S]l‖2F

}
≤ χ2

(1−
√

2γ)2
. (3.8)

A useful consequence of this bound is

‖[∆̃S]l‖2F ≤ ‖∆̃S‖2F ≤ w−1
n

n∑

l=1

πl‖[∆̃S]l‖2F ≤
χ2

(1−
√

2γ)2
, (3.9)
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which implies that S̃n,α = I + α∆̃S, whence S̃l,α = I + α[∆̃S]l, is positive definite whenever

|α| < (1−
√

2γ)/χ.
For each l ∈ L, let Ll,α denote the lower triangular matrix L

S̃l,α
− I = L

I+α[∆̃S]l
− I. In

terms of Ll,α, the difference
(
LT

S̃l,α
X̃l,αL

S̃l,α
− µαI

)
is

[Z]l − (1− α)I− ασI + α∆̃X(l) + ([Z]lLl,α)H

+ α(∆̃X(l)Ll,α)H + LT
l,α[Z]lLl,α + αLT

l,α∆̃X(l)Ll,α.

Using (3.4c) with σI replacing I, and α[∆̃S]l = (Ll,α)H + Ll,αLT
l,α, this reduces to

(1− α)([Z]l − I) +
(
[Z]l(Ll,α − α〈〈[∆̃S]l〉〉)

)
H

+ α(∆̃X(l)Ll,α)H + LT
l,αLl,α + LT

l,α([Z]l − I)Ll,α + αLT
l,α∆̃X(l)Ll,α,

= (1− α)([Z]l − I)− Ll,αLT
l,α −

(
([Z]l − I)〈〈Ll,αLT

l,α〉〉
)

H

+ α(∆̃X(l)Ll,α)H + LT
l,αLl,α + LT

l,α([Z]l − I)Ll,α + αLT
l,α∆̃X(l)Ll,α.

Using Lemma 7, we bound for all α ∈ [0, (1−
√

2γ)/(2χ)],

‖Ll,αLT
l,α‖F = ‖LT

l,αLl,α‖F ≤ ‖Ll,α‖2F ≤ 2α2‖[∆̃S]l‖2F ,

‖
(
([Z]l − I)〈〈Ll,αLT

l,α〉〉
)

H
‖F ≤ 2‖[Z]l − I‖F‖〈〈Ll,αLT

l,α〉〉‖F
≤
√

2‖[Z]l − I‖F‖Ll,αLT
l,α‖F

≤ 2
√

2α2‖[Z]l − I‖F‖[∆̃S]l‖2F ,

‖α(∆̃X(l)Ll,α)H‖ ≤ 2α‖∆̃X(l)‖F‖Ll,α‖F ≤ 2
√

2α2‖∆̃X(l)‖F‖[∆̃S]l‖F ,

‖LT
l,α([Z]l − I)Ll,α‖F ≤ ‖[Z]l − I‖F‖Ll,α‖2F ≤ 2α2‖[Z]l − I‖F‖[∆̃S]l‖2F ,

and

‖αLT
l,α∆̃X(l)Ll,α‖F ≤ α‖∆̃X(l)‖F‖Ll,α‖2F ≤ 2α3‖∆̃X(l)‖F‖[∆̃S]l‖2F .

Thus if d2(X+,S+;D++) ≤ γ for some γ ∈ (0, 1/
√

2), then for all α ∈ [0, min{1, (1 −
√

2γ)/(2χ)}],
(∑

l∈L πl‖LT

S̃l,α
X̃l,αL

S̃l,α
− I‖2F

) 1

2

is bounded above by the sum of

(1− α)

(
∑

l∈L

πl‖[Z]l − I‖2F

) 1

2

= (1− α)
√

wnd2(X+,S+;D++) ≤ √wn(1− α)γ,

4α2

(
∑

l∈L

πl‖[∆̃S]l‖4F

) 1

2

≤ 4α2‖∆̃S‖F
(
∑

l∈L

πl‖[∆̃S]l‖2F

)1

2

≤ 4
√

wnα
2χ2

(1−
√

2γ)2
,
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2(1 +
√

2)α2

(
∑

l∈L

πl‖[Z]l − I‖2F‖[∆̃S]l‖4F

) 1

2

≤ 2(1 +
√

2)α2‖∆̃S‖2F

(
∑

l∈L

πl‖[Z]l − I‖2F

) 1

2

≤ 2(1 +
√

2)
√

wnα
2χ2γ

(1−
√

2γ)2
≤ 5
√

wnα
2χ2γ

(1−
√

2γ)2
,

2
√

2α2

(
∑

l∈L

πl‖∆̃X(l)‖2F‖[∆̃S]l‖2F

) 1

2

≤ 2
√

2α2‖∆̃S‖F
(
∑

l∈L

πl‖∆̃X(l)‖2F

) 1

2

≤ 2
√

2
√

wnα
2χ2

(1−
√

2γ)2
≤ 3
√

wnα
2χ2

(1−
√

2γ)2
,

and

2α3

(
∑

l∈L

πl‖∆̃X(l)‖2F‖[∆̃S]l‖4F

) 1

2

≤ 2α3‖∆̃S‖2F

(
∑

l∈L

πl‖∆̃X(l)‖2F

)1

2

≤ 2
√

wnα
3χ3

(1−
√

2γ)3
,

where we have used (3.8) and (3.9) to bound the last four terms. �

We are ready to give the main theorem of this section.

Theorem 3. If β, δ ∈ (0, 1) satisfies

γ2(7 + 5γ)

(1−
√

2γ)2
+ 2

γ3

(1−
√

2γ)3
< β, (3.10)

where γ = (β+δ)/(1−δ), then in each iteration of Algorithm 2, the search directions are well
defined. Moreover, in each iteration, the iterates are primal-dual strictly feasible solutions
satisfying d2(X+,S+;D+) ≤ β.

Proof. We shall prove the theorem by induction on the iterations. Suppose that at the
beginning of an iteration, the iterates (X+,S+) are strictly feasible and d2(X+,S+;D+) is
at most β. This is certainly true for the first iteration. By the choice of D++ and Lemma 5,
we have

d2(X+,S+;D++) ≤ γ,

where γ = (β + δ)/(1 − δ). If (3.10) holds with β < 1, then it is straightforward to check
that γ < 1/

√
2 and (1−

√
2γ)/(2γ) > 1. Thus we may apply Lemma 8 with σ = 1 to deduce

that the search directions ∆X and ∆S are well defined, and that for all α ∈ [0, 1],

w
− 1

2
n

(
∑

l∈L

πl

∥∥∥LT

S̃l,α
X̃l,αL

S̃l,α
− I
∥∥∥

2

2

) 1

2

≤ (1− α)γ + α2 γ2(7 + 5γ)

(1−
√

2γ)2
+ 2α3 γ3

(1−
√

2γ)3
,
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and S+ + α∆S = LS+
S̃n,αL

T
S+
∈ Sn

++, where X̃l,α and S̃l,α denote, respectively, the sums
Xl + α∆X(l) and Sl + α[∆S]l. By Lemma 1, we have

d2(X+ + α∆X,S+ + α∆S;D++) ≤ w
− 1

2
n

(
∑

l∈L

πl

∥∥∥LT

S̃l,α
X̃l,αL

S̃l,α
− I
∥∥∥

2

2

) 1

2

≤ (1− α)γ + α2 γ2(7 + 5γ)

(1−
√

2γ)2
+ 2α3 γ3

(1−
√

2γ)3
.

Under the hypothesis (3.10), the above upper bound is at most (1 − α)γ + αβ < 1 for all
α ∈ [0, 1]. We then conclude from Theorem 2 that the next pair of iterates (X++,S++) =
(X+ +∆X,S+ +∆S) are positive definite, whence strictly feasible as they clearly satisfy the
linear equations in their respective SDP problems. Finally, the induction is completed by
observing that the upper bound ((1− α)γ + αβ) is precisely β when α = 1. �

3.2. Weighted path-following algorithms. In this section, we describe three weighted
path-following algorithms using the above target-following framework based on the Cholesky
search directions. The first is a short-step algorithm that is actually a special case of the
above target-following framework. The next is a weighted path-following version of the
Mizuno-Todd-Ye (MTY) predictor-corrector algorithm. Finally, we present a weighted path-
following algorithm that attempts to take a large step towards optimality in each iteration.
The analyses of the first two algorithms demonstrate the same worst-case iteration bound of
O(
√

nρ log(ε−1)), while the analysis of the last algorithm gives a bound of O(nρ log(ε−1)) to
obtain a pair of primal-dual feasible solutions (Xout,Sout) satisfying Xout •Sout ≤ εXin •Sin,
where ρ denotes the ratio

Xin • Sin

nλ(XinSin)n

. (3.11)

We begin with the following generic weighted path-following algorithm:

Algorithm 3. (Cholesky weighted path-following algorithm)
Given a pair of primal-dual strictly feasible solutions (Xin,Sin) with T (Xin,Sin) ∈ Dn

↓,++,
and the required accuracy ε > 0.

(1) Find a target D+ ∈ Dn
↓,++ satisfying d2(Xin,Sin;D+) ≤ β for some β ∈ (0, 1). Set

(X+,S+) = (Xin,Sin).
(2) While X+ • S+ > ε(Xin • Sin),

(a) Pick σ ∈ [0, 1].
(b) Solve (3.2) with D++ replaced by σD+. For each α ∈ [0, 1], let (Xα,Sα) =

(X+ + α∆X,S+ + α∆S), and let µα = 1 − α + ασ. Pick β̃ ∈ (0, 1). Pick
α̂ ∈ [0, 1] such that Sα̂ ∈ Sn

++ and

d2(Xα̂,Sα̂; µα̂D+) ≤ β̃.

(c) Update (X+,S+)← (Xα̂,Sα̂) and D+ ← µα̂D+.
(3) Output (Xout,Sout) = (X+,S+).
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3.2.1. Short-step algorithm. Let ρ denote the ratio (3.11). The short-step algorithm uses the

choices σ = 1− δ(nρ)−
1

2 for a fixed constant δ ∈ (0, 1), and β̃ = β throughout all iterations.

Theorem 4. If β, δ ∈ (0, 1) satisfies the hypothesis of Theorem 3, then in each iteration of

Algorithm 3, with σ = 1−δ(nρ)−
1

2 , the search directions are well defined and we may use α̂ =
1. Moreover, with this choice of α̂, the algorithm terminates after at most O(

√
nρ log(ε−1))

iterations.

Proof. The proof of Theorem 3 shows that we may use α̂ = 1 in each iteration. Therefore
Algorithm 3, with σ = 1− δ(nρ)−

1

2 in each iteration, is precisely Algorithm 2 with D++ =
σD+. Consequently the first part of the theorem holds. Moreover, the duality gap of the

iterates decreases by a factor of 1 − δ(nρ)−
1

2 in each iteration, whence the iteration bound
holds. �

3.2.2. Predictor-corrector algorithm. The MTY predictor-corrector algorithm alternates be-

tween (σ, β̃) = (0, 2β) and (σ, β̃) = (1, β). The iterations in the former case are called the
predictor steps, and those in the latter the corrected steps. As before, ρ denotes the ratio
(3.11).

Theorem 5. If β ∈ (0, 1/(2
√

2)) satisfies

4β2(7 + 10β)

(1− 2
√

2β)2
+ 2

8β3

(1− 2
√

2β)3
< β, (3.12)

then in each iteration of Algorithm 3, with (σ, β̃) alternating between (0, 2β) and (1, β), the
search directions are well defined and we may take α̂ to be the positive real root of

α 7→ α2 (β +
√

nρ)2(7 + 5β)

(1−
√

2β)2
+ 2α3 (β +

√
nρ)3

(1−
√

2β)3
− (1− α)β (3.13)

in the predictor steps, and α̂ = 1 in the corrector steps. Moreover, with these choices of α̂,
the algorithm terminates after at most O(

√
nρ log(ε−1)) iterations.

Proof. We shall prove by induction on the iterations that under the hypothesis of the theo-
rem,

• all search directions are well defined and all iterates are strictly feasible,
• d2(X+,S+;D+) ≤ β in all predictor steps, and
• d2(X+,S+;D+) ≤ 2β in all corrector steps.

Suppose that at the beginning of a predictor step, we have strictly feasible (X+,S+) satisfying
d2(X+,S+;D+) ≤ β. This is certainly true for the first predictor step, which happens to be
the very first iteration. Under the hypothesis of the theorem, Lemma 8 with D++ = D+

shows that the search directions ∆X and ∆S are well defined, and for each α ∈ [0, (1 −√
2β)/(2χ)],

w
− 1

2
n

(
∑

l∈L

πl

∥∥∥LT

S̃l,α
X̃l,αL

S̃l,α
− (1− α)I

∥∥∥
2

2

) 1

2

≤ (1− α)β + α2 χ2(7 + 5β)

(1−
√

2β)2
+ 2α3 χ3

(1−
√

2β)3
,

(3.14)
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where X̃l,α and S̃l,α denote, respectively, the sums Xl + α∆X(l) and Sl + α[∆S]l, and χ =
(
w−1

n

∑
l∈L πl ‖λ(XlSl)‖2F

) 1

2 . Using the triangle inequality on the 2-norm of Rn, we bound

√
wnχ ≤

(
∑

l∈L

πl ‖λ(XlSl)− I‖22

) 1

2

+

(
∑

l∈L

πl ‖I‖22

) 1

2

≤ √wn(β +
√

nρ).

(3.15)

By the definition (2.7) and Lemma 1, we have

d2(Xα,Sα; µαD+)

= (1− α)−
1

2 w
− 1

2
n

∥∥∥
(
(1− α)−

1

2 D
− 1

2

+ 〈〈LT
Sα

XαLSα
− (1− α)D+〉〉

)
H

∥∥∥
F

≤ (1− α)−1w
− 1

2
n

(
∑

l∈L

πl

∥∥∥LT

S̃l,α
X̃l,αL

S̃l,α
− (1− α)I

∥∥∥
2

2

) 1

2

.

This, together with (3.14) and (3.15), leads to the bound

(1− α) (d2(Xα,Sα; µαD+)− 2β)

≤ α2 (β +
√

nρ)2(7 + 5β)

(1−
√

2β)2
+ 2α3 (β +

√
nρ)3

(1−
√

2β)3
− (1− α)β.

This upper bound is not only cubic in α, it is in fact increasing in α whenever α is nonnegative.
Thus if we take α̂ to be the positive real root of (3.13), then we have

d2(Xα,Sα; µαD+) ≤ 2β

for all α ∈ [0, α̂]. Thus we conclude from Theorem 2 that the next iterates (Xα̂,Sα̂) are
positive definite, whence strictly feasible as they clearly satisfy the linear equations in their
respective SDP problems. Furthermore, d2(Xα̂,Sα̂; µα̂D+) ≤ 2β, whence in the next itera-
tion we have d2(X+,S+;D+) ≤ 2β, which is a corrector step.

Now consider a corrector step. Suppose that at the beginning of the corrector step, we
have with strictly feasible (X+,S+) satisfying d2(X+,S+;D+) ≤ 2β. This is shown above to
be true for the first corrector step. As before, we conclude from Lemma 8 that the search
directions ∆X and ∆S are well defined. The proof of Theorem 3 shows that we may use
α̂ = 1 in this iteration, and that

d2(X1,S1; µ1D+) ≤ 4β2(7 + 10β)

(1− 2
√

2β)2
+ 2

8β3

(1− 2
√

2β)3
≤ β

under the hypothesis (3.12), whence d2(X+,S+;D+) ≤ β in the next iteration, which is a
predictor step. This completes the induction.

Finally, since α̂ = Ω((nρ)−
1

2 ) for each predictor step, the duality gap decreases by a factor

of 1− Ω((nρ)−
1

2 ) every two iterations. Thus the iteration bound holds. �
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3.2.3. Large-update algorithm. Rather aiming for conservatively close targets, the large-
update algorithm aims at weighted analytic centers with duality gap that is a constant
fraction σ of the current duality gap. As Newton’s method is not guaranteed to perform well
when not in a neighborhood of the target, we shall use damped Newton steps instead. As
before, ρ denotes the ratio (3.11).

Theorem 6. If β ∈ (0, 1/
√

2) and σ ∈ (0, 1), then in each iteration of Algorithm 3, with

β̃ = β, the search directions are well defined and we may take α̂ in each step to be the positive
real root of

α 7→ α
(β +

√
(1− σ)nρ)2(7 + 5β)

(1−
√

2β)2
+ 2α2 (β +

√
(1− σ)nρ)3

(1−
√

2β)3
− σβ.

Moreover, with this choice of α̂, the algorithm terminates after at most O(nρ log(ε−1)) iter-
ations.

Proof. We shall prove by induction on the iterations, under the hypothesis of the theo-
rem, that all search directions are well defined, all iterates are strictly feasible, and that
d2(X+,S+;D+) ≤ β. Suppose that at the beginning of an iteration, we have with strictly
feasible (X+,S+) satisfying d2(X+,S+;D+) ≤ β. This is certainly true for the first itera-
tion. Under the hypothesis of the theorem, Lemma 8 with D++ = D+ shows that the search
directions ∆X and ∆S are well defined, and for each α ∈ [0, (1−

√
2β)/(2χ)],

w
− 1

2
n

(
∑

l∈L

πl

∥∥∥LT

S̃l,α
X̃l,αL

S̃l,α
− µαI

∥∥∥
2

2

) 1

2

≤ (1− α)β + α2 χ2(7 + 5β)

(1−
√

2β)2
+ 2α3 χ3

(1−
√

2β)3
,

(3.16)

where X̃l,α and S̃l,α denote, respectively, the sums Xl + α∆X(l) and Sl + α[∆S]l, and χ =
σd2(X+,S+; σD+). Using the triangle inequality on the 2-norm of Rn, we bound

χ = σd2(X+,S+; σD++) ≤ β +
√

(1− σ)nρ. (3.17)

By the definition (2.7) of d2, Lemma 1 and the bounds (3.16) and (3.17), we have

µαd2(Xα,Sα; µαD+)

≤ w
− 1

2
n

(
∑

l∈L

πl

∥∥∥LT

S̃l,α
X̃l,αL

S̃l,α
− µαI

∥∥∥
2

2

) 1

2

≤ (1− α)β + α2 (β +
√

(1− σ)nρ)2(7 + 5β)

(1−
√

2β)2
+ 2α3 (β +

√
(1− σ)nρ)3

(1−
√

2β)3
.

Subsequently d2(Xα,Sα; µαD+) ≤ β whenever

α2 (β +
√

(1− σ)nρ)2(7 + 5β)

(1−
√

2β)2
+ 2α3 (β +

√
(1− σ)nρ)3

(1−
√

2β)3
≤ ασβ.
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The left hand side of the above inequality is increasing for nonnegative α. Hence the in-
equality holds for all α ∈ [0, α̂], where âlpha is the positive real root of

α 7→ α
(β +

√
(1− σ)nρ)2(7 + 5β)

(1−
√

2β)2
+ 2α2 (β +

√
(1− σ)nρ)3

(1−
√

2β)3
− σβ.

Thus we conclude from Theorem 2 that the next iterates (Xα̂,Sα̂) are positive definite,
whence strictly feasible as they clearly satisfy the linear equations in their respective SDP
problems. Furthermore, d2(Xα̂,Sα̂; µα̂D+) ≤ β.

Finally, since α̂ = Ω((nρ)−1) in each iteration, the duality gap decreases by a factor of
1− Ω((nρ)−1) every iteration. Thus the iteration bound holds. �

4. Finding Analytic Centers

Consider the problem of finding an analytic center T
−1(µ̂I) for some given µ̂ > 0. Given

a pair primal-dual strictly feasible solutions (X̂, Ŝ) with LT

Ŝ
X̂L

Ŝ
∈ Dn

↓,++, we shall construct

a finite sequence of targets {Dk}Nk=0 such that

d2(X̂, Ŝ;D0) ≤ β,

(Dk−1)
− 1

2
nn

∥∥∥DkD
− 1

2

k−1 −D
1

2

k−1

∥∥∥
F
≤ δ (1 ≤ k ≤ N) (4.1)

and DN = µI, with β and δ satisfying the hypothesis of Theorem 3, thus allowing us to
apply Algorithm 2 to approximate T

−1(µ̂I).

Of course, if LT

Ŝ
X̂L

Ŝ
∈ Dn

↓,++ is a positive multiple of I, then we need simply to follow the

central path to approximate T
−1(µ̂I). Henceforth, we assume that LT

Ŝ
X̂L

Ŝ
∈ Dn

↓,++ is not a
positive multiple of I.

Since the targets are diagonal matrices Dk ∈ Dn
↓,++, we may restrict our attention to

the diagonal entries xk = diag(Dk) and work in Rn
↓,++ instead. Under this restriction, the

condition (4.1) becomes
√√√√ 1

xk−1
n

n∑

i=1

(
xk

i − xk−1
i

)2

xk−1
i

≤ δ (1 ≤ k ≤ N).

Such sequence {xk}Nk=0 is called a δ-sequence; see [8]. We first give an upper bound on the
length N of a δ-sequence.

Consider the local metric defined by the inner product

〈·, ·〉x : (u,v) ∈ Rn ×Rn 7→ 1

xn

n∑

i=1

uivi

xi

at each x ∈ Rn
↓,++. We denote by ‖·‖x the norm induced by the above inner product. In

terms of this local metric, a δ-sequence {xk}Nk=0 is one that satisfies
∥∥xk − xk−1

∥∥
xk−1 ≤ δ (1 ≤ k ≤ N).
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The length of a piecewise smooth curve ξ : [0, 1]→ Rn
↓,++ is defined to be

∫ 1

0

∥∥∥∥
dξ(t)

dt

∥∥∥∥
ξ(t)

dt =

∫ 1

0

(
1

ξn

n∑

i=1

ξ̇
2

i

ξi

) 1

2

dt,

and denoted by l(ξ).

Lemma 9 (c.f. Lemma 3.1 of [15]). Suppose ξ : [0, 1]→ Rn
↓,++ is a piecewise smooth curve.

If ‖ξ(1)− ξ(0)‖ξ(0) < 1, then

l(ξ) ≥ r − 1

2
r2,

where r denotes ‖ξ(1)− ξ(0)‖ξ(0).

Proof. Let x denote the vector ξ(0). Let η : [0, 1]→ R denote the map

t 7→ ‖ξ(t)− x‖x.
Using Cauchy-Schwarz inequality, we have, for any t ∈ (0, 1),

d

dt
η(t) =

1

η(t)
(ξ(t)− x)T d

dt
ξ(t) ≤

∥∥∥∥
d

dt
ξ(t)

∥∥∥∥
x

.

Moreover, if t ∈ (0, 1) is such that η(t) < 1, then we deduce from ‖ξ(t)− x‖x = η(t) that

ξ(t)i ≤
x(t)i

1− η(t)

for each i ∈ {1, . . . , n}. Subsequently we may bound

(1− η(t))

∥∥∥∥
d

dt
ξ(t)

∥∥∥∥
x

≤
∥∥∥∥

d

dt
ξ(t)

∥∥∥∥
ξ(t)

.

Thus, if we let t̂ denote the least t ∈ [0, 1] satisfying η(t) = r, then

l(ξ) ≥
∫ t̂

0

∥∥∥∥
d

dt
ξ

∥∥∥∥
ξ

dt ≥
∫ t̂

0

(1− η)

∥∥∥∥
d

dt
ξ

∥∥∥∥
x

dt ≥
∫ t̂

0

(1− η)
d

dt
ηdt =

[
η − 1

2
η2

]r

0

proves the lemma. �

Lemma 10 (c.f. Lemma 3.3 of [15]). For every piecewise smooth curve ξ : [0, 1] → Rn
↓,++

and every δ ∈ (0, 1), there exists a δ-sequence {xk}Nk=0 with x0 = ξ(0), x1 = ξ(1) and length

N ≤
⌈

l(ξ)

δ − 1
2
δ2

⌉
.

Proof. Consider the sequence {ξ(tk)}∞k=0, where t0 = 0, and tk is defined recursively to be
the least t ∈ [tk−1, 1] satisfying

‖ξ(t)− ξ(tk−1)‖ξ(tk−1) = δ
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whenever ‖ξ(1) − ξ(tk−1)‖ξ(tk−1) > δ, or tk = 1 otherwise. By the preceding lemma, each
segment {ξ(t) : t ∈ [tk−1, tk]} of the curve ξ has length greater than (δ − 1

2
δ2) whenever

‖ξ(1)− ξ(tk−1)‖ξ(tk−1) > δ. Subsequently, we have ‖ξ(1)− ξ(tk−1)‖ξ(tk−1) ≤ δ when

k ≥ l(ξ)

δ − 1
2
δ2

.

Thus {xk := ξ(tk)}Nk=0 with

N =

⌈
l(ξ)

δ − 1
2
δ2

⌉

is the required δ-sequence. �

4.1. Approximation of analytic centers. We now construct a piecewise linear curve ξ

joining diag(LT

Ŝ
X̂L

Ŝ
) and µ1, where µ = (X̂ • Ŝ)/n, and shall demonstrate a good upper

bound on the length of ξ. Each linear piece of the curve ξ raises all entries with the least
value at the same rate and reduces the remainder at another rate, while keeping the sum of
all entries constant throughout. Each linear piece ends when the entries with the least value
coincide with some other entries.

Let x̂ denote the vector diag(LT

Ŝ
X̂L

Ŝ
). Let K denote the number distinct entries in

x̂. Since we assumed that LT

Ŝ
X̂L

Ŝ
is not a multiple of the identity matrix, we necessarily

have K > 1. Let y1 > · · · > yK denote the values of the distinct entries of x̂. For each
p ∈ {1, . . . , K}, let Jp denote the index set {i : x̂i = yp}, and let np denote the number of
indices in Jp.

For each p ∈ {1, . . . , K}, let x̂p denote the vector in Rn
↓,++ satisfying

x̂p
i =

{
αpx̂i if i ∈ J1 ∪ · · · ∪ JK−p+1,

αpyK−p+1 if i ∈ JK−p+2 ∪ · · · ∪ JK ,
(4.2)

where αp ∈ R++ is such that
n∑

i=1

x̂p
i =

n∑

i=1

x̂i. (4.3)

Since x̂i = yK−p+1 when i ∈ JK−p+1, we may alternatively write

x̂p
i =

{
αpx̂i if i ∈ J1 ∪ · · · ∪ JK−p,

αpyK−p+1 if i ∈ JK−p+1 ∪ · · · ∪ JK .
(4.4)

The curve ξ consists of (K−1) pieces of linear segments ξ1, . . . , ξK−1, where the p-th segment

ξp joins x̂k and x̂k+1.

Lemma 11. In the curve ξ, each line segment ξp has length

l(ξp) ≤
√

n log

(
4yK−pσK−p+1

yK−p+1σK−p

)
,
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where σp denotes
∑p

q=1 nqyq + yp

∑K

q=p+1 nq. Consequently,

l(ξ) ≤
√

n log

(
4y1σK

yKσ1

)
=
√

n log

(
4X̂ • Ŝ

nλ(X̂Ŝ)n

)
.

Proof. We fix a p ∈ {1, . . . , K − 1} and consider the p-th linear segment ξp. Recall that
ξp : [0, 1]→ Rn

↓,++ is defined by

ξp(t) = (1− t)x̂p + tx̂p+1.

Thus its length is

∫ 1

0

(
1

x̂p
n + t(x̂p+1

n − x̂p
n)

n∑

i=1

(x̂p+1
i − x̂p

i )
2

x̂p
i + t(x̂p+1

i − x̂p
i )

) 1

2

dt.

Using (4.4) for x̂p and (4.2) for x̂p+1, the integrand is




1

αpyK−p+1 + tβp

∑

i∈J1∪···∪JK−p

(αp+1x̂i − αpx̂i)
2

αpx̂i + t(αp+1x̂i − αpx̂i)

+
1

αpyK−p+1 + tβp

∑

i∈JK−p+1∪···∪JK

β2
p

αpyK−p+1 + tβp




1

2

,

where βp denotes (αp+1yK−p − αpyK−p+1). This simplifies to



γ2
p

(αpyK−p+1 + tβp)(αp − tγp)

∑

i∈J1∪···∪JK−p

x̂i

+
β2

p

(αpyK−p+1 + tβp)2

K∑

q=K−p+1

nq




1

2

,

where γp denotes (αp − αp+1). The condition (4.3) for x̂p and x̂p+1 implies that

αp

∑

i∈J1∪···∪JK−p

x̂i + αpyK−p+1

K∑

q=K−p+1

nq =
n∑

i=1

x̂i

= αp+1

∑

i∈J1∪···∪JK−p

x̂i + αp+1yK−p

K∑

q=K−p+1

nq, (4.5)

and subsequently

γp

∑

i∈J1∪···∪JK−p

x̂i = βp

K∑

q=K−p+1

nq.

Thus we may further simplify the integrand to
(

K∑

q=K−p+1

nq

) 1

2 (
γpβp

(αpyK−p+1 + tβp)(αp − tγp)
+

β2
p

(αpyK−p+1 + tβp)2

) 1

2

.
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The length of ξp is then

(
K∑

q=K−p+1

nq

) 1

2
[
log

(√
αpyK−p+1γp + αpβp −

√
βp(αp − tγp)√

αpyK−p+1γp + αpβp +
√

βp(αp − tγp)

)]1

0

=

(
K∑

q=K−p+1

nq

) 1

2

log

(√
αpyK−p+1γp + αpβp −

√
βp(αp − γp)√

αpyK−p+1γp + αpβp +
√

βp(αp − γp)

)

−
(

K∑

q=K−p+1

nq

) 1

2

log

(√
αpyK−p+1γp + αpβp −

√
βpαp√

αpyK−p+1γp + αpβp +
√

βpαp

)
.

An upper bound may be obtained using the following inequalities:

4

u
≤ 1−

√
1− u

1 +
√

1− u
≤ u (0 < u ≤ 1).

The first inequality follows from
√

1− u ≤ 1 − 1
2
u, while the second from the convexity of

the ratio as a function of u on [0, 1]. These inequalities imply
√

αpyK−p+1γp + αpβp −
√

βp(αp − γp)√
αpyK−p+1γp + αpβp +

√
βp(αp − γp)

≤ 1− βp(αp − γp)

αpyK−p+1γp + αpβp

=
αpyK−p+1γp + βpγp

αpyK−p+1γp + αpβp

,

and √
αpyK−p+1γp + αpβp −

√
βpαp√

αpyK−p+1γp + αpβp +
√

βpαp

≥ 4

(
1− βpαp

αpyK−p+1γp + αpβp

)−1

= 4
αpyK−p+1γp + αpβp

αpyK−p+1γp

,

and thus the length of ξp is bounded from above by

√
n log

(
4
αpyK−p+1 + βp

αpyK−p+1

)
=
√

n log

(
4
αp+1yK−p

αpyK−p+1

)
.

From (4.5) we deduce the ratio

αp+1

αp

=

∑
i∈J1∪···∪JK−p

x̂i + yK−p+1

∑K

q=K−p+1 nq

∑
i∈J1∪···∪JK−p

x̂i + yK−p

∑K

q=K−p+1 nq

=

∑K−p

q=1 nqyq + yK−p+1

∑K

q=K−p+1 nq∑K−p

q=1 nqyq + yK−p

∑K

q=K−p+1 nq

.

The numerator equals
∑K−p+1

q=1 nqyq + yK−p+1

∑K

q=K−p+2 nq, hence the lemma is proved. �

Combining Lemmas 10 and 11 with a short-step path-following sequence of targets, we
have the following theorem.
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Theorem 7. Suppose β ∈ (0, 1) is fixed. Given any pair of primal-dual strictly feasible

solutions (X̂, Ŝ), any positive real number µ̂, there is a sequence of at most

O

(
√

n

(
log

X̂ • Ŝ

nλ(X̂Ŝ)n

+

∣∣∣∣∣log
X̂ • Ŝ

nµ̂

∣∣∣∣∣

))

targets such that Algorithm 2 find a pair of primal-dual feasible solutions (X,S) satisfying
‖λ(XS)− µ̂1‖2 ≤ β.

As an immediate corollary, we have an improved worst-case iteration bound on solving
SDP problems using our target-following framework.

Corollary 1. Given any pair of primal-dual strictly feasible solutions (X̂, Ŝ) and any ε > 0,
there is a sequence of at most

O

(
√

n

(
log

X̂ • Ŝ

nλ(X̂Ŝ)n

+
∣∣log ε−1

∣∣
))

targets such that Algorithm 2 find a pair of primal-dual feasible solutions (X,S) satisfying

X • S ≤ εX̂ • Ŝ.

5. Conclusion

A target-following framework for SDP is presented. This framework is an extension of
similar frameworks for linear programming [6] and linear complementarity problems [8].
Within this framework, we designed three primal-dual weighted path-following algorithms
for SDP, and proved that their iteration complexity parallels their counterparts in linear
programming.

In addition, we showed that with a specific choice of search directions, which we called
Cholesky search directions, the computational efforts in each iteration is comparable with a
regular path-following algorithm.

Finally, we showed that the target-following framework can be used to efficiently ap-
proximate points on the central path, when given any pair of primal-dual strictly feasible
solutions. This, followed by any path-following algorithm, provides an algorithm for SDP. If
we use a path-following algorithm with the best known iteration complexity, then we obtain
an improved worst-case iteration bound for solving SDPs with a given pair of primal-dual
strictly feasible solutions. It should be noted that there are existing initialization schemes,
such as the homogeneous self-dual embedding used in SeDuMi [16], that solve the SDP by
solving a larger problem with an easily obtained pair of primal-dual solutions near (or on)
the central path. However, such methods are not known to have similar iteration complexity
for obtaining approximately optimal solutions in general.

In addition to solving SDPs, the target-following framework can also be used to solve max-
det problems. A max-det problem is the minimization of the sum of a linear function and
a log-determinant term subjected to linear matrix inequalities. The many applications of
max-det problems are discussed in [23]. The primal-dual central path of a max-det problem
is the path of Cholesky weighted centers {T −1(

[
I 0
0 µI

]
) : µ ∈ (0, 1]} of the SDP obtained

by dropping the log-determinant term. If we start close to a pair T
−1(
[

I 0
0 µ̂I

]
), and follow
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a δ−sequence along this path of Cholesky weighted centers, then within O(
√

n|log ε−1|)
iterations of Algorithm 2, where n denotes the order of the matrix in the log-determinant
term, we will obtain a pair of primal-dual feasible solutions with duality gap εµ̂. This
iteration bound is comparable with the one obtained in [23] for a dual short-step path-
following algorithm. Primal-dual path-following algorithms for the max-det problem were
proposed by Toh [19]. Although no theoretical convergence analysis was given in [19], the
numerical results in the paper shows that the algorithms are efficient and able to obtain
highly accuracy.

Recently, a primal-dual long-step path-following algorithm was proposed by Tsuchiya and
Xia [20] for a generalization of the max-det problem where more than one log-determinant
term is allowed. The authors showed that the algorithm takes O(n log ε−1 + n) iterations
to reduce the duality gap by a factor of ε, where n denotes the sum of the orders of the
matrices in the log-determinant terms and the order of the matrix in the linear term. This
assumes that the initial primal-dual pair is near the “extended central trajectory” defined
in [20]. The “extended central trajectory” is actually the path of Cholesky weighted centers





T
−1







(µ ∨ c1)I 0 · · · 0

0
. . .

. . .
...

...
. . . (µ ∨ cp)I 0

0 · · · 0 µI





 : µ > 0





of the corresponding SDP after dropping all log-determinant terms, where c1 ≥ c2 ≥ · · · ≥
cp > 0 are the weights of the log-determinant terms. While long-step algorithms are usually
more efficient than short-step algorithms in practice, the short-step algorithms usually have
better iteration complexity in theory. Indeed, if Algorithm 2 is used to solve the weighted
max-det problem by following a δ−sequence along the above path of Cholesky weighted
centers, then we can show that the algorithm takes O(

√
n log ε−1) iterations to reduce the

duality gap by a factor of ε. As the proof of this iteration complexity uses precisely the
technique in the last section, we leave this as an exercise for the readers.
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