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Abstract—An important application of sparse representation
is underdetermined blind source separation (BSS), where the
number of sources is greater than the number of observations.
Within the stochastic framework, this paper discusses recov-
erability of underdetermined BSS based on a two-stage sparse
representation approach. The two-stage approach is effective
when the source matrix is sufficiently sparse. The first stage of
the two-stage approach is to estimate the mixing matrix, and the
second is to estimate the source matrix by minimizing the 1-norms
of the source vectors subject to some constraints. After estimating
the mixing matrix and fixing the number of nonzero entries of a
source vector, we estimate the recoverability probability (i.e., the
probability that the source vector can be recovered). A general
case is then considered where the number of nonzero entries of
the source vector is fixed and the mixing matrix is drawn from a
specific probability distribution. The corresponding probability
estimate on recoverability is also obtained. Based on this result, we
further estimate the recoverability probability when the sources
are also drawn from a distribution (e.g., Laplacian distribution).
These probability estimates not only reflect the relationship
between the recoverability and sparseness of sources, but also
indicate the overall performance and confidence of the two-stage
sparse representation approach for solving BSS problems. Several
simulation results have demonstrated the validity of the proba-
bility estimation approach.

Index Terms—Blind source separation (BSS), linear program-
ming, probability estimation, recoverability, sparse representation.

I. INTRODUCTION

SPARSE representation, or sparse coding, of signals has
received a great deal of attention in recent years (e.g.,

[1]–[10], etc). An important application of the sparse repre-
sentation is in underdetermined blind source separation (BSS),
where the number of sources is greater than the number of
observations. Until now, the independent component analysis
(ICA) approach has been commonly used to solve BSS prob-
lems. However, generally the ICA approach cannot recover all
sources in the underdetermined case [12]–[15]. Moreover, the
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sparse representation approach can handle the following two
cases, which are difficult to deal with by using the standard
ICA approach: 1) the sources are dependent; and 2) the sources
are nonstationary.

Several algorithms based on sparse representation have been
developed for BSS. For instance, the mixing matrix and sources
were estimated using the maximum posterior approach and the
maximum-likelihood approach in [17]–[19]. A variational ex-
pectation maximization algorithm for sparse representation was
proposed for underdetermined BSS [20], and a two-stage clus-
tering-then- -optimization approach was proposed for under-
determined BSS in which the mixing matrix and the sources
were estimated separately [16], [18]. In addition, several studies
analyzed perturbations of sparse signal representation in the
presence of noise [21]–[23].

Recently, in [21], we analyzed the two-stage clustering-then-
-optimization approach for sparse representation and its ap-

plication to BSS. The uniqueness of the norm solution and
its robustness to additive noise were discussed. The equivalence
of the -norm solution and the -norm solution was also dis-
cussed within the context of a probabilistic framework. These
results were then used in a recoverability analysis to BSS.

In this paper, a general case is considered in which the mixing
matrix and the source matrix are taken randomly. We estimate
the probability of recoverability when the two-stage sparse rep-
resentation approach is used for underdetermined BSS.

First, we present the model and explain the two-stage sparse
representation approach. We consider the following model ne-
glecting noise:

(1)

where the unknown mixing matrix the matrix
contains unknown sources,

and the only observable is a
data matrix containing mixtures of the sources. In general, the
number of sources, , is also unknown. In this paper, we focus
on the underdetermined case in which .

In the above model, a column
of is called a source vector. The task of BSS is to recover the
sources using only the observable matrix . In the two-stage
sparse representation approach, the mixing matrix is esti-
mated in the first stage, and the source matrix is estimated

0018-9448/$20.00 © 2006 IEEE



3140 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 7, JULY 2006

in the second stage by solving the following set of optimiza-
tion problems:

s. t. (2)

where .

Remark 1: As will be seen in the following sections, the spar-
sity of source components plays a key role in the two-stage ap-
proach. The high sparsity of sources can guarantee a high prob-
ability that the sources can be recovered. Many sources (e.g.,
speech and image sources) are not sparse in the time domain
but are sparse in the time–frequency domain if a suitable linear
transformation is applied. Thus, if necessary, we can consider
the problem in the time–frequency domain rather than in the
time domain [21]. All discussions in this paper can be applied in
the time domain, the frequency domain, and the time–frequency
domain.

When the mixing matrix is correctly (or sufficiently
accurately) estimated, we can then discuss the recoverability
problem. We now rephrase the problem as a question. How is it
possible for the -norm solution of (2) to be equal to the true
source vector?

For simplification, discussion in the following sections will
be based on the following optimization problem instead of (2),
which can be seen as a representative of the optimization
problems in (2):

s. t.

where , , is a true source vector.
In this paper, let denote a solution of . From the dis-

cussion in [21], the -norm solution of is unique with prob-
ability one. In this paper, we mainly consider the probability that
the -norm solution is equal to the source vector. If the mixing
matrix is given or already estimated, and the number of
nonzero entries of is fixed (i.e., , ),
the probability can then be denoted as the conditional proba-
bility .

For more general cases, where all entries of
are also drawn from a distribution (e.g., a uniform distribu-
tion valued in an interval), the recoverability probability then
is determined as a function of the sensor number , the source
number , and the number of nonzero entries of . Hence,
we denote

(3)

In this paper, we focus on how to evaluate the probability in
(3). After obtaining the estimation of , we can esti-
mate the probability when the number of nonzero
entries of the source vector is not fixed but the sources are drawn
from a distribution (e.g., Laplacian distribution).

The remainder of this paper is organized as follows: Section II
presents some preliminary results when the mixing matrix is es-
timated or given. Section III discusses the probability estima-
tion of in (3). Section IV includes several simula-

tion examples, and discusses the probability estimation when
the mixing matrix and source matrix are drawn from several
given distributions. Finally, in Section V, we review the results
obtained in this paper.

II. PRELIMINARIES

As mentioned in the previous section, the first stage of the
two-stage BSS approach is to estimate the mixing matrix. The
source vectors are then estimated by solving the linear program-
ming problem (2). In this section, we present some prelimi-
nary results. Several recoverability results are obtained when the
mixing matrix is given or estimated. Specifically, the probabili-
ties are estimated.

Considering the linear programming problem , we de-
note as the index set of nonzero entries of , i.e.,

, and as the set of all the
subsets of except the null set. The cardinality of is .
In the following theorem, we present two sets of necessary and
sufficient conditions on the recoverability of , in which the
first one is an extension of a result in [11].

Theorem 1:
1. , if and only if, , the optimal value of the

objective function of the following optimization problem
(4) is less than , provided that it is solvable:

s. t.

fo

for (4)

2. , if and only if the optimal value of the objec-
tive function of the following optimization problem is less
than :

s. t.

(5)

where .

The proof of this theorem is given in Appendix I.
Note that it is not difficult to transform the optimization

problem (4) into a standard linear programming problem (see
Appendix II).

Remarks 2:
1. Although the -norm solution is the sparsest, as stated in

[21], it is not easy to directly find such a solution by mini-
mizing the -norm. The reasons are: a) the -norm solution
is generally not unique if the number of its nonzero entries
is ; b) there is no efficient algorithm to directly find the

-norm solution; c) the -norm solution is not robust to
noise. However, the -norm solution is not only sparse, but
also advantageous over the -norm solution in these three
aspects. Furthermore, it is also feasible to find the sparsest
solution (the -norm solution) by minimizing the -norm.

2. In many references on basis pursuit, e.g., [11], the equiva-
lence between the -norm and -norm solutions has been
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studied. In Theorem 1, if we assume the true source vector
be the -norm solution (the sparsest solution), then the

necessary and sufficient conditions for source recovery
also hold for the equivalence between the -norm and

-norm solutions.
3. Recently, the analysis of equivalence between between the

-norm and -norm solutions under a probabilistic frame-
work was reported, e.g., [25], [26], [28].

Remark 3: From Theorem 1, we can find that for a given
mixing matrix , the recoverability of the source column vector

obtained by solving the problem depends on the index
set and signs of its nonzero entries, but not on the magni-
tudes of its entries. This observation has been done in earlier
papers, e.g., [24]. When estimating the mixing matrix, we often
normalize the estimated columns of the mixing matrix to length
one. Obviously, this will change the amplitudes of the recovered
sources. However, the normalization procedure does not affect
the recoverability of the sources. Note that, in this paper, if an
estimated source is equal to a true source up to scaling, then we
say that the true source can be recovered.

The following is the uniqueness theorem for the solution
of .

Theorem 2: The solution of is unique if and only
if, , the optimal value of the objective function of the
following optimization problem (6) is less than , provided that
it is solvable:

s. t.

for

for (6)

where is the index set of nonzero entries of , and is the
set of all the subsets of except the null set. Furthermore,
is the th entry of .

The proof is straightforward from Theorem 1.
We now estimate the conditional probability

. Note that there are index
subsets of with cardinality , where .
We denote these subsets as , .

In this section, we need the following assumption with respect
to the source vector.

Assumption 1: All nonzero entries of the source vector
take either positive or negative sign with equal probability. The
index set of its nonzero entries can be one of the index
sets where with equal probability, i.e.,

for

Obviously, we first have

where the second equality is obtained from Theorem 1. Fol-
lowing the linear programming theory, we know that has at

most nonzero entries. Hence, the true source vector is not
equal to when , that is,

for .
Suppose that has nonzero entries, and the

index set of its nonzero entries is . Using , we can define a
sign column vector .

Theorem 1 and Remark 3 indicate that the recoverability of a
source vector is only related to the index set and signs of its
nonzero entries, but not related to the amplitudes of its nonzero
entries. Thus, the recoverability of is equivalent to that of .

For a given index set and a sign column vector , whose
nonzero entries index set is , if for any nonnull subset

, the optimal value of (4) is less than , then can be recov-
ered by solving the linear programming problem when
is replaced by .

Noting that there are sign column vectors whose nonzero
entries index set is , suppose that there are sign column

vectors that can be recovered, then is the probability that a
source vector , with its nonzero entries index set being ,
can be recovered by solving . Therefore, we have

(7)

where .

Remarks 4:
1. If the mixing matrix is given or estimated, the key

number in (7) can be determined by checking whether
the necessary and sufficient condition (4) is satisfied for
all the sign-column vectors related to the index set .

2. Generally, the estimation approach in (7) is suitable for rel-
atively small scale problem (e.g., ). The computa-
tional complexity of (7) to estimate

will grow exponentially with . However, when
is large, we can estimate by
simulations similarly as in Example 3. The method is to
randomly extract some sign vectors from ones and
check whether they can be recovered or not. This way, we
can estimate the recoverability probability. Since it is not
necessary to check all sign vectors, the computational com-
plexity will not increase dramatically.

III. PROBABILITY OF RECOVERABILITY UNDER A

RANDOM MIXING MATRIX

In the preceding section, we presented the estimate of condi-
tional probability under a given or
estimated mixing matrix . In this section, we consider a gen-
eral case in which the mixing matrix is randomly generated, and
estimate the probability in (3). We assume that all the
entries of the mixing matrix are drawn from the uniform distri-
bution in independently.

First, consider two standard linear programming problems

s. t.

(8)
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s. t.

(9)

where is a linear function, , , .
We suppose that problem (8) has an optimal solution denoted
as .

We have the following lemma on the linear programming
problems (8) and (9).

Lemma 1: For liner programming problems (8) and (9), if
the optimal solution of (8) has nonzero entries, and
is sufficiently small, then the linear programming problem (9)
is feasible, and

(10)

where denotes the optimal solution of (9).

The proof of Lemma 1 can be seen in Appendix III.
For linear programming problem (8), we have [21].

If and are arbitrarily taken, then generally
at least columns of are necessary to linearly represent ,
that is, has nonzero entries with probability one. Thus, in
reality, the condition on the number of nonzero entries of in
Lemma 1 is easy to satisfy.

We now present a theorem on the conditional probability
.

Theorem 3: is continuous with
respect to except on a zero-measure set of .

The proof of Theorem 3 can be seen in Appendix IV.
From Theorem 3, is continuous

with respect to almost everywhere, probability can
be expressed by the following integral:

(11)
where .

Although conditional probability
can be estimated for each using (7), it is difficult to obtain
an explicit result of (11). In the following, we will give a good
approximation of the integral in (11). The validity of the approx-
imation has been demonstrated by our simulations.

For a mixing matrix and a sign vector with nonzero
entries, if the optimal value of optimization problem (5) is less
than , then can be recovered. If so, is said to be recov-
erable. Let denote the optimal value of the objective

function in optimization problem (5) with replaced by and
denote the probability that the source vector is equal to

the corresponding -norm solution under a random mixing ma-
trix .

For deriving our approximation to the probability in (11), we
now construct the table at the bottom of the page.

In the table, are all sign vec-
tors with nonzero entries, are independent and
identically distributed (i.i.d.) samples of drawn from the uni-
form distribution.

Let be the indicator function such that is re-
coverable, that is, when and
otherwise. Hence,

(12)

Then, for any sign vector , the recoverability probability
can be approximated by

(13)

When is large, the law of large numbers guarantees the above
approximation.

According to the probability estimation in (7) and the defini-
tion of , we have

(14)

Theorem 4: Suppose that all entries of are drawn from
the uniform distribution in , then sign vectors

(with nonzero entries) can be recovered by
solving linear programming problem with equal probabil-
ities, i.e.,

(15)

The proof of Theorem 4 can be seen in Appendix V.

Proposition 1: For the sign vectors , most
of event pairs and
are close to being uncorrelated especially when is much less
than or close to , where , , is
randomly taken from a specific distribution.

...
...

...
...

...
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In Appendix VI, a sketch of proof of Proposition 1 can be
seen. Additionally, here we show a simple example which
may be useful for understanding Proposition 1. Suppose that

are i.i.d. random variables (say ). Let us
impose the constraint

where is a constant. Then, the conditional prob-
ability is not independent. However,

, , is asymptotically
pairwise independent when tends to infinity.

From our simulations (Example 1), we find that if the number
of nonzero entries is very small (close to ) or very big (close

to ), then any two of these events are almost uncorrelated. Oth-
erwise, their correlation will increase. This is consistent with the
explanation in the sketch of proof of Proposition 1.

In the following, we present a weak law of large numbers to
a correlated case.

Lemma 2: Suppose that , are a series of
random variables, each of which having an identical distribu-
tion, and that most of random variable pairs and are
uncorrelated. Then weak law of large numbers is satisfied for

.

The proof of Lemma 2 can be seen in Appendix VII.
Consider random variables , . From

the above Proposition 1, and the definition of , we
find most of variable pairs and are
close to being uncorrelated. Since is a random sample of ,
from Theorem 4, we have

that is, have an identical distribution.
Noting that is a large number, from (12) and Lemma 2, we

have

(16)

By (13) and (16)

(17)

Furthermore, from (13), (14), and (17), we have

(18)

where

From the proof of Theorem 3, we find that in a suf-
ficiently small region of , the conditional probability

is a constant with respect to
. Furthermore, from the expressions in (18), we have the

following observation.

Observation: For most takes
almost the same value (not depending on ). That is,

(19)

where is a random sample of , and the last equality is based
on (7).

Besides the above theoretical justification, the observation is
also confirmed by our simulations.

Since the events

are not strictly independent, and there exists a zero measure set
of where is not continuous, we
recommend using the following mean to approximate the prob-
ability :

(20)

where are random samples of . Here, because
our estimation of integral (11) is not based on a sampling
method, does not need to be large ( in our simulation exam-
ples). Additionally, the probability
can be calculated according to (7).

Remark 5: If all entries of are drawn from a zero-mean,
symmetrical distribution (e.g., a zero-mean Gaussian distribu-
tion), it is not difficult to find that the above analysis and con-
clusions still hold.

We have established the estimation of the probability
. Next, we shall consider two cases where the

sources are drawn from two different distributions, and derive
the corresponding probability estimates on recoverability,
where the mixing matrix is always taken randomly according
to the uniform distribution in .

Case a: For any source vector , suppose that the
probabilities

(21)
and that all nonzero entries of have positive sign or negative
sign with equal probability.

In Case a, the number of nonzero entries of source vectors
are not fixed. We can find that the probability of having
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nonzero entries is . We have the probability
estimation as follows:

(22)

where the probability estimates can
be calculated by (20).

Case b: Suppose that all entries of the source vector
are drawn from a Laplacian distribution with probability den-
sity function , where has nonzero entries
generally. Strictly speaking, cannot be recovered by solving
linear programming problem , however, the -norm solu-
tion of can approximate the source vector as indicated in
the following.

We first derive the theoretical probability estimate
when the mixing matrix is drawn from a sym-

metrical uniform distribution.
Using , we define a column vector : if

, , if . Here, is a small positive
constant.

Consider the optimization problem with replaced by
. Denote its norm solution as and denote the

norm solution of corresponding to as . It follows from
the robustness analysis of the norm solution in [21] that, for a
given small positive constant , if is sufficiently small, then

, i.e., . Moreover, we have

(23)

Note that and are small. If is equal to , we can say that
, and vice versa. Hence, we have

(24)

where .
Using (24), the probability can be obtained by

estimating . The estimation of has
been discussed in Case a. Since all entries of are drawn from
a Laplacian distribution, it can be found that

, denoted as . The probability that has
entries greater than (i.e., has nonzero entries) is

, i.e.,

Using (24) and (22), we have

(25)

where the probability estimates can
be calculated by (20).

In order to calculate the probability in (25), there is a param-
eter to be determined in advance. After the sensor number

and source number are determined, the parameter can
be set by simulation as indicated in simulation Example 5.

IV. SIMULATION EXAMPLES

In this section, we present several simulations to demon-
strate the conclusions and probability estimates in the previous
section.

Example 1: In this example, we demonstrate the conclusion
in Proposition 1.

Since is generally large, we will encounter heavy compu-
tation burden when we check whether the events

are independent or not. Here we do partial validation.
Set , , i.e., . For each ,

we randomly take 16 pairs of sign vectors
, and estimate the probabilities and joint probabilities

and

We then calculate the error

(26)

where , .
To estimate the probabilities

and

we randomly take 3000 matrices based on
a uniform distribution in . Suppose that the event
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occurs times for the 3000 mixing ma-
trices, then is the estimate of . The
other two probabilities can be similarly estimated.

We found that for different and , is very close
to ( , ). Averaging

with respect to , we obtain an average probability error
vector denoted as

(27)
In this paper, we only present the average probability errors

due to limited page space.
We find that all entries of the above two average probability

error vectors are quite close to zero. This demonstrates the
conclusion in Proposition 1.

However, from the average error vectors , we can find
that when is close to or to , the errors are smaller than those
when takes medium values. Note that smaller probability error
implies higher independence as well as less correlation. This is
in accordance with the analysis in the proof of Proposition 1 (see
Appendix VI).

Example 2: In this simulation example, we demonstrate the
conclusion derived from (18)) by simulation

(28)
where and are two randomly chosen mixing matrices.
We would like to emphasize that there may exist some particular
matrices such that (28) is not satisfied, however, the set of those
matrices has measure zero.

Similarly to the previous example, we have , .
For each , we take eight different mixing ma-
trices according to the uniform distribution in . For each
given mixing matrix, we take 3000 source vectors of which
the nonzero entries are drawn from the uniform distribution,
and their indices are also random. We then estimate the eight
probabilities as in
Example 1.

For , we calculate the mean probability

denoted as , we obtain a mean probability column vector

Next, for and , we calculate the error
(denoted as ),

Fig. 1. Curves of estimated probabilities and true probabilities in Example 3.
The solid curve with “�” in the left subplot depicts our probability estimates by
(19), while the solid curve with “�” in the right subplot depicts our probability
estimates by (20). The two dashed curves with “�” in the two subplots represent
the true recoverability probabilities obtained by simulations.

and obtain the following probability error matrix, see (29) at the
bottom of the page.

Considering the th row in the error matrix
above, we find that

. Hence, the conclusion expressed by (28) is con-
firmed by simulation.

Example 3: In this example, we demonstrate the validity of
probability estimates obtained by (19) and (20) using simula-
tions. Here, every mixing matrix is taken according
to the uniform distribution in , and every source vector is
nine-dimensional.

We first estimate the probabilities
by simulations. For every , we take 3000 pairs
of mixing matrices and source vectors. Note that each source
vector has exactly nonzero entries drawn from a uniform dis-
tribution valued in the range with their indices also
taken randomly. For each pair of source vector and mixing ma-
trix, we solve the linear programming problem and check
whether the -norm solution is equal to the source vector. Sup-
pose that source vectors can be recovered, we obtain the ratio

that reflects the true probability on recover-
ability. All , are depicted by “ ” and the dashed
curve in the left subplot of Fig. 1.

Next, we take an mixing matrix as above. For
every index set , we
first find the number of sign vectors that can be recovered by
solving the linear programming problem , and then calcu-
late the probabilities ,

(29)
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using (7). Note that and
,

we thus obtain nine probability estimates that are depicted by
“ ” and the solid curve in the left subplot of Fig. 1.

Fig. 1 shows that the two curves virtually overlap to some
degree, which means that the probability

calculated by (19) reflects the recoverability when the
mixing matrix is also taken randomly.

Considering (20), we randomly take five mixing matrices de-
noted as , and calculate the probability esti-
mates
using (7). We then calculate the average probability estimates

. These nine
probability estimates are represented by “ ” and the solid curve
in the right subplot of Fig. 1, while are repre-
sented by “ ” and the dashed curve in the same subplot.

These two curves match each other very well, which indicates
that the probability calculated by (20)
reflects the recoverability under condition that the number of
nonzero entries of the source vector is fixed.

Comparing the four curves in Fig. 1, we can find that the prob-
ability estimated by (20) can better reflect the true probability
than that estimated by (19).

Example 4: In this example, we consider the case in which
the source vectors are drawn from the distribution (21), and con-
firm the probability estimate (22) by simulation.

For , we calculate the prob-
abilities in (22) noting that )
have been obtained in Example 3.

For each , we take 3000 pairs of mixing
matrices and source vectors. As in Example 3, all these mixing
matrices are -dimensional and their entries are randomly
valued in . The 3000 source vectors are taken as follows:

(30)

where is drawn from a uniform distribution valued in
. From (30), we can see that the probability is that

each entry of a source vector is equal to zero.
For each pair of source vector and mixing matrix, we solve

the linear programming problem and check whether the
norm solution is equal to the source vector. Suppose that

source vectors can be recovered, thus, we obtain the ratio
, which reflects the true probability

under the distribution parameter .
In Fig. 2, are depicted by “ ” and the

solid curve, while , are depicted by “ ”
and the dashed curve. These two curves fit very well, virtually
overlapping. Thus, if we know the distribution of all entries of
the mixing matrix and the probability that each entry of a source
vector is equal to zero, using (20) and (22), we can estimate the
probability that the source can be recovered by solving .

Remark 6: The probability parameter in (21) can be seen
as a sparsity index of sources. Bigger implies higher sparsity
of sources. From Fig. 2, we can see that the recoverability prob-
ability increases with . To obtain satisfactory recoverability,

Fig. 2. Curves of estimated probabilities and true probabilities in Example 4,
where the solid curve with “�” depicts our estimated probabilities, while the
dashed curve with “�” represents the true recoverability probabilities. Note that
the source vectors are drawn from the distribution in (30), the mixing matrices
are drawn from a uniform distribution in [�1; 1].

the sources must be sufficiently sparse. In many cases, since the
sources are sparse in the time–frequency domain other than in
the time domain, we can apply wavelet packets transformation
to the observable mixtures and then perform BSS.

Example 5: In this example, we consider the case in which
all entries of the source vector are drawn from
a Laplacian distribution with probability density function

, and all entries of the -dimensional mixing
matrix is drawn from a symmetrical uniform distribution in

. We present the simulation results to demonstrate the
validity of the estimates obtained by (25).

In the following simulation, is set to be and is set
to be .

For 30 different Laplacian distributions with parameters
, we calculate the probabilities

using (25), where and ( ,
, ) were obtained in Example 3.

For every , 3000 pairs of mixing matrices
and source vectors are taken. The source vectors are taken from
a Laplacian distribution with parameter and the 3000 mixing
matrices are drawn from the same uniform distribu-
tion as in Example 3. The linear programming problem is
solved for each pair of source vector and mixing matrix. If the

norm solution satisfies , can be recovered
approximately. Suppose that there are source vectors recov-
ered, we then have the ratio , which reflects the
true probability .

Fig. 3 displays the curves of (solid curve with “ ”)
and (dashed curve with “ ”). The two curves overlap
remarkably well. From Fig. 3, we can see that as the parameter

in the Laplacian probability density function increases, the
source vector becomes more and more sparse, and the recover-
ability probability increases.

From Fig. 3, we can see that when is small or large (small
leads to dense source vectors, while large leads to sparse

source vectors), the two curves overlap better than when is in
medium. This is because our probability estimate (20) is based
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Fig. 3. Curves of (for) estimated probabilities and true probabilities in Example
5, where the solid curve with “�” depicts our estimated probabilities, while the
dashed curve with “�” represents the true recoverability probabilities.

on Proposition 1, which can be well satisfied when source vec-
tors are very sparse or very dense as indicated in Example 1.

Finally, with the above values of two parameters and ,
the estimated probability using (25) well reflects the true recov-
erability probability for Laplacian source vectors. Thus, when

, , and the mixing matrix is drawn from a sym-
metrical uniform distribution, the parameter can be set to be

, while the error between a recovered source vector and
the original source vector is less than .

V. CONCLUDING REMARKS

When sparse representation is used in underdetermined BSS,
recoverability problem should be dealt with as in ICA approach.
However, this problem has not been completely solved. This
paper continued discussion of this problem. The recoverability
probability estimation was discussed when using a two-stage
sparse-representation approach for BSS. First, we presented
the conditional probability estimates of recoverability when
the mixing matrix was given or estimated and the number of
nonzero entries of a source vector was fixed. Next, we consid-
ered a more general case in which the mixing matrix was drawn
from a symmetrical distribution (e.g., uniform distribution in

) and the number of nonzero entries was fixed. The
recoverability probability estimate was then obtained. Using
these estimated probabilities, we considered the recoverability
probability estimation when the mixing matrix was drawn from
a uniform distribution and source vectors were drawn from a
distribution, e.g., Laplacian distribution, etc. Simulation results
demonstrated that our probability estimates are very close to
the true probabilities.

From the probability estimates in our simulations, we can find
that the higher the sparsity of sources, the higher the recov-
erability probability. Additionally, these probability estimates
show us the performance and confidence of sparse representa-
tion approach for solving underdetermined BSS problems. To
obtain high recoverability probability, the sources must be suffi-
ciently sparse. In many cases, this can be achieved by applying
wavelet packets transformation to the observable mixtures. In
practice, the level number of wavelet packets transformation can

be determined by our probability estimate illustrated in our sim-
ulation Example 4. The probability estimates in this paper can
provide us with some useful guide in solving underdetermined
BSS problems.

APPENDIX I
PROOF OF THEOREM 1

1. Necessity: Suppose that ; that is, is the op-
timal value of .

For a subset , when (4) is solvable, there is at least
a flexible solution. For any flexible solution of (4), it can be
checked that is a solution of the constraint equation of

, where with sufficiently small absolute value. We
have

(31)

Thus,

(32)

It follows from and (32) that .
The necessity is proved.
Sufficiency: Suppose that is a solution of the constraint

equation in , then can be rewritten as

(33)

where ,
Now we define an index set :

It can be checked easily that for the defined index set , is a
flexible solution of (4). From the condition of the theorem, we
have . Furthermore

(34)

Note that the equality in the last step of (34) holds when
(i.e., ).
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Thus, for any solution of the constraint equation in ,
we have

(35)

the equality holds only when is equal to . Thus, .
The sufficiency is proved.

2. We now derive the second necessary and sufficient condi-
tion using the first one.

Necessity: Note that there are totally optimization prob-
lems represented by (4) corresponding to different subsets
in . Let and denote the optimal so-
lutions of (4) and (5), respectively, denote the index set on
which the entries of and have the same sign. Obviously,

. It is not difficult to find that . Thus, if ,
according to the first necessary and sufficient condition in this
theorem, we have

which is the optimal value (4) with the index set being , is
less than .

The necessity is obtained.
Sufficiency: Note that , is a feasible solution of (5),

and

Thus, if

then

That is, all optimal values of the optimization problems
represented by (4) are less than . From the the first necessary
and sufficient condition, we have .

The sufficiency is obtained.

APPENDIX II
EQUIVALENCE BETWEEN (4) AND LINEAR

PROGRAMMING PROBLEM

The optimization problem (4) is not a standard linear pro-
gramming problem. However, it can be transformed into a stan-
dard linear programming problem as follows.

Let denote the index set . For ,
define , where . Let denote the
submatrix composed of all the columns of with their column
indices being in , , and let denote the column
vector composed of all entries of with their indices being in

. It is not difficult to prove that the optimization problem (4)
is equivalent to a standard linear programming problem

s. t.

for

for

(36)

Equation (36) can be rewritten as

s. t.

for

for

(37)

where is a -dimensional row vector defined as follows:
if , if . is a

-dimensional row vector of which each entry is one.
Since the sign function is known, (37) is a standard

linear programming problem.

APPENDIX III
THE PROOF OF LEMMA 1

Proof For any perturbation matrix sequence denoted as
of , suppose that . Under the condi-

tion that the optimal solution of (8) has nonzero entries, to
prove Lemma 1, it suffices to prove that (9) is feasible for all
sufficiently small perturbation matrices , and

(38)

where denotes the optimal solution of (9) under the perturba-
tion matrix .

Suppose that the indices of nonzero entries of are
, the matrix is composed of columns of

with indices , the dimensional column vector is
composed of all nonzero entries of . Thus, we have

(39)

Consider the equations

(40)

where the perturbation matrix is composed of the
columns of with indices . Noting that is
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random, and is inverse with probability one, we
have

(41)

Since , we have

and .

Define an -dimensional column as follows: if
, ; otherwise . We can conclude that

if is sufficiently large, then , and is a feasible solution
of linear programming problem (9).

Note that for sufficiently large , linear programming problem
(9) is feasible under the perturbation matrix . Without loss
of generality, we suppose that linear programming problem (9)
is feasible under each perturbation matrix . For the above
feasible solution sequence , we have . Since

is a linear function with respect to , .

We now prove that .

Suppose that is a column which is composed by all
nonzero entries of (if , then is is composed by
all nonzero entries of and zeros).

Similarly as in (41), nonnegative vector can be represented
by , where and are square submatrices
of and , respectively.

First, we prove that the sequence
is bounded. Otherwise, there is a subsequence denoted as

, such that .

Since the number of -dimensional submatrices of is
, the matrix sequence has a subsequence denoted

as itself such that for all , where is a
-dimensional submatrix of . Since ,

we have

A contradiction has happened. Hence, is
bounded.

Suppose that is a convergent sub-
sequence of , and denote

By adding zeros into , we can obtain a
column vector denoted as . It is not difficult to check
that is a feasible solution of (8), and .

Moreover, since is a feasible solution of (9), thus,

and

That is, . Since is the optimal solution of (8),
which is unique with probability one, we have . From the
preceding analysis, we find that any convergent subsequence of

has the limit of , thus, . Furthermore, we have

.

The lemma is proved.

APPENDIX IV
THE PROOF OF THEOREM 3

Proof According to (7), the probability
can be determined by the recoverability

of the sign vectors , which have exactly
nonzero entries, where . We consider the case in
which the sign vectors are source vectors. For a given matrix

, suppose that all the -norm solutions of the following
optimization problems are unique:

s. t. (42)

s. t. (43)

where .
Note that the set of , under which at least one of the above

optimization problems has more than one solution, has measure
zero.

Suppose that for the given , there are sign vectors
which can be recovered, that is,

. We consider the optimization problem
s. t.

for

for (44)
Suppose that can be recovered by solving the linear pro-

gramming problem . Then , when the optimization
problem (44) is solvable, its optimal value is less than .

Now we consider a corresponding optimization problem
s. t.

for

for (45)
Note that the preceding two optimization problems are equiv-

alent to standard linear programming problems which are sim-
ilar to (37) in Appendix II. For the linear programming problem
(37) with equality constraints, it is not difficult to prove
that any -dimensional submatrix of its con-
straint coefficient matrix is of full rank. Furthermore, if (37) is
solvable, then its optimal solution has nonzero entries.
Thus, if optimization problem (44) is solvable, then the optimal
solution of its equivalent linear programming problem has
nonzero entries. From Lemma 1, if the optimization value of
(44) is less than , then the optimization value of (45) is also
less than when is sufficiently small, and vice versa.
In other words, if is sufficiently small, the sign vectors,
which can be recovered by solving the problem (42), are the
same as those which can be recovered by solving the problem
(43). Thus,

if is sufficiently small. The theorem is proved.
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APPENDIX V
THE PROOF OF THEOREM 4

For each sign vector , let us define the subset of

(46)

which is the set of matrices for which the source is recov-
erable by the -solution. The recoverability probability of a
source whose sign vector is is written as

(47)

There are such subsets .
Let us study invariant properties of . Let be the

group consisting of permutations of elements
or and change of some of their signs. Its element

act on or as
(48)

(49)
where is a permutation of by
and is the change of signs, or , and the
element with changes sign.

It is obvious to see that
(50)

(51)
hold. The condition or for
is also equivariant under .

Hence, is invariant under , that is,

(52)

Furthermore, since each element is independently and
symmetrically distributed, i.e., , thus, prob-
ability density is invariant under , that is.

(53)

for any .
Given sign vector , we introduce a related element

.
Let be the nonzero elements of . Then lo-

cates elements to the first positions, and changes
the sign of elements when . It locates the other

elements randomly in the positions following the first
elements. This implies that

(54)

for any . Let be the indicator function such that
is recoverable, that is, when and
otherwise.

Since the optimization problem (4) is invariant under permu-
tations of columns of and sign changes, the recoverability of

is the same as that of , and hence,

(55)

for all .

This leads us to the conclusion of the theorem, that is, for any
, is the same, and

(56)

that is, the recoverability probability does not depend on .
Hence, Theorem 4 is proved.

APPENDIX VI
SKETCH OF PROOF OF PROPOSITION 1

Proof First, we denote the set of feasible solutions of (5)
as . For a sign vector , let

denote the optimal solution of (5), where the source vector
. The index set of nonzero entries of is denoted

as .
We now consider the case in which , the number of nonzero

entries of each sign vector, is small (much less than or close
to ). Note that small implies that the sign vectors are very
sparse.

For the optimal solution , the objective function value
of (5) becomes , which is a summation of
at most items. Since is small, and is the
maximum of for , thus generally we
have , i.e., for .

Thus, for the source vector , optimization problem (5)
becomes

s. t.

(57)
Note: (57) was proposed in [27], and used as a conjecture in

[28].
Since sign vectors , are different, the ob-

jective functions of (57) are different. Obviously,
the optimal value of (57) is equal to . Since

the set of solutions of is an -dimensional linear
space, of which each solution can be in the feasible solution set

through normalization, is a compact set in the -di-
mensional space.

For sign vector , define a subset of as

It is not difficult to find that is also a compact set in
-dimensional linear space.
For two different sign vectors and , we consider

three cases.
1. .
If and have different elements with their indices

in , then . Furthermore, we have

Thus the two events

and
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are close to being uncorrelated. Noting that

is equivalent to here,
and are close to being uncorrelated.

On index set , if and share the same
elements, then may not be null set. Considering the
two objective functions and of
(57) corresponding to and , respectively, are different
(but share several common items), the two events

and

may be close to being uncorrelated. Even it is not true, compared
with the total number of of sign vector pairs, the
number of such pairs ( , ) is small.

2. .
In this case, the two objective functions and

of (57) corresponding to and , re-
spectively, do not share any common variable. Since is a com-
pact set in the -dimensional space, the two events

and

are close to being uncorrelated.
Combining the analysis in above two cases, we can say most

of event pairs

and

are close to being uncorrelated. We have obtained the conclusion
in Proposition 1 when is small.

As increases, for some mixing matrix and sign vectors
(source vectors), (5) may not be equivalent to (57). Thus, for
different sign vectors and , and some mixing matrix

, their corresponding optimization problems represented by
(5) may have the same optimal solution. Consequently, the cor-
relation of event pair of

and

may increase. It seems that the larger , the higher correlation.
However, if is close or equal to , generally, the probability
that a sign vector is recovered is close to zero. Thus, for any

-sign vectors , we have

(58)
Hence, the any two events and

are still close to being uncorrelated.
Finally, if , no sign vector can be recovered. All prob-

abilities in (58) are , and the two “ ” become “ ,” thus any
two events are independent.

APPENDIX VII
PROOF OF LEMMA 2

We define

(59)

Let be the mean of . What we want to show is

(60)

implying that converges to the mean value in the sense of
mean-square error (that is, in the weak sense).

Note that in (60) is the variance of . We
now give a sufficient condition for (60) (Obviously, that are
independent is a sufficient condition). To this end, we calculate
the variance of . Here we assume, without loss of generality,

. (If it is not , we just consider as new random
variables.)

We have

(61)

There are terms in the first sum, so it converges to if
divided by . There are in the second, which are
covariances of and . So if this covariances converges
to for ”most” and , or more precisely, converges to except
for those special exceptional terms whose number is of order ,
the Lemma 2 is proved. .
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