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For many electroencephalogram (EEG)-based brain-computer interfaces
(BCIs), a tedious and time-consuming training process is needed to set
parameters. In BCI Competition 2005, reducing the training process was
explicitly proposed as a task. Furthermore, an effective BCI system needs
to be adaptive to dynamic variations of brain signals; that is, its parame-
ters need to be adjusted online. In this article, we introduce an extended
expectation maximization (EM) algorithm, where the extraction and clas-
sification of common spatial pattern (CSP) features are performed jointly
and iteratively. In each iteration, the training data set is updated using all
or part of the test data and the labels predicted in the previous iteration.
Based on the updated training data set, the CSP features are reextracted
and classified using a standard EM algorithm. Since the training data set
is updated frequently, the initial training data set can be small (semi-
supervised case) or null (unsupervised case). During the above itera-
tions, the parameters of the Bayes classifier and the CSP transformation
matrix are also updated concurrently. In online situations, we can still
run the training process to adjust the system parameters using unlabeled
data while a subject is using the BCI system. The effectiveness of the
algorithm depends on the robustness of CSP feature to noise and it-
eration convergence, which are discussed in this article. Our proposed
approach has been applied to data set IVa of BCI Competition 2005. The
data analysis results show that we can obtain satisfying prediction accu-
racy using our algorithm in the semisupervised and unsupervised cases.
The convergence of the algorithm and robustness of CSP feature are also
demonstrated in our data analysis.

1 Introduction

As brain-computer interfaces (BCIs) provide an alternative means of
communication and control for people with severe motor disabilities
(Birbaumer et al., 1999), research into BCIs has received more attention in
recent years, as seen in Blanchard and Blankertz (2004), Donoghue (2002),
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Kubler, Kotchoubey, Kaiser, Wolpaw, and Birbaumer (2001), Pfurtscheller
et al. (2000), and Wolpaw, Birbaumer, McFarland, Pfurtscheller, and
Vaughan (2002). Being noninvasive, electroencephalogram (EEG)-based
BCI measures specific components of EEG activity, extracts features, and
translates these features into control signals to devices such as a robot arm
or a cursor. The features that are commonly used in EEG-based BCIs include
visual evoked potentials, slow cortical potentials, P300 evoked potentials,
common spatial pattern (CSP) features, mu and beta rhythms, and other ac-
tivities from sensorimotor cortex and autoregressive parameters (Wolpaw
et al., 2002).

CSP features of EEG signals correspond to event-related desynchro-
nization (ERD) and event-related synchronization (ERS) evoked by motor
imagery or movements (Pfurtscheller, Neuper, Flotzinger, & Pregenzer,
1997). CSP feature is very effective in discriminating several motor
imageries (Blanchard & Blankertz, 2004; Ramoser, Muller-Gerking, &
Pfurtscheller, 2000; Wolpaw et al., 2002). However, CSP feature extraction
relies on a time-consuming training process to determine a spatial filter ma-
trix, also known as the CSP transformation matrix. Considering the impor-
tance of training effort reduction, Muller and his colleagues provided a data
set with a small training data set for the BCI competition in 2005 (Dornhege,
Blankertz, Curio, & Muller, 2004; see http://ida.first.fraunhofer.de/
projects/bci/competition).

In this article, semisupervised learning, which refers to finding a decision
rule from both labeled and unlabeled data, will be used to tackle the small
training data set problem in BCI systems. Semisupervised learning has
gained much appeal in recent years due to its potential in reducing labeling
and training effort, which is usually tedious and time-consuming (Nigam
& Ghani, 2000; Grandvalet & Bengio, 2004). A necessary condition for a
semisupervised learning algorithm, as well as for an unsupervised learning
algorithm, is that the applied feature set has sufficient consistency (Zhou,
Bousquet, Lal, Weston, & Schölkopf, 2003). Otherwise the algorithm will
not work well. In this article, the consistency is reflected in the Fisher ratio
of the two classes of features. If a small data set is used for training and
CSP features are then directly extracted from the training data set and
the test data set, the feature consistency is not sufficient. Consequently, a
standard semisupervised learning method cannot be directly employed for
classification. To solve this problem, we propose an extended expectation
maximization (EM) algorithm by embedding a feature reextraction into the
standard EM algorithm.

In each iteration of the proposed algorithm, the training data set is up-
dated using all or part of the test set1 with labels (predicted in the previous
iteration) in order to make the training data become sufficient or expanded.

1 In this article, the term test set refers to unlabeled trials.
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Based on the updated training data set, CSP features are then reextracted
and classified by a standard EM algorithm. The improvement in predic-
tion accuracy in one iteration leads to a higher consistency of CSP feature
in the next iteration, and the latter leads to a further improvement in the
subsequent prediction accuracy, and so on. This is the main difference be-
tween our algorithm and conventional semisupervised algorithms. The
initial training set can be small or even null, that is, the proposed algorithm
can be used in both a semisupervised learning case (with a small initial
training data set) and a unsupervised learning case (without any initial
training data set).

Furthermore, the proposed algorithm can be used to improve the adapt-
ability of BCI systems. In general, if we do not consider the adaptability
of a BCI system, its parameters, such as the CSP transformation matrix
and the classifier parameters, do not change once determined unless new
training is performed. Many researchers think that EEG and other electro-
physiological signals typically display short-term and long-term variations
linked to several factors, such as time of day, hormonal levels, immediate
environment, recent events, fatigue, and illness (McEvoy, Smith, & Gevins,
2000; Polich, 2004; Regan, 1989; Wolpaw et al., 2002). In other words, for
BCI systems, the consistency in the features may have only a short-term
existence. Adaptability is a recommendation for an effective BCI system, by
adjusting the latter’s parameters online (Millan & Mourino, 2003; Vidaurre,
Schlogl, Cabeza, Scherer, & Pfurtscheller, 2005). This reduces the impact of
such spontaneous variations and keeps the consistency of features. As will
be seen, the CSP transformation matrix and the Bayes classifier parameters
are also updated by using test data and predicted labels in our method. The
BCI system parameters can thus be adjusted online without new system
training.

The remainder of this article is organized as follows. In section 2, we
describe CSP feature extraction and analyze the robustness of CSP feature
to noise. In section 3, we introduce our extended EM algorithm. The con-
vergence of the algorithm is also analyzed. Data analysis results in section 4
demonstrate our algorithm’s validity. Section 5 concludes with discussions
of the data analysis results.

2 CSP Feature Extraction and the Robustness of the CSP Feature

The CSP feature, which is commonly used in EEG-based BCI systems,
is very effective for discriminating motor imageries. In this section, we
describe CSP feature extraction and present the robustness analysis of CSP
feature.

2.1 CSP Feature Extraction. For the convenience of the following anal-
ysis, we present the main steps of CSP feature extraction, which can be seen
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in Blanchard and Blankertz (2004) and Lemm, Blankertz, Curio, and Muller
(2005).

Hereafter, let N1 and N2 denote the trial numbers of the training set and
the test set respectively.

Define

�(1) =
∑
j∈C1

E j ∗ ET
j

trace
(
E j ∗ ET

j

) , �(2) =
∑
j∈C2

E j ∗ ET
j

trace
(
E j ∗ ET

j

) , (2.1)

where E j ∈ Rm×k2 denotes an EEG data matrix of the j th trial, m is the
number of selected channels, k2 is the number of samples in each trial, and
C1 and C2 refer to the first class and the second class of trials of training
data set, respectively.

The two matrices �(1) and �(2) are then jointly diagonalized. Set � =
�(1) + �(2), which is a symmetric matrix. Let V be an orthogonal matrix
whose first row vector is nonnegative (if the first entry of a column vector
is negative, we use −1 to times the column vector), such that

VT�V = P, (2.2)

where P is a diagonal matrix composed by the eigenvalues of �, in a de-
creasing order.

Set U = (P)
1
2 VT , R1 = U�(1)UT , R2 = U�(2)UT .

It is observed that R1 is symmetrical; thus, we can find an orthogonal
matrix denoted as Z with its first row vector being nonnegative, such that

ZT R1Z = D = diag(d1, . . . , dm), (2.3)

where the elements in the diagonal lines of D are sorted in decreasing order,
and 0 ≤ d1, . . . , dm ≤ 1.

Define W = ZT U; then

W�(1)WT = D, W�(2)WT = I − D. (2.4)

I is the identity matrix.
Next, we construct the CSP transformation matrix W̄, composed by the

first l1 and the last l2 rows of W. The first l1 rows of W correspond to
the largest l1 eigenvalues of D, and the last l2 rows of W correspond to the
smallest l2 eigenvalues of D.
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For the EEG data matrix E j obtained from the j th trial, the CSP feature
vector is defined as

cf( j) = diag

(
W̄

E j ET
j

trace
(
E j ET

j

)W̄T

)
, (2.5)

where j = 1, . . . , N1 + N2.

Remark 1. In the above CSP feature extraction, the first row vectors
of two orthogonal matrices V and Z for diagonalizing matrices are set
to be nonnegative. In a standard CSP feature extraction, there is no such
constraint. As will be seen in section 2.2, V and Z are generally unique
under this constraint. The uniqueness of V and Z is needed to guarantee
the robustness of the CSP feature.

2.2 Robustness of the CSP Feature. An extracted feature that can effec-
tively reflect the subject’s intentions even in a noisy environment is highly
desirable. This is a problem of the feature robustness to noise. In this arti-
cle, there is no sufficient training data to determine the CSP transformation
matrix, so the test data along with the predicted labels are used for training.
Since the prediction error of labels is inevitable in each iteration, we need
to consider the robustness of the CSP feature in our algorithm.

To analyze the robustness of the CSP feature, we consider two corre-
lation matrices �(1) + ε1 and �(2) + ε2, where �(1) and �(2) are defined in
equation 2.1. ε1 and ε2 are symmetric matrices related to noise, which can
be additive in nature. ε1 and ε2 are defined in this article as follows,

ε1 =
∑
j∈Cr

1

Ej ∗ ET
j

trace
(
Ej ∗ ET

j

) , ε2 =
∑
j∈Cr

2

Ej ∗ ET
j

trace
(
Ej ∗ ET

j

) , (2.6)

where Cr
1 and Cr

2 denote the sets of trials misclassified in the first and second
class, respectively.

As in the previous section, we can find a joint diagonalization matrix
denoted as W(ε), such that

W(ε)(�(1) + ε1)WT (ε) = D(ε), W(ε)(�(2) + ε2)WT (ε) = 1 − D(ε),

(2.7)

where ε denotes max{‖ε1‖1, ‖ε2‖1}. Note that the 1-norm of a matrix implies
the summation of the absolute values of all its entries.
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In a noisy environment, the CSP feature (denoted as cfn(ε, j)) for the j th
trial is

cfn(ε, j) = diag

(
W̄(ε)

E j ET
j

trace
(
E j ET

j

)W̄T (ε)

)
. (2.8)

Before presenting our results, we present two lemmas. The first lemma
can be found in Chen (2000) or other textbooks related to matrix theory.

Lemma 1 (Bauer-Fike). Suppose that A = QP Q−1, P = diag(λ1, . . . , λm).
Then for any eigenvalue u of A + �, we have

min
i

|λi − u| ≤ ‖ Q−1� Q‖2, (2.9)

where � is a perturbation matrix with consistent dimension.

In this article, the matrix norm ‖A‖2 refers to the spectral norm of the
matrix A, that is, ‖A‖2 = √

λ, where λ is the maximum eigenvalue of AT A.
Spectral norm is consistent with Frobenius vector norm.

Lemma 2. Suppose that a real symmetric matrix A ∈ Rm×m has m different
eigenvalues, and � ∈ Rm×m is a symmetric disturb matrix, θ = ‖�‖2. G(θ ) and
G are two orthogonal matrices with their first row vectors being nonnegative, such
that

GT (θ )(A + �)G(θ ) = Q(θ ) = diag(q1(θ ), . . . , qm(θ )), (2.10)

GT AG = � = diag(λ1, . . . , λm). (2.11)

Then we have

lim
θ →0

G(θ ) = G, lim
θ →0

Q(θ ) = �. (2.12)

The proof is given in appendix A.

Theorem 1. Considering equations 2.4 and 2.7, we have

lim
ε→0

W(ε) = W, lim
ε→0

D(ε) = D. (2.13)

Furthermore,

lim
ε→0

cfn(ε, j) = cf ( j), (2.14)

where cfn(ε, j) and cf ( j) are defined in equations 2.5 and 2.8, respectively.
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The proof is given in appendix B.
From theorem 1, we can see that the CSP feature is robust to additive

noise to some degree.

3 An Extended EM Algorithm

In this section, an extended EM algorithm is proposed for joint CSP feature
extraction and classification. We also discuss how the algorithm is used for
both semisupervised and unsupervised learning for online BCI systems.
Finally, we present several results on convergence analysis of the iterative
algorithm.

Before introducing our algorithm, we present a simplified ver-
sion of a standard EM algorithm, which can be found in Xu and
Jordan (1996). Suppose a gaussian mixture probabilistic model as
follows,

P(x|�) =
2∑

q=1

αq P(x|m(q ), Var(q )),

P(x|m(q ), Var(q )) = exp(− 1
2 (x − m(q ))T (Var(q ))−1(x − m(q ))

(2π )L/2|Var(q )|1/2
, (3.1)

where x ∈ RL , the parameter vector � consists of the mixing propor-
tions αq , the mean vectors m(q ), and the covariance matrices Var(q ), q =
1, 2.

Assuming αq = 1
2 , the EM algorithm can be expressed as

h(q )
k (t) =

P
(

x(t)|m(q )
k , Var(q )

k

)
∑2

i=1 P
(

x(t)|m(i)
k , Var(i)

k

) ,

m(q )
k+1 =

∑N
t=1 hq

k (t)x(t)∑N
t=1 hq

k (t)
,

Var(q )
k+1 =

∑N
t=1 hq

k (t)
[
x(t) − m(q )

k

][
x(t) − m(q )

k

]T∑N
t=1 hq

k (t)
. (3.2)

If we further assume that the two gaussian distributions are well separated,
such that the posterior probabilities h(q )

k (t) ≈ 1 or h(q )
k (t) ≈ 0, then the above
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iterative algorithm becomes

h(q )
k (t) =

P
(

x(t)|m(q )
k , Var(q )

k

)
∑2

i=1 P
(

x(t)|m(i)
k , Var(i)

k

) ,

m(q )
k+1 =

∑N(q )
k

t=1 x(q )(t)

N(q )
k

,

Var(q )
k+1 =

∑N(q )
k

t=1

[
x(q )(t) − m(q )

k

] [
x(q )(t) − m(q )

k

]T

N(q )
k

, (3.3)

where x(q )(t) belongs to the q th class, N(q )
k is the number of samples belong-

ing to the q th class in the kth iteration, and q = 1, 2.
Hereafter, equation 3.3 refers to a standard EM iteration.

3.1 Algorithm Steps. We first present a version of our extended EM
algorithm for semisupervised learning. In the next section, we show how it
is extended for the unsupervised learning case.

This is an iterative algorithm in which a naive Bayes classifier is used. In
each iteration, we need to update the trial labels of the test set, the training
data set, the CSP feature vectors of the initial training set and test set, and
the parameters of Bayes classifier (mean vectors and covariance matrices).

Algorithm 1

Step 1: Initial step. Denote D0 as the initial training data set. First, we train
a CSP transformation matrix based on D0 and extract CSP features on
the initial training data set and test data set. Using the CSP features of
the initial training data set, we then calculate two mean vectors and two
covariance matrices for both classes as initial parameters of a naive Bayes
classifier.

Step 2: The kth iteration (k = 1, . . .) follows steps 2.1 to 2.6.
Step 2.1: With the CSP feature vectors extracted in the (k − 1)th iteration,

perform K0 standard EM iterations in equation 3.3, where K0 is a prede-
fined positive integer.

Step 2.2: According to the posterior probabilities obtained in the K0th stan-
dard EM iteration, we perform a classification on the test set (containing
N2 trials). The predicted labels are denoted as [Labelk(1), . . . , Labelk(N2)].

Step 2.3: Update the training data set. Select I nt(αN2) trials from the test set
that have higher posterior probabilities for retraining, where α ∈ (0, 1]
is a predetermined percentage, and I nt(αN2) defines the largest integer,
which is smaller than αN2. The selected trials along with their predicted
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labels are put together with the initial training data set D0 to form an
updated training data set denoted as Dk , which has N1 + I nt(αN2) trials.
Notice that the test set remains unchanged.

Step 2.4: Feature reextraction. Using the training data Dk , regenerate the
CSP transformation matrix, and then reextract CSP features for all
trials. The CSP feature vector of the ith trial is denoted as cfk(i) =
[c fk(1, i), . . . , c fk(L , i)]T , where k refers to the kth iteration, L is the di-
mension number of feature vector, and i = 1, . . . , N1 + N2.

Step 2.5: Calculate the mean vectors and covariance matrices of the two
classes as new parameters of the Bayes classifier by using the reextracted
features of the training data set Dk along with predicted labels.

Step 2.6: Find out the number of the trials from the test set with different
predicted labels in the current and previous iteration,

dlk−1 =
N2∑

i=1

|Labelk(i) − Labelk−1(i)|. (3.4)

Step 3: Termination step. Given that M0 is a predetermined positive integer,
if dlk−1 < M0, the algorithm stops after the kth iteration, and the pre-
dicted labels [Labelk(1), . . . , Labelk(N2)] of the test set are the final results.
Otherwise, perform the k + 1th iteration.

Note that three parameters need to be preset: α (the percentage of the test
set used for retraining), M0 (the number of testing trials with inconsistent
labels in two consecutive iterations), and K0 (the number of standard EM
iterations). These parameters are generally set based on empirical evalua-
tions. According to our extensive simulations, α and M0 can be set to be
80% and 0.05 ∗ N2, respectively; K0 can be chosen in {1, 2, 3} (K0 = 3 in this
article). Small adjustments can be made to the above parameters according
to the convergence property of the algorithm. The rule of thumb is that if the
algorithm converges smoothly after, for example, 20 iterations, we deduce
that these parameter settings are reasonable.

The fundamental reason behind our choice of the CSP feature reex-
traction is that the initial training data set is too small to give a reliable
estimation of the CSP transformation matrix in semisupervised learning
and unsupervised learning. We can make use of the test set along with the
predicted labels to augment the training set and improve the efficiency of
feature extraction. Obviously there exists prediction error of the labels. Tri-
als with incorrect labels are considered as noise in the estimation of the
CSP transformation matrix. A necessary condition is that the CSP fea-
ture should be fairly robust to noise. As analyzed in the previous section,
the CSP feature is indeed robust to noise to some extent. Furthermore, the
higher the prediction accuracy rate (i.e., the smaller the noise), the better
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the CSP feature quality is. Usually the prediction accuracy of labels for the
test set is not high initially; thus, the extracted CSP features do not have
sufficient consistency, and we need to update the CSP features during later
iterations.

As will be seen in our experimental data analysis, the CSP feature reex-
traction can actually improve the Fisher ratio between the two sets of the
CSP features corresponding to the two classes. A higher Fisher ratio implies
higher consistency of features and a higher classification efficiency.

The CSP feature reextraction is also motivated by the dynamic charac-
teristics of EEG signals. Even if there is a sufficient training data set, the
parameters related to feature extraction of a real-time BCI system should
be adjusted if necessary. In the above iterations, the CSP transformation
matrix and classifier parameters are kept updated without new system
training. This method can be used to improve the adaptability of a BCI
system.

Remark 2. (i) Before applying algorithm 1 to an EEG data set, we need to
perform data preprocessing, including common average reference (CAR)
spatial filtering, frequency filtering, and channel selection (see section 4).
From our experience, CAR spatial filtering based on all available channels
can improve the accuracy rate. This may be due to denoising. (ii) There
are two differences between a standard EM algorithm and the proposed
extended EM algorithm. First, our extended EM algorithm is embedded
with a CSP feature reextraction. Second, in our extended EM algorithm,
only some of the testing data are selected for retraining according to the
merits of their classification probabilities. Our experimental analysis results
will show that the above two extensions over the standard EM algorithm
can improve prediction accuracy significantly.

3.2 Unsupervised and Semisupervised Learning for Online BCI
Systems. In the previous section, we presented the extended EM algo-
rithm (algorithm 1) for the semisupervised case. In this section, we first
discuss how algorithm 1 can be applied in the unsupervised case. This is
followed by a brief discussion of how this algorithm can be used to improve
the adaptability of online BCI systems.

Unsupervised learning for a BCI system implies that there is no training
phase, that is, no prior training data are available. In the previous section,
algorithm 1 was presented for the semisupervised case, but it can be easily
extended to the unsupervised case. For off-line data analysis, since an initial
training data set is unavailable, we first assign random labels to all the
testing trials. The random labels and testing data are then used as the
initial training data set. Next, we start the extended EM iterations. In each
iteration, the training data set is updated by selecting some testing trials
with labels that are predicted in the previous iteration. For the online case,
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the initial parameter values of a BCI system can be set default (or as those
set previously). The EEG data and real labels are stored while the system
is working. When the stored data are sufficient, we use the extended EM
algorithm to learn the parameters of the BCI system and update the old
ones.

In the semisupervised learning case, there is usually a short training
phase. The small number of training trials are used as the initial training
data for the extended EM algorithm. The initial parameters of the BCI
system can be determined based on the small training data set and updated
online, as in the unsupervised case. There exist two ways to set the initial
data set for the learning of the parameters. The initial training data set can
include only the small training data set with labels or both the small training
set with labels and the test set with the labels obtained online.

For both the unsupervised case and the semisupervised case, the labels
of the data obtained online may not reflect the user’s true intents because
of inappropriate BCI system parameters or some other reason. Errors may
exist in real-time labels. Thus, we use these labels only as initial values in
the online case and update them iteratively in our algorithm (note that in
the semisupervised case, the test data set with online labels can also be used
as part of the initial training data set).

After the parameters of a BCI system (CSP transformation matrix and
classifier parameters) are determined by several iterations, the extracted
CSP features have sufficient consistency for classification. Furthermore, the
labels obtained online may well reflect the user’s true intents. However, this
consistency of features may exist only in the short term. When an online BCI
system has been used for extended periods, the subject’s brain state may
change significantly. If so, the consistency (or quality) of the CSP features
and classification accuracy will be deteriorated. In this case, the system
parameters need to be adjusted to keep or recover the consistency of the
CSP features.

Note that the system parameters are updated during the iterations of
algorithm 1. Once the iterations terminate, these parameters are determined
accordingly. Similar to how the system parameters are determined when
the system starts working initially, the proposed extended EM algorithm
can also be used to adjust the system parameters online to improve the
adaptability of a BCI system.

We now present a simulation example to explain why our algorithm is
effective even for the unsupervised case.

Example 1: We generated two artificial data sets, each containing 500
3-by-100 random matrices. Note that each random matrix corresponds to
a single trial of EEG data. Each data set is equally divided into two parts
corresponding to two classes. The two parts of the first data set are drawn
from two uniform distributions with means of 0.5 and 1, respectively; the
two parts of the second data set are drawn from two gaussian distributions
with means of 0 and 0.5, respectively.
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Figure 1: Analysis results for two artificial data sets in the unsupervised case.
The two rows correspond to the first and second data sets, respectively. Col-
umn 1: True CSP features with true labels. Column 2: CSP features with ran-
domly given labels. Column 3: Features and labels obtained in the first iteration.
Column 4: Features and labels obtained in the last iteration. The two circles in
each subplot represent two class means.

Assuming that the labels of these data are unknown, we apply our algo-
rithm to predict the labels for all these data matrices. In the first iteration,
we randomly assign labels to the data. After extracting three-dimensional
CSP features for each data matrix, we predict their labels. These predicted
labels are used in the next iteration, and the cycle repeats itself. Feature
reextraction and classification are executed in each iteration.

Figure 1 shows our simulation results. The plots in the first and second
row correspond to the first and second data set, respectively. From each
data set, we first extract three-dimensional CSP features for all data matrices
using true labels. These features serve as ground truth for us to compare.
Each subplot shows only the first 30 features with labels in Figure 1, and
each data point is a two-dimension vector composed by the first two entries
of a feature vector. However, the prediction accuracy rates and class means
shown below are obtained from all 500 data points. The two circles in each
subplot represent the two class means. The two subplots in the first column
show the true features with true labels for the two data sets, respectively.
We can see that the features of the first data set are separable, while the
features of the second data set are overlapped. The second column shows
the CSP features derived from random labels. For the first data set, we can
see that two separable clusters are obtained, although feature extraction is
based on these random labels. The third column depicts the labels obtained
in the first classification, noting that the features are the same as those in
the second row. The accuracy rates are 100% and 83.4% for the two data
sets, respectively. Although the feature extraction and classification here are
based on random labels, the prediction accuracy rates obtained are high,
especially for the first data set. This is because the features for each data set
form two clusters that are somewhat separable. The fourth row shows the
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final results. For the first data set, all features and their labels (obtained in
the last iteration) are identical to the true ones shown in the first subplot
in the first row. For the second data set, the final accuracy rate is 94.4%,
noting that the features are different from the true values shown in the
first subplot in the second row. Additionally, if a standard EM algorithm
(without feature reextraction) is applied to the features extracted from the
second data set based on random labels, the classification accuracy is 89.1%.

We also would like to point out that if the semisupervised version of
our algorithm is applied to the above two data sets, we can obtain similar
results. Note that the first feature extraction and classification are based on
the true labels of a small training set rather than randomly given labels.

3.3 Convergence of the Extended EM Algorithm. Although it is local,
convergence is an attractive property of a standard EM algorithm. As we
pointed out in section 1, it is difficult to have a high-quality CSP feature
when the training data are insufficient. If a standard EM is used for clas-
sification, CSP features with low consistency (or a low Fisher ratio) may
degrade or limit the algorithm performance. In algorithm 1, CSP feature
reextraction is embedded in a standard EM algorithm. This may give rise
to a convergence problem, which is discussed in this section.

Xu and Jordan (1996) proved that in the EM iterations of equation 3.2, the
directions of mean vectors and covariance matrices are the corresponding
gradient directions of a log likelihood premultiplied by a positive definite
matrix. That is, the log likelihood will increase along with each iteration
direction. This guarantees the convergence of a standard EM algorithm.

In this article, the standard EM algorithm in equation 3.2 has been ex-
tended for joint CSP feature extraction and classification. Since the feature
vectors are updated in each iteration, the log likelihood may not increase as
the iterations proceed. However, from our experimental data analysis, the
extended EM algorithm still converges.

In the following, we analyze the convergence of the extended EM algo-
rithm. We consider only the unsupervised case, in which all the test data
are used in retraining.

Suppose that the labels of test data are known initially. Using these labels,
we extract the CSP features of the test data by jointly diagonalizing the two
matrices �(1) and �(2) (see equations 2.1 to 2.5). In the following, these
CSP features, denoted as cf(q )(i) (q = 1, 2), are treated as the true features,
which are not affected by prediction error. We now analyze the average
error between the true CSP features cf(q )(i) and those extracted during the
iterations of our algorithm.

In this article, noise comes from the classification error in each iter-
ation. For the kth iteration, we denote �

(q )
k as the normalized correla-

tion matrices corresponding to the two classes (similarly calculated as
in equation 2.1) and denote the extracted CSP feature vector as cf(q )

k (i) =
[c f (q )

k (1, i), . . . , c f (q )
k (L , i)]T , where q (= 1, 2) refers to the q th class, and i is
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the trial index. We have the following theorem with respect to the mean
feature vectors.

Theorem 2.

‖mean
(
cf (q )

k

) − mean
(
cf (q ))‖2 ≤ L

∥∥�
(q )
k − �(q )

∥∥
2, q = 1, 2. (3.5)

The proof is given in appendix C.
Let us recall algorithm 1. In the kth iteration, suppose that the prediction

accuracy is ratek . From theorem 2, if ratek+1 > ratek , that is, the number of
misclassfied trials decreases, then the error matrices in equation 2.6 become
smaller. Thus, ‖�(q )

k − �(q )‖2 < ‖�(q )
k+1 − �(q )‖2 (q = 1, 2), that is, the bounds

of ‖mean(cf(q )
k ) − mean(cf(q ))‖2 should decrease.

Note that before K0 standard EM iterations in the (k + 1)th iteration, the
classification accuracy rate is ratek , while the accuracy rate ratek+1 is obtained
by the K0 standard EM iterations. Due to the performance of the standard
EM algorithm, ratek+1 > ratek in general. If the improvement of accuracy
rate between two successive iterations is sufficiently large, the bounds in
equation 3.5 will decrease greatly. This may make the errors ‖mean(cf(q )

k ) −
mean(cf(q ))‖2 decrease. This monotonically decreasing phenomenon will be
seen in our real data analysis in section 4. We will provide an explanation
here. Furthermore, if the prediction rate approaches 1, then mean(cf(q )

k ) will
approach mean(cf(q )).

Remark 3. From theorem 1, although we can conclude that the CSP
features corrupted by noise will tend to the uncorrupted ones when the
noise tends to zero, it is difficult to give an error bound of CSP feature with
respect to noise. The errors given in equation 3.5 can be seen as the average
error bounds of the CSP feature obtained in each iteration.

We now give the average error bounds for the variances of the CSP
features.

For the kth iteration, σ
(q )
k ( j) denotes the variance of c f (q )

k ( j, ·), the j th
element of a CSP feature vector belonging to the q th class, M(q )

k denotes the
number of these feature vectors, and M = max

q ,k
{M(q )

k }, σ (q )( j) denotes the

variance of c f (q )( j, ·). We have

Theorem 3. If the prediction accuracy ratek in the kth iteration is sufficiently
large, then

∣∣[σ (q )
k ( j)

]2 − [
σ (q )( j)

]2∣∣ < 2(M + 1)
∥∥�

(q )
k − �(q )

∥∥
2 + (1 − ratek), (3.6)

where j = 1, . . . , L , q = 1, 2.
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A sketch of the proof of theorem 3 is given in appendix D.
From theorem 3, we can see that if the prediction accuracy rate is suffi-

ciently close to 1, then σ
(q )
k ( j) will tend to σ (q )( j).

Using equation 3.6, we can further estimate the bound of ‖Var(q )
k −

Var(q )‖2, where Var(q )
k and Var(q ) are the covariance matrices of {cf(q )

k ( j)}
and {cf(q )( j)}, respectively. Due to limited space, we omit the estimate here.

4 Experimental Results

In this section, we evaluate our methods with the following data set: data
set IVa in BCI Competition 2005, provided by K. R. Muller and B. Blankertz
(Fraunhofer FIRST, Intelligent Data Analysis Group), and G. Curio
(Neurophysics Group, Department of Neurology, Campus Benjamin
Franklin of the Charit, University Medicine Berlin). This data set is pro-
vided for researchers to evaluate their algorithm performance when only
a small amount of labeled training data is available. (The description in
the following paragraph is from http://ida.first.fraunhofer.de/projects/
bci/competition iii).

This data set was recorded from 118 scalp electrodes at a sampling rate
of 1000 Hz from five healthy subjects. Subjects sat in a comfortable chair
with arms resting on armrests. This data set contains only data from the
four initial sessions without feedback. Visual cues indicated for 3.5 s which
of the following two motor imageries the subject should perform: (R) right
hand, (F) right foot. The presentations of target cues were separated by
periods of random length, 1.75 to 2.25 s, in which the subject could relax.
There were two types of visual stimulation: (1) targets were indicated by
letters appearing behind a fixation cross (which might nevertheless induce
small target-correlated eye movements) and (2) a randomly moving object
indicated targets (inducing target-uncorrelated eye movements). For the
second and fourth subjects (“al” and “aw”), two sessions of both types
were recorded, while for the other three subjects (“aa,” “av,” and “ay”),
three sessions of type 2 and one session of type 1 were recorded. The data
were also down-sampled from 1000 Hz into 100 Hz. We use this 100 Hz
version in this article.

Due to limited space, we present our detailed analysis results for only
three subjects: aa, al, and ay. For convenient analysis, we do not use the
competition splitting of data sets. We run our extended EM algorithm using
the first 150 trials of the data set for each subject. In the semisupervised
case, we perform fivefold cross-validation in which only one fold of data
(30 trials) with labels is used for the initial training data set; the other four
folds (120 trials) without labels are used for the test data set and retraining.
In the unsupervised case, we do not use any labels from the 150 trials. For
further demonstration, we use the subsequent 80 trials as an independent
test set. Note that in the competition, the number of trials of the five training
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sets are 168 (subject aa), 224 (subject al), 84 (subject av), 56 (subject aw), and
28 (subject ay). Except for the fifth training set, the other four training sets
are much larger than those used in this article.

In the following, we give a description of preprocessing and then con-
sider the cases of semisupervised learning and unsupervised learning.

4.1 Preprocessing. To ensure good performance, appropriate prepro-
cessing is necessary. The preprocessing in this article includes CAR spatial
filtering, frequency filtering, and channel selection.

For every trial, we use data of duration 3.5 sec for analysis. During this pe-
riod, the cue was visible on the screen, so we have 350 samples for each trial.
We then obtain a 118 × 350 EEG data matrix denoted as Ek for the kth trial.
The whole EEG data matrix is given by E = [E1, . . . , EN1 , EN1+1, . . . , EN1+N2 ],
where [E1, . . . , EN1 ] denotes the training data set with N1 trials, and
[EN1+1, . . . , EN1+N2 ] denotes the test set with N2 trials.

Notice that for the unsupervised case, prior training data are unavailable.
All the training data come from the test set. In the semisupervised case, the
relatively small initial training data set contains 30 trials.

EEG data matrix E is first preprocessed by a CAR spatial filter, and
the resultant data matrix is denoted as Ē. This filter is useful in reducing
some artifacts and noise. After the filtering, a spectral analysis for every
EEG channel in the training data (every row of the training data matrix
[E1, . . . , EN1 ]) is performed. In order to select the proper frequency band,
we calculate the Fisher ratio at each frequency bin of the power spectra
for each channel. Based on the Fisher ratios, we roughly determine the
frequency band (typically in mu or beta bands). This frequency band may
be different from subject to subject. In this article, we use only the signals in
mu band. The selected frequency bands for the three subjects in our study
are 12 Hz to 14 Hz for subjects aa and al and 9 Hz to 13 Hz for subject ay. After
determining the frequency band, we further roughly select EEG channels
(generally in the sensorimotor area) that exhibit relatively higher Fisher
ratios in the determined frequency band. The number of selected channels
is denoted as N0. Note that the above frequency band and channel selection
are based on the small training data set in the semisupervised case. For the
unsupervised case, we can first use the default settings of the mu frequency
band (e.g., 10–14 Hz) and channels (the channels in sensorimotor area); then
adjustment is made according to the classification results obtained in the
algorithm iterations.

4.2 Semisupervised Learning Case. In this section, we apply the ex-
tended EM algorithm to the semisupervised learning case.

As an example, we first describe our analysis procedure and results
for subject aa. As stated in the beginning of section 4, we use the first
150 trials with labels for cross-validation and use the subsequent 80 trials
as an independent test set. We equally divide the 150 trials into five folds
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according to their sequential order. To evaluate the effect of a small training
set, we use one fold for the initial training data set. The other four folds,
which are used for learning/retraining and testing, are called learning test
set in order to distinguish it from the independent test set. The independent
test set is to further demonstrate the validity of our algorithm. The process
is formulated in this way. In each iteration, besides performing all the tasks
stated in our extended EM algorithm, we also extract the CSP features of the
independent test set, predict their labels, and calculate the corresponding
prediction accuracy rate.

We have two different percentage settings for our extended EM algo-
rithm: (1) 80% of the learning test set is used for retraining and (2) 100% of
the learning test set is used for retraining.

In each iteration, we calculate the prediction accuracy rates
accuracy(i, k, j) for the learning test set and accuracyI (i, k, j) for the inde-
pendent test set, where i = 1, 2 refer to the percentage parameters 80% and
100%, respectively; k represents the kth iteration; and j(= 1, . . . , 5) repre-
sents the j th fold used for the initial training set. The average accuracy rates
over all folds are calculated as

rate(i, k) = 1
5

5∑
j=1

accuracy(i, k, j) (4.1)

rateI (i, k) = 1
5

5∑
j=1

accuracyI (i, k, j), (4.2)

where i = 1, 2, k = 1, . . . , 9 for subject aa.
For the purpose of comparison, we calculate all these accuracy rates sim-

ilar to equation 4.1 except that CSP feature reextraction is skipped during
the retraining. This corresponds to the performance of a standard EM al-
gorithm. The obtained average accuracy rates for the learning test set are
denoted as ¯rate(i, k) (i = 1, 2, k = 1, . . . , 9). From the comparison, we can
observe how the feature reextraction contributes to accuracy.

The above analysis results are shown in the first row of Figure 2. In the
first subplot, rate(1, k) is depicted as a solid line with asterisks and rate(2, k)
as a solid line with circles. Similarly, ¯rate(1, k) and ¯rate(2, k) are depicted as
dotted lines with stars and circles, respectively. Note that these results are
obtained from the learning test set. In the second subplot, accuracy rates
rateI (1, k) and rateI (2, k) for the independent test set are depicted as solid
lines with asterisks and circles, respectively.

Next, we present our analysis results on the convergence of our algo-
rithm. We consider only the case in which 80% of the learning test set is
used for retraining. We define meanq (k, j) and varq (k, j) as the mean vec-
tors and variance matrices of a Bayes classifier, where q = 1, 2 are class
indices, k = 1, . . . , 9 are iteration indices, and j = 1, . . . , 5 refer to the j th
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Figure 2: Analysis results in the semisupervised case. The first, second, and third
rows are for subjects aa, al, and ay, respectively. The first column shows predic-
tion accuracy rates for the learning test set obtained by our algorithm (solid
lines) and the standard EM algorithm (dotted lines), where the lines with aster-
isks and circles refer to the percentage settings of 80% and 100%, respectively.
The second column shows prediction accuracy rates obtained by our algorithm
for the independent test set, where the lines with asterisks and circles refer to the
percentage settings of 80% and 100%, respectively. The third column depicts the
curves of label convergence index ml in equation 4.5. The fourth column shows
the curves of average errors for the mean (solid lines) and covariance (dotted
lines) of the classifier.

fold used for the initial training data set. We can find the average difference
of meanq (k, j) and varq (k, j) between two successive iterations over five
folds and two classes as follows,

me(k) = 1
2

2∑
q=1

1
5

5∑
j=1

‖meanq (k, j) − meanq (k + 1, j)‖ (4.3)

mv(k) = 1
2

2∑
q=1

1
M

5∑
j=1

‖varq (k, j) − varq (k + 1, j)‖, (4.4)
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where k = 1, . . . , 8 for subject aa. In equations 4.3 and 4.4, ‖ · ‖ represents
the Frobenius norm of a vector or a matrix.

We can also observe the convergence from the consistency of labels for
the learning test set predicted in two successive iterations. Let Label(k, j, ·) be
the label vector predicted in the kth iteration, where j (= 1, . . . , 5) refers to
the j th fold used for the training data set. We calculate the average number
of different labels between two successive iterations over five folds, which
we call the label convergence index,

ml(k) = 1
5

5∑
q=1

N2∑
n=1

|Label(k, j, n) − Label(k + 1, j, n)|, (4.5)

where k = 1, . . . , 8, N2 is the number of predicted labels (i.e., the number of
testing trials).

ml is shown in the third subplot of the first row of Figure 2, and me and mv
are shown in the fourth subplot with the solid and dotted line, respectively.
These iterative curves in these two subplots illustrate the convergence of
our algorithm.

For subjects al and ay, we performed a similar analysis. The correspond-
ing results are presented in the second and the third rows of Figure 2,
respectively. Note that the numbers of iterations for subjects al and ay are 8
and 4, respectively.

Remark 4. Besides the above three subjects, we also applied our algorithm
to the data sets from the other two subjects (aw and av). Under the same
settings as above, the final average prediction accuracy rates of the learning
test sets are 91.2% and 76.4% for the two subjects aw and av, respectively,
while the final corresponding average accuracy rates of the independent
test sets are 88.8% and 75.3%. The result for subject av is not so satisfactory
as those for the other subjects here. This case also happened for the results
obtained by the winner in the BCI2005 competition. We think it is due to
the quality of the data.

4.3 Unsupervised Learning Case. In this section, we consider the un-
supervised learning case. In this article, unsupervised learning for a BCI
system implies that there are no initial training data. Our extended EM
algorithm can be used in the unsupervised learning case as stated in sec-
tion 3.2. We evaluate our algorithm using data for subjects aa and al due
to limited space, although we have also obtained satisfactory results for
the other data sets. For each of the two subjects, we use the first 150 trials
for the learning test set and the subsequent 80 trials for the independent
test set. In the initialization step, we assign random labels to the learn-
ing test set, extract the CSP features of the learning test set according
to these random labels, and set the initial values of the Bayes classifier
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parameters. Next we apply the extended EM algorithm. In each iteration,
we extract the CSP features for both the learning test and the independent
test set and predict their labels. We have two iteration settings: (1) 80% of
the learning test trials are used for the training set in each iteration, and
(2) 100% of the learning test trials are used for the training set in each
iteration.

First, we calculate the prediction accuracy rates, rate(i, k), for the learning
test set and rateI (i, k) for the independent test set, where i = 1, 2 represent
the percentage settings of 80% and 100%, respectively, and k refers to the
kth iteration. Next, we calculate the number of different labels for the learn-
ing test set between two successive iterations, which is the indicator for
terminating the iteration,

d Li (k) =
N2∑

n=1

|Labeli (k, n) − Labeli (k + 1, n)|, (4.6)

where Labeli (k, ·) is the label vector predicted in the kth iteration and under
the ith (i = 1, 2) percentage setting. N2 is the number of predicted labels.

We now consider the convergence of the algorithm. From theorems 2 and
3, we can conclude that the mean vectors and covariance matrices will tend
to the true ones if the improvement of prediction accuracy in each iteration
is sufficiently large.

We now demonstrate this conclusion by data analysis results. For each
of the two subjects, we use all 150 trials of the learning test set and their true
labels to extract the CSP feature vectors cf(q )( j), where q = 1, 2 is the class
index (i.e., label), and j refers to the j th trial of the q th class. The covariance
matrix of {cf(q )( j)} is denoted as Var(q ). These CSP feature vectors, the mean
vectors, and class covariance matrices are treated as true ones without being
affected by prediction error.

We then calculate the average errors for mean vectors and covariance
matrices,

MEi (k) = 1
2

2∑
q=1

∥∥mean
(
cf(q )

k (·)) − mean
(
cf(q )(·))∥∥2, (4.7)

MVi (k) = 1
2

2∑
q=1

∥∥Var(q )
k − Var(q )

∥∥
2, (4.8)

where i refers to the ith percentage setting; the notations cf(q )
k ( j) (CSP feature

vector) and Var(q )
k (covariance matrix) can be seen in section 3.3.



2750 Y. Li and C. Guan

1 5 9 13 17
0.5

0.7

0.9

Ac
cu

ra
cy

 ra
tes

1 5 9 13 17
0.2

0.6

1

1.4

ME
i

1 5 9 13 17
0.2

0.6

1

MV
i

1 5 9 13 17
0

18

36

54

dL
i

1 5 9 13 17
0

5

10

15

Iteration K

Fis
he

r r
ati

o

1 5 9 13 17
0

5

10

15

Fis
he

r r
ati

o

Figure 3: Analysis results for subject aa in the unsupervised case. In the first
row, the left subplot shows curves of prediction accuracy rates for the learning
test set (solid lines) and the independent test set (dotted lines). Note that for all
subplots in this figure, the percentage settings of 80% and 100% are represented
by asterisks and circles, respectively. The middle and right subplots in the first
row show the curves of average errors for mean (MEi (k) in equation 4.7) and
covariance (MVi (k) in equation 4.8) of the classifier. The subplots in the second
row show curves of label convergence index d Li (k) in equation 4.6 (left subplot),
Fisher ratios obtained from the 150 trials of the learning test set by our algorithm
(middle subplot), and Fisher ratios obtained from the same data set by the
standard EM algorithm (right subplot).

To further demonstrate that feature reextraction in the iterations can
improve the consistency of features, we calculate the Fisher ratios,

FRi (k) =
∥∥mean

(
cf(1)

k (·)) − mean
(
cf(2)

k (·))∥∥(∥∥Var(1)
k

∥∥ + ∥∥Var(2)
k

∥∥) 1
2

, (4.9)

where i implies the ith percentage setting and k implies the kth iteration.
For comparison, we perform several standard EM iterations (without

feature reextraction) using the CSP features extracted in the third iteration
of our algorithm. Similar to equation 4.9, we also calculate the Fisher ratios,
which are denoted as ¯F Ri (k).

Figure 3 shows the above analysis results for subject aa. In the first row,
the left subplot shows the curves of average accuracy rates, rate(i, k) for the
learning test set in solid lines, and rateI (i, k) for the independent test set
in dotted lines. Note that for all subplots in this figure, the settings of 80%
and 100% are represented by asterisks and circles, respectively. The average
errors of mean vectors MEi (k) and covariance matrices MVi (k) are shown
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Figure 4: Analysis results for subject al in the unsupervised case. In the first row,
the left subplot shows the curves of prediction accuracy rates for the learning
test set (solid lines) and the independent test set (dotted lines). Note that for all
subplots in this figure, the percentage settings of 80% and 100% are represented
by asterisks and circles, respectively. The middle and right subplots in the first
row show the curves of average errors for the mean (MEi (k) in equation 4.7) and
covariance (MVi (k) in equation 4.8) of the classifier. The three subplots in the
second row show the curves of label convergence index d Li (k) in equation 4.6
(left subplot), Fisher ratios obtained from the 150 trials of the learning test set by
our algorithm (middle subplot), and Fisher ratios obtained from the same data
set by standard EM algorithm (right subplot).

in the middle and right subplots, respectively. The iteration-terminating
indicator d Li (k), Fisher ratios FRi (k), and FRi (k) obtained from the 150
trials of learning test set are shown in the three subplots in the second row,
separately.

We perform data analysis for subject al as was done for subject aa. The
corresponding results are shown in Figure 4.

4.4 Discussion. In this section, we present our discussions based on
the experimental analysis results shown in Figures 2, 3, and 4 for both the
semisupervised and the unsupervised cases.

1. Our analysis results for the semisupervised case are shown in Figure 2,
in which the three rows correspond to the three subjects’ data. The first and
second column of Figure 2 display accuracy rate curves for the learning test
set and the independent test set, respectively. Figures 3 and 4 present our
analysis results for the unsupervised case for subjects aa and al. Accuracy
rate curves for both the learning test set and the independent test set are
shown in the first subplots of Figures 3 and 4.
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From all these accuracy curves obtained by the extended EM algo-
rithm under the percentage settings of 80% (solid lines with asterisks in
the first two columns of Figure 1, lines with asterisks in the first subplots of
Figures 2 and 3), we see that satisfying prediction accuracy rates are ob-
tained by several iterations of our proposed algorithm. The validity of our
algorithm is thus demonstrated. This suggests that the extended EM algo-
rithm presented in this article may be used in a BCI system when training
data are not sufficient or are even unavailable.

2. From the analysis results shown in the three subplots of the first column
in Figure 1, we see that the highest accuracy rates are obtained when the
percentage of the learning test data for retraining is 80% instead of 100%. In
one iteration, the higher the posterior probability of a trial from the learning
test set, the more confident its predicted label. Thus, we do not use those
trials with very low posterior probabilities for retraining. Therefore, for
the semisupervised case, an appropriate percentage setting can improve
the performance of our algorithm. This phenomenon is also suggested by
Figures 3 and 4 for the unsupervised case. Thus, we recommend setting the
percentage to be less than 100%. One question might be how this percentage
can be determined. Through extensive experiments, we found that for the
percentages in a broad range (e.g., from 60% to 90%), the performance does
not vary too much. To choose a suitable value, we can start with an initial
value of 80%, for example. If the iterations converge smoothly, we take this
percentage value as our choice. Otherwise, we search for another one.

3. We now compare the accuracy rates obtained by our extended EM
algorithm, which is embedded with a feature reextraction, with the accuracy
rates obtained by the standard EM algorithm in equation 3.3. From the
three subplots of the first column of Figure 1, we can see that rate(1, k),
rate(2, k), and rate(3, k) (solid curves) are higher than ¯rate(1, k), ¯rate(2, k), and

¯rate(3, k) (dotted curves), respectively. This means that feature reextraction
can improve the performance of classification for the semisupervised case.
In the unsupervised case, since the initial labels are given randomly, it is
theoretically necessary to reextract the CSP feature during the iterations.

For any two consecutive iterations, feature reextraction in the first itera-
tion can improve the feature consistency (expressed by Fisher ratio; see the
later discussion), and this leads to a higher classification accuracy. The lat-
ter will result in a further improvement of feature consistency after feature
reextraction in the next iteration.

4. We consider iteration convergence in the semisupervised case. From all
subplots in the second and third columns in Figure 2, the parameters (mean
vectors and variance matrices) of the Bayes classifiers and the predicted
label vectors are convergent for all three subjects. This implies a satisfying
convergence property of our algorithm and also demonstrates the validity
of our criterion for the termination of iterations. Convergence analysis for
the semisupervised version of our algorithm can be similar to theorems 2
and 3.
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On iteration convergence in the unsupervised case, theorems 2 and 3
and their corresponding proofs (see the appendixes) tell us that the mean
vectors and covariance matrices of CSP feature vectors for both classes will
tend to the true ones (unaffected by noise) if the improvement of prediction
accuracy in each iteration is sufficiently large. This has been demonstrated
in the second and third subplots in the first rows of Figures 3 and 4. In
addition, the first subplots in the second rows of Figures 3 and 4 show the
convergence of the predicted label vectors.

5. From the second subplots in the second rows of Figures 3 and 4, we
can find that the Fisher ratios between two classes of CSP features can be
improved significantly during the extended EM iterations. By comparing
the Fisher ratio curves (obtained by the standard EM iterations) shown in
the third subplots in the second rows of Figures 3 and 4 with those shown
in the second subplots, feature reextraction causes a significant improve-
ment of the Fisher ratios. Thus, our method of retraining with feature reex-
traction can improve both the classification performance and the quality of
feature.

5 Conclusion

In this article, we present an extended EM algorithm that can be used for
both semisupervised learning and unsupervised learning in BCI systems.
The first objective is to reduce or even skip the training phase entirely. The
second objective is to improve the adaptability of BCI systems.

Two key problems—the robustness of the CSP feature to noise and al-
gorithm convergence—are addressed here. In our proposed algorithm, the
labels predicted in each iteration are used for reextracting the CSP features.
Since prediction error of the labels (treated as noise in this article) is in-
evitable, we need to consider the robustness of the CSP feature to noise.
According to our analysis, the feature is somewhat robust to noise. Further-
more, during the iterations of the extended EM algorithm, if the prediction
accuracy rates tend to one, then the reextracted CSP features will tend to the
true values, which are unaffected by prediction errors. It is well known that
the convergence plays a key role for an iterative algorithm to work. From
our theoretical and experimental data analysis, our extended EM algorithm
also has satisfying convergence property. This is due to the convergence
property of the standard EM algorithm and the robustness of CSP feature
to noise.

The main difference between our algorithm and a standard EM algorithm
is that there is a feature reextraction in each iteration of our algorithm. When
the initial training data set is small or null, the CSP features extracted in
the beginning have low consistency and thus are not reliable. According
to our analysis results, feature reextraction can improve the consistency
(expressed by Fisher ratio) of CSP features and classification accuracy.
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Appendix A: Proof of Lemma 2

The second conclusion can be obtained directly from lemma 1.
We now prove the first conclusion. Note that equation 2.10 is equivalent

to

(A + �)gi (θ ) = qi (θ )gi (θ ), i = 1, . . . , m, (A.1)

where gi (θ ) is the ith column vector of G(θ ).
Noting that gT

i (θ )gi (θ ) = 1, the vector function gi (θ ) is bounded. Thus,
gi (θ ) has convergent subsequences. Suppose that {gi (θ j ), j = 1, . . . , } is a
convergent subsequence of {gi (θ )}, that is, lim

j→∞
θ j = 0, lim

j→∞
gi (θ j ) = ḡi . We

first have

(A + � j )gi (θ j ) = qi (θ j )gi (θ j ). (A.2)

Noting that lim
j→∞

qi (θ j ) = λi , we have

Aḡi = λi ḡi . (A.3)

It follows from equation A.3 that ḡi is an eigenvector of A corresponding
to λi . Since {gi (θ j )} are normalized vectors with their first entries being
nonnegative, ‖ḡi‖2 = 1, and the first entry of ḡi is nonnegative. A has m
different eigenvalues and the first entry of gi is nonnegative; thus, ḡi = gi .
From the above analysis, we can see that any convergent subsequence of
gi (θ ) tends to gi . Thus, lim

θ→0
gi (θ ) = gi . Lemma 2 is proven.

Appendix B: Proof of Theorem 1

Reconsidering the joint diagonalization procedure of the two noisy corre-
lation matrices �(1) + ε1 and �(2) + ε2, we have

VT (ε)�(ε)V(ε) = P(ε), (B.1)

where �(ε) = �(1) + ε1 + �(2) + ε2, P(ε) is a diagonal matrix composed by
the eigenvalues of �(ε) in a decreasing order.

Set U(ε) = (P(ε))
1
2 VT (ε), R1(ε) = U(ε)(�(1) + ε1)UT (ε).

Suppose that Z(ε) is a orthogonal matrix such that

ZT (ε)R1(ε)Z(ε) = D(ε) = diag(d1(ε), . . . , dm(ε)). (B.2)

Note that the first row vectors of above two orthogonal matrices V(ε)
and Z(ε) are set to be nonnegative.
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Define W(ε) = ZT (ε)U(ε); then we have equation 2.7.
For practical data, we can say that � and R1 have m different eigenvalues

respectively (with probability one).
It follows from lemma 2 that

lim
ε→0

V(ε) = V, lim
ε→0

P(ε) = P. (B.3)

Thus, we have

lim
ε→0

U(ε) = U, lim
ε→0

R1(ε) = R1, lim
ε→0

R2(ε) = R2. (B.4)

From equation B.4 and lemma 2, lim
ε→0

Z(ε) = Z and lim
ε→0

D(ε) = D. In view

of the definition of W(ε), lim
ε→0

W(ε) = W.

The second conclusion can be directly obtained from equation 2.13 and
the definitions of CSP features in equations 2.5 and 2.8.

The theorem is thus proven.

Appendix C: Proof of Theorem 2

Noting that the sum �
(1)
k + �

(2)
k does not change in every iteration, that is,

�
(1)
k + �

(2)
k = �, where � is the same as in equation 2.2.

We denote R(1)
k = (P)

1
2 VT�

(1)
k V(P)

1
2 , R(2)

k = (P)
1
2 VT�

(2)
k V(P)

1
2 , where the

matrices V, P are defined in equation 2.2. We also denote M(q )
k the number

of trials belonging to the q th class in the kth iteration and M(q ) the true
number of trials belonging to the q th class.

Suppose that R(1)
k = ZT

k DkZk , where Zk is an orthogonal matrix and Dk is
a diagonal matrix with its elements in the diagonal line in decreasing order.
Let Wk = ZT

k (P)
1
2 VT ; then Wk can jointly diagonalize the matrices �

(1)
k and

�
(2)
k . The submatrix W̄k is constructed by using the first l1 rows and the last

l2 rows of Wk ; then it is a CSP transformation matrix in the kth iteration
(similarly as in equation 2.5).

By the definition of CSP feature,

1

M(1)
k

M(1)
k∑

i=1

c f (1)
k ( j, i) = 1

M(1)
k

M(1)
k∑

i=1

w̄k( j)
S(1)

i

(
S(1)

i

)T

trace
(
S(1)

i

(
S(1)

i

)T) w̄T
k ( j)

= w̄k( j)


 1

M(1)
k

M(1)
k∑

i=1

S(1)
i

(
S(1)

i

)T

trace
(
S(1)

i

(
S(1)

i

)T)

 w̄T

k ( j)



2756 Y. Li and C. Guan

= w̄k( j)�(1)
k w̄T

k ( j)

= dk(nj ), (C.1)

where w̄k( j) is the j th row vector of W̄k which is assumed to be the nj th
row of wk( j), and dk(nj ) is the nj th eigenvalue of �

(1)
k (i.e., the nj th element

of the diagonal line of Dk).
Similarly,

1
M(1)

M(1)∑
i=1

c f (1)( j, i) = w̄ j�
(1)w̄T

j = d( j). (C.2)

It follows from equations C.1 and C.2 and lemma 1 that

| 1

M(1)
k

M(1)
k∑

i=1

c f (1)
k ( j, i) − 1

M(1)

M(1)∑
i=1

c f (1)( j, i)| = |dk(nj ) − d(nj )|

≤ ‖�(1)
k − �(1)‖2. (C.3)

Furthermore, we have

‖mean(cf(1)
k (·)) − mean(cf(1)(·))‖2

=

 L∑

j=1

| 1

M(1)
k

M(1)
k∑

i=1

c f (1)
k ( j, i) − 1

M(1)

M(1)∑
i=1

c f (1)( j, i)|2



1
2

≤ L‖�(1)
k − �(1)‖2. (C.4)

Similarly, we have the following conclusion for the second-class mean
vector:

‖mean
(
cf(2)

k (·)) − mean
(
cf(2)(·))‖2 ≤ L‖�(2)

k − �(2)‖2. (C.5)

Theorem 2 is proved.

Appendix D: Sketch of Proof of Theorem 3

As in the proof of theorem 2, we denote M(q )
k the number of trials belong-

ing to the q th class in the kth iteration and M(q ) the true number of tri-
als belonging to the q th class, M = maxq ,k{M(q )

k }, m(q )
k ( j) = mean(c f (q )

k ( j, ·)),
m(q )( j) = mean(c f (q )( j, ·)).
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The variances of c f (q )
k ( j, ·) and c f (q )( j, ·) are calculated as

(
σ

(q )
k ( j)

)2 = 1

M(q )
k

M(q )
k∑

i=1

(
c f (q )

k ( j, i) − m(q )
k ( j)

)2

(
σ (q )( j)

)2 = 1
M(q )

M(q )∑
i=1

(
c f (q )( j, i) − m(q )( j)

)2
, (D.1)

where j = 1, . . . , L , q = 1, 2.
Suppose that in the kth iteration, there are M̄(1)

k trials of the first class
with correct labels. Since ratek is sufficiently large, then M̄(1)

k is close to M(1)
k

and M(1). Thus, we have

1

M̄(1)
k

M̄(1)
k∑

i=1

c f (1)
k ( j, i) 
 m(1)

k ( j),

1

M̄(1)
k

M̄(1)
k∑

i=1

c f (1)( j, i) 
 m(1)( j). (D.2)

Without loss of generality, suppose that m(1)
k ( j) > m(1)( j); we have

1

M̄(1)
k


M̄(1)

k∑
i=1

c f (1)
k ( j, i)




2

− 1

M̄(1)
k


M̄(1)

k∑
i=1

c f (1)( j, i)




2

= 1

M̄(1)
k

M̄(1)
k∑

i=1


(

c f (1)
k ( j, i)

)2 + c f (1)
k ( j, i)

∑
l �=i

c f (1)
k ( j, l)




− 1

M̄(1)
k

M̄(1)
k∑

i=1


(

c f (1)( j, i)
)2 + c f (1)( j, i)

∑
l �=i

c f (1)( j, l)


 (D.3)

and

1

M̄(1)
k

M̄(1)
k∑

i=1


c f (1)

k ( j, i)
∑
l �=i

c f (1)
k ( j, l)


 − 1

M̄(1)
k

M̄(1)
k∑

i=1


c f (1)( j, i)

∑
l �=i

c f (1)( j, l)






M̄(1)

k∑
i=1

[
c f (1)

k ( j, i)m(1)
k ( j)

]
−

M̄(1)
k∑

i=1

[
c f (1)( j, i)m(1)( j)

]


 M̄(1)
k (m(1)

k ( j))2 − M̄(1)
k (m(1)( j))2 > 0. (D.4)
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It follows from equations D.3 and D.4 that

1

M̄(1)
k


M̄(1)

k∑
i=1

c f (1)
k ( j, i)




2

− 1

M̄(1)
k


M̄(1)

k∑
i=1

c f (1)( j, i)




2

≥ 1

M̄(1)
k

M̄(1)
k∑

i=1

(c f (1)
k ( j, i))2 − 1

M̄(1)
k

M̄(1)
k∑

i=1

(c f (1)( j, i))2. (D.5)

From equation D.1, we have for j = 1, . . . , L ,

∣∣∣[σ (1)
k ( j)

]2
− [σ (1)( j)]2

∣∣∣
=

∣∣∣∣∣∣
1

M(1)
k

M(1)
k∑

i=1

(
c f (1)

k ( j, i) − m(1)
k ( j)

)2
− 1

M(1)

M(1)∑
i=1

(c f (1)( j, i) − m(1)( j))2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1

M(1)
k

M(1)
k∑

i=1

(
c f (1)

k ( j, i)
)2

− (m(1)
k ( j))2 − 1

M(1)

M(1)∑
i=1

(c f (1)( j, i))2 + (m(1)( j))2

∣∣∣∣∣∣
≤

∣∣∣∣∣ 1

M(1)
k

M̄(1)
k∑

i=1

(
c f (1)

k ( j, i)
)2

− 1
M(1)

M̄(1)
k∑

i=1

(c f (1)( j, i))2

∣∣∣∣∣ +
∣∣∣∣∣ 1

M(1)
k

M(1)
k∑

i=M̄(1)
k +1

(
c f (1)

k ( j, i)
)2

− 1
M(1)

M(1)∑
i=M̄(1)

k +1

(c f (1)( j, i))2| + |(m(1)( j))2 −
(

m(1)
k ( j)

)2
∣∣∣∣∣



∣∣∣∣∣ 1

M̄(1)
k

M̄(1)
k∑

i=1

(
c f (1)

k ( j, i)
)2

− 1

M̄(1)
k

M̄(1)
k∑

i=1

(c f (1)( j, i))2

∣∣∣∣∣ +
∣∣∣∣∣ 1

M(1)
k

M(1)
k∑

i=M̄(1)
k +1

(
c f (1)

k ( j, i)
)2

− 1
M(1)

M(1)∑
i=M̄(1)

k +1

(c f (1)( j, i))2| + |(m(1)( j))2 −
(

m(1)
k ( j)

)2
∣∣∣∣∣. (D.6)

In view that c f (1)
k ( j, i) ≤ 1,

∣∣∣∣∣∣∣
1

M(1)
k

M(1)
k∑

i=M̄(1)
k +1

(
c f (1)

k ( j, i)
)2 − 1

M(1)

M(1)∑
i=M̄(1)

k +1

(c f (1)( j, i))2

∣∣∣∣∣∣∣
≤ max

{
M(1)

k − M̄(1)
k

M(1)
k

,
M(1) − M̄(1)

k

M(1)

}

 1 − ratek . (D.7)
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In view of equations D.6, D.7, and D.5,

∣∣∣[σ (1)
k ( j)

]2
−

[
σ (1)( j)

∣∣∣]2
≤

∣∣∣∣∣∣∣
1

M̄(1)
k

M̄(1)
k∑

i=1

(
c f (1)

k ( j, i)
)2

− 1

M̄(1)
k

M̄(1)
k∑

i=1

(c f (1)( j, i))2

∣∣∣∣∣∣∣
+1 − ratek +

∣∣∣(m(1)( j))2 −
(

m(1)
k ( j)

)2∣∣∣

≤

∣∣∣∣∣∣∣
1

M̄(1)
k




M̄(1)
k∑

i=1

c f (1)
k ( j, i)




2

− 1

M̄(1)
k




M̄(1)
k∑

i=1

c f (1)( j, i)




2∣∣∣∣∣∣∣ + 1 − ratek

+
∣∣∣(m(1)( j))2 −

(
m(1)

k ( j)
)2∣∣∣



∣∣∣M̄(1)

k

(
m(1)

k ( j)
)2

− M̄(1)
k (m(1)( j))2

∣∣∣ + 1 − ratek +
∣∣∣(m(1)( j))2 −

(
m(1)

k ( j)
)2∣∣∣

≤ (M + 1)
∣∣∣(m(1)

k ( j)
)2

− (m(1)( j))2
∣∣∣ + 1 − ratek

≤ 2(M + 1)
∣∣∣m(1)

k ( j) − m(1)( j)
∣∣∣ + 1 − ratek

≤ 2(M + 1)
∥∥∥�

(1)
k − �(1)

∥∥∥
2
+ 1 − ratek, (D.8)

where the last inequality is from equation C.3.
Similarly,

∣∣[σ (2)
k ( j)

]2 − [
σ (2)( j)

]2∣∣ < 2(M + 1)
∥∥�

(2)
k − �(2)

∥∥
2 + 1 − ratek, (D.9)

where j = 1, . . . , L .
Thus we have the conclusion in theorem 3.
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