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Amyotrophic lateral sclerosis, or ALS, is a degenerative disease of the motor

neurons that eventually leads to complete paralysis. We’re developing a

wheelchair system that can help ALS patients, and others who can’t use physical inter-

faces such as joysticks or gaze tracking, regain some autonomy. The system must be

usable in hospitals and homes with minimal infra-
structure modification. It must be safe and rela-
tively low cost and must provide optimal interac-
tion between the user and the wheelchair within
the constraints of the brain-computer interface. To
this end, we’ve built the first working prototype of
a brain-controlled wheelchair that can navigate in-
side a typical office or hospital environment (see
figure 1).1

This article describes the BCW, our control strat-
egy, and the system’s performance in a typical build-
ing environment.

Background
Research on brain-controlled interfaces has flour-

ished in recent years. For instance, BCI researchers
have placed neural implants in the brains of animals
and humans to control simple mechanisms.2 Because
such invasive techniques are still risky, human BCI
research has focused mainly on noninvasive meth-

ods for monitoring brain activity, such as electroen-
cephalography (EEG), magnetoencephalography,
near-infrared spectroscopy, and functional magnetic
resonance imaging.

Our wheelchair uses an EEG-based BCI—a sim-
ple, portable system providing continuous measure-
ment of brain activity. EEG is the most common
approach to building BCIs, and researchers have
developed various techniques to use EEG for com-
munication between a human and a machine.3

As with other BCIs, EEG yields a low informa-
tion transfer rate: either the waiting time between
consecutive commands is long, typically several sec-
onds, or uncertainty about the command is high. The
difficulty is figuring out how to use such a poor sig-
nal to control a wheelchair that requires real-time
specification of its position within the 3D space of
planar motion. One solution is to give the system
some autonomy, such that the user must provide the
wheelchair with directives only from time to time.

This brain-controlled

wheelchair prototype

uses a P300 EEG

signal and a motion

guidance strategy to

navigate in a building 

safely and efficiently

without complex

sensors or sensor

processing.



For example, in the work of José del R.
Millan and his colleagues, an EEG BCI
based on recognizing three mental states
interacts continuously with a mobile robot’s
automatic behavior to successfully maneu-
ver in a simple environment.4 However, the
motion depends on sensor processing, which
isn’t foolproof. So, this type of control might
be too risky for a wheelchair. Besides, this
approach requires the user to be constantly
alert, which will cause stress. Similarly, using
an EEG BCI to directly choose the wheel-
chair’s next move5 necessitates a series of
decisions to complete even a simple move-
ment, thus possibly exhausting the subject.

Our control strategy relies on a slow but
safe and accurate P300 EEG BCI that lets the
user select a destination item on a menu. The
wheelchair then moves to the corresponding
target on a predefined path. This strategy re-
quires minimal effort from the user. The paths
are software defined and not hard coded, so
they can easily be modified if the environ-
ment changes.

Properties of the P300 BCI
An EEG-based BCI is particularly well

suited for our wheelchair system because
it can deliver a continuous time signal and
the necessary hardware is portable. A set of
electrodes on a cap (see figure 1) is wired to
an amplifying, filtering, digitizing device,
which transfers the signals (such as the ones
shown in figure 2a) to a computer for analy-
sis. The associated electronic equipment is
smaller than a laptop and weighs less than
one kilogram.

The P300 evoked potential is a well-studied,
stable brain signal. This natural, involuntary
response of the brain to infrequent stimuli can
provide a BCI with an oddball paradigm. In
this paradigm, a random sequence of stimuli
is presented, only one of which interests the
subject. Around 300 milliseconds after the
target flashes, there is a positive potential
peak in the EEG signal. When the system de-
tects a P300 signal (P for positive, 300 for the
300-millisecond delay), it determines that the
target stimulus occurred 300 ms earlier.

Figure 2a shows the raw EEG signal from
10 electrodes. The vertical red and green lines
mark the times of target and nontarget stimuli,
respectively. The system can’t distinguish the
P300 signal from background activity, but
averaging several samples attenuates the un-
correlated activity, noise, and signal variability.

Figure 2b shows the signal that results
from averaging hundreds of samples corre-

sponding to target events (red curve) and
nontarget events (green curve). The P300-
based BCI requires no user training and only
a few minutes to calibrate the detection algo-
rithm’s parameters. This is noteworthy be-
cause other BCI techniques require a long
training phase, up to several months in the
case of slow cortical-potential devices.6

We use a visual oddball paradigm. Our
system displays items to be selected on a
screen, randomly flashing them one by one
(see figure 3). To select an item, the user
focuses on it; a simple way to focus is to
count the number of times the target flashes.
The user may gaze at a location other than
the target because the P300 measures sur-
prise, not a direct visual signal. 

Main features 
Our BCW uses the asynchronous P300

system.7 The system must be asynchronous
so that the user can intervene at any time.
First, the system filters and cleans the signals
from 15 EEG electrodes placed on the top of
the head. It then segments the signals to asso-
ciate each button on the GUI with a sample
corresponding to data 150 to 500 ms after
that button flashes. These samples are fed to
a support vector machine, which computes a
score expressing the likelihood that the sam-
ple contains a P300.

After each epoch (the period during which
all buttons are flashed once), the support vec-
tor machine outputs new scores for all buttons.
When one or more scores are higher than a
decision threshold, the system designates the

button with the maximum score as the target. 
Three factors are critical for the P300 BCI:

• Error rate (Err): the ratio of wrongly se-
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Figure 1. The brain-controlled wheelchair uses a compact acquisition device and an
embedded computer.
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Figure 2. (a) The raw EEG signal from 10
electrodes. Vertical lines mark the times
of stimuli, the red line corresponding to
a target stimulus. (b) Averaging several
epochs cancels out uncorrelated noise.
The EEG signal shows a potential peak
300 ms after the target is presented (red
curve), whereas it remains relatively flat
at other times or when other items are
presented (green curve).



lected targets (substitution) divided by the
total number of selections during an exper-
iment. We keep this error rate low by using
the moving average of scores over the last
eight epochs to select the target.

• Response time (RT): the time before a but-
ton’s (averaged) score reaches the decision
threshold.

• False-acceptance rate (FA): the number of
times per 100 seconds that the system
wrongly detects a P300 signal.

These features depend on the decision thresh-
old’s value. A low threshold leads to a fast
selection but might produce a lot of errors
and a high FA. Conversely, a high threshold
leads to a long RT (possibly no response at
all) and a low FA.

Selecting a decision threshold
To determine a suitable threshold for our

application, we measured RT, FA, and Err as
a function of the threshold. We recorded the
EEG signals from five young, healthy sub-
jects while they were selecting buttons on the
interface and while they performed other
mental tasks such as reading or relaxing.

Figure 4 shows the experiment’s results. For
each subject, both the P300 and non-P300
scores are approximately normally distrib-
uted, and the mean of the P300 scores is larger
than the non-P300 mean. The RT curve is
larger than 8, the averaging window’s width.
RT increases with the threshold because fewer
samples have a high score. Conversely, FA is
close to 100 percent for threshold values
lower than the score distribution’s center and
tends to zero for high threshold values. Err is
below 10 percent and decreases for large
threshold values.

Which threshold value to choose depends
on the application and desired performance.
For a speller, where backspacing is possible,
choosing a threshold value that yields short
response times is desirable, even if the inter-
face must commit some errors.

To control the wheelchair, we focus more
on reliability and thus choose a relatively
high threshold value, yielding a low Err.
Our results demonstrate that for a thresh-
old that keeps FA around 2.5 percent, RT is
approximately 20 seconds, which is com-
pletely acceptable. For example, the wait-
ing time in elevators or for a green light on
the street is on the order of tens of seconds
or minutes.

Simple collaborative control
Standard wheelchair control requires the

user to provide commands continuously, and
even a slight error can cause an accident.
However, faultless continuous brain control
isn’t feasible because current BCIs aren’t fast
or reliable enough. So, we must provide suf-
ficient autonomy to navigate the wheelchair
between two commands or to correct an erro-
neous interpretation of the brain signal.

A conventional approach to autonomy is
to equip the vehicle with sensors to perform
obstacle detection and localization (that is,
determine its own location relative to some
reference coordinate system). The robot must
have sufficient artificial intelligence to gen-
erate a suitable trajectory to reach a destina-
tion while ensuring safety during motion.
However, this conventional strategy has a
heavy cost (both financial and computational),
and the system’s decision might seem awk-
ward to a human observer. For example, auto-
nomous vehicles sometimes have refused to
move forward because of obstacles that a hu-
man driver would easily be able to navigate
around.

Furthermore, a robotic wheelchair’s mis-
sion is to assist a person, who might decide

to change course at any time—for instance,
to stop on the way to the mail room, pick up
a book in the library, or go to the toilet. The
quality of interaction between the user and
the robotic wheelchair might well determine
whether a person will adopt it.

For all these reasons, we decided to de-
velop a safe motion-control strategy using
only simple sensors, relying on collaboration
with the user to solve complex situations that
will arise from time to time.

Motion guidance
The wheelchair user can’t continuously

issue commands, so we simplify motion con-
trol by using a set of predefined paths be-
tween different relevant locations in the
user’s daily environment. Once the user se-
lects a path, the system drives the wheelchair
along it using a dedicated path-following
controller.8

If a building plan is available, the wheel-
chair system can create a collection of guiding
paths (as shown on the map in figure 5) auto-
matically. Alternatively, we can create a map
using walkthrough programming8: the on-
board computer records the trajectory while a
helper pushes the wheelchair between two
locations. A cubic B-spline is least-squared fit
to this path and serves as a guide for subse-
quent movements. B-spline is a piecewise
polynomial function, locally simple, yet
smooth and globally flexible. A few control
points (four for a cubic B-spline) act as attrac-
tion points to the curve, so they have an intu-
itively geometrical meaning and can be used
to modify a guiding path.

You can easily extend this map to include
paths to neighboring offices or spaces. We
developed a tool-equipped path editor that lets
wheelchair users or helpers easily modify the
guiding paths to adapt to environmental mod-
ifications such as changes in furniture loca-
tions or obstacles.8

Context-dependent menus
Navigating with the BCW is straightfor-

ward: from the current location, the computer
scans the locations linked by guiding paths
and displays the list on the P300 interface, as
illustrated in figure 3a. When the user chooses
a destination, the wheelchair heads toward it,
following the appropriate guiding path.

The menu on the interface is context depen-
dent. When the BCW stops in front of an
obstacle, it displays options to solve the situ-
ation. When it’s at an elevator, the GUI shows
a list of the floors (see figure 3b). We assume
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Figure 3. Context-dependent menus 
of commands displayed to the subject.
The items flash in a random sequence
onscreen, and the P300 BCI selects the
item on which the subject is focusing. 
(a) This menu corresponds to the 
wheelchair navigating on one floor.
(b) This menu corresponds to the 
wheelchair that is currently at the 
elevator’s fifth floor, which is thus not
displayed. Note that the number 
of commands isn’t limited to nine.



a smart elevator able to communicate wire-
lessly with the wheelchair computer and
equipped to control the wheelchair’s entrance
and exit. The P300 BCI we’re using can select
20 or more buttons, so the user can select the
elevator level in one step. So, the strategy
seems particularly adapted to motion planning
in an office-like building or in a hospital. In
contrast, a BCI based on two or three states
(such as other researchers have used4,5) would
require several successive selections.

Adapted control hierarchy
To enable the user to modify a command

after issuing it, we devised a faster P300 par-
adigm that issues a stop command in a few
seconds. Because the most relevant command
during motion is “stop,” the GUI presents one
stop button and eight dummy buttons (to
comply with the oddball paradigm). 

However, because the response time is still
on the order of several seconds, and to pro-
vide redundant safety, we implemented a stop
reflex based on simple sensors on the front of
the wheelchair. We used a low-cost module
of three infrared proximity sensors with a
range of 50 cm and a combined angular range
of 180 degrees.

Once the wheelchair is stopped in front of
a detected obstacle, the GUI asks the user
what action to perform:

• resume movement along the path if the
obstacle has disappeared (for example, a
human blocking the way left),

• avoid the obstacle by applying an elastic de-
formation to the path8 to the left or right, or 

• call for assistance. 

Because of the variety of possible situations,
we rely on the user’s cognitive abilities rather
than let the artificial system compute a solu-
tion on the basis of its generally poorer infer-
ence and sensory capabilities.

In summary, we adapted the control
scheme to the P300 BCI’s properties to min-
imize the user’s input while letting him or her
remain in charge of major decisions. Long-
term commands such as choosing a destina-
tion or an elevator floor are selected by the
user with a high decision threshold, yielding
a mean response time of 20 seconds and an
Err of 2.5 percent. While the BCW is mov-
ing, we use a lower threshold setting (faster
but with false alarms) to issue a stop com-
mand within a couple of seconds. Simple
reflex proximity sensors guarantee safety.
This collaborative control strategy lets the

user operate the wheelchair safely and effi-
ciently while requiring little intervention, and
it can be used with various types of robotic
wheelchairs.

Implementation
We built the BCW prototype8 on a Yamaha

JW-I power wheelchair. The real-time con-
trol program is written in C and runs on a
Toshiba M100 laptop with a Pentium 1.2
GHz processor operated by Ubuntu Linux
6.06 with a 2.6.15 kernel patched with Real-
Time Application Interface v3.3 for real-time
capabilities. We limit the sensors to two opti-
cal rotary encoders attached to specially
designed glidewheels for odometry and a bar
code scanner (Symbol M2004 Cyclone) for
global positioning.

This scanner, similar to models used in
supermarkets to read price codes, is mounted
below the seat. Bar code patterns are placed
at critical locations such as doors. Each set of
bar code patterns has a unique code corre-
sponding to global coordinates that we’ve
entered into the memory. Combining infor-
mation from these two simple sensors, the sys-
tem provides sufficiently accurate wheelchair
positions and orientations at speeds up to 0.6
meters per second.8

For EEG acquisition, we use Neuroscan’s

NuAmps, a high-quality, inexpensive 40-
channel digital EEG amplifier that’s capable
of 22-bit sampling at 1,000 Hz, measuring
signals from DC to 260 Hz.

Locking scheme
for greater reliability

The wheelchair user might want to stay in
a particular location and perform some ac-
tivity—for example, work with a computer.
To prevent falsely accepted commands to set
the wheelchair in motion, we implemented
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Figure 4. (a) Distribution of a typical subject’s scores for the samples that contain a
P300 (corresponding to the highest score) and those that don’t. (b) Characteristics 
of the BCI vary with the threshold. The mean response time, error rate, and false-
acceptance rate averaged over the five subjects. For a 20-second response time, 
the error and false-acceptance rates are as low as 2.5 percent.

TV

Figure 5. Sample map with a guiding
path in a home environment. The control
points can be used to modify the path in
the kitchen to avoid a large obstacle.



an interface-locking scheme similar to the
keyboard-locking facility on cellular
phones.

The user locks the interface using one of
the nine buttons on the menu. Once it’s locked,
the user can’t issue a command before enter-
ing a sequence of keys. The number of false
selections of the unlocking key is FA/9. For
three keys in the unlocking sequence, we can
estimate the number of false instances of un-
locking as (FA/9)3. This results in less than 1
accidental unlocking in 100 hours.

A faster interface for stopping
Using only one button to stop the wheel-

chair during movement has two advantages.
First, the false-acceptance rate is divided by
nine because false P300s are distributed evenly
among the nine buttons, only one of which trig-
gers an action. So, using a lower threshold to
reduce the response time is possible. Second,
because the user can select only one button, no
error is possible, and averaging the scores over
eight epochs isn’t necessary.

Figure 6 shows RT as a function of FA for
the stop interface, measured for five sub-
jects. We see that it’s possible to achieve a
response time of less than six seconds while
keeping FA below six occurrences per 100
seconds.

Although a response time of six seconds
(corresponding to three meters at the maximal
speed of 0.5 meters per second) is acceptable,
five false alarms in 100 seconds is relatively
high. After the user has selected stop via the
interface, the same menu remains, and the
wheelchair will pursue the movement if the
user doesn’t confirm by selecting the stop but-
ton a second time. This avoids disruption, par-
ticularly in long movements.

Navigation with the wheelchair
We tested the BCW in an office environ-

ment with healthy subjects. This environment
included several floors connected by an ele-
vator. At each floor, we created four destina-
tions interconnected by six guiding paths. We
designed the paths before the experiment
using the walkthrough programming method
we explained earlier. 

We asked subjects to move from one loca-
tion to another on a different floor. We man-
ually operated the elevator as well as the
wheelchair’s entrance into and exit from it.
Subjects reported that activating the com-
mands was easy. All subjects succeeded in
their first attempt to reach the desired loca-
tions, taking approximately 15 seconds to
issue a command. A video demonstrating
these capabilities is available.9

The human-machine collaboration inhe-
rent in our system was designed to use

both the wheelchair system and the user to the
best of their abilities. Context-dependent menus
enable them to communicate, letting the user
select the necessary commands correspond-
ing to the current situation. This lets the user
decide the next action, relying on his or her
superior sensing and inference capabilities,
while the BCW is in charge of executing them
safely and reliably, thus compensating for the
user’s motor disability.

Motion guidance provides efficient control
while requiring little input, so it’s adapted to
the BCI’s slow information-transfer rate. This
also avoids costly and potentially unsafe com-
plex sensor processing. If the user changes
his or her mind on the way, he or she can stop
the wheelchair in a few seconds using a fast
P300 stop button. IR proximity sensors stop
the wheelchair immediately if it encounters
a physical obstacle.

The system is easy to set up: it doesn’t
require environmental modifications, and a
map of guiding paths can be designed using
simple tools. Our experimental results showed
that the system is also easy to use. Because
the user only has to select the destination and
deal with unexpected situations, the system
requires minimal input and concentration.
Besides, because the BCW repeats move-
ments along the same paths over time, its
motion is predictable, so the user can relax
during the movement. 

Our current BCI might appear to suffer
from a slow RT. However, assess this in the
context of potential users. The system is
intended for people who can’t move at all and
are normally stuck in bed; their notion of time
differs from ours, and being able to move
independently within their environment rep-
resents a much-improved quality of life,
whether it takes time or not. In this context,
safety and reliability are much more impor-
tant than speed.

Nevertheless, the algorithms to detect
P300 signals leave room for improvement.
In particular, we’re working on using signals
corresponding to buttons neighboring the tar-
get to reduce the time to issue a command and
the number of involuntary commands.

Finally, conducting experiments with dis-
abled users who really need a BCW is essen-
tial, because they might respond differently
from the healthy individuals we’ve worked
with so far. Our simple system is well suited
to performing such experiments, and their re-
sults will influence future development.

I n t e r a c t i n g  w i t h  A u t o n o m y

22 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

82 3
False-acceptance rate (number per 100 sec)

4 5 6 7

8

7

6

5

4

3

2

R
es

po
ns

e 
tim

e 
(s

ec
)

Figure 6. Response time (RT) as a function of the false-acceptance rate (FA) for five
subjects, measured with the stop interface used during movement.



References

1. B. Rebsamen et al., “A Brain Controlled
Wheelchair Based on P300 and Path Guid-
ance,” Proc. 1st IEEE/RAS-EMBS [IEEE
Robotics and Automation Soc. and IEEE
Eng. in Medicine and Biology Soc.] Int’l
Conf. Biomedical Robotics and Biomech-
atronics (BIOROB), IEEE Press, 2006, pp. 1001–
1006.

2. “Focus on Brain-Machine Interfaces,” Nature,

13 July 2006, pp. 164–171; www.nature.com/
nature/focus/brain. 

3. J.R. Wolpaw et al., “Brain-Computer Inter-
face Technology: A Review of the First In-
ternational Meeting,” IEEE Trans. Rehabil-
itation Eng., vol. 8, no. 2, 2000, pp. 164–173. 

4. J.D.R. Millan et al., “Noninvasive Brain-
Actuated Control of a Mobile Robot by
Human EEG,” IEEE Trans. Biomedical Eng.,
vol. 51, no. 6, 2004, pp. 1026–1033.

5. K. Tanaka, K. Matsunaga, and H.O. Wang,
“Electroencephalogram-Based Control of an
Electric Wheelchair,” IEEE Trans. Robotics,
vol. 21, no. 4, 2005, pp. 762–766.

6. N. Birbaumer et al., “A Spelling Device for
the Paralysed,” Nature, 25 Mar. 1999, pp.
297–298.

7. H. Zhang, C. Guan, and C. Wang, “A Statis-
tical Model of Brain Signals with Application
to Brain-Computer Interface,” Proc. 27th Ann.

MARCH/APRIL 2007 www.computer.org/intelligent 23

T h e  A u t h o r s
Brice Rebsamen is a doctoral candidate at the
National University of Singapore. His research
focuses on rehabilitation robotics. He received
his engineering diploma in electronics from
ENSEIRB, France, and a master’s in cognitive sci-
ences from the Grenoble Institute of Technol-
ogy. Contact him at the Dept. of Mechanical
Eng., Faculty of Eng., 9 Eng. Dr. 1, Singapore
117576; brice@nus.edu.sg; http://guppy.mpe.
nus.edu.sg/~rebsamen.

Etienne Burdet is a senior lecturer in human
robotics at Imperial College London. His main
research interest is human-machine interaction.
He received his PhD in robotics from ETH
Zurich. Contact him at the Dept. of Bioengi-
neering, Imperial College London, SW7 2AZ
London, UK; e.burdet@imperial.ac.uk; www.
bg.ic.ac.uk/staff/burdet.

Cuntai Guan is a senior scientist at the Insti-
tute for Infocomm Research, Singapore, where
he built the Neural Signal Processing group. His
research focuses on brain-computer interfaces,
neural rehabilitation, machine learning, pattern
classification, statistical signal processing, and
interactive and digital media. He received his
PhD in electrical and electronic engineering
from Southeast University. He’s a senior mem-

ber of the IEEE. Contact him at the Inst. for Infocomm Research, 21 Heng
Mui Keng Terrace, Singapore 119613; ctguan@i2r.a-star.edu.sg.

Haihong Zhang is a research fellow in the
Neural Signal Processing group at the Institute
for Infocomm Research, Singapore. His research
focuses on reliable and efficient brain-computer
interfaces, including machine learning and pat-
tern recognition in brain signals. He won an
award in the international BCI Competition and
a Tan Kah Kee Young Inventor’s Award (Merit).
He obtained his PhD from the National Univer-

sity of Singapore. Contact him at the Inst. for Infocomm Research, 21
Heng Mui Keng Terr., Singapore 119613; hhzhang@i2r.a-star.edu.sg.

Chee Leong Teo is an associate professor in the
National University of Singapore’s Department of
Mechanical Engineering and the director of NUS
Overseas Colleges. His research areas are mechan-
ical-systems control and human-machine interfaces.
He received his PhD in mechanical engineering
from the University of California, Berkeley. Con-
tact him at the Nat’l Univ. of Singapore, Dept. of
Mechanical Eng., Singapore 119260; mpeteocl@
nus.edu.sg.

Christian Laugier is a research director at INRIA (the
French National Institute for Research in Computer
Science and Control) and leader of the robotics pro-
ject team at INRIA Rhône-Alpes. His research focuses
on motion autonomy, intelligent vehicles, decisional
processes, and virtual reality. He received the Naka-
mura Prize for advancing the technology on intelli-
gent robots and systems. He received his PhD and
State Doctorate in computer science from Grenoble

University. Contact him at the e-Motion Project-Team, INRIA Rhône-Alpes, 655
ave. de l’Europe, Montbonnot, 38334 Saint Ismier Cedex, France; christian.
laugier@inrialpes.fr; http://emotion.inrialpes.fr/laugier.

Marcelo H. Ang Jr. is an associate professor in the
National University of Singapore’s Department of
Mechanical Engineering. His research interests
include robotics, mechatronics, automation, com-
puter control, and applications of intelligent systems
methodologies. He’s also the founding chairman of
the Singapore Robotic Games and a member of the
IEEE. He received his PhD in electrical engineering
from the University of Rochester. Contact him at the

Dept. of Mechanical Eng., Nat’l Univ. of Singapore, 9 Eng. Dr. 1, Singapore
117576; mpeangh@nus.edu.sg; http://guppy.mpe.nus.edu.sg/~mpeangh.

Qiang Zeng is a doctoral candidate in rehabilita-
tion robotics at the National University of Singa-
pore. His research interests are in human-machine
interaction and rehabilitation robotics. He received
his master’s in technological design in mechatron-
ics from the National University of Singapore and
Eindhoven University of Technology. Contact him
at the Dept. of Mechanical Eng., Faculty of Eng., 9
Eng. Dr. 1, Singapore 117576; zengqiang@nus.edu.
sg; http://guppy.mpe.nus.edu.sg/~zengqiang.



Int’l Conf. IEEE Eng. in Medicine and Biol-
ogy Soc. (EMBS 05), IEEE Press, 2005, pp.
5388–5391. 

8. Q. Zeng et al., “Design of a Collaborative
Wheelchair with Path Guidance Assistance,”
Proc. 2006 IEEE Int’l Conf. Robotics and
Automation (ICRA 06), IEEE Press, 2006, pp.
877–882.

9. B. Rebsamen et al., “Navigating a Wheelchair
by Thought in a Building;” http://guppy.
mpe.nus.edu.sg/~brice/videoBCW.

For more information on this or any other com-
puting topic, please visit our Digital Library at
www.computer.org/publications/dlib.

I n t e r a c t i n g  w i t h  A u t o n o m y

24 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

www.computer.org/join/

Complete the online application and get

• immediate online access to Computer
• a free e-mail alias — you@computer.org
• free access to 100 online books on technology topics

• free access to more than 100 distance learning course titles

• access to the IEEE Computer Society Digital Library for only $118

Join the IEEE Computer Society
online at 

Read about all the benefits of joining the Society at 

www.computer.org/join/benefits.htm




