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There has been an increase in research interest for brain–computer
interface (BCI) technology as an alternate mode of communication and
environmental control for the disabled, such as patients suffering from
amyotrophic lateral sclerosis (ALS), brainstem stroke and spinal cord
injury. Disabled patients with appropriate physical care and cognitive
ability to communicate with their social environment continue to live with
a reasonable quality of life over extended periods of time. Near-infrared
spectroscopy is a non-invasive technique which utilizes light in the near-
infrared range (700 to 1000 nm) to determine cerebral oxygenation,
blood flow and metabolic status of localized regions of the brain. In this
paper, we describe a study conducted to test the feasibility of using mul-
tichannel NIRS in the development of a BCI. We used a continuous wave
20-channel NIRS system over the motor cortex of 5 healthy volunteers to
measure oxygenated and deoxygenated hemoglobin changes during left-
hand and right-handmotor imagery.We present results of signal analysis
indicating that there exist distinct patterns of hemodynamic responses
which could be utilized in a pattern classifier towards developing a BCI.
We applied two different pattern recognition algorithms separately,
SupportVectorMachines (SVM)andHiddenMarkovModel (HMM), to
classify the data offline. SVM classified left-hand imagery from right-
hand imagery with an average accuracy of 73% for all volunteers, while
HMM performed better with an average accuracy of 89%. Our results
indicate potential application of NIRS in the development of BCIs. We
also discuss here future extension of our system to develop a word speller
application based on a cursor control paradigm incorporating online
pattern classification of single-trial NIRS data.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

BCI can provide an alternative communication channel and
environmental control capability to severely disabled persons. The
quality of life depends on the possibility to communicate with the
social environment. Disabled patients with appropriate physical
care, and cognitive ability to communicate with a BCI, can
continue to live with a reasonable quality of life over extended
periods of time (Wolpaw et al., 2000a).

Brain–computer interfaces have been developed with surface
electroencephalogram (EEG), electrocorticogram (ECoG) and
implanted electrodes (Birbaumer et al., 1999, 2000, 2003;
Birbaumer, 2006; Wolpaw, 2004; Wolpaw et al., 2000b, 2002,
2006; Wolpaw and McFarland, 2004; Serruya et al., 2002). Surface
EEG has many advantages: it is non-invasive, technically less
demanding, and widely available at low cost. It has a long history
of usage, and its mechanisms are well known. However, EEG has
certain disadvantages: long-term application and fixation of
electrodes are difficult, portable devices are artifact prone, and it
has low spatial resolution. Other non-invasive methods of moni-
toring brain activity, such as magnetoencephalography (MEG),
positron emission tomography (PET) and functional magnetic
resonance imaging (fMRI) could in principle provide the basis for
a BCI (Weiskopf et al., 2003, 2004a, 2004b). They are, however,
technically demanding and expensive. More recently, a non-
invasive optical method called near-infrared spectroscopy (NIRS)
promises flexibility of use, portability, metabolic specificity, good
spatial resolution, localized information, high sensitivity in detec-
ting small substance concentrations and affordability (Villringer
and Obrig, 2002). NIRS has no doubt certain disadvantages. It is
slow to operate because of the inherent latency of the hemo-
dynamic response. The signal strength is affected by hair on the
head. Furthermore, relative motion of the optodes on the hair may
introduce motion artifacts and drifts in the hemodynamic signal.
Nevertheless, NIRS’ ability to record localized brain activity with a
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spatial resolution in the order of centimeter (depending on the
probe geometry) provides us with an excellent opportunity to
control a variety of motor and cognitive activities in a BCI.

The main goal of the present study was to ascertain the feasi-
bility of using near-infrared spectroscopy for developing a BCI.
We chose motor imagery of left-hand and right-hand as the para-
digm of BCI control as it has been shown to work well in previous
research on EEG-based BCIs (Pfurtscheller et al., 1998, 2000). Our
objective was to develop a viable set of methods for offline pro-
cessing and classification of NIRS data, with the intention of
incorporating them later on in an online BCI. To this end, we
explored the use of two pattern recognition techniques, Support
Vector Machines (SVM) and Hidden Markov Model (HMM), for
classifying NIRS signals.

The present NIRS–BCI system incorporates the continuous
wave technique of near-infrared spectroscopy. Regional brain
activation is accompanied by increases in regional cerebral blood
flow (rCBF) and the regional cerebral oxygen metabolic rate
(rCMRO2) (Villringer and Obrig, 2002). The degree of increases in
rCBF exceeds that of increases in rCMRO2 resulting in a decrease
in deoxygenated hemoglobin in venous blood. Thus, increase in
total hemoglobin and oxygenated hemoglobin with a decrease in
deoxygenated hemoglobin is expected to be observed in activated
areas during NIRS measurement. The continuous wave approach
uses multiple pairs or channels of light sources and light detectors
operating at 2 or more discrete wavelengths. The light source may
be a laser or a light emitting diode (LED). The optical parameter
measured is attenuation of light intensity due to absorption by the
intermediate tissue. The concentration changes of oxygenated
hemoglobin and deoxygenated hemoglobin are computed from the
changes in the light intensity at different wavelengths, using the
modified Beer–Lambert equation (Villringer and Obrig, 2002). The
advantage of the continuous wave approach is its simplicity,
flexibility and high signal-to-noise ratio. The depth of brain tissue
which can be measured from the surface is typically 1–3 cm.

It has been shown in electrophysiological studies (Beisteiner et
al., 1995) that brain activation during motor imagery is similar to
the activation during actual execution of movement. In this study,
changes of DC potentials between task execution and imagination
were localized in the central scalp regions (C3, Cz, C4) with larger
amplitudes during execution of the task than when only imagining
to do so. Primary motor cortex was active in both the tasks.
Benaron et al. (2000) demonstrated optical response resulting in
the contralateral hemisphere around 5–8 s after the onset of
movement. Sitaram et al. (2005) and Coyle et al. (2004) reported
similar optical response using NIRS signals during overt and
covert hand movements. Pfurtscheller et al. (1998, 2000, 2006)
reported a direct EEG-based BCI using motor imagery. It is
important that, for a BCI to be user-friendly, the mental task should
be easy to learn. With this view and based on the above findings,
we chose motor imagery as the basis for our BCI. The BCI would
operate by classifying the time series of oxygenated hemoglobin
and deoxygenated hemoglobin at multiple channels of the NIRS
system into left-hand and right-hand imagery.

We applied two different pattern recognition techniques, SVM
and HMM, to the classification problem. SVMs are learning
systems developed by Vapnik (1998). SVM has been demonstrated
to work well in a number of real-world applications including BCI
(Blankertz et al., 2001). A Markov model is a finite state machine
which can be used to model a time series. HMMs were first
successfully applied for speech recognition, and later in molecular
biology for modeling the probabilistic profile of protein families
(Rabiner, 1989). HMM has been successfully used in a BCI
application for online classification of EEG signals acquired during
left-hand and right-hand motor imagery (Obermaier et al., 1999).
To our knowledge, this is the first time that SVM and HMM
techniques have been used to classify NIRS signals for the
development of a BCI.

In this paper, we describe the experimental paradigm of motor
imagery; method of signal acquisition; preliminary signal analysis
to test whether there are significant patterns in the hemodynamic
response to motor imagery; offline classification of the NIRS
signal using two classification techniques (SVM and HMM); and
finally the results of signal processing, analysis and classification.
We end with a discussion of the application of these techniques to
the online classification problem towards developing a NIRS–BCI
system.

Materials and methods

Subjects

Five healthy subjects (3 males and 2 females, mean age=30)
voluntarily participated in the study. None of the recruited subjects
had neurological or psychiatric history or was on medication. Each
of them gave written informed consent for the experiment. The
experiment was approved by the Ethical Committee of the Tokyo
Institute of Psychiatry, Japan.

Experimental procedure

NIRS signals were collected from each subject performing both
overt motor execution (finger tapping) and covert motor imagery
with left-hand and right-hand. Fig. 1(a) shows the schematic
diagram of the protocol. During the experiment, the subject sat on a
chair in a quiet room in front of a computer screen which displayed
the stimuli. A single trial comprised of a baseline block, a pre-
paration block and a motor task block, in that order. Each trial
started with a baseline block during which the subject fixated on
the cross displayed on the screen for 8 s. This was followed by a
beep indicating the subject to get ready for the motor task. The
preparation phase lasted for 2 s. Following this, the subject
performed the motor task as indicated on the screen for a period of
10 s. The type of motor task to be performed was indicated by the
text on the computer screen—‘LEFT’ for left-hand motor task and
‘RIGHT’ for right-hand task. During the finger tapping task,
subjects performed 3–4 numbers of self-paced tapping of fingers of
the specified hand within the 10 s duration of the task. During the
motor imagery task, subjects performed equal number of self-
paced imagination of finger tapping.

Data for finger tapping and imagery were collected in two
separate sessions. Each of left-hand and right-hand tasks for
finger tapping and imagery was carried out for totally 80 trials, in
four blocks of 20 trials each, with a rest period of 2 min between
blocks.

Signal acquisition

We used a multichannel NIRS instrument (OMM-1000 from
Shimadzu Corporation, Japan) for acquiring oxygenated hemoglo-
bin and deoxygenated hemoglobin concentration changes during
motor imagery. The system operated at three different wavelengths



Fig. 1. (a) Experimental paradigm for finger tapping and motor imagery for
collecting NIRS signals from subjects. Each trial consisted of a baseline
block of 8 s, a preparation block of 2 s and motor task block of 10 s. Finger
tapping and motor imagery data were collected in separate sessions. The
type of task (left or right hand) was specified on the computer screen in a
pseudo-random manner. During the task, subjects performed 3–4 numbers
of self-paced overt execution or imagination (as specified) of finger tapping
of the specified hand within the 10 s duration of the task. (b) Multichannel
NIRS optode arrangement on the scalp. The optodes were arranged on the
left and right hemisphere on the subject's head, above the motor cortex,
around C3 (left hemisphere) and C4 (right hemisphere) areas (International
10–20 System). A pair of illuminator and detector optodes formed one
channel. Four illuminators and four detectors in the arrangement resulted in
10 channels.
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of 780 nm, 805 nm and 830 nm, emitting an average power of
3 mW mm−2.

The illuminator and detector optodes were placed on the scalp.
The detector optodes were fixed at a distance of 3 cm from the
illuminator optodes. The optodes were arranged on the left and
right hemisphere on the subject's head, above the motor cortex,
around C3 (left hemisphere) and C4 (right hemisphere) areas
(International 10–20 System). A pair of illuminator and detector
optodes formed one channel. Four illuminators and four detectors
in the arrangement resulted in 10 channels on each hemisphere, as
shown by the dashed lines in the Fig. 1(b). Near-infrared rays leave
each illuminator, pass through the skull and the brain tissue of the
cortex and are received by the detector optodes. The photo-
multiplier cycles through all the illuminator–detector pairings to
acquire data at every sampling period. The data were acquired at a
sampling rate of 14 Hz and digitized by the 16-bit analog to digital
converter.

The NIRS instrument was capable of storing the raw signal
intensity values for each of the 3 wavelengths, the stimuli codes (1
for left-hand task and 2 for right-hand task) as well as the derived
values of oxygenated and deoxygenated hemoglobin concentration
changes for all time points in an output file in a pre-specified
format. The signal preprocessing, analysis and classification
programs were implemented to read the data from the file either
in an offline mode or in an online mode.
Preliminary signal analysis

Our objective, in carrying out this preliminary analysis, was
to observe the responses of oxygenated hemoglobin and
deoxygenated hemoglobin at different channels on both hemi-
spheres due to left-hand and right-hand imagery tasks. The
intention was to check if there were significant patterns or trends
in the data. Offline analysis was performed using a custom
Matlab NIRS data analysis program (HomER version 4.0,
available for public download and use at http://www.nmr.mgh.
harvard.edu/PMI/). A caveat was that the HomER toolkit
accepted only the raw intensity data as input to compute the
oxygenated hemoglobin and deoxygenated hemoglobin concen-
tration changes using the modified Beer–Lambert equation
(Delpy et al., 1988). For this reason, we could not use the
hemoglobin concentration changes obtained from the NIRS
instrument directly in this analysis.

Preprocessing started with the raw intensity data from all
channels being normalized to compute a relative (percent) change
by dividing each value by the mean of the data.

Norm IntensityðtÞ ¼ IntensityðtÞ=Mean Intensity:

The intensity normalized data were then low-pass-filtered using
the Chebyshev type II filter of order 3 with a cut-off frequency of
0.7 Hz and pass-band (ripple) attenuation 0.5 dB. After filtering, a
value of 1.0 was added to make the mean of the data equal to unity.
The change in optical density, called delta-optical density, was then
calculated for each wavelength as the negative logarithm of the
normalized intensity.

DOD ¼ �logðNorm IntensityðtÞÞ:
Following the calculation of delta-optical density, two different

principal component analysis (PCA) filters were applied to the
data. The first PCA filter corrected for motion in the data, i.e.,
subject head movement. The second PCA filter used the principal
components of the baseline data to project out systemic phy-
siology. The resulting covariance reduced delta-optical density was
used to calculate the change in concentration (delta concentration)
from the modified Beer–Lambert law. For each of the two wave-
lengths, Lambda#1=780 nm and Lambda#2=805 nm, 2 simulta-
neous equations can be written to equate delta-optical density to
oxygenated hemoglobin (HbO2) and deoxygenated (Hb) concen-
tration changes as below:

DODLambda#1 ¼ eLambda#1
Hb TLT½Hb� þ eLambda#1

HbO2
TLT½HbO2�

DODLambda#2 ¼ eLambda#2
Hb TLT½Hb� þ eLambda#1

HbO2
TLT½HbO2�

where ε is the molar absorption coefficient for Hb and HbO2 at the
two wavelengths specified and L is the optical path length. Solving
the two equations obtains the concentration changes for oxyge-
nated and deoxygenated hemoglobin:

DHbX ¼ ðeTeÞ�1eT ½DOD�:

We used a differential-pathlength factor of 6.0 and partial
volume correction of 50, as can be set in the advanced filtering
options of the toolbox. As the sampling rate for signal acquisition
was 14 Hz, we obtained 140 delta concentration values, each for
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oxygenated hemoglobin and deoxygenated hemoglobin, during a
10 s motor imagery task of each trial.

The data were then block averaged after specifying the pre- (5)
and post-stimulus (140) time points for averaging, multiple
stimulus conditions (1 for left-hand imagery, and 2 for right-hand
imagery) and their timings. Block averaging was performed on
each condition (left-hand and right-hand imagery) separately, first
on a single run and later on across all data files. Statistical effects
analysis based on analysis of variance (ANOVA) was conducted on
the hemodynamic responses.

Following averaging, for each of the conditions (left-hand and
right-hand imagery), images of hemodynamic activations super-
imposed on the probe geometry were constructed. Image recon-
struction in HomER currently supports the back-projection
methods and linear forward models created from semi-infinite
Fig. 2. (a) As input to the pattern classifier, a feature vector Xt, containing the conce
from the 20 channels of optodes from both hemisphere, was created for each trial du
yt represents the type of task the subject performed, for example, left-hand imagery
SVM, the input feature vector is mapped to a high dimensional feature space throug
decision boundary or a separating hyperplane in the feature space. (c) Schematic
designed as a left to right model, transitions being allowed from a state to itself an
transitions of states. States 1 and 5 were non-emitting, meaning that they do not re
Gaussian, while observation 3 was modeled using a mixture of 3 Gaussians.
(homogeneous) slab geometries. For details, please refer to the
HomER User's Guide (available for public download and use at
http://www.nmr.mgh.harvard.edu/PMI/). We used the following
values for the image reconstruction constants in HomER:
absorption and scattering coefficients (10 and 0.2), voxel
dimensions (Y: 4.00:0.40:4.00, X: −4.00:0.65:9.00) and reconstruc-
tion depth (2:2:2). The results of the signal analysis will be
discussed under the Results section.

Pattern classification

Pattern classification was performed on the raw signals ob-
tained from the signal acquisition process after the signal pre-
processing operations described below. We did not re-use the
processed signals from the preliminary analysis (Preliminary signal
ntration values of the oxygenated hemoglobin and deoxygenated hemoglobin
ration of interest of the motor task (2–10 s in this case). For each trial period t,
(class=1) and right-hand imagery (class=−1). (b) In the formulation of the
h a non-linear transformation function. The SVM algorithm attempts to find a
diagram representing the HMM model for motor imagery. The HMM is

d to any right neighbor state. Arrows from left to right indicate the allowed
sult in any observations. Observations 2 and 4 were modeled using a single
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analysis) for pattern classification as the intentions of the two
methods were quite different. However, in the future, some of the
artifact removal techniques used in HomER, such as principal
component analysis (PCA) for head motion correction and
Fig. 3. (a) Exemplary data from Subject-1 performing right-hand finger tapping and
channel 7 on the contralateral (left) hemisphere (close to the C3 electrode position
presentation. Note that 140 time points are equal to 10 s of execution of the motor
imagery task, based on the timings of onset of stimuli for the task. The model wa
measures in the HomER toolbox.
systemic physiological changes, could be employed to potentially
improve classification accuracy.

First, the acquired signals were processed to remove artifacts
from heart beat and high frequency noise from muscle activity. We
motor imagery. Data displayed are averaged signals across a full session from
as per the 10–20 system) for the duration 0–140 time points after stimulus
task at a sampling rate of 14 Hz. (b) Regressor model for right-hand motor
s used for computing the analysis of variance (ANOVA) statistics and other
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applied the Chebyshev type II filter (Parks and Burrus, 1987) that
has a flat pass band, a moderate group delay, and an equiripple
stop band. The filter was designed using “cheb2ord” and “cheby2”
functions in Matlab (Mathworks, Inc., USA), using cut-off
frequency at 0.7 Hz, stop frequency at 1 Hz, pass-band loss
at no more than 6 dB and at least 50 dB of attenuation in the
stop-band.

Time series of amplitude changes of oxygenated hemoglobin
and deoxygenated hemoglobin in the period 2–10 s after
stimulation for the motor task to start for each trial were extracted
from the preprocessed data and fed to the pattern classification
system. In the following subsections, we shall describe the
implementation of two different pattern classification techniques,
namely, Support Vector Machines and Hidden Markov Model.

Support Vector Machine (SVM)
The classification task is based on two separate sets of training

data and testing data containing several instances of data. Each
instance in the training set contains one target value, called the
class label and several attributes or features. The goal of SVM is to
produce a model which predicts target values in the testing set
when only the attributes are given.

By formal notation, the classification problem involves deter-
mining a scalar class label yt from a measurement vector Xt. For
classification of the NIRS data from multiple channels from both
hemispheres, Xt represents the concentration values of oxygenated
haemoglobin and deoxygenated haemoglobin from all the num-
bered channels (1–20) for the duration of the trial, specified by
T (1≤ t≤T), and yt is the experimental value of the task for that time
(Fig. 2(a)). For each trial period t, yt represents the type of task the
subject was performing, for example, left-hand imagery (class=1)
and right-hand imagery (class=−1). During the experimental pro-
cedure for collecting training data, as the subject performs alterna-
ting trials of left-hand and right motor imagery, time series of
preprocessed oxygenated and deoxygenated haemoglobin concen-
tration changes are organized as a vector Xt, and the class label yt is
marked as + or −1 according to the type of task. The present work
is restricted to the binary classification problem (yt=±1).

In the formulation of the SVM, the input vector Xt is mapped to
a high dimensional feature space, Zt, through a non-linear
transformation function, g(.) so that Zt=g(Xt). The SVM algorithm
attempts to find a decision boundary or a separating hyperplane in
the feature space, given by the decision function:

DðZtÞ ¼ ðWd ZÞ þ w0;

where W defines the linear decision boundaries (Fig. 2(b)). The
solution W that represents the hyperplane can be obtained by
solving for the equation:

yt½ðWd ZÞ þ w0�z1

The solution is optimal when ‖W‖2+C · f (ξ) is minimized under
this constraint, where the parameter C>0, termed the regularization
constant, is chosen by the user. A large value of C corresponds to
higher penalty for errors.

We implemented the SVM classifier using the LibSVM
package (Chang and Lin, 2001). The LibSVM package is a C++
implementation, providing various features for SVM classification:
C and ν classification, one-class classification, ε and ν regression;
linear, polynomial, radial basis function and sigmoidal kernels; and
v-fold cross-validation. Our implementation was carried out in the
following steps:

(a) Transform the NIRS data into the format of the LibSVM
software,

(b) Scale the data,
(c) Choose the type of kernel,
(d) Find the best penalty parameter and kernel parameters,
(e) Use the above parameters in the SVM model in 8 runs

of 5-fold cross-validation to determine the classification
accuracy.

The training and testing sets were created as vectors of real
numbers of oxygenated and deoxygenated haemoglobin concen-
tration values from the 20 channels for each trial of left-hand and
right-hand motor imagery tasks, as shown in Fig. 2(a). The whole
dataset was scaled before applying SVM. The main reason for
scaling was to avoid attributes in greater numeric ranges from
dominating those in smaller numeric ranges. As kernel values are
obtained by the inner product of feature vectors, large attribute
values may cause numerical problems. For these reasons, each
attribute was scaled to a value in the range [−1, 1].

We used the linear kernel for the present study. We used the
default value of 1 for the penalty parameter C as set in the LibSVM
toolkit. Next, we performed a 5-fold cross-validation to determine
the classification accuracy. The cross-validation procedure is also
known to prevent the over-fitting problem. We conducted 8 runs of
5-fold cross-validation. In each run, the trials in the training dataset
were randomly permutated and divided into 5 subsets of equal size.
In each of the 5 folds, four subsets of data were used for training,
while one subset was used for testing (validation) and the classi-
fication accuracy was calculated based on it. After 8 runs of 5-fold
cross-validation, we obtained 40 test results (accuracy measures).
We performed similar classification tests on overt finger tapping
and covert motor imagery tasks, separately.

Hidden Markov Model
The HMM could be seen as a finite state automaton, containing

s discrete states, emitting an observation vector (or output vector)
at every time point that depends on the current state. Each observa-
tion vector is modeled using m Gaussian mixtures per state. The
transition probabilities between states are defined using a transition
matrix. The basic principles of HMM as applied to the NIRS signal
classification problem will be discussed in this section. A detailed
description of the method can be found in Rabiner (1989).

We used the Hidden Markov Model Toolkit (HTK) from the
Department of Engineering of Cambridge University, United
Kingdom for our implementation (Young et al., 1993). Written in
ANSI C, HTK is an integrated suite of tools for building and
manipulating continuous density HMMs.

Fig. 2(c) is a schematic diagram representing our HMM model
for motor imagery. Left-hand and right-hand motor imagery were
identically modeled as depicted, and the model parameters were
subsequently estimated separately with respective data. We chose 5
states for the model based on previous HMM models for motor
imagery classification (Obermaier et al., 2001) and our own pre-
liminary experiments with modeling. The HMM is designed as a
left to right model, transitions being allowed from a state to itself
and to any right neighbor state. Arrows from left to right indicate
the allowed transitions of states. States 1 and 5 were non-emitting,
meaning that they do not result in any observations. Observations 2
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and 4 were modeled using a single Gaussian while observation 3
was modeled using a mixture of 3 Gaussians.

In this HMM model denoted byM, at each time t that a state j is
entered, an observation vector ot is generated from the probability
density bj(ot). Furthermore, transition from state i to state j is also
probabilistic and is governed by the discrete probability aij. The joint
probability O generated by the model M moving through the state
sequence X is calculated as the product of transition probabilities
and output probabilities. For the state sequence X in Fig. 2(c),

PðOjMÞ ¼ a12b2ðo1Þa22b2ðo1Þa33b3ðo2Þ N

The observation O is known and the state sequence X is hidden.
Given that X is unknown, the required likelihood is computed by
summing over all possible state sequences X=x(1),x(2),x(3),….,
x(T), that is

PðO;X jMÞ ¼
X

x

axðoÞxð1Þj
T

t¼1

bxðtÞðotÞaxðtÞxðtþ1Þ

where x(o) is constrained to the model entry state and x(T+1) is
constrained to the model exit state. Using the training samples for
left-hand or right-hand motor imagery, the parameters {aij} and {bj
(ot)} of the model for the respective task are determined by an
estimation procedure. To determine the parameters of the HMM
model, the HTK uses the Baum–Welch re-estimation procedure
(Young et al., 1993). To recognize an unknown trial data, the like-
lihood of each model generating the trial data (observation vector) is
calculated using the Viterbi algorithm (Rabiner, 1989, Rabiner and
Juang, 1993), and the most likely model identifies the data as
resulting from left-hand or right-hand task.

Our implementation of the HMM classifier comprised of the
following steps:

(a) Transform the NIRS data into the format of the HTK
software,

(b) Scale the data,
(c) Train 2 models of HMMs, one for left-hand task and one for

right-hand task by computing the model parameters using the
Baum–Welch re-estimation algorithm,

(d) Use the above models in 8 runs of 5-fold cross-validation to
determine the classification accuracies.

The training and testing sets were created as vectors of real
numbers of oxygenated and deoxygenated haemoglobin concen-
tration values, as per the format expected by the HTK software,
from the 20 channels for each trial of left-hand and right-hand
motor imagery tasks. With 80 trial examples of each pattern, viz.,
single trial data of left-hand or right task, one HMM was trained for
each type of task. For the purpose of comparison with SVM, we
used the same evaluation methodology of 8 runs of 5-fold cross-
validation. We performed similar classification tests on overt finger
tapping and covert motor imagery tasks, separately.
Fig. 4. (a) Hemodynamic response during motor imagery tasks at the ipsilateral hem
Exemplary data of averaged oxygenated and deoxygenated concentration chang
hemisphere (Ch 16), while performing left-hand and right-hand motor imagery. T
increase in oxygenated hemoglobin and decrease in deoxygenated hemoglobin, wh
but to a smaller extent or in a reversed manner (increase in deoxygenated hemoglob
(b) Exemplary topographic images from Subject-1. Images were reconstructed by ba
the averaged hemodynamic responses from both left and right hemispheres whil
reconstructed images for oxygenated hemoglobin and deoxygenated hemoglobin ar
optodes and o1–o8 representing detector optodes.
Results

To start with, we wanted to check if overt finger tapping and
covert motor imagery produced qualitatively similar responses.
Fig. 3(a) shows exemplary data from Subject-1 performing right-
hand finger tapping and motor imagery. Data displayed are
averaged signals across a full session from channel 7 on the
contralateral (left) hemisphere (close to the C3 electrode position as
per the 10–20 system) for the duration 0–140 time points after
stimulus presentation. Note that 140 time points are equal to 10 s of
execution of the motor task at a sampling rate of 14 Hz. Typically,
concentration of oxygenated hemoglobin (red lines) increased and
concentration of deoxygenated hemoglobin (blue lines) decreased
during both finger tapping (continuous lines) and motor imagery
(dashed lines) tasks. However, changes in concentration, both for
oxygenated hemoglobin and deoxygenated hemoglobin, for finger
tapping were greater than those for motor imagery. Applying the
analysis of variance (ANOVA) on the data based on the regressor
model (Fig. 3(b)) in the HomER toolbox obtained significant
activation for oxygenated and deoxygenated hemoglobin values,
both for finger tapping and motor imagery, with P<0.001 and
correlation coefficient R2=0.9.

Next, we wanted to check if hemodynamic responses during
motor imagery tasks in ipsilateral and contralateral hemispheres
have substantial differences. Fig. 4(a) illustrates exemplary data for
Subject-1, from channels on the left hemisphere and right
hemisphere, while performing left-hand and right-hand motor
imagery. Typically, most channels on the contralateral hemisphere
showed activation by an increase in oxygenated hemoglobin and
decrease in deoxygenated hemoglobin, while the channels on the
ipsilateral hemisphere either showed similar response but to a
smaller extent or in a reversed manner (increase in deoxygenated
hemoglobin and decrease in oxygenated hemoglobin) potentially
indicating inhibition.

Fig. 4(b) shows images reconstructed from the averaged
hemodynamic responses from both left and right hemispheres
while Subject-1 performed left-hand and right-hand motor imagery
tasks. The reconstructed images for oxygenated hemoglobin and
deoxygenated hemoglobin are superimposed on the probe
geometry, with x1–x8 representing illuminator optodes and o1–
o8 representing detector optodes. Activations are shown by yellow
and red pixels and inhibitions by blue and green pixels. We found
inter-subject variability in activation, illustrated by the variability
between reconstructed images for different subjects.

The above analyses illustrated that there exist distinct patterns
of hemodynamic responses as measured by NIRS to left-hand and
right-hand motor imagery tasks which could be utilized in a pattern
classifier towards developing a BCI. Table 1 lists the mean and
standard deviation of accuracy of classification of left-hand motor
task from right-hand motor task, using SVM and HMM tech-
niques, on the data collected from 5 healthy volunteers. For the
purpose of comparison, we classified both finger tapping and
isphere has substantial difference from that of the contralateral hemisphere.
es for Subject-1, from channels on the left hemisphere (Ch 6) and right
ypically, channels on the contralateral hemisphere showed activation by an
ile the channels on the ipsilateral hemisphere either showed similar response
in and decrease in oxygenated hemoglobin) potentially indicating inhibition.
ck-projection methods and linear forward models in the HomER toolkit from
e Subject-1 performed left-hand and right-hand motor imagery tasks. The
e superimposed on the probe geometry, with x1–x8 representing illuminator



Table 1
Accuracy of Support Vector Machine (SVM) and Hidden Markov Model (HMM) classification of finger tapping and motor imagery tasks for 5 healthy
volunteers

Subject % Accuracy BY SVM (avg∼STD) % Accuracy BY HMM (avg∼STD)

Finger tapping Motor imagery Finger tapping Motor imagery

Subject-1 94.27∼4.99 75.62∼3.42 94.76∼3.01 91.29∼8.88
Subject-2 78.44∼10.31 69.84∼8.23 91.44∼8.71 89.7∼8.58
Subject-3 79.37∼10.85 71.45∼8.11 92.78∼4.93 91.76∼6.53
Subject-4 93.81∼5.63 74.87∼3.56 93.83∼4.94 79.14∼12.36
Subject-5 91.68∼8.15 73.94∼7.45 94.43∼5.41 93.76∼5.95
Total 87.5 73.1 93.4 89.1
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motor imagery data, although the proposed BCI was intended to be
operated by motor imagery alone.

Finger tapping data were classified with better accuracy
compared to motor imagery data by both classification techniques
for all the subjects. Average accuracy of classification across all the
subjects for finger tapping, by SVM and HMM, was 87.5% and
93.4%, respectively, as against 73.1% and 89.1% for motor ima-
gery. Between the two pattern classification techniques, HMM
performed better than SVM for both finger tapping and motor
imagery tasks. The accuracy of classification by HMM in
comparison to SVM was greater by 5.9% for finger tapping, while
the improvement was a striking 16% for motor imagery.

Discussion

Preliminary analysis of the NIRS signals collected during left-
hand and right-hand motor imagery tasks indicated variation of the
profile of the oxygenated and deoxygenated concentration changes
from trial to trial. The dynamic nature of the signal could be due to
inconsistency in the execution of motor imagery, especially when
performed without any form of feedback. During overt finger
tapping, the subject gets somatosensory and visual feedback of his/
her own movement, while this is not so for the motor imagery task.
A subject may start an imagination task at a different point in time in
each trial. Furthermore, he may perform the imagination at different
tempos in different trials, creating considerable difficulties to the
pattern recognition of the signal. This could be one of the reasons
for the higher classification accuracy of finger tapping compared to
motor imagery for both the classification techniques (SVM and
HMM). With this consideration, we anticipated that a probability
network like the HMM might model the dynamic nature of the
hemodynamic time series more effectively. Interestingly, this was
confirmed by the greater improvement in classification accuracy by
HMM for motor imagery (16% increase) compared to the
improvement in accuracy for finger tapping (5.9% increase).
Recently, Zhang and Guan (2006) developed an improved method
to address the above variations in the NIRS signal in response to
motor imagery. The proposed technique uses a kernel-based model
to represent variations in the hemodynamic signals of interest.
Furthermore, a mathematical procedure was developed to locate the
signals by estimating the parameters of the model. SVM was used
on the located signals to differentiate left-hand imagery from right-
hand imagery. The authors validated the method on simulated data
as well as real data to obtain an error reduction of as much as 13%.
This method can be potentially employed with HMM to improve
classification accuracy even further.

By foregone results, we have established that there exist distinct
patterns of hemodynamic responses between left-hand and right-
hand imagery and that such patterns can indeed be classified
offline with substantially greater than chance accuracy. Our results
of high accuracy of offline pattern classification of NIRS signals
during motor imagery tasks, especially with the HMM classifier,
indicate the potential use of such techniques to the further
development of an online BCI system. Towards this end, we have
implemented an NIRS–BCI system incorporating a word speller as
a language support system for the disabled, as shown in Fig. 5. The
system is written as a stand-alone application in C/C++, with C#
used for development of the graphical user interface (GUI). The
system comprises of four online modules: signal acquisition, signal
processing, signal classification and word speller application with
online feedback to the user. The signal acquisition module
currently supports real-time data acquisition from 2 commercially
available NIRS systems: OMM-1000 (Shimadzu Corporation,
Japan) and Imagent System (ISS Inc., USA), through a serial port
connection and two pluggable software components to support the
differences in the data formats of the two instruments. The signal
processing module implements low and high pass filtering and
temporal smoothing. The pattern classification module currently
supports SVM and HMM techniques. The SVM classifier is based
on the LibSVM C++ library (Chang and Lin), while the HMM
classifier is based on the HTK library (Young et al., 1993). The
word speller interface provides a means to use NIRS responses
created by left- and right-hand motor imagery to spell words by a
2-choice cursor control paradigm. The user has to use left- or right-
hand imagery to move the cursor to the left or right respectively to
select a box that contains the letter of choice. Feature vectors of
oxygenated and deoxygenated hemoglobin values from all chan-
nels in a moving window of 4 s are used as input to the pattern
classifier. The length of the moving window can be increased or
decreased depending on the performance requirements of execution
and the expertise of the user. In terms of operation, the word speller
is quite similar to the language support system of the Thought
Translation Device (TTD) (Birbaumer et al., 1999, 2000).

A suitable training protocol needs to be developed to extend the
offline pattern classification system to an active, online BCI system
that drives the word speller application. In this regard, a 2-step
procedure is being used. First, for each subject, parameters of the
classifier (SVM or HMM) are estimated during offline training and
stored as a subject-specific model. This is necessary, as we have
seen that there is a great deal of variability between subjects in their
hemodynamic response patterns. Next, subject-specific model
parameters are loaded as the initial parameters of the classifier
for online training. During online training on the word speller, the
subject uses motor imagery to learn to control the cursor for
selection of letters. At the end of each online training session, his
model parameters are re-estimated based on the newly acquired



Fig. 5. Architecture of the near-infrared spectroscopy BCI (NIRS–BCI). Multichannel NIRS signals from both hemispheres are acquired in real time,
processed, classified online by either a Support Vector Machine (SVM) or a Hidden Markov Model (HMM) and translated for driving the word speller
application.
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data. This way, with each new training session, the BCI would be
re-tuned to operate in an online mode.

Until now, we have only considered a 2-choice BCI system
operated by classifying left-hand and right-hand motor imagery.
Potentially, such a system can be extended to 3- or 4-choice ope-
ration by imagery of the legs, and simultaneous imagery of hands
and legs. Furthermore, other paradigms of BCI control, such as the
P300 hemodynamic response, could also be explored. Kennan et
al. (2002) reported simultaneous recording of event-related
auditory oddball (P300) response using NIRS and surface EEG.
A peak signal of oxygenated hemoglobin was observed around 6 s
after the onset of the oddball stimulus. Many other studies that
assessed motor and cognitive functions using NIRS (Hoshi and
Tamura, 1993, 1997; Kato et al., 1993; Kleinschmidt et al., 1996;
Okada et al., 1997; Hoshi et al., 2000, 2001) may indicate how
future BCIs could be developed.

A major drawback of NIRS is the long time constants of the
hemodynamic response making NIRS–BCI potentially very slow
to operate. A fast NIRS signal (Wolf et al., 2002, 2003a, 2003b) is
reported to appear in the range of milliseconds after stimulation.
The signal is generated by rapid changes in the optical properties of
the cerebral tissue. These changes presumably are due to an
alteration of the scattering properties of neuronal membranes,
which occur simultaneously with electrical changes, cell swelling
and increased heat production. Thus, the fast signal is believed to
be directly related to neuronal activity, as EEG or MEG, in contrast
to functional NIRS, fMRI (BOLD signal) and PET detecting only
the slow hemodynamic response to neuronal activity. However, the
fast signal is more difficult to detect because the optical changes
are small and other physiological signals, such as the hemody-
namic pulsativity due to the heart beat, dominate. Therefore, the
system has to be highly noise resistant. Many trials of the fast
signal need to be averaged to improve signal-to-noise ratio. When
the above limitations and problems have been sufficiently over-
come, the fast signal could prove beneficial to BCI development.

In this study, we have demonstrated the feasibility of a BCI
using near-infrared spectroscopy. Further work needs to be carried
out to develop and test an online BCI system for the disabled.
Novel signal processing methods need to be developed to exploit
the NIRS signal. NIRS avoids the noise prominent in the electrical
signals. It is less cumbersome to use as there is no need to apply
conductive gel. NIRS is non-ionizing, and so suitable for long-term
use. However, NIRS also has certain drawbacks. It is slow to
operate because of the inherent latency of the hemodynamic
response. The signal strength is affected by hair on the head
(especially if the subject has thick dark hair). Furthermore, if the
probes are not secured well, the relative motion of the optodes on
the hair may introduce motion artifacts and drifts in the hemo-
dynamic signal. In spite of these limitations, NIRS' ability to
localize brain activity 1–3 cm below the surface of cortex, with a
spatial resolution in the range of centimeters, could be an advan-
tage in BCI development. NIRS provides us with an excellent
opportunity to use a variety of motor and cognitive activities to
detect signals from specific regions of the cortex for the deve-
lopment of future BCIs.
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