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Abstract—Asynchronous control is an important issue for brain–
computer interfaces (BCIs) working in real-life settings, where the
machine should determine from brain signals not only the desired
command but also when the user wants to input it. In this paper, we
propose a novel computational approach for robust asynchronous
control using electroencephalogram (EEG) and a P300-based odd-
ball paradigm. In this approach, we first address the mathematical
modeling of target P300, nontarget P300, and noncontrol signals,
by using Gaussian distribution models in a support vector margin
space. Furthermore, we derive a method to compute the likelihood
of control state in a time window of EEG. Finally, we devise a
recursive algorithm to detect control states in ongoing EEG for on-
line application. We conducted experiments with four subjects to
study both the asynchronous BCI’s receiver operating character-
istics and its performance in actual online tests. The results show
that the BCI is able to achieve an averaged information transfer
rate of approximately 20 b/min at a low false positive rate (one
event per minute).

Index Terms—Asynchronous control, brain–computer interface,
electroencephalogram (EEG), P300.

I. INTRODUCTION

THE BRAIN–COMPUTER interface (BCI) is an emergent
multidisciplinary technology that allows a brain to control

a computer directly, without relying on normal neuromuscular
pathways [1], [2]. The most important applications of the tech-
nology are mainly meant for the paralyzed people who are suf-
fering from severe neuromuscular disorders, as BCI potentially
provides them with communication, control, or rehabilitation
tools to help compensate for or restore their lost abilities.

Among various brain signal acquisition methods, the elec-
troencephalography (EEG) is of particular interest to the BCI
community [1], [3]–[5]. The EEG records the electrical brain
signal from the scalp, where the signal originates from postsy-
naptic potentials, aggregates at the cortex, and transfers through
the skull to the scalp [6]. The EEG bears merits as it is non-
invasive, technically less demanding, and widely available at
relatively low cost [4]. On the other hand, it also brings great
challenges to signal processing and pattern recognition, since it

Manuscript received July 20, 2007; revised November 23, 2007. Asterisk
indicates corresponding author.

*H. Zhang is with the Institute for Infocomm Research, Agency for
Science, Technology and Research, Singapore 119613, Singapore (e-mail:
hhzhang@i2r.a-star.edu.sg).

C. Guan and C. Wang are with the Institute for Infocomm Research, Agency
for Science, Technology and Research, Singapore 119613, Singapore (e-mail:
ctguan@i2r.a-star.edu.sg; ccwang@i2r.a-star.edu.sg).

Digital Object Identifier 10.1109/TBME.2008.919128

has relatively poor signal-to-noise ratio and limited topograph-
ical resolution and frequency range [7].

An important issue in EEG-based BCIs is asynchronous con-
trol, i.e., the machine should be able to infer from the EEG
whether the user intends to operate the interface (this state is
referred to as the control state hereafter) or not to operate (this
state is referred to as the noncontrol state hereafter). However,
traditional EEG-based BCIs work in a synchronous style, as-
suming that the user is always in the control state. Thus, the
machine is continuously translating concurrent EEG signals to
certain control commands. If the user does not intend to control
the interface at all, false interpretations of the brain signal and
false actions in the BCI will occur. On the other hand, a user-
friendly BCI should allow the user to freely switch, without
the aid of any other external inputs, between the control state
and the noncontrol state without causing false actions. Thus,
asynchronous control is desirable [8]. The key of asynchronous
control in an EEG-based BCI, from the signal processing view-
point, is an effective computational approach to distinguishing
between the EEG in the control state and that in the noncontrol
state.

Recent years have seen an increasing research interest in
asynchronous control [8]–[10]. These studies were focused on
the detection of the motor imagery signal. However, there have
been few studies on asynchronous control using another impor-
tant brain signal, the P300 [11].

The P300 is an endogenous, positive polarity component of
the evoke-related-potential (ERP) elicited in the brain in re-
sponse to infrequent/oddball auditory, visual, or somatosensory
stimuli in a stream of frequent stimuli. Farwell and Donchin [12]
first demonstrated the use of P300 for BCI in a so-called odd-
ball paradigm. In the paradigm, the computer displays a matrix
of cells representing different letters, and flashes each row and
column alternately. A user trying to input a letter needs to pay
attention to the letter for a short while. In this process, when
the row/column containing the intended letter flashes, a P300
will be elicited in EEG and may be detected by an appropriate
algorithm. Thus, by comparing brain’s responses to the flashing
buttons, the computer is able to determine which the target let-
ter is. For people with visual impairments, this paradigm can be
extended by using auditory or tactile stimuli [13].

The signal processing community has been playing an in-
creasingly important role in developing faster and more robust
BCI systems. And a great deal of efforts have been paid to pre-
processing, feature extraction, and pattern classification of P300
EEG. For example, people studied signal processing methods to
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decompose the multielectrodes EEG signals into some special
components. Those components have fixed scalp distributions
and sparsely activated and maximally independent time courses
that contribute to P300. A typical method known as indepen-
dent component analysis (ICA) was widely studied [14]–[17].
However, as argued in [18], application of ICA to EEG analysis
remains a challenging problem because of the nonstationarity
of EEG signals, as well as the multitude of active brain sources
contrasting with the relative paucity of sensors.

For classification of P300 against non-P300 signals, a variety
of algorithms were studied, ranging from stepwise-discriminant
analysis [12] to recently prevalent classifiers using support vec-
tor machines (SVMs) [19]–[22]. An interesting comparative
study on five established P300 classification techniques is given
in [23], with the results indicating that all the techniques can
attain acceptable performance levels.

However, as stated earlier, prior P300-based BCIs were only
tested in synchronized (or synchronous) control environments.
These systems were not able to determine from EEG if a user is
in the control state. This implies inconvenient human–machine
interactions. As argued in [24], this may also cause significant
user frustration.

The present paper is the first attempt to address the issue
of asynchronous control in the P300-based BCI domain. In
particular, our objective is to make the system capable of in-
ferring, from the ongoing EEG, if a user intends to input a
command through the BCI at each time point. To this end,
we devise a computational approach that comprises two major
parts.

First, we develop a method to compute the likelihood of the
control state in a time window of EEG. Due to a large num-
ber of variables and high intertrial variability in the EEG, it is
difficult to model the probability functions directly on the mul-
tichannel time series of EEG signals. Instead, we transform the
EEG signal into a univariate feature space created by a SVM,
while preserving the discriminative information for P300 detec-
tion. In the univariate feature space, we employ user-specific
Gaussian models for target P300, nontarget P300, and noncon-
trol signals. Based on these statistical models, we further derive
a likelihood model of control/noncontrol states given a period
of EEG.

Second, we devise an algorithm to detect control states in
the ongoing EEG. This enables the system to automatically
compute when the user tries to input a command through the
interface. The algorithm consists of recursive steps enumerating
possible time windows, and determining if the control state
persists in one of the windows by comparing the likelihood
against a preset threshold. The threshold here determines an
appropriate tradeoff/balance between the speed and the accuracy
and the false positive rate of the interface.

To assess the proposed BCI, we conducted experiments with
four subjects, using both offline and online studies. The offline
study allowed us to evaluate the asynchronous BCI’s receiver
operating characteristics (ROC), with a protocol following prior
arts in asynchronous BCI studies [10], [25]. The online study
was carried out using a real-time EEG processing platform that
allowed assessing the performance of the BCI in actual asyn-

chronous scenarios. The results from offline analysis suggest
that our approach can provide satisfactory performance for asyn-
chronous control. In particular, the BCI is able to effectively
transfer 20 bits information per minute, at a false positive rate
(the occurrence rate of false detections in the noncontrol state)
as low as 1/min. The online results indicate that, in the real sit-
uation, it can achieve comparable performance, i.e., 15 b/min at
0.71 false positive per min.

The rest of the paper is organized as follows. Section II de-
scribes related neurophysiological properties of the P300 for
BCIs. Section III illustrates the system setup, defines essential
terms in the P300-based asynchronous control. Section IV elab-
orates our probability models for EEGs in the control and the
noncontrol states, followed by the description of the control state
detection algorithm in Section V. The experiment is described
in Section VI, with the data analysis elaborated in Section VII.
Concluding remarks are given in Section IX.

II. BRIEF NEUROPHYSIOLOGICAL BACKGROUND OF P300

The P300 is generally connected to the cognitive processes
of decision making, context updating, and the assessment of
stimulus relevance [26]. However, it still remains a controver-
sial topic that brain region actually serves as the generator of
the P300, despite a vast body of related research thus far us-
ing various methodologies [27]. Nevertheless, evidence from
various studies suggests that there may be multiple genera-
tors [26]. Intracranial recording and lesion studies often demon-
strate the correlation between the P300 and specific activities in
the temporo-parietal region [28]. Moreover, functional magnetic
resonance imaging (fMRI) studies consistently identified that a
“target detection” network distributed over mainly parietal and
inferior frontal lobes may make a critical contribution to the
scalp P300 [29], [30].

The P300 occurs at a latency of 300–600 ms after a target
“oddball” stimulus and has a parietal distribution on the scalp. It
is widely accepted that the amplitude of the P300 varies directly
with the relevance of the eliciting events and inversely with the
probability of the stimuli (or the interstimulus interval) [12]. And
by increasing the interval, a modified paradigm is able to provide
higher communication speed [31]. Exogenous factors such as
stimulus size, stimulus duration, and eccentricity, however, may
not give rise to significant changes in the waveforms of P300
[32], [33]. This enables flexible P300 BCI design with one
trained P300 model applicable to different P300 interfaces for
the same subject.

Prior studies have indicated that virtually all subjects under
the oddball paradigm will generate a P300. For example, in [34],
four wheelchair-bound disabled subjects (three with complete
paraplegia) were able to generate P300, and achieved compa-
rable “typing” speed to that of two able-bodies subjects using
a P300 speller. Furthermore, three amyotrophic lateral sclerosis
(ALS) patients participated in a study in [35] with a four-choice
oddball paradigm. And it turned out that, for two of the three sub-
jects, the elicited responses were classified accurately enough
to control the BCI.
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Fig. 1. Schematic graph of an asynchronous P300-based BCI system.

III. SYSTEM OVERVIEW AND PROBLEM FORMULATION

In this paper, we propose a P300-based BCI framework, as
illustrated in Fig. 1. As stated earlier, the system flashes each
button successively in a random order. While a button flashes,
the concurrent EEG signal is captured by an amplifier and a
data acquisition device. The captured signal is transferred to the
computer, where it is processed and interpreted.

In the P300 signal processing, the EEG data are organized in
terms of epochs and rounds.

1) Epoch: An epoch is associated with a particular button,
and denotes the EEG segment relevant to the flashing
event of that button. The button can be either attended or
unattended. Thus, the epoch contains information of the
brain’s response to the particular stimulation. In this study,
we select the time segment from 150 to 500 ms after the
onset of a flashing to form an epoch.

2) Round: A round is a complete cycle in which every button
flashes once and only once. Thus, each round contains Ns

epochs, where Ns is the number of buttons on the dis-
play. Again, the chronological order of the button flashing
events is randomly generated in a round, so as to produce
“oddball” stimuli.

Suppose there are Ns buttons one can select on the interface
display. If the ith button flashes in the tth round, we denote the
epoch by st

i . The complete tth round consists of Ns epochs: S =
{st

i}, where i = 1, . . . , Ns . Fig. 3(a) illustrates the organization
of epochs in multiple rounds.

The control state detection essentially requires an automatic
way to decide, from one round or multiple rounds of EEG
epochs, if the user pays continuous attention to any button.
Though it is possible to make such a decision with a single
round, one usually uses multiple rounds to deal with the very
low signal-to-noise ratio of single P300 epochs [33], [34]. In
other words, P300-based BCIs often require the user to pay
continuous attention to the desired button through a few rounds.

Now, we denote the control state by Ξ, in which the user pays
attention to a particular button for a few rounds continuously.
We denote the noncontrol state by Ψ, in which the user does not
focus on any button on the interface. Thus, an epoch may fall

Fig. 2. Basic idea of support vector machines. In this paper, each small circle
represents the feature vector of an EEG epoch.

into one of three classes: target epochs, nontarget epochs, and
garbage epochs.

1) Target epochs Θ: Epochs associated with flashings of the
target button (to which the user is attending).

2) Nontarget epochs Φ: Epochs associated with flashings of
nontarget buttons (to which the user is not attending).

3) Noncontrol epochs O: All epochs in the noncontrol state.
With this definition, a control pattern and an noncontrol pat-

tern can be illustrated as in Fig. 3(a) and (b), respectively.
Hence, in P300-based asynchronous control, it is essential to

detect the occurrence of control patterns like Fig. 3(a) in the
ongoing EEG signal. To this end, we take three steps to devise
our computational approach.

1) Develop the statistical models for three types of EEG
epochs (target, nontarget, or noncontrol epoch).

2) Develop the probability models for control and noncontrol
states for a given multiround EEG.

3) Develop an algorithm which detects the occurrence of
control state in ongoing EEG.

The three steps are elaborated in the subsequent sections.

IV. PROBABILITY MODELS OF EEG SIGNALS IN

ASYNCHRONOUS CONTROL

A. Statistical Epoch Models

Consider a multichannel (mc ) EEG epoch consisting of mc

courses of mt time samples. To represent the epoch, we form a
feature vector x by concatenating all the time courses as well as
their dynamic features [22]. Usually the feature vector x con-
tains a large number of elements/variables. On the other hand,
the available training samples are usually limited in amount.
For reliable distribution density function estimation, therefore,
it is preferable to first transform the samples into a low di-
mensional space. And, in this paper, we consider the margin
space created by a support vector machine (SVM). The SVM
is now a well-known classification method in which the princi-
ple is to seek maximal margin between two classes. The basic
idea of SVM is illustrated in Fig. 2. Here, the symbol d repre-
sents the distance from a sample to the optimal hyperplane. The



ZHANG∗ et al.: ASYNCHRONOUS P300-BASED BCIs: A COMPUTATIONAL APPROACH WITH STATISTICAL MODELS 1757

Fig. 3. Matrices of epoch-round structure of EEG signals. (a) Each column
represents a round consisting of Ns epochs. (b) In this example, the attended
button corresponds to the top row, in which all the epochs are target P300 (Θ).
The rest epochs are nontarget P300 (Φ). (c) In a noncontrol pattern, all are
noncontrol epochs (O). Epoch-round matrix.

fundamental of the machine lies in Cover’s theorem [36] on the
separability of patterns: a complex classification problem cast
in a high-dimensional space nonlinearly is more likely to be lin-
early separable than in a low-dimensional space. In SVM, the
inner product in the high-dimensional space takes a form of sum
of kernel functions, and the distance to the separate hyperplane
is given by

d = h(x) =
N∑

i=1

aik(x,xi) + b (1)

where xi denotes the ith support vectors. And the parameters
{a1,...,N , b} can be learned from labeled data in the training
set [37].

Of particular interest to this research is the modeling of pos-
terior probability of the SVM score(d) for each epoch type. An
early study in [38] has suggested that Gaussian functions can
provide a good approximation to the distributions of the SVM
margin d. Thus, we use the following Gaussian models to de-
scribe the conditional probability density of the margin given
the epoch type (Θ, Φ, or O)

p(d|Θ) = N (d − µθ ,σ
2
θ ) (2)

p(d|Φ) = N (d − µφ ,σ2
φ) (3)

p(d|O) = N (d − µo,σ
2
o ) (4)

where the parameters can be simply learned from the training
samples using the conventional maximum a posteriori (MAP)
method.

Using Gaussian kernels, the SVM is prone to produce biased
distributions of scores for the training set [38]. In particular, the
distribution density function for the training set often exhibits
two sharp peaks corresponding to SVM margins. A simple solu-
tion is to use a separate data set that is independent of the training
set, for the estimation of the distribution density functions.

B. Likelihood Model for Control/Noncontrol State

Consider a multiround signal as shown in Fig. 3. In the control
state, the brain will generate a single row of Θ (target) epochs
with the rest being Φ (nontarget). Let P (Ξ, Ri) be the prob-
ability of the control state and the user being attending to the
Ri button. By Bayesian rule, it is straightforward to have the

likelihood of the control state (Ξ)

P (Ξ|D) =
p(Ξ, D)
p(D)

=
∑Ns

i=1 p(Ξ, Ri,D)
p(D,Ξ) + p(D,Ψ)

=
∑Ns

i=1 p(D|Ξ, Ri)P (Ξ, Ri)∑Ns
j=1 p(D|Ξ, Rj )P (Ξ, Rj ) + p(D|Ψ)P (Ψ)

(5)

where D denote the ensemble of dij , dij being the SVM score
of the ith epoch in the jth round (see Fig. 3).

The variables P (Ξ) and P (Ψ) = 1 − P (Ξ) represent the a
prior probabilities that a subject is in the control/noncontrol
state. However, their values shall be determined by the particular
application scenario. For example, a user may stay in the control
state more often and longer [i.e., larger P (Ξ)] when the BCI is
used for typewriting than for controlling a TV set. In the current
study, we assume an even probability: P (Ξ) = P (Ψ) = 0.5.
Furthermore, we assume an equal probability of the buttons
being attended to: P (Ξ, Ri) = 1/NsP (Ξ).

The p(D|Ξ, Ri) represents the conditional probability density
of an observation D (actually it is the transformed EEG in the
support vector machine space) given that the user is attending to
the Ri button (thus being in the control state). Now, we assume
that given the user’s state, the EEG epochs are all independent.
Thus, we have

p(D|Ξ, Ri) =
∏

j

p(dij |Θ)
∏

k,j,k #=i

p(dkj |Φ) (6)

where p(dkj |Φ) and p(dkj |Θ) is from (4).
Similarly, we have the following equation for the conditional

probability density of D given that the user is in the noncontrol
state (Ψ)

p(D|Ψ) =
∏

ij

p(dij |O) (7)

where p(dkj |O) is from (4).
In real computing, however, a direct calculation of the ear-

lier equations would easily cause overflow, since it involves a
number of multiplications of Gaussian distribution functions.
To overcome this problem, we resort to using the following log
measure for the probability computation

L = log

[
Ns∑

i=1

p(D|Ξ, Ri)P (Ξ, Ri)

]
− log(p(D|Ψ)P (Ψ)).

(8)
This logarithm function is monotonic with the a posteriori prob-
ability (5). To avoid overflow, we calculate the first logarithm
term on the right-hand side by

log

[
Ns∑

i=1

exp {log(p(D|Ξ, Ri)P (Ξ, Ri))+M}
]
−log(exp(M))

(9)
where M is taken as 1

Ns

∑Ns
i=1 −p(D|Ξ, Ri)P (Ξ, Ri).
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V. CONTROL STATE DETECTION FOR ASYNCHRONOUS

CONTROL

As stated earlier, asynchronous BCI control requires effective
differentiation between two user states: the control state where
the user is intentionally using the interface and being focused
on a particular button for a few rounds; the noncontrol state
where the user is engaged in other things. To this end, we have
devised an algorithm, which basically checks each possible time
window in the ongoing EEG and computes if one window gives a
high likelihood of control pattern. The algorithm only considers
time windows no shorter than three rounds to ensure reliable
detection.

In the following, we would like to give the basic procedure
of the algorithm.

1) Initialize the system. Set the round count kr = 0.
2) Receive a new round of EEG epochs and set kr = kr + 1;

calculate the SVM scores dikr of each epoch [see (1)].
3) Proceed if kr ≥ Lm where Lm is the minimal window

length taking for detection (usually Lm ≥ 3); otherwise
go back to step 2.

4) Enumerate each possible EEG window ending at the
present round, with length l ∈ {Lm , . . . , kr}.

a) Calculate the a posterior probability Pl = P (Ξ|Dl)
[see (5)], where Dl represents the SVM scores for
all the epochs in the window of length l.

5) Find the maximum of the posterior probability among all
possible windows

lm = argmax
l

{Pl}. (10)

6) If Plm > η where η is a preset value, a positive detection
is decided, proceed; otherwise go back to step 2.

7) Extract the EEG window of length lm (ending at the
present round), and employ a classifier to estimate which
command the subject wants to input (e.g., with the method
in [22]).

8) Reset the round count kr = 0; go back to step 2.

VI. EXPERIMENTS

A. Experiment for Assessing Receiver Operating
Characteristics

It is important to design an appropriate experimental setup
for studying asynchronous systems, in which one needs to take
into consideration more factors than in traditional synchronous
ones. As the literature has seen few studies on asynchronous
P300-based BCIs, we would like to refer to prior arts of relevant
studies on other BCIs using, e.g., motor imagery.

Pfurtscheller’s group has endeavored into motor-imagery-
based asynchronous BCIs. They reported an asynchronous vir-
tual speller [39], which does not use machine-generated cues
for motor imagery classification. However, since it does not
consider the “noncontrol” state, that system is unfit for the
asynchronous control task which is of concern in the present
paper. The same group has actually addressed the “noncontrol”

Fig. 4. Nine-button user interface for P300-based BCI. The interface intensi-
fies each button alternately in a random order. Currently, the central button is
intensified.

state in [10], where they introduced the ROC curves to evalu-
ate the performance of an asynchronous BCI during imagined
movements.

The ROC curves have been widely used in signal detection
studies. For example, Birch’s BCI group has been employing it
for the study of their asynchronous BCI switches [25]. In signal
detection, two essential performance indexes are of concern:
true positive rate (TPR) and false positive rate (FPR). And the
ROC curves depict the relation between the two rates of TRP
and FPR. In a real application, one needs to find a particular
detection threshold that best fits into the specific task, e.g., to
achieve a satisfactory TPR while keeping FPR below a given
limit. Therefore, in order to study the system performance
in terms of ROC curves, we need to test every threshold and
check the resultant TRP and FRP. Obviously, it is impossible by
online processing (fixed threshold then). Thus, offline analysis
is prevalent, using data from machine-guided data collection
sessions [10], [25].

In the present paper, we devised a few machine-guided tasks
so as to conduct offline analysis using ROC curves. These tasks
were grouped into the following three sessions. Note that the
nine-button user interface, as shown in Fig. 4, was employed in
this study. Thus, one round of button flashing took 900 ms.

1) Session 1 consisted of three sections. In each of the first
two sections, the subject attended to one button for eight
rounds, paused 2 s (as per the computer’s video guide),
and moved on to the next button until he/she had gone
through all the nine buttons. Hence, each of the two sec-
tions contained 72 rounds of EEG, corresponding to 72
epochs of target P300 and 576 epochs of nontarget P300
data. The two sections were both used to train the support
vector machine to discriminate between target and nontar-
get P300 data. The setting of the third section was the same
as that of the first two: the monitor was closed and the sub-
ject stayed in the noncontrol state. Hence, the data from
the third section were used to estimate the distribution of
SVM scores of noncontrol epochs.

2) In session 2, the subject stayed in the control state and
concentrated on one button for 50 rounds, paused 2 s (as
per the computer’s video guide), and moved on to the next
button until he had gone through all the nine buttons. The
session was used to evaluate the proposed method in term
of TPR.
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Fig. 5. Topography of EEG sites of the EEE cap, with 15 used channels (plus
reference and ground points) in shade.

3) Session 3 consisted of three sections. In each of the three
section, the subject stayed in “noncontrol” state, paying
no attention to any button nor the computer display. Each
section was as long as session 2, thus also containing 50
rounds of EEG for each of the nine buttons. In the first
section, the subject was singing a song. In the second sec-
tion, the subject was relaxed and closed eyes. In the third
section, the subject was given a question sheet includ-
ing a few arithmetic tasks, and needed to finish the tasks
quickly. In total, the three sections allowed us to evalu-
ate the method in various noncontrol conditions. And in
the data analysis, we combined the three sections together
without discriminations.

According to the timing scheme mentioned before, Sessions
1–3 took approximately 4.5, 7, and 21 min, respectively. We
allowed the subject to take a short break up to 2 min in between
two sessions. So the total data collection on each subject ran for
approximately 40 min, excluding the EEG preparation time.

In the experiment we used a NuAmps device from Neuroscan,
Inc., to measure the scalp EEG signal. The EEG was recorded
from Ag–AgCl electrodes placed at electrode sites in the inferior
frontal, central, and parietal regions, including the following:
“F3,” “Fz,” “F4,” “FC3,” “FCz,” “FC4,” “C3,” “Cz,” “C4,”
“CP3,” “CPz,” “CP4,” “P3,” “Pz,” and “P4.” Fig. 7 shows the
locations of the sites, as well as that of the ground and the
reference points. The digitizer device worked at a sampling rate
of 250 Hz. To ensure accurate recording of stimulus timing,
we used a stimulus-generation and data-acquisition software
reported in [40]. A stimulus code representing a particular button
flashing was sent to the EEG hardware via the parallel port, and
the EEG machine instead of the computer inserted that stimulus
code into a special channel of the ongoing EEG. In this way, the
precise time information was recorded, even though there was a
delay between a stimulus being generated and the corresponding

EEG signal being received. Throughout the study, we used an
interstimulus interval at 100 ms.

Four healthy subjects, all males, between 20 to 45 years,
participated in the study. To help the subjects concentrate on the
task, we asked them to count the flashing of the target button.
Note that no subject screening was conducted, and we used all
the four volunteer subjects throughout the study.

B. Experiment for Assessing Online Performance

In the aforementioned experiment design, it is interesting
to investigate the online performance of the BCI. To this end,
we have implemented the BCI in a real-time EEG processing
system, using Visual C++ and C#. And we have designed an
online test protocol described later.

In an experiment session, a subject sits comfortably in an
armchair while continuously performing alternate control and
noncontrol tasks.

1) Two noncontrol tasks: reading and rest. In the reading
task, the subject is reading out some given stories. In the
rest task, the subject is having a rest with eyes closed.

2) One control task: inputting a given sequence of 32 digits.
As the nine-button interface is used, the digits from 1 to 8
were randomly selected to compose the sequence, while
the digit “9” served as a “backspace” button to correct any
input error during online test.

Each session starts with a reading task, followed by an in-
put task, a rest task, and an input task, ending with a reading
task. The duration of each task is determined by the subject in
doing the online experiments. And there is no break between
consecutive tasks. Actually, each of the subjects participating in
this study spent 6–7 min in total on the reading tasks, and 5–9
min on the rest task. Because the exact duration of each task
is needed to enable accurate computation of ITR and FPR, the
actual start/end time points is recorded by the subjects press-
ing a mouse button. Note that the threshold for control-state
detection is determined empirically for each subject using the
training data (Section VI-A), for offline FPR to be lower than 1
per minute.

The BCI produces online feedback to the subject by: 1) high-
lighting detected digits quickly (0.5 s) in red color and 2) out-
putting the digits into a textbox on the computer monitor. Es-
pecially in the control task, the subject needs to use the digit
“9” i.e., the “backspace” button, to correct any input error, so
as to make the final output digit sequence identical to the given
one. Therefore, after each session, the effective communication
speed, or ITR, can be derived easily. For example, if a subject
uses 5 min to input a correct sequence of 32 digits, the ITR
would be 32log2(9)/5 = 20.3 b/min.

VII. RESULTS

A. Preprocessing and SVM

In the preprocessing procedure, we used temporal filtering
to remove high-frequency noises and very slow waves. Thus,
a fifth-order digital Butterworth filter with passband [0.5 Hz
15 Hz] was applied to the continuous EEG data.
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Fig. 6. Histograms of SVM margin scores (d) for target P300, nontarget P300, and noncontrol epochs, for each of the four subjects participating in this study.

Subsequently, the filtered EEG signals were downsampled by
a factor of 4 in order to reduce the computational complexity.
The downsampled signals were then segmented from 100 to 500
ms after the onset of a button flashing, and the results as well as
their dynamic features [22] were concatenated to form a single
feature vector that represents the epoch.

We computed the range of values for each variable in the
feature vectors of the training samples. Thereafter, we normal-
ized all the feature vectors in both training sets and test sets
by mapping them to the range [−1 1]. The normalized feature
vectors serve as the input of the SVM, for which we employed
the popular LibSVM toolbox with Gaussian kernels provided
in [37].

B. Distributions of SVM Scores

We used “session 1” to train a binary SVM to distinguish
between two types of signals: the target P300 epochs and non-
target P300 epochs. The SVM was then applied to “session 2”
data set and “session 3” data set. Scores from target signals,
nontarget signals as well noncontrol signals were collected and
the histograms were plotted in Fig. 6.

To see whether the scores conform to Gaussian distributions,
we ran a t-test on the three types of scores respectively for each
subject. It turned out that the hypothesis was confirmed with
95% confidence level.

Next, we checked the difference among the distributions using
the Kolmogorov–Smirnov test on each pair of samples. On all
the subjects, the results indicate that we can reject the hypothesis
that the distributions are the same, at the 95% confidence level, as
all the p-values were all extremely small Table I. This confirms
that nontarget signals and noncontrol signals shall be treated
with different distribution models.

TABLE I
KOLMOGROVO-SMIRNOV TEST VALUES COMPARING PAIR-WISE

DISTRIBUTIONS OF TARGET (TAG), NONTARGET (NTAG), AND NONCONTROL
(NC) EPOCHS’ SVM SCORES

C. ROC Analysis

The performance assessment of an asynchronous control sys-
tem involves two aspects: the capability for detecting the true
events when the user is in the control state, and that for rejecting
all the signals when the user is in the noncontrol state. For the
first aspect, the performance measure termed TPR is often sug-
gested that indicates how many control events the system is able
to detect within a time unit, say, 1 min. For the second one, the
measure termed FPR, also known as false positive rate, is sug-
gested that indicates how many false events (in the noncontrol
state) the system will detect on average within a time unit.

Since we use a threshold on the posterior probability measure
(5) for the detection of the control state, both the TPR and the
FPR are monotonical functions on the threshold value. Fig. 7
plots the receiver operation characteristic (ROC) curves for each
of the four subjects. And it can be seen that when the threshold
increases, both the TPR and the FPR drop. And the curves can
be used to assess the system performance at various thresholds.

The purpose of the BCI is to determine when and which button
(command) the subject tries to select (input). The asynchronous
control mechanism above only addresses the first issue (when),
i.e., the detection of the control event.

To determine which button the subject wants to select, we
adopted a simple yet proven method for the classification [22]
that picks up the maximal averaged SVM scores among the
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Fig. 7. TPR versus FPR. The TPR is the averaged rate of control events being
detected by the asynchronous mechanism. The FPR is the averaged rate of false
control events detected during a subject’s noncontrol state.

Fig. 8. ITR versus FPR. The ITR represents the capacity of the BCI as a
communication channel.

buttons

c : argmaxi

∑

t∈T

d(i, t) (11)

where T is the detected signal time.
To evaluate the detection plus classification system, we em-

ployed a widely used measure, named information transfer rate
that indicates how many bits of information one is able to com-
municate effectively through the interface [41].

B = ne

{
log2 Ns + P log2 P + (1 − P )log2

[
(1 − P )
(Ns − 1)

]}

(12)
where ne is the averaged number of event detected per minute
and P is the probability that the target is hit (i.e., the control
state is detected and the command is succesfully recognized.) It
can be seen that P is determined by both true positive rate Rtp
and recognition accuracy Rr : P = Rtp ∗ Rr .

Fig. 8 depicts the relation between ITR and FPR. Again,
it shows that ITR is generally monotonic over FPR for each
subject. The right limit of the FPR axis is seven events per
minute. As the figure shows, the curves approaches asymptote
beyond FPR=3–4 events/min; the right end of each curve actu-
ally approximates the ITR without rejection—same as in earlier

TABLE II
AVERAGED INFORMATION TRANSFER RATE VERSUS FALSE POSITIVE RATE

TABLE III
ONLINE PERFORMANCE STATISTICS. FOR EACH OF THE FOUR SUBJECTS, AND

AVERAGE

synchronous systems. Hence, the figure indicates that, without
considering false positives, one is able to achieve a subject-
dependent ITR in the range from 20 to 40 b/min.

Due to finite number of samples, our information transfer rate
and false positive rate both take discrete values. Nevertheless,
we use (linear) interpolation method to estimate the ITR values
at specific FPR values. This allows us to obtain the averaged
ITR over FPR. See Table II for the results.

D. Online Experiment Results

The results are summarized in Table III. On average, the
present BCI would be able to communicate 15 bit/min in the
control state, while producing 0.71 false positive per minute.
This can be compared with the offline results of ITR = 19.8
b/min and FPR = 1/min.

VIII. DISCUSSIONS

Similar to other signal detection systems, the criterion for
detection-threshold determination is an important issue in the
present BCI system. Actually, it is highly dependent on specific
applications. For example, controlling a wheelchair demands a
lower FPR than a speller due to safety concerns. Because the
FPR and the TPR are monotonic functions on the detection
threshold, one can easily set the threshold for a given FPR/TPR
in the ROC curves (see Fig. 7) according to specific applications.
Furthermore, in our implementation, a user can change this
threshold online if necessary.

To greatly reduce FPR, one can adapt an additional “lock”
mechanism in the asynchronous interface. In particular, this
mechanism assigns a “locking/unlocking” function to a dedi-
cated button. In order to lock/unlock the interface, a user needs
to select the button once or repeatedly for a few times (nl). Once
the system detects a locking command, it will run in a “standby”
mode by ignoring any positive detections on all buttons expect
the “locking/unlocking” one. It will return to normal control
mode once an unlocking command is detected. False positives
may still occur, after a false unlocking happens. Nevertheless,
the false unlocking rate can be extremely low. For an n-button
interface with FPR = rfp , the rate of false unlocking would be
(rfp · n)nl . Take our nine buttons interface, for example, where a
decision is made every 0.9 s. If we set FPR = 1/min and nl = 2,
the rate of false unlocking would be as low as 1 in 100 h. The
asynchronous BCI method is not only applicable to computer
applications like virtual speller, but also to the control of assistive
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devices such as wheelchairs. We have successfully integrated the
BCI control into an automated wheelchair [42]. With the asyn-
chronous BCI control, a user does not needs to issue commands
to steer the wheelchair all the time. Instead, he just selects among
a few predefined paths between different relevant locations.
Once a path is selected, the user can rest while the wheelchair
is moving using a dedicated path-following controller.

People with higher attention levels usually perform better in
P300-based BCIs, since consistent P300 patterns can be ex-
tracted. Patients who suffer from neurological disorders may
have short concentrate span. It makes synchronous BCIs dif-
ficult for them to use. This problem can be addressed by our
asynchronous mechanism. First, it allows the user to voluntar-
ily switch between the control state and the noncontrol state
at any time, making continuous attention unnecessary. Second,
the attention level may vary from time to time, even within the
same person. Extracting P300 patterns from a fixed number of
rounds may not be favorable, as the user may not concentrate
throughout all the rounds. On the other hand, the asynchronous
mechanism extracts P300 patterns from EEG of varying time
lengths. This is relatively more favorable, as the BCI adapts to
the attention level, by finding the time window in which the
attention is perceived to be the highest.

However, it is still an open problem to detect reliably the con-
trol state in patients with severe neurological disorders. This is
because visual attention on the BCI may become very difficult.
In addition, some patients suffer from shuddering or other invol-
untary body movements that corrupt the P300 considerably with
noise. Research into these problems requires advances in track-
ing and classification of single-trial P300 as well as effective
noise removal techniques.

IX. CONCLUSION

In summary, this paper demonstrated that it is quite possible
to use the P300 as an effective asynchronous communication
channel. Though it is difficult to reliably detect a single trial
P300 because of considerable background noise and variations
of the waveforms, we found our probabilistic models and detec-
tion algorithm could be used to effectively compute if a subject
is concentrated on any button on the screen.

In particular, high-dimensional EEG data (multichannel time
sequence) posed a problem to effective P300 modeling. We
turned to the support vector margin space, transforming the
original data into the univariate space while preserving the dis-
criminative information of interest. Furthermore, we derived a
method to compute the likelihood of the subject being in the
control state, given the ongoing EEG.

Our experiments with four human subjects have shown that,
on average, the BCI can effectively transmit information at a
speed of 20–27 b/min (information transfer rate) with a low
false positive rate ranging from 1 to 3/min. This indicates that,
at a low false positive rate, the asynchronous BCI can achieve
comparable information transfer rate to that by synchronous
P300-based systems (e.g., 23.75 b/min in [15]). With the asyn-
chronous mechanism, P300 BCIs will provide neurological pa-
tients with useful communication and control interfaces.
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