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Abstract—This paper discusses the estimation and numerical
calculation of the probability that the 0-norm and 1-norm so-
lutions of underdetermined linear equations are equivalent in
the case of sparse representation. First, we define the sparsity
degree of a signal. Two equivalence probability estimates are
obtained when the entries of the 0-norm solution have different
sparsity degrees. One is for the case in which the basis matrix
is given or estimated, and the other is for the case in which the
basis matrix is random. However, the computational burden to
calculate these probabilities increases exponentially as the number
of columns of the basis matrix increases. This computational
complexity problem can be avoided through a sampling method.
Next, we analyze the sparsity degree of mixtures and establish the
relationship between the equivalence probability and the sparsity
degree of the mixtures. This relationship can be used to analyze
the performance of blind source separation (BSS). Furthermore,
we extend the equivalence probability estimates to the small noise
case. Finally, we illustrate how to use these theoretical results to
guarantee a satisfactory performance in underdetermined BSS.

Index Terms—Blind source separation (BSS), equivalence prob-
ability, noise, sparse representation, sparsity degree, 0-norm solu-
tion, 1-norm solution.

I. INTRODUCTION

I N recent years, there have been many studies on the
sparse representation (or sparse component analysis, sparse

coding) of signals (e.g., [1]–[10]). Sparse representation of
signals can be modeled by
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where is a given -dimensional signal vector,
is a basis matrix with full row rank, and is a

coefficient vector.
Among the infinite possible solutions (1), the sparsest one,

which is the solution of the following optimization problem, has
received much attention

where 0-norm is the number of nonzero elements of . It
is well known that the optimization problem is NP-hard,
i.e., the computational time (or the computational burden) for
solving this optimization problem increases exponentially as
increases (in other words, the computational time is nonpolyno-
mial).

In many references, e.g., [1], a basis pursuit (BP) algorithm
was presented by solving the following optimization problem,
which can be transformed into a linear programming problem:

Hereafter, the solutions of and are called the 0-norm
solution and 1-norm solution, respectively.

Many studies have shown that in many cases the BP algorithm
can also find the sparsest solution, i.e., the 0-norm solution. By
studying the equivalence between the 0-norm solution and the
1-norm solution, several conditions have been established that
guarantee the BP’s success (e.g., [5] and [10]). These condi-
tions, however, are often too strict to reflect the fact that the BP
algorithm often finds the 0-norm solution. Recently, researchers
discussed the equivalence between the 0-norm and 1-norm solu-
tions within a probabilistic framework (e.g., [11] and [15]–[17]).
The condition, under which the two sparse solutions are equiva-
lent with a high probability, is much weaker than those obtained
in the deterministic case. In this paper, the probability that the
0-norm solution and the 1-norm solution are equivalent is called
the equivalence probability. In blind source separation (BSS),
this probability is also called the recoverability probability since
the 0-norm solution is a source vector in most cases. As will be
seen, the equivalence probability (or recoverability probability)
has different formula depending on various conditions.

An important application of the sparse representation is in
underdetermined BSS, in which the number of sources is
greater than the number of observations . Note that (1) can be
taken as a mixing model, in which is a mixture signal vector,

is an unknown mixing matrix, and is an unknown source
vector. If a source vector is sufficiently sparse in the analyzed
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domain, then it is the 0-norm solution. The equivalence problem
of the 0-norm and 1-norm solutions then becomes a recover-
ability problem here. One can first estimate the mixing matrix
and then recover the source vector using the BP algorithm [11],
[16], [19].

In [16] and [17], underdetermined BSS is discussed using
a two-stage sparse representation approach. In [16], an algo-
rithm for estimating the mixing matrix was first developed. A
necessary and sufficient condition for recoverability of a source
vector was then obtained. This condition shows that the recov-
erability of the source vector (i.e., the 0-norm solution in this
paper) only depends on its sign pattern. Based on this condi-
tion and various types of source sparsity, several probability in-
equalities and probability estimates for the recoverability were
established when the mixing matrix is given or estimated.
A general case where the mixing matrix is random was dis-
cussed in [17]. A new necessary and sufficient condition for re-
coverability of a source vector was first presented. Using this
condition, several theoretical probability estimates on recover-
ability were obtained. The obtained recoverability probability
estimates include , ,
[16], , , and [17], where is
the number of the mixtures, is the number of sources, is the
number of nonzeros of a random source vector, is the proba-
bility that each entry of the source vector is equal to zero, and

is a parameter of a Laplacian distribution from which the en-
tries of the source vector are drawn. There still remain several
problems in [16] and [17], which require extensive discussions.
These problems include the following.

1) Computational complexity: the computational burden for
calculating those above probability estimates grows expo-
nentially with increasing .

2) The comparison of these probability estimates: through
this comparison, we may find one that reflects the reality.

3) Noisy case.
4) Applications of these probability estimates in BSS (to

guarantee the performance of BSS).
5) A general case in which the sources are from different dis-

tributions (this means that the degrees of sparsity are dif-
ferent depending on the sources).

This paper focuses on the above problems. The recoverability
probability of a source vector depends on , the number
of its nonzeros. Therefore, the probabilities and

play an important role in [16] and [17], which reflect
the recoverability of a single source vector. Since may be dif-
ferent for different source vectors, [or ]
cannot reflect the recoverability of the sources in a time interval
(each time point corresponds to a source vector). The proba-
bility estimate [or ] holds under the
assumption that all sources are drawn from a standard Laplacian
distribution. This assumption may not be strictly true in many
cases. As will be seen, the probability estimate [or

] can reflect the recoverability of sources in a time
interval. Furthermore, it is a convenient method to analyze the
performance of BSS.

The remainder of this paper is organized as follows. In
Section II, a sparsity degree of a random variable is defined.
When all entries of a 0-norm solution (seen as a source vector)

have different sparsity degrees, the recoverability probability
estimate is then established. This probability estimate reflects
the relationship between the equivalence probability and the
sparsity degree vector of the 0-norm solution (i.e., the source
vector in BSS). When is large, a sampling method is pro-
posed to obtain this probability estimate. In Section III, another
relationship between the equivalence probability and the spar-
sity degree of observed mixtures is established. These two
relationships can be used to analyze the performance of BSS. In
Section IV, the results on the probability estimates and the two
relationships are extended to the case when the noise is small,
i.e., small noise case. Section V shows how to use these results
to guarantee the performance of sparse representation-based
BSS.

II. SPARSITY DEGREE AND EQUIVALENCE

In this section, we first define the sparsity degree of a signal
and establish a relationship between the sparsity degree of the
0-norm solution and the equivalence probability.

Discussion in the following sections are based on the fol-
lowing optimization problem:

where , , is the 0-norm solution corre-
sponding to . Here is seen as generated by the vector
(0-norm solution). The solution of is denoted as . If

, then we say that is recovered by solving .
Definition 1:

1) For a random variable , the probability is called
the sparsity degree of .

2) For a signal (a sample sequence),
suppose that the probability is the same for
all . Then, the probability is called the
sparsity degree of .

Remark 1:
i) In many real-world applications, e.g., where noise exists,

the probability that or is close to or equal
to zero; however, or is still sparse since or
takes on small values with a high probability. In this case,
Definition 1 is modified as follows. A small positive con-
stant is first determined according to the specific task,
and the probability or is taken
as sparsity degree of or . Example 3 in Section V is an
illustration of this case.

ii) For a given signal , its sparsity degree can be estimated
using the ratio of the number of its zeros to the total
number of sample points, i.e., the frequency of zeros in

.
For a random 0-norm solution in , suppose that the

sparsity degree of its th entry is , . Here
the entries of the 0-norm solution are taken as random
variables. In BSS, represents the sparsity degree of the th
source . Now we discuss the relationship be-
tween the recoverability probability of the 0-norm solution
and its sparsity degree vector .

Denote the index set by . Using ,
we define sets ,
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(each set contains indices). Obviously,
contains vectors. For a vector

, we define a set of sign vectors with
nonzeros as , if

otherwise . There are sign vectors
in . Let ,

, which is the set of sign vectors with nonzero
entries.

As a preparation, we first quote a result in [16]. For a 0-norm
solution , we denote its sign vector as . Then,
can be recovered by solving if and only if can
be recovered by solving . According to this conclusion, the
recoverability of depends only on its sign pattern.

The following theorem contains two conclusions that are ex-
tensions of the results in [16] and [17], respectively.

Theorem 1:
1) For a given basis matrix , we have the following equiva-

lence probability estimate:

(2)

where is the number of sign vectors in
, which can be recovered by solving .

2) For random basis matrix , we have

(3)

where is the probability that
a 0-norm solution with nonzeros can be recovered by
solving (the estimation of was discussed
in [17]. See Appendix I in this paper).
Proof:

1) For any 0-norm solution , we have

(4)

where .
Denote as the set of indices of the
nonzero elements in . Then, the prob-
ability that is

. Fur-
thermore, if there are sign vectors in

, which can be recovered by solving , then the
recoverability probability of a sign vector randomly taken
in is , i.e.,

(5)

Thus, we have

(6)

2) Now we consider the case in which the mixing matrix is
random. Suppose that has nonzeros with indices

. Since the mixing matrix is random, the recov-
erability probability of is equal to , i.e., it
does not depend on specific . Based on this con-
clusion and similar derivation as above, we can prove the
second part of this theorem. The theorem is thus proved.

Note that the equivalence probability
is a conditional probability that

and are equivalent under the condition that
and are given, and so does .

If [denoted as ], then (2)
becomes

(7)

where is the number of sign vectors in the set which can
be recovered by solving .

Furthermore, if [denoted as ],
then (3) for a random basis matrix becomes

(8)

Equations (7) and (8) were obtained in [16] and [17].
When (1) is considered as a mixing model in BSS, then the

0-norm solution can be seen as a source vector. The sparsity
degree of the th entry of the 0-norm solution corresponds
to the sparsity degree of the th source. This sparsity degree can
be estimated in the following way. Suppose that there are
time sample points, and that the th source equals to zero at

sample points. Then, the sparsity degree of the th source
is . Therefore, the probability estimates in (2) and (3)
reflect the recoverability of sources in the corresponding time
interval of sampling.
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In order to calculate the equivalence probabilities in (2)
and (3) [or (7) and (8)], we need to find the number of sign
vectors that can be recovered by solving . Note that the
total number of sign vectors is for a given .
When increases, the computational burden for estimating
the probabilities in (2) and (3) will increase exponentially.
This problem can be resolved by the following sampling
method.

Sampling Method:
i) The mixing matrix is given. For a sparsity degree

vector , we randomly generate (e.g.,
3000) column vectors using the uniform dis-
tribution in , . If ,
we further set . Then, the sparsity degree vector
of is . Now we check the recoverability
of by solving with . Suppose
that among the vectors, there are vectors re-
covered. Then, we have an estimate of the probability

[denoted
as ].

ii) The mixing matrix is random. Similarly as above, we
randomly generate (e.g., 3000) column vectors

using the uniform distribution in ,
such that the sparsity degree vector of is

. Furthermore, we randomly generate
mixing matrices using a distribution (e.g.,

the uniform distribution in ). For each pair
, we check the recoverability of by

solving with and . Sup-
pose that, among the vectors, there are vectors
recovered. Then, we have an estimation of the probability

[denoted as
].

One question arises here: If increases, should the number
of samples be increased exponentially? Our theoretical
analysis and simulations tell us that it is not necessary to in-
crease exponentially (see Appendix I).

The validity of the above sampling method will be demon-
strated in Example 1.

Equations (2) and (3) reflect the relationship between the
equivalence probability and the sparsity degrees of the entries
of the 0-norm solutions. Note that the equivalence probabilities
in (2) and (3) do not depend on the amplitudes of the nonzero
entries of the 0-norm solution. From Theorem 1, we find that the
equivalence probabilities in (2) and (3) are determined only by
the sparsity degrees of the entries of the 0-norm solution. There-
fore, we have the following corollary.

Corollary 1: For a given basis matrix , the equivalence
probability depends only on the sparsity degrees of the entries
of the 0-norm solution. Furthermore, for a random basis matrix,
the equivalence probability depends on the distribution of basis
matrix and the sparsity degrees of the entries of the 0-norm
solution.

For a random 0-norm solution with sparsity degree vector
, we calculate two means, the arithmetic mean

, and the geometric mean
.

Since the sparsity degree of a single entry of the 0-norm
solution is not easy to estimate in real-world applications,
we consider the special case in which all entries of the 0-norm
solution have the same sparsity degree or (they can
be estimated sometimes). Let and denote two random
0-norm solutions where the sparsity degree of each entry of
is , while the sparsity degree of each entry of is .

It is not difficult to find that the average numbers of zeros
of , , and are , ,
and ). Therefore, the mean of the
number of the zeros of is equal to the mean of the number
of the zeros of . Since the arithmetic mean is larger than the
geometric mean, the mean of the number of the zeros of [or

] is larger than the mean of the number of the zeros of .
Based on the analysis here, we have the following approxima-
tions and inequalities:

(9)

(10)

where and are the 1-norm solutions of with
and , respectively.

As will be seen in next section, (9) and (10) are convenient to
use in real-world applications.

Now we present a simulation example to demonstrate the
above results including (9) and (10).

Example 1: In this example, we always set and .
The simulations in this example are in two categories: i) is
given or estimated and ii) is random. In the following, all
random matrices are generated using a standard normal dis-
tribution. They also can be generated using other distributions,
e.g., a uniform distribution.

i) First, we randomly generate ten sparsity degree vectors
, , using the uniform dis-

tribution in . Calculate the arithmetic mean and the
geometric mean for each .

Second, we randomly give a matrix of which each
entry is generated using a standard normal distribution. Using
this matrix and the sparsity degree vectors , we calculate the
recoverability probabilities
according to (2), where .

Third, for each , we estimate the re-
coverability probability using the sampling method and obtain

. In this example, we always arbitrarily
set for the sampling method.

For each , we also estimate the recover-
ability probability using sampling method. Note that the sparsity
degree of each entry of the source vector is . The obtained
probability is denoted as . Using to replace

, we perform similar simulation and obtain
another probability estimate .

The above simulation results are shown in the first row
of Fig. 1. The first subplot shows (denoted by “o”)
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Fig. 1. Simulation results in Example 1. The first row is for the case,
when is given. The first subplot: the two curves of the arithmetic means

(“o”) and geometric means (“ ”). The second subplot: two
curves of (the dotted line with “o”) and

(the solid line with “ ”). The third subplot: three
curves of (the dotted line with “o”),

(the dashed–dotted line with “ ”) and (the
solid line with “ ”). The second row is for the case, when is random. The
first subplot: two curves of (“o”) and (“ ”). The second subplot:
three curves of (the dotted line with “o”),
(the dashed–dotted line with “ ”) and (the solid line with “ ”).
The third subplot: three curves of (the dotted line with
“o”), (the dashed–dotted line with “ ”) and
(the solid line with “ ”).

and (denoted by “ ”). The curves of the probabilities
(dotted line with “o”) and

(solid line with “ ”) are shown in
the second subplot. From this subplot, we can see that the two
curves fit well. This demonstrates the validity of the probability
estimation of (2).

The third subplot shows three curves of the probabili-
ties (dotted line with
“o”), (dashed–dotted line with “ ”), and

(solid line with “ ”). From this subplot, we can
see the following: i) is close to

; and ii) the probability is smaller
than both and .

ii) Now we consider the case where the mixing matrix is
random.

First, we randomly generate ten sparsity vectors
, , using the uniform distribution

in .
Second, we estimate the probability

using the sampling method. The estimates
are denoted as .

Third, for each , we randomly generate 3000 matrices
and 30 000 source vectors . Suppose

that among the 3000 columns, there are vectors recovered.
Then, we have an estimate of the true probability

. Using to replace , we per-
form similar simulation and obtain another probability estimate

.

Fourth, we randomly generate ten mixing matrices
. For each pair of and , we esti-

mate the probability by the sampling method
as in i). We calculate the average probabilities

(11)
Using to replace , we perform similar estimation and

obtain the average probabilities , .
The results are shown in the second row of Fig. 1. The

first subplot shows (“o”) and (“ ”). In the second
subplot, the dotted line with “o” represents the probabili-
ties . The dotted line with “ ” rep-
resents the probabilities . The solid line with
“ ” represents the probabilities . In the third
subplot, the dotted line with “o” represents the probabili-
ties . The dotted line with “ ” rep-
resents the probabilities . The solid line with
“ ” represents the probabilities . From the
two subplots, we can see the following: i) the probability

can be approximated by
; ii) also can

be approximated by ,
where , , are samples of random ; and
iii) is less than .

III. SPARSITY DEGREE OF MIXTURES

In this section, we first discuss the sparsity degree of the ob-
served mixture signal, then establish the relationship between
the equivalence probability and this sparsity degree, and illus-
trate application of this relationship.

First, for a given 0-norm solution with sparsity degree
vector , we suppose that the events ,

, are independent. Since the basis matrix and
the 0-norm solution in the model (1) are generally arbitrary,
the equality for any fixed implies that for

(with probability one). Then, we have

(12)

where .
From (12), we can see that each has the

same sparsity degree denoted as , i.e.,

(13)

Remark 2: In model (1), suppose that we have a sufficient
number of signal vectors (we use them as column vectors to
construct a matrix ). Then, we have two methods to estimate

. The first method is to estimate using the norms of all
columns of ; the second method is to estimate using a row
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TABLE I
SPARSITY DEGREES FOR 0-NORM SOLUTIONS

TABLE II
SPARSITY DEGREES FOR SIGNAL VECTORS

vector in . For model (1), the two methods give little difference
in the result. If model (1) is not strictly true (e.g., when there is
noise), we suggest the second one. This is because in such a
case, a signal vector is seldom equal to a zero vector even if

for .
From (13), if , then

; otherwise, the geometric mean .
In the following, we only consider the case in which all entries
of the 0-norm solution have the same sparsity degree .

From (7), (8), and (13), we have the following corollary.
Corollary 2: For model (1), suppose that the sparsity degree

of signal is , and that all entries of the 0-norm solution
have the same sparsity degree .

1) For a given basis matrix , we have

(14)

where is the number of sign vectors in , which can be
recovered by solving .

2) For a random basis matrix, we have

(15)

Equations (14) and (15) can be used to analyze the per-
formance of BSS. Suppose that the mixing matrix has
been estimated. We first estimate the sparsity degree of

the available mixtures, then calculate the recoverability
probability by (14), which is our estimate of the true
recoverability probability. In fact, the true recoverability
probability should be larger than this estimate since the
sparsity degree of the mixtures corresponds to the geo-
metric mean of the sparsity degrees of the sources.

In real-world applications, we set a threshold (e.g., 0.95)
for the equivalence probability. Using (7) and (8) for a given
basis matrix and a random basis matrix, respectively, we
search an in such that the equivalence probability

[or ] just exceeds
. In this way, we determine the corresponding sparsity degree

constraint of the 0-norm solution. In this paper, we consider
the case in which is random and perform a search of in

. Hereafter, this sparsity degree constraint
is denoted as , which is related to the dimension
number of signal vectors, the number of bases, and the
equivalence probability threshold .

Under the equivalence probability threshold of 0.95, Table I
shows the corresponding sparsity degrees for

, and .
Using the sparsity degree constraints in Table I and (13),

we can further estimate the corresponding sparsity degrees for
signal vector , which are denoted as . Table II
shows the sparsity degrees corresponding to the
equivalence probability threshold of 0.95.

Tables I and II provide a guide on how to guarantee the recov-
erability probability of the 0-norm solution. There are two cases.
1) All entries of the 0-norm solution have the same sparsity de-
gree . If a threshold of recoverability probability (0.95) is
imposed, then a corresponding constraint of the sparsity degree
of the 0-norm solution in Table I (or a corresponding constraint
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of the sparsity degree of the mixtures in Table II) should be sat-
isfied. In real-world applications, this constraint may not be sat-
isfied in the time domain. However, it can be satisfied through a
time-frequency transformation (e.g., wavelet packet transforma-
tion) in many cases [19], [22], [23]. 2) The entries of the 0-norm
solution have different sparsity degrees. If the average sparsity
degree (i.e., the arithmetic mean of the sparsity degree vector)
of the sources is estimated, Table I can be used to analyze the
performance of BSS based on (9). Otherwise, a sparsity degree
of mixtures in Table II corresponds to the geometric mean of a
sparsity degree vector of the 0-norm solution. If the sparsity de-
gree constraint of mixtures in Table II is satisfied, then from (10)
the recoverability probability is larger than 0.95. Thus, Tables I
and II are still useful in this case.

In the next section, we will illustrate how to use the above
sparsity degree constraints in Tables I and II to guarantee a sat-
isfactory performance of BSS.

IV. NOISY CASE

In this section, we will show that the results obtained in the
previous sections (i.e., the estimates of the equivalence proba-
bility and the two relationships) still hold when the noise is suffi-
ciently small. For simplicity, we only consider the case in which
all entries of the 0-norm solution have the same sparsity degree.
The case in which the entries of the 0-norm solution have dif-
ferent sparsity degrees can be discussed similarly.

For the noisy case, the optimization problem becomes

where , being the 0-norm solution
in the noiseless case and a noise vector. The solution
of is denoted as .

For a small positive constant , if

(16)

then we say that can be recovered by solving in the
noisy case.

We first consider the case where the mixing matrix is given
or estimated.

According to the discussion in [11], the solution of is
robust to noise. Precisely speaking, for a given , there exists a

, such that

(17)

where and are the solutions of and , respec-
tively.

Suppose that the noise is sufficiently small, such that
. From (17), we have

(18)

Define a conditional probability

(19)

where is a positive constant.

The above probability is small due to the following two
reasons: 1) is a small positive constant and 2) when the 1-norm
solution is not equal to the 0-norm solution , the differ-
ence is generally larger than the small positive con-
stant . This is because there are infinite number of solutions
of the constraint equations of including and , and

has the smallest 1-norm among these solutions.
From (18) and (19), it can be proved that (see Appendix II)

(20)

where is the recoverability probability
of in the noisy case and is the recover-
ability probability of in the noiseless case.

From the discussion in [16]

(21)

where is the number of sign vectors in , which can be re-
covered by solving .

From (21) and (20), we have

(22)

Furthermore, from (22), we have

(23)

From the above analysis, we conclude that, for a given or esti-
mated mixing matrix , the estimate of equivalence probability
in (21) (see Appendix I) and the relationship (7) between spar-
sity degree of the 0-norm solution and the equivalence proba-
bility are still effective when the noise is sufficiently small.

When is random, our simulations in Example 2
show that (8) still holds when the noise is small, i.e.,

(24)

where is the probability that a
0-norm solution with nonzeros can be recovered by solving

in noiseless case. The estimation of was
discussed in [17].

Unfortunately, until now, we cannot prove (24). This is
mainly because (17) does not hold for all arbitrary mixing
matrices.
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Fig. 2. Probabilities curves obtained in Example 2. In the left subplot, solid curves with “ ”: probability curves of ; dotted
curves with “ ”: probability curves obtained in the noisy case. The five pairs of solid and dotted curves from top to bottom correspond to ,
respectively. -axis label represents the number of nonzeros of the source vectors. In the right subplot, the solid curve with “ ” depicts our estimated probabilities

, , while the dashed curve with “ ” represents the true equivalence probabilities obtained in the noisy case.

Furthermore, from (23) and (24), it is not difficult to extend
(14) and (15) for the noisy case.

Example 2: This example contains two parts, in which we
demonstrate the validity of (22) and (24), respectively.

i) First, we always set . For ,
we randomly generate five matrices denoted as

according to the uniform distribution in .
For each , the probabilities

, , are calculated based on (21) or by the
sampling method.

Second, for each , we consider the noisy model with
the zero mean Gaussian noise, where the average signal-to-noise
ratio (SNR) is 18.8 dB. For each , we randomly take 1500
source vectors (0-norm solutions) with nonzeros, each of
which is taken from the uniform distribution in . By
checking (16), we can find the number of the source
vectors which can be recovered by solving . Note that
in (16) is 0.1 here. In this way, we obtain the true equivalence
probability estimate in the noisy case.

The left subplot of Fig. 2 shows our simulation results, from
which (22) is demonstrated.

ii) We now demonstrate (24) by simulations. We set ,
, i.e., . For , where

, we calculate the probabilities
according to (8). Next, for each , we take 1500 pairs of mixing
matrices and source vectors (0-norm solutions). All these
mixing matrices are 7 9 dimensional and their entries are

randomly valued in . The 1500 source vectors are taken
as follows:

(25)

where is drawn from the uniform distribution valued
in . From (25), we can see that the sparsity degree of
the source vectors is .

For each pair of source vectors and mixing matrices, we
solve the linear programming problem with the zero
mean Gaussian noise, where the average SNR is also 17.3 dB.
By checking (16), with , we can determine whether
a source vector is recovered. Suppose that source vectors
can be recovered in the noisy case, and thus, we obtain the
ratio , which reflects the true probability

that the source vectors can be recovered
in the noisy case under the distribution parameter .

The curves of and are shown in
the right subplot of Fig. 2, which fit very well. Therefore, if the
noise is sufficiently small, (24) still holds.

The parameter in (16) should be determined depending on
real tasks. If is very small, then the SNR in the noisy model
should be large, and vice versa. After is given, we can deter-
mine the approximate lower bound SNR by simulations as in
Example 2. If the SNR is not sufficiently large, then the true
probability estimated in the noisy case will be smaller than its
corresponding theoretical estimate.
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TABLE III
AVERAGE SPARSITY DEGREES OF SIGNALS IN THE TIME-FREQUENCY DOMAIN CORRESPONDING TO DIFFERENT NUMBERS OF THE LEVELS OF WPT

In this section, we have illustrated that the equivalence proba-
bility estimates (21) (presented in Appendix I) and the relation-
ships (7) and (8) can be extended for the case when the noise is
sufficiently small.

V. APPLICATION IN UNDERDETERMINED BSS

It is well known that sparse representation can be used in
underdetermined BSS. The higher the sparsity degrees of the
sources are, the better is the performance of BSS [16]. In this
section, we illustrate the application of our results in underde-
termined BSS.

We consider the following linear mixing model:

(26)

where is an observed mix-
ture matrix, is an unknown mixing matrix, and

is an unknown source ma-
trix. Each row of is a mixture signal, while each row of is a
source. The task of BSS is to estimate using . In this paper,
we assume that . Thus, BSS here is underdetermined.

We use a two-stage clustering-then- -optimization approach
for the underdetermined BSS [19]. If the unknown sources are
sufficiently sparse, the two-stage sparse representation approach
can be directly applied to . Based on the known mixture matrix

, the mixing matrix is estimated in the first stage, and the
source matrix is estimated in the second stage by solving the
optimization problem . However, real-world sources may
not be sparse. In this case, we first apply a wavelet packet trans-
form (WPT) to all mixtures for producing sparsity, and then per-
form BSS in the time-frequency domain. (In this paper, we al-
ways use Daubechies WPT). Since WPT is linear, we have

(27)

where the th row of is obtained by applying WPT to the th
row of , the th row of is the transformed
source corresponding to the th row of . Based
on the principle of transform sparsity [24], each transformed
mixture signal or each transformed source is sparse.

After we estimate through BSS in the time-frequency do-
main, we reconstruct the source matrix by applying the in-
verse WPT to each row of the estimated (which denotes the
estimate of ). Denote the th rows of and as and , re-
spectively, . Although there generally exists an
error between and , each entry of has a corresponding
estimate in . Thus, we can apply the inverse WPT to to re-
construct the source . In recent years, the field of compressed
sensing has received a lot of attention [24]–[26]. If only part of
entries of are estimated and the locations of these estimated
entries in are unknown, then compressed sensing method can
be used to reconstruct the source . If the error between and

is considered, an interesting research problem may arise here:
Is compressed sensing method useful here in reconstructing the

source using the nonzeros of and better than the inverse
WPT in performance? This problem will be studied in our fu-
ture work.

The procedure for estimating the mixing matrix has been
discussed in [16]. When the mixing matrix is estimated correctly
(or sufficiently accurately estimated), we need to discuss the re-
coverability problem, which can be rephrased as the question:
How is it possible for the 1-norm solution to be equal to the true
source vector? As stated before, this recoverability problem can
be understood as the equivalence problem between the 0-norm
and 1-norm solutions. In the following example, we will illus-
trate how to use the sparsity degree constraint (corresponding
to an equivalence probability threshold) shown in Tables I and
II to guarantee a satisfactory performance of BSS, and how to
achieve these sparsity degree constraints.

Example 3: In this example, natural speech signals are ana-
lyzed. Since natural speech signals are not sufficiently sparse,
we first apply a wavelet packet transform (WPT) to all mix-
tures. Thus, we consider the model (27) in the following. We
need to choose a suitable level number of the WPT such that
the average sparsity degree of these transformed mixture sig-
nals is larger than . BSS is then performed in the
time-frequency domain. With this approach, we ensure that the
recoverability probability constraint is satisfied in the ana-
lyzed domain and guarantee a satisfactory performance of BSS.

To determine the number of levels of the WPT, we perform
the ten-level Daubechies WPT to eight speech sources and six
mixtures of the eight sources, and estimate the probabilities (i.e.,
the sparse degrees) with which the time-frequency coefficients
are equal to zero. If the absolute value of a coefficient is less
than , where is the maximum of absolute values of
all the coefficients, then this coefficient is taken to be zero. By
calculating the ratio of zeros in all coefficients, we estimate the
probability with which the coefficients are equal to zero. The
second row of Table III lists the ten average sparsity degrees
of the eight sources corresponding to ten levels of WPT, while
the third row lists the tne average sparsity degrees of the six
mixtures.

We now consider BSS of speech mixtures, in which the
mixing matrix is 6 8 dimensional. From Table II, the sparsity
degree of mixtures should be larger than 0.2 such that the
recoverability probability is larger than 0.95. From Table III,
we find that if we apply the seven-level WPT to the mixtures,
then the average sparsity degree of the transformed mixtures is
0.22. That is, we can first perform the seven-level WPT to all
mixtures to produce sparsification, and then carry out BSS in
the time-frequency domain. Subsequently, the sources in the
time domain are reconstructed by applying the inverse WPT
to the transformed sources estimated in the time-frequency
domain. In Fig. 3, the eight original speech sources are shown
in the first row, the six mixtures are shown in the second row,
and the recovered sources based on the seven-level WPT are
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Fig. 3. Separation results in Example 3. The first row: eight speech sources; the second row: six mixtures; the third row: eight recovered sources based on a
seven-level WPT; the fourth row: eight recovered sources based on a one-level WPT; the fifth row: eight recovered sources based on sparse representation in the
time domain (without WPT).

shown in the third row. We compare the eight original sources
and the eight recovered sources, respectively, and obtain the
average SNR 15.9 dB, where the difference (or error) between
the original sources and the recovered sources is taken as
noise. Therefore, we find that the sparsity degree of mixtures
produced by the seven-level Daubechies WPT is sufficient for
blind separation of the speech sources in this example.

For the purpose of comparison, we also perform the one-level
WPT to all the mixtures to produce sparsification, and then
carry out BSS in the time-frequency domain. The fourth row
of Fig. 3 shows our separation results (recovered sources). We
compare the eight original sources and these eight recovered
sources (shown in the fourth row), and obtain the average SNR
9.6 dB. Furthermore, without performing any WPT to the mix-
tures, we directly perform source separation in the time domain
using sparse representation. The fifth row of Fig. 3 shows our
separation results (recovered sources). We compare the eight
original sources and these eight recovered sources (shown in the
fifth row), and obtain the average SNR 8.7 dB. Therefore, the
performance of separation based on the one-level Daubechies
WPT is significantly worse than that based on the seven-level
Daubechies WPT. This is because the sparsity degree of mix-
tures produced by the seven-level Daubechies WPT is not suffi-
cient for blind separation of the speech sources, and so does the
performance of the separation in the time domain.

In this example, although the sparsity degrees for the eight
speech sources are different in general, we still use the spar-
sity degree constraint on the mixtures in Table II. As stated
in Section III, this sparsity degree constraint on the mixtures
corresponds to the geometric mean of the sparsity degrees of
the sources. Furthermore, the recoverability probability for each
source vector is larger than 0.95. Additionally, noise is not con-
sidered in Example 3. The readers can deal with the noisy model

similarly as above.

VI. CONCLUSION

In the sparse representation of signals, we often focus on the
two sparse solutions, the 0-norm and 1-norm solutions. The first

solution is the most sparse, while the second solution is rela-
tively easier to obtain. In this paper, the equivalence problem of
these two sparse solutions was discussed within a probabilistic
framework. We first defined the sparsity degree of a random
variable or a signal sequence. The equivalence probability es-
timation is discussed when all the entries of the 0-norm solution
have different sparsity degrees. For a given basis matrix as well
as a random basis matrix, we established two relationships. The
first is between the sparsity degree vector of the 0-norm solution
and the equivalence probability, while the second is between
the sparsity degree of the observed signal vector (mixture) and
the equivalence probability. The computational burden for esti-
mating the equivalence probability increases exponentially as
(the number of the dimension of the 0-norm solution) increases.
The sampling method can be used to resolve this computational
complexity problem. We further show that these theoretical re-
sults are still effective when the noise is sufficiently small. Fi-
nally, we illustrate how to use the two relationships to guarantee
a satisfactory performance in BSS.

APPENDIX I
THE SAMPLING METHOD FOR ESTIMATING THE

EQUIVALENCE PROBABILITY

In this appendix, we mainly discuss the empirical estimation
of two equivalence probabilities presented in [16] and [17], re-
spectively, when is large.

When all entries of are drawn from a distribution
(e.g., a uniform distribution valued in ), then the equiva-
lence probability depends on , , and the number of nonzeros
of . Hence, we denote

(28)

where is a conditional probability
(with the condition ).

Let
, which is a set of sign vectors with nonzero entries. Obvi-

ously, there are vectors in , where .
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Lemma 1 [16]: For a given basis matrix , suppose that there
are sign column vectors in that can be recovered by solving

. Then, we have

(29)

where .
When the basis matrix is given, we can check how many sign

vectors with nonzeros can be recovered by solving and
then calculate the equivalence probability using (29). To calcu-
late the probability in (29), we need to check sign vectors
and find the number of sign vectors which can be recovered by
solving . Thus, when increases, the computational burden
for estimating the probability in (29) will increase exponentially.
The following theorem provides a solution to this problem.

Theorem 2: Suppose that sign vectors are randomly taken
from , where is a large positive integer (
when is large), and of the sign vectors can be recovered
by solving linear problem . Then

(30)

Proof: Let , where contains the vectors
that can be recovered by solving , . For a sign
vector with nonzero entries, we have

(31)

Now we define a sequence of random variables using the
set of sign vectors

if
if

(32)

where is a sign vector randomly taken from .
From (31), we have ,

. Therefore, , , are independent
identically distributed random variables with the expected value

.
According to the law of large numbers (Bernoulli) in prob-

ability theory, the sample average converges
towards the expected value , where is a sample of the
random variable . Furthermore, the condition in this theorem
implies that . Thus, when is suf-
ficiently large

(33)

The theorem is proven.
From Theorem 2, to estimate the probability

when is large, we need not check all
sign vectors. It is sufficient to randomly take sign

vectors from , and determine how many of the sign
vectors which can be recovered by solving .

When the basis is random, we have the following approxima-
tion of the equivalence probability [17]:

(34)

where are random samples of , and is a
small positive integer (5 in the simulation examples in [17]).

Fig. 4. Probabilities curves obtained in Example 1. Solid curves with “ ”:
probability curves of obtained by (29);
dotted curves with “ ”: probability curves obtained by a sampling method. The
five pairs of solid and dotted curves from the top to the bottom correspond
to , respectively. Axis label represents the number of
nonzeros of source vectors.

When is large, as stated previously, the probability
on the right-hand side of (34)

can be estimated by (30). Therefore, when the basis is random,
the equivalence probability can still be estimated by
the sampling method.

A problem may arise here. When increases, does the
number of samples need to increase exponentially (just like
the number of sign vectors)? From the proof of Theorem 2,

, which controls the precision in the approximation of (33),
i.e., the precision of the sampling estimation, is related to the
two-point distribution of other than the size of . Thus,
there is no need for increasing exponentially as increases.
In the following simulation Example 4, we will demonstrate
this conclusion as well as the conclusion in Theorem 2.

Example 4: In this example, we always set . For
, we randomly generate five matrices denoted as

according to a uniform distribution
in .

For each , we first calculate the probabilities
according to (29), . Note that

for . The number
of sign vectors increases exponentially as increases. This
leads to an exponential increase of the computational burden
for estimating these probabilities. For example, for

, we need to solve 19 170, 52 904, 135 674, 322 544,
714 194 optimization problems, respectively. This makes the es-
timates difficult to obtain for large (e.g., ).

From Theorem 2, for a given matrix , we can estimate these
probabilities by a sampling method. For each , we randomly
take 3000 sign vectors, and find the number of sign vec-
tors which can be recovered by solving . Then, we obtain
the equivalence probability estimate .

Fig. 4 shows our simulation results. From Fig. 4, we have
two conclusions: 1) the probabilities estimated by the sampling
method reflect their corresponding theoretical values well; 2)
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the number of samples in Theorem 2 need not increase ex-
ponentially as increases. Thus, the computational complexity
in (29) can be avoided.

APPENDIX II
THE PROOF OF (20)

We now prove (20) using four steps.
First, (19) and its condition imply that

(35)

That is

(36)

Next

(37)

where the last inequality is based on (36) and that
.

Third, obviously

(38)

From (18) and (38), if , then
. Furthermore, considering (37), we have

(39)

Fourth, if , it follows from (18) that

(40)

Thus

(41)

where the second inequality is based on (39).
Considering that in (41) is small, we have (20), i.e., the

two recoverability probability and
are close to each other.
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