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Abstract The focus of this paper is on joint feature re-extraction and classification in cases
when the training data set is small. An iterative semi-supervised support vector machine
(SVM) algorithm is proposed, where each iteration consists both feature re-extraction and
classification, and the feature re-extraction is based on the classification results from the
previous iteration. Feature extraction is first discussed in the framework of Rayleigh coef-
ficient maximization. The effectiveness of common spatial pattern (CSP) feature, which is
commonly used in Electroencephalogram (EEG) data analysis and EEG-based brain com-
puter interfaces (BCIs), can be explained by Rayleigh coefficient maximization. Two other
features are also defined using the Rayleigh coefficient. These features are effective for
discriminating two classes with different means or different variances. If we extract fea-
tures based on Rayleigh coefficient maximization, a large training data set with labels is
required in general; otherwise, the extracted features are not reliable. Thus we present an
iterative semi-supervised SVM algorithm embedded with feature re-extraction. This itera-
tive algorithm can be used to extract these three features reliably and perform classification
simultaneously in cases where the training data set is small. Each iteration is composed of
two main steps: (i) the training data set is updated/augmented using unlabeled test data with
their predicted labels; features are re-extracted based on the augmented training data set.
(ii) The re-extracted features are classified by a standard SVM. Regarding parameter setting
and model selection of our algorithm, we also propose a semi-supervised learning-based
method using the Rayleigh coefficient, in which both training data and test data are used.
This method is suitable when cross-validation model selection may not work for small train-
ing data set. Finally, the results of data analysis are presented to demonstrate the validity of
our approach.
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1 Introduction

In many classification applications, collection labeled instances for training a model is ei-
ther difficult, expensive, or time-consuming. However unlabeled data may be relatively
easy to obtain. If only a small amount of labeled data and a large amount of unla-
beled data are available, semi-supervised learning can often provide us with a satisfac-
tory classifier. In recent years, semi-supervised learning has received considerable atten-
tion due to its potential for reducing the effort of collecting labeled training data. Existing
semi-supervised algorithms include expectation maximization (EM) algorithm, self-training
algorithms (Nigam and Ghani 2000), co-training algorithms (Nigam and Ghani 2000;
Blum and Mitchell 1998), entropy minimization (Grandvalet and Bengio 2004), graph-
based methods (Zhou et al. 2004), etc. By extending vector machines with unlabeled data,
transductive support vector machines (TSVMs) were developed in (Vapnik 1998). Since
the optimization problem of a TSVM is non-convex and finding the exact TSVM solution
is NP-hard, several approximations have been established (Joachims, 1999, 2002; Bennett
and Demiriz 1998; Demiriz and Bennett 2000; Fung and Mangasarian 2001; Chapelle and
Zien 2005). In several other studies (Park and Zhang 2004; Brefeld and Scheffer 2004;
Kockelkorn et al. 2003; Kiritchenko and Matwin), a multi-view co-training support vector
machine and its variants were presented. For text classification, experiments have clearly
shown that the co-training SVM outperforms the co-training naive Bayes (Kiritchenko and
Matwin).

In pattern recognition and machine learning, it is often useful to apply a transformation
to the raw data (i.e. feature extraction) before classification. This transformation can be lin-
ear, e.g. linear discriminant analysis (LDA), principal component analysis (PCA). It can
also be nonlinear, e.g., kernel transformation. In many cases, determining the transforma-
tion for feature extraction needs a large amount of labeled data. One example is common
spatial pattern (CSP) feature extraction in Electroencephalogram (EEG) data analysis and
EEG-based brain computer interfaces (BCIs). The CSP feature of EEG signals, which corre-
sponds to event-related de-synchronization (ERD) and event-related synchronization (ERS)
evoked by motor imagery or movements, is very effective in discriminating several motor
imageries (Pfutscheller et al. 1997; Blanchard and Blankertz 2004; Ramoser et al. 2000;
Wolpaw et al. 2002). However, reliable CSP feature extraction relies on a time-consuming
training process to gather labeled data, which is needed for determining a spatial filter ma-
trix, also known as the CSP transformation matrix. Another example is in Fisher discrimi-
nant analysis (FDA) and linear discriminant analysis (LDA), in which we need to determine
a transformation vector or matrix using labeled data. If the number of labeled data is not
large enough, the extracted features are not reliable. This, in turn, will lead to a low accu-
racy rate in subsequent classification. Therefore extracting reliable features for small training
data set is an important issue, which seems to have not been sufficiently addressed so far.

Extracting reliable features and performing classification simultaneously, when the train-
ing data set is small, is the main focus of this paper. We will first discuss feature extraction
through Rayleigh coefficient maximization. One can find that CSP features can be explained
under this framework. Furthermore, using the Rayleigh coefficient, we present two other
features, one is for discriminating two classes with different means, the other is for discrim-
inating two classes with different variances. In the extraction of these three features, a large
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training data set is generally needed for determining a transformation matrix. If the training
data set is small and these features are extracted directly, the features will not be reliable. In
this case, standard semi-supervised learning methods will not work well (Zhou et al. 2003).
We will propose a solution to this problem, using an iterative semi-supervised SVM algo-
rithm for joint feature extraction and classification for a small training data set. As shown in
(Chapelle et al. 2006), semi-supervised learning relies on certain assumptions, e.g. cluster
assumption: If points are in the same cluster, they are likely to be of the same class. Since
SVM is used as a classifier in this paper, our semi-supervised algorithm also relies on the
cluster assumption.

In each iteration of the proposed algorithm, the training data set is updated using the test
data (whose labels have been predicted in the previous iteration). In this way, we practically
have more data for training. Based on the updated training data set, features are then re-
extracted and classified by a standard SVM. The improvement in prediction accuracy in
one iteration leads to higher quality of features in the next iteration, and the latter leads to
a further improvement in the subsequent prediction accuracy and so on. This is the main
difference between our method and the conventional semi-supervised algorithms.

There are several existing algorithms for classification with feature selection e.g. in (Kr-
ishnapuram et al. 2004; Weston et al. 2002). In comparison, our method is different from
others: the features in our algorithm are iteratively re-extracted and classified, and the fea-
ture re-extraction is based on both training data set and test data set with predicted labels in
each iteration. In (Li and Guan 2006), an extended EM algorithm for joint feature extraction
and classification is proposed. Comparing the iterative semi-supervised SVM algorithm in
this paper with that in (Li and Guan 2006), there are several major differences: (i) The clas-
sifier used in this paper is SVM rather than naive Bayes classifier as in (Li and Guan 2006);
(ii) Our simulations show that the Rayleigh coefficient increases in the iterations of the algo-
rithm of this paper. The effectiveness of the iterative semi-supervised SVM algorithm can be
explained under the framework of the Rayleigh coefficient. (iii) A semi-supervised learning-
based method is presented in this paper for parameter setting and model selection in small
training data case. In this method, both training data and test data (without labels) are used.
(iv) The feature used in (Li and Guan 2006) is limited to CSP features and the correspond-
ing application is limited to EEG data analysis and BCIs. In this paper, we discuss feature
extraction based on Rayleigh coefficient maximization. Besides the CSP feature, we also de-
fine two other features. Therefore, the range of applications of our iterative semi-supervised
SVM algorithm can be extended beyond EEG data analysis.

The remainder of this paper is organized as follows. We discuss feature extraction based
on Rayleigh coefficient maximization in Sect. 2. An iterative semi-supervised SVM algo-
rithm is proposed in Sect. 3. We also present a method for parameter setting and model se-
lection in small training data case. Three examples of data analysis are presented in Sect. 4
to demonstrate the validity of our algorithm. Conclusions in Sect. 5 review the approach in
this paper.

2 Feature extraction based on Rayleigh coefficient maximization

In this section, we first present a brief description of Rayleigh coefficient maximization, then
discuss the extraction of three features under this framework.
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2.1 Rayleigh coefficient maximization

Many algorithms for feature extraction can be deduced by maximizing the following
Rayleigh coefficient (Mika 2002),

maxJ (q) = qT SI q
qT SN q

, (1)

where SI and SN are symmetric m × m matrices designed such that they can measure the
desired information and the undesired noise along the direction of q.

For example, in Fisher discriminant analysis, SI and SN are the between class scatter and
the within class scatter matrices respectively.

The ratio in (1) is maximized when one covers the desired information as much as possi-
ble while avoiding the undesired. The solution of (1) can be obtained by solving the follow-
ing generalized eigenproblem,

SI q = λSN q (2)

where λ is a generalized eigenvalue, and q is a generalized eigenvector corresponding to λ.
Note that there are m generalized eigenvectors, which can be obtained by jointly diagonal-
izing two matrices SI and SN .

2.2 CSP feature extraction

CSP features of EEG signals are very effective in discriminating different motor imageries
and are commonly used in BCIs and EEG data analysis. In the following, we will briefly
illustrate CSP feature extraction and explain how CSP feature extraction can be deduced
under the framework of the Rayleigh coefficient. More details on CSP feature extraction can
be found in (Blanchard and Blankertz 2004) etc.

Suppose that {(A(j), y(j)), j = 1, . . . ,N} is a training data set for two classes, where
A(j) ∈ Rm×L, label y(j) = 1 or −1. In EEG data, m and L represent the numbers of chan-
nels and time samples respectively. Let us define the second order correlation matrices Γ (1)

and Γ (2),

Γ (1) =
∑

j∈CL1

A(j)AT (j)

trace(A(j)AT (j))
, Γ (2) =

∑

j∈CL2

A(j)AT (j)

trace(A(j)AT (j))
, (3)

where CL1 and CL2 represent the two classes of training data.
First, we calculate a transformation matrix Q to jointly diagonalize matrices Γ (1) and

Γ (2) (Vapnik 1998). Noting that Γ (1) and Γ (2) are two symmetric matrices, we can find an
orthogonal matrix U with its first row being nonnegative such that

UT (Γ (1) + Γ (2))U = Λ, (4)

where Λ = diag(λ1, . . . , λm), λ1, . . . , λm are the positive eigenvalues of Γ (1) +Γ (2) arranged
in descending order.

Let

Ū = UΛ− 1
2 , (5)

then we have

ŪT (Γ (1) + Γ (2))Ū = I, (6)
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where I is an identity matrix.
Define

Γ̄ (1) = ŪT Γ (1)Ū = Λ− 1
2 UT Γ (1)UΛ− 1

2 . (7)

Obviously, Γ̄ (1) is still a symmetric matrix. Diagonalize Γ̄ (1) as follows,

VT Γ̄ (1)V = diag(λ̃1, . . . , λ̃m), (8)

where V is a orthogonal eigenvector matrix of Γ̄ (1) with its first row being nonnegative, and
λ̃1, . . . , λ̃m are the eigenvalues of Γ̄ (1), which are sorted in a descending order.

Set

Q = UΛ− 1
2 V. (9)

Then Q jointly diagonalize matrices Γ (1) and Γ (2).
Next, we construct a matrix Q̄, which is composed of the first l1 and the last l2 columns

of Q (Blanchard and Blankertz 2004). For data matrix Xj ∈ Rm×L, the CSP feature vector
is defined as

xcsp(j) = diag(Q̄T Xj XT
j Q̄) = [‖f1‖2

2, . . . ,‖fl1+l2‖2
2]T , (10)

where f1, . . . , fl1+l2 denote the l1 + l2 rows of the transformed data matrix Q̄T Xj .

Remark 1 The joint diagonalization matrix Q defined in (9) is generally unique. This can be
explained as follows. From the theory of linear algebra, if a symmetric m × m matrix has m

different eigenvalues, then any two eigenvectors corresponding to two different eigenvalues
are orthogonal, and each eigenspace corresponding to a eigenvalue is one dimensional. Thus
the eigenvector corresponding to an eigenvalue is unique up to a scale. Since Γ (1) + Γ (2)

is symmetric and it has m different eigenvalues generally, the normalized and orthogonal
matrix U in (4), with its first row set to nonnegative, is unique. Furthermore, the normalized
and orthogonal matrix V in (8), with its first row set to nonnegative, is also unique. This is
because the symmetric matrix Γ̄ (1) in (7) generally has m different eigenvalues: Considering
that U is orthogonal, UT Γ (1)U has the same eigenvalues as those of Γ (1). If Γ (1) has m

nonzero eigenvalues, then UT Γ (1)U also has m nonzero eigenvalues. By multiplying the
diagonal matrix Λ− 1

2 (with m different diagonal entries) on both sides of UT Γ (1)U, we
observe that this will result in m different eigenvalues in Γ̄ (1) = Λ− 1

2 UT Γ (1)UΛ− 1
2 . When

U and V are uniquely determined, Q is unique.

From (10), the CSP feature vector can be regarded as a variance vector, of which each
entry, ‖fi‖2

2, is the variance of one row in the transformed data matrix Q̄T Xj . Therefore,
we can see that CSP features can be used for discriminating the two classes with different
variances.

In the following, we show the above CSP feature extraction can be implemented by
maximizing a Rayleigh coefficient and hence solving a generalized eigenvalue problem.

We define SI and SN in (1) as

SN = Γ (1) + Γ (2), SI = Γ (1) − Γ (2). (11)

Note that for SI and SN defined in (11), the Rayleigh coefficient in (1) might be negative. In
this case, we will find the maximal absolute value of the Rayleigh coefficient.
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Through Rayleigh coefficient maximization, a matrix which jointly diagonalizes matrices
SI and SN is obtained. It is not difficult to prove that this matrix also jointly diagonalizes
matrices Γ (1) and Γ (2). That is to say, the transformation matrix Q in CSP feature extraction
can be obtained by Rayleigh coefficient maximization.

2.3 Fisher discriminant feature extraction

In FDA for two class problems, SI and SN in (1) are defined as

SI = (m2 − m1)(m2 − m1)
T , SN =

∑

i=1,2

∑

x∈Ci

(x − mi )(x − mi )
T , (12)

where m1 and m2 are the mean vectors of two classes, C1 and C2 represent two classes.
Using SI and SN in (12), we can define a Rayleigh coefficient as in (1).

Since the rank of SI in (12) is one, there is only one generalized eigenvector (up to a
scale) which maximizes the Rayleigh coefficient in (1). This eigenvector corresponds to
the nonzero generalized eigenvalue. The other m − 1 independent generalized eigenvectors
correspond to eigenvalue zero. Therefore, through the standard Fisher discriminant (FD) ap-
proach, we cannot obtain a transformation matrix such that all its column vectors maximize
the corresponding Rayleigh coefficient. In the following, we use a regularization approach
for feature extraction through defining

SI = (m2 − m1)(m2 − m1)
T + αI, SN =

∑

i=1,2

∑

x∈Ci

(x − mi )(x − mi )
T , (13)

where α is a predetermined positive parameter. In Appendix 1, we will explain the principle
for setting α: α should be set small such that the largest generalized eigenvalue and corre-
sponding generalized eigenvector are close to those obtained in normal FDA with α = 0.
In this way, the advantage of normal FDA in maximizing the Rayleigh coefficient can be
retained. In this paper, α is always set to 0.05.

In (Mika et al. 1999), a regularization was imposed on the SN to deal with the ill-posed
case (e.g. SN may be close to singular and not positive definite). In this paper, we impose
regularization on SI rather than SN . As will be seen, SN is calculated using training data and
large amounts of test data in our algorithm. It is positive definite and nonsingular. Our main
objective is to extract multi-dimensional features. The benefit of multi-dimensional feature
extraction can be seen in Appendix 1 (Part B).

Through Rayleigh coefficient maximization, we obtain a matrix Q which jointly diag-
onalizes the two matrices SI and SN defined in (13). We then construct a transformation
matrix Q̄, which is composed by the first l1 columns of Q, for feature extraction.

Remark 2 The above FD feature extraction is also suitable for the case where data samples
are matrices. In this case, m1 and m2 are mean matrices of two classes. (m2 − m1)(m2 −
m1)

T may be of full rank. If it is the case, α in (13) can be set to zero.

After the transformation matrix Q̄ is determined, we define two features here.

(i) For data vector Xj , we define feature vector xf d1(j) as

xf d1(j) = Q̄T Xj . (14)
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(ii) For a data vector or a data matrix Xj , we define feature vector xf d2(j) as

xf d2(j) = diag(Q̄T Xj XT
j Q̄). (15)

Hereafter, features xf d1 and xf d2 are called feature FD1 and feature FD2 respectively.
Similar to the CSP feature, feature FD2 is also suitable for discriminating the two classes
with different variances. Additionally, FD2 feature extraction is similar with a matrix style
FDA (Kong et al. 2005) when the data is two dimensional.

Through regularization in (13), we can extract multi-dimensional features as above. Fur-
thermore, we can find that SI in (13) has m nonzero eigenvalues, and SN has m different
eigenvalues generally. From Remark 1, the joint diagonalization matrix Q and the extracted
features can be uniquely determined. This is another benefit brought by regularization. In
fact, the first column of Q can be close to that of FDA when the parameter α in (13) is
sufficiently small (see Appendix 1). The first column of Q maximizes the numerator of (1)
i.e. inter-class scatter, and simultaneously minimizes the denominator of (1) i.e. within-class
scatter. The other columns mainly minimize the denominator of (1). This is because all the
last m − 1 eigenvalues of SI in (13) are equal to α.

We now compare the CSP feature with the above two features from two aspects. (i) From
the definitions of the above three features, only feature FD1 in (14) is for discriminating
two classes with different means. the CSP feature and feature FD2 in (15) discriminate two
classes with different variances. (ii) Although feature FD2 and the CSP feature have similar
definitions (see (10) and (15)), their transformation matrices (all denoted as Q̄) are obtained
by maximizing different Rayleigh coefficients. In Table 1, we summarize these three features
in this paper.

3 An iterative semi-supervised SVM algorithm for joint feature extraction and
classification

In this section, we will propose an iterative semi-supervised SVM algorithm for joint feature
extraction and classification. Two important problems, the effectiveness of the algorithm,
parameter setting and model selection, are also discussed.

3.1 Algorithm

From the discussion in Sect. 2, a training data set is needed to determine a transformation
matrix Q̄ for feature extraction. This transformation matrix is obtained by jointly diagonal-
izing two matrices SI and SN , where the definitions of SI and SN depend on the features
used here (see Table 1). Since the entries of these two matrices are statistically estimated,
it is desired to have sufficient training data for good estimation. However, the process for
collecting training (labeled) data is time consuming in general. It is very important to re-
duce the training effort (for collecting labeled data) in many real-world applications. In the
following, we present an iterative semi-supervised SVM algorithm, which jointly performs
feature extraction and classification for small training data cases.

In each iteration of our algorithm, the following standard SVM is used for classification.

min
1

2
‖w‖2 + C

N∑

i=1

ξi

subject to yi(wT x(i) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . ,N,

(16)
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Table 1 Summary of features

CSP feature FD1 feature FD2 feature

SI Γ (1) − Γ (2) (m2 − m1)(m2 − m1)T + αI (m2 − m1)(m2 − m1)T + αI

SN Γ (1) + Γ (2) ∑
i=1,2

∑
x∈Ci

(x − mi )(x − mi )
T ∑

i=1,2
∑

x∈Ci
(x − mi )(x − mi )

T

Data type Matrix or vector vector Matrix or vector

Definition diag(Q̄T Xj XT
j

Q̄) Q̄T Xj diag(Q̄T Xj XT
j

Q̄)

Discriminate
means/variances

variances means variances

where x(i) ∈ Rn is a training sample (feature vector), yi ∈ {−1,1} is the label of x(i) (i =
1, . . . ,N ), C > 0 is a regularization constant.

In the kth iteration of the following algorithm, we first re-extract n dimensional feature
vectors denoted as xk , then apply SVM to these feature vectors for classification. Note that
n is an hyperparameter. The feature refers to one of the three types of features, which have
been presented in Sect. 2.

Algorithm 1

Step 1 (Initialization) Two raw data sets are given: DI with labels and DT without labels.
We use DI for initial training, and use DT for testing. Suppose that DI and DT con-
tain N1 and N2 data samples respectively. For the first iteration, we train a transfor-
mation matrix Q̄1 based on DI and its labels. Using Q̄1, we extract features for both
DI and DT . The features of DI are denoted as x1(i), i = 1, . . . ,N1, while the fea-
tures of DT are denoted as x1(i), i = N1 + 1, . . . ,N1 +N2. With the features {x1(i),
i = 1, . . . ,N1} and their corresponding labels, we train a SVM which is described
in (16). We then apply this SVM to the features {x1(i), i = N1 + 1, . . . ,N1 + N2}
to perform classification for DT . We obtain the predicted labels of DT and denote
them as [y1(1), . . . , y1(N2)] (where the subscript 1 of Q̄1 and y represents the first
iteration).

Step 2 The kth iteration (k = 2,3, . . .) follows Steps 2.1–2.4.

Step 2.1 (Update the training data set) We form a new training data set Dk

using the samples of DI (with given labels) and the samples of DT

(with predicted labels), i.e. Dk = DI + DT . The predicted labels of
DT are: [yk−1(1), . . . , yk−1(N2)] obtained in the (k − 1)th iteration.
In fact, the samples of Dk do not change, only the labels of DT ,
[yk−1(1), . . . , yk−1(N2)], are updated in this step.

Step 2.2 (Feature re-extraction) Next, the features {xk−1(i), i = 1, . . . ,N1 + N2}
extracted from DI and DT in the previous iteration are updated. Based on
the training data set Dk , we regenerate a transformation matrix denoted
as Q̄k for feature extraction. Using Q̄k , we re-extract features for both DI

and DT . The features of DI are denoted as xk(i), i = 1, . . . ,N1, while
the features of DT are denoted as xk(i), i = N1 + 1, . . . ,N1 + N2 (the
subscript k refers to the kth iteration).

Step 2.3 (Classification) A new SVM is trained using the re-extracted feature
vectors {xk(i), i = 1, . . . ,N1 + N2} and their corresponding labels.
Note that the labels of {xk(i), i = N1 + 1, . . . ,N1 + N2} used here are
[yk−1(1), . . . , yk−1(N2)]. We then perform classification for DT using its
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feature vectors {xk(i), i = N1 + 1, . . . ,N1 + N2}, and obtain the new pre-
dicted labels denoted as [yk(1), . . . , yk(N2)].

Step 2.4 Calculate the ratio which reflects the difference of the labels of the test
data set predicted in the kth and (k − 1)th iteration,

r(k) =
∑N2

i=1 |yk(i) − yk−1(i)|
2N2

. (17)

Step 3 (Termination) If |r(k)| < α0 or if k = K0, then the algorithm terminates after the kth
iteration, where α0 is a pre-determined positive constant, K0 is a pre-determined
positive integer. [yk(1), . . . , yk(N2)] for the test set DT are the final classification
results. Otherwise, go to Step 2 to perform the (k + 1)th iteration.

In Step 3 of Algorithm 1, we use two parameters α0 and K0 to terminate the iterations.
Generally, we can set α0 small in order to make the labels predicted in the last two consec-
utive iterations as consistent as possible. If α0 is too small to terminate the iterations, then
the algorithm will end after K0 iterations. From our extensive simulations, we observe that
this algorithm typically converges in 10 iterations. Thus we suggest that K0 can be set less
than 15. In this paper, α0 and K0 are set to 0.005 and 10 respectively.

If the feature used in Algorithm 1 is a CSP feature, then the transformation matrices Q̄k is
trained with the two matrices SI and SN defined in (11). For the other two types of features,
the transformation matrices Q̄k is trained with the two matrices SI and SN defined in (13).

As in general semi-supervised learning algorithms, Algorithm 1 uses its own predictions
to improve its own performance. This may lead to a problem of “data-incest” where errors
are re-enforced along with the correct classifications. One way to deal with this problem is
to make a “smarter” use of the predicted labels other than simply using them again (Tong
and Koller 2001; Zhu et al. 2003). This may further improve the quality of features and clas-
sification accuracy. Thus combining feature selection in a more subtle way with a smarter
use of the predicted labels could be a direction of future research.

3.2 Discussions

In this subsection, we first discuss parameter setting and model selection, then present some
explanation on the effectiveness of our algorithm.

A. Parameter setting and model selection
In Algorithm 1, we need to set two important parameters, the dimension of the feature

vectors, n (the number of columns of Q̄k) and the regularization parameter C of SVM.
We do not use cross-validation on training data set to search C and n due to two reasons:
First, Algorithm 1 is designed to work with small training data set. Cross-validation in small
training data set may not be reliable; Second, features extracted from a small training data
set also may not be reliable for parameter setting and model selection.

Now we present a semi-supervised learning-based method for determining C and n by
the help of test data (without labels) and the Rayleigh coefficient. In this method, we search a
combination of C and n values on a finite grid with C ∈ {C1, . . . ,CK1} and n ∈ {n1, . . . , nK2}
as in LDS algorithm (Chapelle and Zien 2005).
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Under a given combination of C and n, we run Algorithm 1. In the kth iteration, we
calculate the Rayleigh coefficient,

R(C,n, k) =

⎧
⎪⎪⎨

⎪⎪⎩

(q(k)
1 )T S(k)

I
q(k)

1

(q(k)
1 )T S(k)

N
q(k)

1

, for FD1 and FD2 features,

(q(k)
1 )T S(k)

I
q(k)

1

(q(k)
1 )T S(k)

N
q(k)

1

+ ∣∣ (q(k)
m )T S(k)

I
q(k)
m

(q(k)
m )T S(k)

N
q(k)
m

∣∣, for CSP feature,
(18)

where q(k)

1 and q(k)
m are the 1st and the mth column of the transformation matrix Q̄k , which

correspond to the biggest and the smallest generalized eigenvalues respectively. Note that
for CSP feature extraction, the smallest generalized eigenvalue is negative. S(k)

I and S(k)
N are

determined using the new training data set Dk containing test data with predicted labels (see
Algorithm 1). The definitions of S(k)

I and S(k)
N depend on the type of feature used here (see

Table 1).
During the procedure for selecting C and n, we always let Algorithm 1 end after K0

iterations. Thus for different combinations of C and n, we obtain the Rayleigh coefficients
R(C,n,1), . . . ,R(C,n,K0). Considering that R(C,n,1) is calculated with the small train-
ing data set and may not be reliable, we find the maximum of the last K0 − 1 Rayleigh
coefficients,1

Rm(C,n) = max{R(C,n,2), . . . ,R(C,n,K0)}. (19)

Suppose that C0 and n0 is the combination of C and n such that the corresponding
Rm(C,n) is the maximum on the grid. Then C0 and n0 are the selected parameter values.

The above method for selecting C and n is mainly based on the fact: The Rayleigh
coefficient generally represents the separability of a corresponding data set, i. e., bigger
Rayleigh coefficient generally implies higher separability of the data set. We choose the
combination of C and n which leads to the highest Rayleigh coefficient in training data set
and test data set (with predicted labels). This is a little similar as the case of transductive
SVM, in which the labels of test data set leading to the lowest structural risk are chosen. In
Examples 1 and 3 of this paper, we will demonstrate the validity of this method.

B. Effectiveness
We explain the effectiveness of our approach as follows:
First, feature re-extraction in Algorithm 1 can improve the separability of features. Reli-

able FDA feature extraction needs a large amount of labeled training data. If the labeled data
set is small and thus insufficient, we cannot directly use FDA for feature extraction. Algo-
rithm 1 provides us a way to use FDA in small training data case. That is, in each iteration
of Algorithm 1, we first augment the training data set using test data with predicted labels
from the previous iteration, then perform FDA feature extraction. We apply Algorithm 1 to
a BCI data set (see Example 3 in Sect. 4 for data description) to extract CSP feature vectors.
Figure 1 shows the scatter plots of the first two dimensions of these CSP feature vectors of
both training and test data. The features extracted in the first iteration are shown in the left
subplot, while the features extracted after the 7th iteration are shown in the right subplot. By
comparison, we can see that feature re-extraction of Algorithm 1 can improve the separa-
bility of features of two classes. This is mainly because Rayleigh coefficient maximization
generally improves the separability of features (see Appendix 2).

Second, from our simulations, we found that for given C and n, the Rayleigh coefficients
R(C,n, k) (defined in (18)) increases in most cases, while the terminating criterion r(k)

1Note: Rm(C,n) in (19) also can be defined as the mean of R(C,n,2), . . . ,R(C,n,K0).
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Fig. 1 An illustrative example
on feature re-extraction in
Algorithm 1. Left: Features
extracted in the first iteration;
Right: Features extracted in the
7th iteration; Top: Features from
the training data set; Bottom:
Features from the test data set.
Stars and circles represent the
two classes respectively in the
four subplots

defined in (17) decreases with respect to k. Furthermore, r(k) converges fast (generally in
less than 10 iterations). Thus, Algorithm 1 shows satisfactory convergence in most cases (see
Tables 2 and 3 in Example 1). Furthermore, a significant increase in the Rayleigh coefficient
after each iteration in Algorithm 1 leads to higher prediction accuracy rates, and vice versa.

Third, as mentioned before, the parameters C and n are also selected based on the
Rayleigh coefficient. The selected combination of C and n leads to the biggest Rayleigh
coefficient, which implies better features and higher classification accuracy (see Examples 1
and 3).

Remark 3 (i) In Algorithm 1, we can use EM in place of SVM (Li and Guan 2006). We will
try other classifiers such as Hidden Markov Models (HMM) in the future. The corresponding
iterative algorithm has the same working mechanism as Algorithm 1. (ii) How to determine
whether a classifier can be used in place of SVM in Algorithm 1? The principle for judgment
is: the Rayleigh coefficient increases in the iterations of the corresponding algorithm.

4 Experimental results

In this section, three examples are shown to demonstrate the validity of Algorithm 1. In
Example 1, we mainly illustrate the validity and convergence of Algorithm 1. The main
objective of Example 2 is to compare our algorithm with baseline algorithms. In Example 3,
we show that Algorithm 1 with CSP feature re-extraction can be used in BCI systems. In
these three examples, the regularization parameter C of SVM and the dimension number
n of feature vectors, i.e. the number of columns in Q̄k in Algorithm 1, are determined by
the method in Sect. 3.2. As will be seen in Examples 1 and 3, this method can significantly
improve the performance of Algorithm 1.

The data sets used range from toy data (Example 1), real-world data commonly used for
testing classification algorithms (Example 2), to the data from an EEG based BCI experi-
ment.

Additionally, all SVM classifications in the iterations of Algorithm 1 are performed by
LIBSVM (Chang and Lin).
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Example 1 We demonstrate the validity and convergence of our semi-supervised SVM al-
gorithm with parameter setting and model selection through 20 independent simulations.
The feature used in this example is feature FD2 defined in (15).

In each simulation, we first randomly generate a data set. Each data sample is a 16 di-
mensional vector. The vectors in the first class are generated by a 16 dimensional Gaussian
distribution with identity covariance matrix and 0 mean vector. The vectors in the second
class are generated as follows. We first construct a mean vector Me ∈ R16 and a diagonal
covariance matrix V ∈ R16×16. The entries of Me are drawn from a uniform distribution
in [0,1.5], while the diagonal entries of V are drawn from a uniform distribution in [0,1].
Then we use the 16 dimensional Gaussian distribution with covariance matrix V and mean
vector Me to generate the vectors in the second class. The initial training data set contains
15 vectors with known labels, while the test set contains 485 data vectors without labels.
We also generate an independent test set containing 100 data vectors to further validate our
algorithm. Note that the independent test set is not used in retraining. There are 600 samples
in total, of which 200 samples belong to the first class while the other 400 samples belong
to the second class.

We apply Algorithm 1 to the above data set for feature re-extraction and classification. In
this example, the number of iterations is fixed to 10 in order to see the details of iterations.

In each run, we first search a combination C and n from 80 combinations using our
method in Sect. 3.2, where C ∈ {0.2,0.4,0.6,0.8,1}, n ∈ {1,2, . . . ,16}. For the kth iter-
ation of the j th run (k = 1, . . . ,10, j = 1, . . . ,20), we obtain two classification accuracy
rates for the test data set and the independent test data set. We denote these classification
accuracy rates as rate(1)

t (C0, n0, k, j) and rate(1)
in (C0, n0, k, j) respectively, where C0 and n0

are selected parameters for the j th run, the superscript 1 refers to Algorithm 1 (the selected
C0 and n0 in the first 5 runs can be seen in the first column of Table 2 given at the end of
this example).

We first compare the accuracy rates rate(1)
t (C0, n0,1, j) and rate(1)

t (C0, n0,10, j) by T-
test (j = 1, . . . ,20), which are obtained in the 1st iteration and the 10th iteration respec-
tively. The p value is 0.0002. We also compare rate(1)

in (C0, n0,1, j) and rate(1)
in (C0, n0,10, j).

The p value is 0.0003. This shows that the iterations of Algorithm 1 can improve classifica-
tion accuracy significantly.

For further comparison, we apply two alternate algorithms, Algorithm 2 and Algorithm 3,
on the same data set for 20 runs. Algorithm 2 is obtained by omitting feature re-extraction
from Algorithm 1. Algorithm 3 is a self-training EM algorithm with a naive Bayes classifier.
We first perform FDA to extract features, then use the two alternate algorithms for classifi-
cation. Note that the parameters C and n are the same as in Algorithm 1, and the features are
not updated during the iterations of Algorithms 2 and 3. Similarly as above, we obtain the
prediction accuracy rates rate(q)

t (C0, n0, k, j) and rate(q)

in (C0, n0, k, j) for test data set and
independent test data set respectively, where q = 2,3 implies Algorithms 2 and 3.

We now perform the comparison of Algorithms 1 and 2. Using T-test, we compare
rate(1)

t (C0, n0,10, j) with rate(2)
t (C0, n0,10, j) for test data set, and compare rate(1)

in (C0, n0,

10, j) and rate(2)
in (C0, n0,10, j) for independent test data set. The corresponding P values of

T-test are 0.0029 and 0.0023 respectively. Similarly, we perform the comparison of Algo-
rithms 1 and 3. The P values of T-test are almost zero. The comparison of the results obtained
by Algorithm 1 and the other two algorithms further illustrates that feature re-extraction in-
deed helps improve the classification performance.
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Fig. 2 Analysis results in Example 1. The left and middle subplots show the curves of prediction accuracy
rates averaged over 20 runs in each iteration, for the test data sets and the independent test data sets respec-
tively. In these two subplots, the curves with stars are obtained by Algorithm 1 with feature re-extraction, the
curves with circles are obtained by Algorithm 2 without feature re-extraction, while the curves with diamonds
are obtained by Algorithm 3, a self-training EM without feature re-extraction. The right subplot shows two
curves of average prediction accuracy rates from Algorithm 1. The curve with stars is from parameter setting
and model selection, while the other one with squares is not

We average rate(q)
t (C0, n0, k, j) and rate(q)

in (C0, n0, k, j) over 20 runs, and obtain the av-
erage prediction accuracy rates ¯rate(q)

t (k) and ¯rate(q)

in (k) respectively (q = 1,2,3),

¯rate(q)

t (k) = 1

20

20∑

j=1

rate(q)
t (C0, n0, k, j), (20)

¯rate(q)

in (k) = 1

20

20∑

j=1

rate(q)

in (C0, n0, k, j). (21)

The average accuracy rates ¯rate(q)

t (k) and ¯rate(q)

in (k) (q = 1,2,3, representing Algorithms
1, 2, 3) are shown in the left and middle subplot of Fig. 2 respectively. From the these two
subplots of Fig. 2, we can see Algorithm 1 performs FDA feature re-extraction and classifi-
cation effectively when training data set is small. It can also be seen that the performance of
Algorithm 3 is relatively poor. Since the training data set is insufficient, the features directly
extracted by FDA are not reliable. This leads to relatively poor classification results in Algo-
rithm 3. Based on this comparison, we deduce that feature re-extraction plays an important
role in Algorithm 1 (also refer to Fig. 1).

In order to demonstrate the validity of our method for parameter setting and model
selection, for each combination (C,n), we also calculate the prediction accuracy rates
rate(1)

t (C,n, k, j) for test data set. We average rate(1)
t (C,n, k, j) over all 80 possible combi-

nations of C and n, and over 20 runs,

˜rate(k) = 1

1600

5∑

i=1

16∑

q=1

20∑

j=1

rate(1)
t (Ci, nq, k, j). (22)
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Table 2 Terminating criterion r(C0, n0, k) of Algorithm 1 for the first 5 runs in Example 1

Iterations 2 3 4 5 6 7 8 9 10

Run 1 r(0.4,10, k) 0.286 0.085 0.047 0.029 0.016 0.029 0.022 0.008 0.002

Run 2 r(0.8,9, k) 0.315 0.087 0.074 0.029 0.027 0.014 0.010 0.004 0.004

Run 3 r(0.2,11, k) 0.166 0.051 0.029 0.010 0.002 0 0 0 0

Run 4 r(0.2,9, k) 0.325 0.056 0.016 0.008 0.004 0.002 0.002 0.002 0.002

Run 5 r(1,9, k) 0.437 0.099 0.039 0.014 0.008 0.002 0.002 0.002 0.002

Table 3 The Rayleigh coefficient R(C0, n0, k) for the first 5 runs in Example 1

Iterations 2 3 4 5 6 7 8 9 10

Run 1 R(0.4,10, k) 0.832 2.607 3.848 4.716 5.656 6.681 9.811 13.795 14.056

Run 2 R(0.8,9, k) 0.909 2.035 2.730 3.824 4.450 5.163 5.348 5.826 5.972

Run 3 R(0.2,11, k) 1.562 4.824 7.996 10.839 11.061 11.955 11.955 11.955 11.955

Run 4 R(0.2,9, k) 0.937 4.337 5.132 5.561 5.488 5.747 5.488 5.747 5.488

Run 5 R(1,9, k) 0.634 3.324 4.798 7.118 7.260 8.522 8.953 9.206 9.286

The average prediction accuracy rates ˜rate(k) reflect the performance of Algorithm 1 without
selection of C and n.

The right subplot of Fig. 2 shows two curves of the average prediction accuracy rates
¯rate(k) and ˜rate(k). The curve with stars depicts ¯rate

(1)

t (k), which is obtained by Algo-
rithm 1 with selection of C and n. The other one with squares depicts ˜rate(k), which is ob-
tained by Algorithm 1 without selection of C and n. From this subplot, we can see parameter
setting and model selection based on our method can significantly improve the performance
of Algorithm 1.

Next, we check the convergence of Algorithm 1. For each of the 20 runs, we obtain
C0 and n0 through selection of C and n. For the selected C0 and n0, we also obtain the
terminating criterion r(C0, n0, k) in (17) and the Rayleigh coefficient R(C0, n0, k) in (18) by
running Algorithm 1. In the following Tables 2 and 3, we list r(C0, n0, k) and R(C0, n0, k)

of the first 5 runs. From the two tables, we can see that Algorithm 1 converges fast, and that
the Rayleigh coefficients increase in the iterations of Algorithm 1. Note that in each run,
only 9 values of r(C0, n0, k) are available among the 10 iterations (see definition of r(k)

in Algorithm 1). Additionally, the Rayleigh coefficient R(C0, n0,1) (obtained in the first
iteration) is not listed in Table 3. This is because Rayleigh coefficient maximization is based
on a small training data set in the first iteration of Algorithm 1. In this case, the matrix SN

in (13) may be close to singular. The Rayleigh coefficient obtained in the first iteration may
be too large to be compared with those obtained in subsequent iterations.

Example 2 In this example, we test Algorithm 1 on 5 real-world data sets “Cancer,”
“Isonosphere,” “diabetes,” “Dimdata” and “german.numer_scale” (Newman et al. 1998).
The dimensions and numbers of sample vectors of the four real-world data sets are listed in
the second and third columns of Table 4 respectively.

The feature used here is feature FD1 defined in (14). For each data set, we perform a
5-fold cross-validation. In each fold, the data set is divided into three parts. The first part
is called the initial training data set. The second part is the test data set which is used in
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Table 4 Analysis results (accuracy rates % and p values) for four data sets

Data Dimension Size Size of
training set

Alg. 1 SVM P value EM P values SVMlight P value

Cancer 10 680 10 94.8 70.4 0.004 95.4 0.56 92.8 0.37

Isono. 34 350 50 86.6 83.5 0.26 89.1 0.77 73.3 0.03

Dia 8 768 40 80.5 73.4 0.002 68 0.000 64.3 0.000

Dim 14 2200 20 96.1 81.0 0.000 67.3 0.000 69.8 0.000

German 24 1000 10 99 77.8 0.002 91.6 0.017 79 0.002

retraining. The third part is the independent test set for further validation (this data set is not
used for retraining). For all four data sets, the sizes of the initial training data sets are shown
in the fourth column of Table 4. Under the condition that our algorithm works, we choose
the size of the initial training data sets as small as possible (also much smaller than the sizes
of training data sets given by Newman et al. 1998). The ratio of the sizes of test data set
and independent test set is 4 : 1. We apply Algorithm 1 to each of the 5 real-world data sets.
We obtain the accuracy rates for the test set and the independent test set in each fold of the
cross-validation. Thus there are a total of 10 accuracy rates, which are then averaged. The
average predication accuracy rate for each data set is listed in the fifth column in Table 4.

For the purpose of comparison, we first use a standard SVM algorithm to replace Al-
gorithm 1 and perform a similar analysis for each of the 5 data sets. 10 accuracy rates
are also obtained and then averaged. The average predication accuracy rate is listed in the
sixth column in Table 4. Using T-test, we further compare the 10 accuracy rates obtained
by Algorithm 1 and the 10 accuracy rates obtained by the standard SVM algorithm. The
corresponding p value is listed in the seventh column. Next, we compare Algorithm 1 with
two semi-supervised algorithms similarly as above, one is self-training EM, the other is a
transductive SVM (SVMlight, http://svmlight.joachims.org/). The average predication ac-
curacy rates obtained by these two algorithms are listed in the eighth and tenth columns
respectively, while the corresponding p values are shown in the ninth and eleventh columns
in Table 4. Note that when using above standard SVM or SVMlight for classification, we
first perform the model selection using leave-one-out (an extreme case of cross validation)
on training data set. We use leave-one-out rather than cross-validation because the training
data set is small.

From statistical tests, the accuracy performance of Algorithm 1 is significantly better (p
values < 0.05) than that of standard SVM algorithm and SVMlight algorithm for 4 of the
5 data sets, and it is significantly better than that of EM for 3 of the 5 data sets. For the
first data set “Cancer,” Algorithm 1 does not show obvious advantage compared with EM
algorithm and SVmlight algorithm. For the second data set “Isonosphere,” Algorithm 1 does
not show obvious advantage compared with standard SVM algorithm and EM algorithm. If
the quality of raw data is high, then feature re-extraction (even feature extraction) will not
add too much value.

Additionally, our algorithm is faster than SVMlight algorithm when the data set is large.
For instance, when SVMlight algorithm is applied to “Dimdata” data set, the time taken is
5.28 × 105 s in our computer (Intel Pentium 2 GHz processor and 2 GB RAM). This is
because too many (1826) test data samples are used to train the classifier. The time taken for
Algorithm 1 is around 48s even when all 1826 test data samples are used in retraining the
classifier.
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Example 3 In this example, we evaluate Algorithm 1 with CSP feature re-extraction us-
ing the following data set: Data set IVa in BCI Competition 2005, provided by K.R.
Muller, B. Blankertz and G. Curio. This data set is provided for researchers to evalu-
ate their algorithm performance when only a small amount of labeled training data is
available. The details of the experiment and data set can be found from the website:
http://ida.first.fraunhofer.de /projects/bci/competition. In each trial of the experiment, visual
cues indicated for 3.5 s one of the following 2 motor imageries, which the subject should
perform: (R) right hand, (F) right foot. The presentation of target cues were intermitted by
periods of random length, 1.75 to 2.25 s, in which the subject could relax. In this paper, we
present our analysis results for the first 2 subjects “aa” and “al,” as the results for the other
three subjects are similar.

Before the feature extraction and classification, proper preprocessing is necessary to en-
sure good performance. In this paper, the preprocessing methods include Common Average
Reference (CAR) for spatial filtering, frequency filtering, in which a IIR type filter is used
to filter the data in mu band (12–14 Hz). For each trial, we use data of length 3.5 seconds
for analysis. During this period, the cue was visible on the screen. The selected frequency
bands for the two subjects in our study are 12–14 Hz.

As an example, we first describe our analysis procedure and results for subject “aa.” The
same procedure applies to subject “al.” We use 200 trials to test our algorithm. We divide
the 200 trials into 8 folds according to their sequential order for 8-fold cross-validation.
One of the 8 folds are used as the initial training set (25 trials) and the rest of the 7 folds
are used as the test set (175 trials). During each iteration of Algorithm 1, we extract CSP
features from initial training data set and test set, and predict the labels of the test set. The
prediction accuracy rates rate(C0, n0, k, j) are then calculated, where k represents the kth
iteration, j (= 1, . . . ,8) represents the j th fold which is used as the initial training set, and
C0 and n0 are selected parameters. Note that we search a combination of C and n on a grid
with C ∈ {0.2,0.4,0.6,0.8,1} and n ∈ {6,8, . . . ,20}. For the purpose of comparison, we
also calculate the prediction accuracy rates rate(C,n, k, j) for each (C,n).

We average rate(C0, n0, k, j) over all 8 folds and obtain the average prediction accuracy
rates ¯rate(k) for each iteration as follows,

¯rate(k) = 1

8

8∑

j=1

rate(C0, n0, k, j). (23)

Furthermore, we average rate(C,n, k, j) over all 40 combinations of C and n, and 8
folds as follows,

˜rate(k) = 1

320

5∑

i=1

8∑

q=1

8∑

j=1

rate(Ci, nq, k, j). (24)

In each iteration of Algorithm 1, we also calculate the average Rayleigh coefficient,

R̄(k) = 1

8

8∑

j=1

R(C0, n0, k, j), (25)

where R(C0, n0, k, j) is defined as in (18), C0 and n0 are selected parameters, k and j

represent the kth iteration and the j th fold respectively.
The results are shown in the first row of Fig. 3. In the left subplot, average accuracy

¯rate(k) and ˜rate(k) are depicted. The obvious difference between ¯rate(k) and ˜rate(k) demon-
strates the validity of our method for parameter setting and model selection. In the right
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Fig. 3 Data analysis results in Example 3. The 1st and 2nd rows are for subjects “aa” and “al” respectively.
The first column shows the curves of average prediction accuracy rates for the test set. The curves with stars
are from Algorithm 1 with parameter selection; while the curves with circles are from Algorithm 1 without
parameter selection. The 2nd column depicts the curves of the Rayleigh coefficient averaged over 8 folds in
cross-validation

subplot, the curve of average Rayleigh coefficients R̄(k) obtained in the cross-validation is
shown. This curve demonstrates the convergence of our algorithm.

The results for subject “al” are shown in the second row of Fig. 3. These results are
similar to the results of subject “aa.”

From Example 3, we can see that semi-supervised learning algorithms can be used to
reduce the user’s training effort in BCI systems. Another promising application of semi-
supervised learning in BCI systems is in online adaptation, where huge amounts of unlabeled
data is available for retraining/adjusting the system parameters.

From these three examples of this paper, three main advantages of our approach can be
seen: (i) feature re-extraction in Algorithm 1 can improve the quality of features (also see
Fig. 1) and the classification accuracy; (ii) Algorithm 1 converges fast (generally in less than
10 iterations); (iii) our method for parameter setting and model selection is effective even
when training data set is extremely small and cross-validation method for parameter setting
and model selection may not work.

5 Conclusions

In this paper, we first presented feature extraction under the framework of Rayleigh coef-
ficient maximization. Three features including the CSP feature were discussed. All three
features can be estimated with a transformation matrix determined by maximizing the
Rayleigh coefficients. To solve the small training set problem, we proposed an iterative semi-
supervised SVM algorithm with feature re-extraction. Using this algorithm, we can extract
reliable features and achieve good classification performance in cases when the training data
set is small. Furthermore, we also proposed a semi-supervised learning-based method using
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the Rayleigh coefficient for parameter setting and model selection. This method utilizes both
training data and test data and can be suitable for small training data set. Finally, we have
demonstrated the validity of our approach using three examples of data analysis.

Future studies include the extension of our algorithm to Kernel-type and multi-class cases
to expand its applicability.
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Appendix 1: On the regularization in FDA

In (13), we add a regularization item to extract muti-dimensional features. We now discuss
the relationship between the generalized eigenvalues/eigenvectors after regularization and
the generalized eigenvalues/eigenvectors obtained by normal FDA (i.e. α = 0 in (13)). We
first list a set of generalized eigenvalues and generalized eigenvectors obtained with different
α values to show the relationship. Next, we illustrate the principle for setting the value of α.

A: We generate two 4 × 20 matrices A and B using two different Gaussian distributions
(with means 0 and 0.5 respectively, and unit variance). A and B represent two classes of
data, of which one column is a data sample. For a given α, we calculate SI and SN in
(13). Through joint diagonalizing SI and SN , we obtain 4 generalized eigenvalues λ̃i and 4
generalized eigenvectors qi (i = 1, . . . ,4). In Table 5 and Table 6, we list these generalized
eigenvalues and generalized eigenvectors calculated with 5 different α values. Note that
α = 0 implies normal FDA.

From Table 5, when α is close to zero, the generalized eigenvalues (highlighted in bold)
are close to those obtained by normal FDA. The explanation for this is as follows: We
take αI in (13) as a disturbance. From the joint diagonalization procedure in Sect. 2.1, the
generalized eigenvalues will tend to the normal FDA generalized eigenvalues when αI tends
to a zero matrix.

In Table 6, similar phenomena can be found only for the first generalized eigenvector
w1 (highlighted in bold), which corresponds to the biggest generalized eigenvalues. For
the other three generalized eigenvectors w2, w3 and w4, no clear relationship can be seen
between the case with regularization and the case with normal FDA. The main reason is
that the three generalized eigenvectors corresponding to the zero eigenvalue in normal FDA
cannot be fixed during joint diagonalization procedure (any nonzero linear combination of
the three generalized eigenvectors is still a generalized eigenvector).

B. In Example 1 of Sect. 4, we have 20 runs of simulations where α was fixed to
0.05. We now consider 10 different values of α and run 20 simulations for each α as
in Example 1. The obtained predication accuracy rates are denoted as rate(α, j), where

Table 5 Generalized eigenvalues λ̃i calculated with 5 different α values

α 0 0.01 0.5 1 2

λ̃1 0.4822 0.4877 0.7777 1.1457 2.0737

λ̃2 −0.0000 0.0096 0.4641 0.8681 1.5110

λ̃3 −0.0000 0.0055 0.2696 0.5320 1.0401

λ̃4 −0.0000 0.0038 0.1874 0.3695 0.7236
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Table 6 Generalized eigenvectors wi calculated with 5 different α values

α 0 0.01 0.5 1 2

w1

⎡

⎢⎢⎢⎢⎣

−0.1334

−0.3526

−0.4485

−0.4524

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

−0.1308

−0.3521

−0.4498

−0.4537

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0.0259

−0.2644

−0.5259

−0.5478

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0.2330

−0.0221

−0.5737

−0.6684

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0.3878

0.2559

−0.5193

−0.6987

⎤

⎥⎥⎥⎥⎦

w2

⎡

⎢⎢⎢⎢⎣

−0.3957

0.4931

−0.0876

0.0262

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0.4709

0.5649

−0.4498

−0.5679

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0.4594

0.6467

−0.1883

−0.4697

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0.3736

0.7211

0.0445

−0.2504

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0.1704

0.6967

0.3089

−0.0169

⎤

⎥⎥⎥⎥⎦

w3

⎡

⎢⎢⎢⎢⎣

−0.3398

0.2784

0.4535

−0.3875

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0.3564

−0.2049

0.4982

0.3596

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0.3631

−0.1400

−0.4764

0.3915

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0.3639

−0.0766

−0.4521

0.4191

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0.3532

0.0270

−0.4067

0.4570

⎤

⎥⎥⎥⎥⎦

w4

⎡

⎢⎢⎢⎢⎣

0.5058

0.5332

−0.3249

−0.5556

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0.3476

−0.3864

0.2442

−0.2268

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0.3784

−0.3558

0.2530

−0.1873

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0.4006

−0.3287

0.2600

−0.1547

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0.4272

−0.2874

0.2692

−0.1083

⎤

⎥⎥⎥⎥⎦

Table 7 Average classification accuracy rates (%) obtained with 10 different α values

α 0 0.0001 0.001 0.01 0.02 0.05 0.1 0.5 1 2

¯rate(α) 82.04 89.74 90.03 89.32 89.04 87.50 84.21 71.58 71.42 71.52

α ∈ {0,0.0001,0.001,0.01,0.02,0.05,0.1,0.5,1,2}, j = 1, . . . ,20. Denote the mean of
rate(α,1 : 20) as ¯rate(α), which is shown in Table 7.

From Table 7 and Part A of this appendix, α should be set small such that the largest gen-
eralized eigenvalue and corresponding generalized eigenvector are close to those obtained
in normal FDA. In this way, the advantage of normal FDA will be kept in our algorithm. Ad-
ditionally, when α is sufficiently small (e.g. α = 0.0001,0.001,0.01,0.02), the prediction
accuracy rates obtained with different α values do not have a significant difference.

However, from Table 7, we can find that the result obtained with α = 0 is significantly
less than those obtained with small α values. This is because when α = 0, we perform
normal FDA feature extraction, and the extracted features are one dimensional.

Appendix 2: A simulation on Rayleigh coefficient and separability of data

In this appendix, we will show that bigger Rayleigh coefficient implies higher separability
of data through a simulation.

First we generate 3 data sets denoted as {x1(i) ∈ R8, i = 1, . . . ,200}, {x2(i) ∈ R8, i =
1, . . . ,200}, {x3(i) ∈ R8, i = 1, . . . ,200}, each of which has two classes. The data vec-
tors x1(i), x2(i), x3(i), i = 1, . . . ,100, are generated from the normal distribution N(0, I),
where 0 is a 8 dimensional zero mean vector, I ∈ R8×8 is a unit covariance matrix. The



Mach Learn

Fig. 4 Three distribution histograms for three feature sets with different Rayleigh coefficients (R.C.) show
different degrees of separability

data vectors x1(i), i = 101, . . . ,200 are generated from the normal distribution N(m1, I),
where m1 = [0.67,2.11,1.57,2.80,2.14,0.68,1.35,0.52]T . The data vectors x2(i) and
x3(i), i = 101, . . . ,200, are generated from the normal distribution N(m2, I), where m2 =
[2.91,1.07,0.15,2.27,2.68,0.86,0.75,2.80]T . Note that m1 and m2 are also arbitrarily se-
lected.

For the above 3 data sets, we define the Rayleigh coefficient according to (1) and (12).
Through Rayleigh coefficient maximization, we obtain 3 generalized eigenvectors denoted
as w1, w2 and w3 for the 3 data sets respectively. Using these eigenvectors, we can ob-
tain 3 new feature sets: {wT

1 x1(i) ∈ R8, i = 1, . . . ,200}, {wT
2 x2(i) ∈ R8, i = 1, . . . ,200},

{wT
3 x3(i) ∈ R8, i = 1, . . . ,200}. For the 3 feature sets, the three subplots of Fig. 4 show

their distribution histograms and the Rayleigh coefficients (denoted as R.C.) respectively.
From Fig. 4, we can see that a higher Rayleigh coefficient implies higher separability of a
data set.

References

Bennett, K. P., & Demiriz, A. (1998). Semi-supervised support vector machines. In M. S. Kearns, S. A. Solla,
& D. A. Cohn (Eds.), Advances in neural information processing systems (Vol. 12, pp. 368–374). Cam-
bridge: MIT Press.

Blanchard, G., & Blankertz, B. (2004). BCI competition 2003-data set IIa: spatial patterns of self-controlled
brain rhythm modulations. IEEE Transactions on Biomedical Engineering, 51(6), 1062–1066.

Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In Proceedings of
the conference on computational learning theory (pp. 92–100).

Brefeld, U., & Scheffer, T. (2004). Co-EM support vector learning. In Proceedings of the 21st international
conference on machine learning, Canada.

Chang, C. C., & Lin, C. J. (2003). LIBSVM—a library for support vector machines. http://www.csie.ntu.edu.
tw/~cjlin/libsvm/.

Chapelle, O., & Zien, A. (2005). Semi-supervised classification by low density separation. In Proceedings of
the tenth international workshop on artificial intelligence and statistics (pp. 57–64). Barbados.

Chapelle, O., Scholkopf, B., & Zien, A. (2006). Semi-supervised learning. Cambridge: MIT Press.



Mach Learn

Demiriz, A., & Bennett, K. P. (2000). Optimization approaches to semi-supervised learning. In M. C. Fer-
ris, O. L. Mangasarian, & J. S. Pang (Eds.), Applications and algorithms of complementarity. Boston:
Kluwer Academic.

Fung, G., & Mangasarian, O. (2001). Semi-supervised support vector machines for unlabeled data classifica-
tion. In Optimization methods and software (pp. 1–14). Boston: Kluwer Academic.

Grandvalet, Y., & Bengio, Y. (2004). Semi-supervised learning by entropy minimization. In Advances in
neural information processing systems (Vol. 16). Cambridge: MIT Press.

Kong, H., Teoh, E., Wang, J., & Kambhamettu, C. 2005. Generalized 2D fisher discriminant analysis. In
Proceedings of the 16th British machine vision conference, Oxford, UK.

Joachims, T. (1999). Transductive Inference for text classification using support vector machines. In Proceed-
ings of the international conference on machine learning (ICML).

Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proceedings of the ACM confer-
ence on knowledge discovery and data mining (KDD). New York: ACM.

Kiritchenko, S., & Matwin, S. (2002). Email classification with co-training (Technical Report). University of
Ottawa, Canada.

Kockelkorn, M., Lneburg, A., & Scheffer, T. (2003). Using transduction and multi-view learning to answer
emails. In Proceedings of the 7th European conference on principles and practice of knowledge discov-
ery in databases (pp. 266–277), Cavtat-Dubrovnik, Croatia.

Krishnapuram, B., Hartemink, A. J., Carin, L., & Figueiredo, M. A. T. (2004). A Bayesian approach to joint
feature selection and classifier design. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(9), 1105–1111.

Li, Y., & Guan, C. (2006). An extended EM algorithm for joint feature extraction and classification in brain
computer interfaces. Neural Computation, 18, 2730–2761.

Mika, S. (2002). Kernel Fisher discriminants, PhD thesis.
Mika, S., Ratsch, G., Weston, Scholkopf, B., & Mller, K. R. (1999). Fisher discriminant analysis with kernels.

In Y.-H. Hu, J. Larsen, E. Wilson, & S. Douglas (Eds.) Neural networks for signal processing IX (pp. 41–
48). New York: IEEE.

Newman, D. J., Hettich, S., Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases.
Department of Information and Computer Science, University of California, Irvine, CA http://www.ics.
uci.edu/~mlearn/MLRepository.html.

Nigam, K., & Ghani, R. (2000). Analyzing the effectiveness and applicability of co-training. In Proceedings
of 9th international conference on information and knowledge management (pp. 86–93).

Park, S., & Zhang, B. (2004). Co-trained support vector machines for large scale unstructured document
classification using unlabeled data and syntactic information. Information Processing & Management,
40(3), 421–439.

Pfutscheller, G., Neuper, C., Flotzinger, D., & Pregenzer, M. (1997). EEG-based discrimination between
imagination of right and left hand movement? Electroencephalography and Clinical Neurophysiology,
103, 642–651.

Ramoser, H., Muller-Gerking, J., & Pfurtscheller, G. (2000). Optimal spatial filtering of single trial EEG
during imagined hand movement. IEEE Transactions on Rehabilitation Engineering, 8(4), 441–446.

Tong, S. & Koller, D. (2001). Support vector machine active learning with applications to text classification.
Journal of Machine Learning Research, 2, 45–66.

Vapnik, V. (1998). Statistical learning theory. Berlin: Springer.
Weston, J., Perez-Cruz, F., Bousquet, O., Chapelle, O., Elisseeff, A., & Scholkopf, B. (2002). Feature se-

lection and transduction for prediction of molecular bioactivity for drug design. Bioinformatics, 1(1),
1–8.

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain-computer
interfaces for communication and control. Clinical Neurophysiology, 113, 767–791.

Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Scholkopf, B. (2003). Learning with local and global
consistency. In Advances in neural information processing systems (Vol. 15). Cambridge: MIT Press.

Zhou, D., Scholkopf, B., & Hofmannz, T. (2004). Semi-supervised learning on directed graphs. In Advances
in neural information processing systems (Vol. 16). Cambridge: MIT Press.

Zhu, X., Lafferty, J., & Ghahramani, Z. (2003). Combining active learning and semi-supervised learning using
Gaussian fields and harmonic functions. In Proceedings of the ICML-2003 workshop on the continuum
from labeled to unlabeled data, Washington DC.


	Joint feature re-extraction and classification using an iterative semi-supervised support vector machine algorithm
	Abstract
	Introduction
	Feature extraction based on Rayleigh coefficient maximization
	Rayleigh coefficient maximization
	CSP feature extraction
	Fisher discriminant feature extraction

	An iterative semi-supervised SVM algorithm for joint feature extraction and classification
	Algorithm
	Discussions

	Experimental results
	Conclusions
	Acknowledgements
	Appendix 1: On the regularization in FDA
	Appendix 2: A simulation on Rayleigh coefficient and separability of data
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


