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Abstract—Event-related desynchronization/synchronization
patterns during right/left motor imagery (MI) are effective
features for an electroencephalogram-based brain–computer
interface (BCI). As MI tasks are subject-specific, selection of
subject-specific discriminative frequency components play a vital
role in distinguishing these patterns. This paper proposes a new
discriminative filter bank (FB) common spatial pattern algorithm
to extract subject-specific FB for MI classification. The proposed
method enhances the classification accuracy in BCI competition
III dataset IVa and competition IV dataset IIb. Compared to
the performance offered by the existing FB-based method, the
proposed algorithm offers error rate reductions of 17.42% and
8.9% for BCI competition datasets III and IV, respectively.

Index Terms—Brain–computer interface, electroencephalo-
gram, motor imagery.

I. INTRODUCTION

BRAIN–COMPUTER interface (BCI) is an emerging tech-
nology for paralyzed people for communicating with ex-

ternal world. Electroencephalogram (EEG)-based BCI trans-
lates the changes in brain signals into operative control sig-
nals. Motor imagery (MI) is the state during which the rep-
resentation of a specific motor action is internally reactivated
within the working memory without any overt motor output
and that is governed by the principles of motor control [2].
MI creates measurable potential changes in the EEG sig-
nals termed as event-related desynchronization/synchronization
(ERD/ERS) patterns. The time, frequency, and spatial nonsta-
tionarity of these patterns result in high intersubject and intra-
subject variability in MI-based BCIs (MI-BCIs). One of the most
effective algorithms for MI-BCI is based on common spatial pat-
tern (CSP) technique [1], [3]. The success of CSP in BCI appli-
cation greatly depends on the proper selection of subject-specific
frequency bands. In the literature, common sparse spectral spa-
tial pattern (CSSSP) [4], subband CSP (SBCSP) [5], Filter bank
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CSP (FBCSP) [6], and adaptive FBCSP [7] have been proposed
for choosing the optimal frequency band automatically. The
FBCSP [6], which won dataset IIa and IIb in BCI competition
IV, uses CSP features from a set of nine fixed bandpass filters
and feature selection algorithm based on mutual information
to effectively choose the subject-specific features. This selec-
tion process selects features from the relevant frequency com-
ponents. As the subject-specific frequency components carry
distinct features, the proposed method uses a subject-specific
FB selection before feature extraction to enhance the accuracy
of the FBCSP framework. This paper proposes a new method
to obtain subject-specific discriminative FB (DFB) instead of
using fixed FB for all subjects. The following sections present
the design of filters, generation of DFB, feature extraction using
CSP algorithm, and classification results.

II. PROPOSED METHOD: DFBCSP

The proposed DFBCSP system extracts subject-specific dis-
criminative frequency bands from a set of filters, named as parent
FB in the sequel. The parent FB is designed using a coefficient
decimation (CD) technique [8], and it covers all frequency com-
ponents in the range of 6–40 Hz. As it has been shown that EEG
signals from sensorimotor cortex have the highest discriminat-
ing power between various MI tasks [9], we select EEG channels
C3 and C4 in order to determine the subject-specific discrimina-
tive frequency components. Fig. 1 shows the block diagram of
DFBCSP. In the band selection procedure, the parent FB filters
EEG from C3 or C4 and fisher ratio of filtered EEG is used to
determine the subject-specific discriminative frequency bands.
Once the subject-specific frequency bands are selected, the EEG
from all channels is filtered using these discriminative bands for
further CSP processing. A support vector machine (SVM) clas-
sifier is used to evaluate to which class the output belongs to.
Each of the EEG processing steps in the proposed method is
explained in the following sections.

A. Generation of Frequency Bands Using CD Technique

The frequency bands associated with MI vary between sub-
jects, and CD technique has the ability to obtain subbands with
desired center frequencies. In our method, the parent FB is
designed using CD technique for filtering the selected motor
cortex EEG signals. The basic principle of CD is as follows: If
every M th coefficient of a finite impulse response filter h(n)
(called modal filter) is kept unchanged and all other coefficients
are replaced by zeros, we get h′(n), whose frequency response is
a multiband response scaled by M (amplitude of decimated re-
sponse will be reduced by M times) with respect to that of h(n)
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Fig. 1. Block diagram of proposed DFBCSP.

and replicas of frequency responses are introduced at integer
multiples of 2π /M ; i.e.

h′(n) = h(n).cM (n) (1)

where

cM (n) =
{

1, for n = kM, k = 0, 1, 2, . . . M − 1
0, otherwise.

By changing the value of M , different numbers of frequency
response replicas located at different center frequencies can be
obtained. The passbands of the multiband response obtained
will have identical widths as that of the modal filter. As CM (n)
can be either 0 or 1, h′(n) will be either h(n) or 0. A decimated
version of the original frequency response h(n) can also be
obtained using only the nonzero coefficients after discarding the
in between zeros, whose passband width is M times that of the
original modal filter. Thus, from the original set of coefficients of
a single modal filter, frequency responses of various bandwidths
and center frequencies can be generated for various values of
M and k [7], [8]. Since ERD/ERS patterns have been shown to
vary in the α and β bands of EEG signals [9], that is 8–30 Hz,
a larger frequency range of 6–40 Hz is allowed for the proposed
technique to select the discriminative bands automatically. This
is because higher frequency components are successfully used
in [10] for mental task classification.

B. Generation of DFB and Bandpass Filtering

The parent FB covers frequency components from 6 to
40 Hz. However, the most discriminative bands during MI vary
between subjects. The FBCSP in [6] algorithm extracts CSP
features from a fixed FB consisting of nine Chebyshev type II
bandpass filters and a feature selection process is done before
classifying the signals. Instead of using a fixed FB for all sub-
jects, the proposed method uses a subject-specific FB to enhance
the classification accuracy. In order to obtain the subject-specific
DFB from the original set of bands, a discriminative spectral es-
timation of signals from motor cortex is used. Fisher ratio (a
measure of discriminabilty between two classes of MI tasks) of
spectral power from channels C3 or C4 is used to determine
the most discriminative frequency bands for all subjects. For
EEG patterns of right hand and foot MI, channel C3 on the
contralateral hemisphere or Cz should give better discrimina-
tion. Therefore, the effectiveness of different channel selection
possibilities are tested in this work: 1) single channel-C3; 2)
GC3-group of channels surrounding C3; 3) LC3-Laplacian fil-

tered C3; and 4) Cz. Also for patterns from right and left hand
MI, we tested the efficacy of channels C3 and C4 also. The par-
ent FB processes these signals and an estimate of spectral power
associated with each subband is calculated using the following
equation to obtain subject-specific DFB,

P (fi, t) =
1
T

T∑

n=1

xt,f (n)2 . (2)

In (2), P (fi, t) is the spectral power estimated in ith band
output for the tth trial and T is the number of samples in filtered
EEG signal xf (n). Thus, we obtain an Nf × Nt matrix corre-
sponding to spectral power where Nf is the number of bands
and Nt is total number of trials. Thus, each trial is associated
with an estimated P value in all the frequency bands. In order
to select the best informative filters, the fisher ratio, FR , is cal-
culated from all filter outputs from parent FB. The fisher ratio
at each band output is calculated using the following equation:

FR (f) =
SB

SW
(3)

where SW =
∑C

k=1
∑nk

t=1 (Pt − mk )2 and SB =∑C
k=1 nk (m − mk )2 are the within-class variance and

between-class variance, respectively, m is the total average,
mk is the average for class k, (k = 1, 2), C is the number of
classes, and nk denotes the number of trials for class k. Then
filters giving highest FR values possess better discriminating
power and are used for further data processing.

C. Feature Extraction Using CSP

After bandpass filtering using the DFB, EEG signal from
each frequency band is applied with a CSP transformation to
obtain features for classification. CSP is an effective technique
for discriminating MI tasks [1], [3]. The decomposition of EEG
using CSP or spatial filtering leads to a new time series, whose
variances are optimal for the discrimination of two populations.
The spatially filtered signal Z of a single trial EEG is given by

Z = WE (4)

where E is an N × T matrix representing the raw EEG mea-
surement data of a single trial, N is the number of channels, T is
the number of samples, and W is the CSP projection matrix. The
rows of W or spatial filters are designed such that the variances
of first and last rows of Z give the maximum discrimination
between two classes of MI tasks. Therefore, the feature vector
Fp is formed from Z according to (5), where Zp is the first and
last m rows of Z, p ∈ {1. . . 2m}. The value of m is taken as 1
in the proposed DFBCSP framework,

Fp = log

[
(var(Zp))

/ (
2m∑

i=1

var(Zi)

)]
. (5)

D. Classification Using SVM

SVM is a linear discriminant that maximizes the separation
between two classes of MI task based on the assumption that
it improves classifier’s generalization ability. The CSP features
extracted from DFB are used to train the SVM classifier. The
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SVM model developed from the training data is used to evaluate
the new EEG samples or test EEG.

III. RESULTS AND DISCUSSIONS

Two publicly available datasets are explored in DFBCSP
framework: BCI competition III dataset IVa [11], [12] and BCI
competition IV dataset IIb [13]; we call Dataset-I and Dataset-
II respectively in the sequel. Dataset-I is of right hand and
foot MI and Dataset-II is of right hand and left hand MI tasks.
Comparison of classification accuracies in both datasets by the
proposed DFBCSP algorithm with existing FBCSP algorithm is
presented.

The classification performance is evaluated in FBCSP and
DFBCSP using a 10 × 10-fold cross-validation procedure. This
validation procedure mixes the dataset randomly and divides
into ten equally sized distinct partitions. Each partition is then
used for testing, while other partitions are used for training the
model. This results in ten different error rates or accuracy, which
are averaged. This is the error of tenfold cross validation. To
further improve the estimate, the procedure is repeated ten times
and all error rates over these ten runs are again averaged [3].
The average accuracy or error rate over ten runs obtained for the
test data is taken as the performance evaluation criteria, which
is named as validation accuracy or validation error rate of one
subject. The tuning of frequency components and SVM model
are done in each fold only on the training data, which means
the parameter tuning is independent from the test data used.
For classification, the SVM algorithm in Bioinformatics Matlab
toolbox is used with default parameters.

A. Dataset-I: Right Hand and Foot MI

Dataset-I is of right hand and foot MI tasks recorded from five
subjects named “aa,” “al,” “av,” “aw,” and “ay” from 118 elec-
trodes. As the training data in the BCI competition III dataset
IVa is small, we have merged its training and test data together
such that the Dataset-I consists of 280 trials of EEG measure-
ments, 140 trials from each class of MI. Then a 10 × 10-fold
cross-validation is done to analyze the performance. The data
are extracted from selected electrode positions, starting from 0.5
to 2.5 s after the visual cue. The time segment selected in our
work is consistent with the experiments performed in [5], [6].

As the patterns are of right hand and foot MI tasks, signals
from the contra lateral channel C3, Cz and its surrounding
channels are filtered to estimate the fisher ratio associated
with each subband as explained in Section II-B. The single
channel C3 alone offers better performance for selecting DFB,
compared to a set of channels around C3, Laplacian filtered
C3 and Cz. Thus, we fixed the frequency selection channel
as C3 for all the five subjects in Dataset-I. After getting DFB,
CSP features extracted from filtered EEG signals are given
to an SVM classifier. The average validation accuracy across
five subjects versus various channel selection possibilities
and bandwidth of the filters are plotted in Fig. 2(a) and (b),
respectively. The bandwidth of the filters is varied from 2
to 6 Hz and best results in the proposed DFBCSP scheme
corresponds to a bandwidth of 4 Hz. Therefore, we fixed parent
FB as a set of 12 bandpass filters of uniform bandwidth 4 Hz,

Fig. 2. (a) Average validation accuracy over five subjects in Dataset-I with
Laplacian C3, group of channel around C3, C3 and Cz. (b) Average valida-
tion accuracy versus bandwidth of filters. (c) Average validation accuracy and
standard deviation over five subjects versus number of filters used in DFB.

Fig. 3. (a) Parent and discriminative frequency bands chosen for the subjects
“aa,” “al,” and “av” in Dataset-I using DFBCSP. The shaded portions stand for
DFB for each subject. The four frequency bands in DFB are ranked according
the fisher ratio values. (b) Average power spectral density plots of right hand
and foot trials for subject “av” in Dataset-I. Bands chosen by Fisher analysis
in proposed DFBCSP and feature selection algorithm in FBCSP are shaded
accordingly.

covering frequency components from 6 to 40 Hz. In addition,
the variation of average validation accuracies and standard
deviation for 10 × 10-fold cross-validation corresponding to
different number of filter passbands are shown in Fig. 2(c).

Among various number of bands from 2 to 8, a selection of
four bands in DFB gives better performance in the proposed
DFBCSP scheme. The 12 frequency bands taken in the parent
FB and subject-specific bands selected for three subjects in
Dataset-I are shown in Fig. 3(a). The parent FB is composed
of 12 frequency bands of uniform bandwidth 4 Hz, which is
obtained by applying CD technique to a prototype low-pass
filter of bandwidth 2 Hz. The location of the center frequencies
depend on the decimation values as explained in Section II-A.
The four frequency bands in DFB are ranked according to the
descending order of fisher ratio values obtained. The intersubject
variability of discriminative frequency components can be seen
in Fig. 3(a). This corresponds to the DFB obtained from training
data during the first fold of 10 × 10-fold cross-validation for
the given three subjects.

In addition, the average power spectral density of two-class
EEG signals recorded from C3 for subject “av” is plotted in
Fig. 3(b). Frequency components with good discrimination be-
tween both classes are observed in the range of 8–12 Hz and
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TABLE I
VALIDATION ERROR RATE ± STANDARD DEVIATION (%): DATASET-I

TABLE II
VALIDATION ERROR RATE ± STANDARD DEVIATION (%): DATASET-II

15–25 Hz. From analysis, it is found that FBCSP selects fea-
tures from bands 8–12 Hz and 20–24 Hz and the DFBCSP
selects four bands: 8–12 Hz, 14–18 Hz, 18–22 Hz, and 20–24
Hz. Therefore, DFBCSP efficiently identifies the discriminative
frequency components and offers better results. The classifi-
cation accuracies for five subjects are given in Table I, where
columns 2 and 3 tabulate the validation results of FBCSP [6] and
our DFBCSP algorithms, respectively. From the experimental
results, the proposed DFBCSP gives an error rate reduction of
17.42% compared to the FBCSP algorithm.

B. Dataset-II: Right Hand and Left Hand MI

Dataset-II has right hand and left hand MI EEG patterns
recorded from three channels C3, Cz, and C4, for nine subjects,
at sampling frequency 250 Hz. The names of nine subjects in
Dataset-II analyzed here are “B0103T,” “B0203T,” “B0303T,”
“B0403T,” “B0503T,” “B0603T,” “B0703T,” “B0803T,” and
“B0903T,” respectively. It is the training session 3 of BCI com-
petition IV dataset IIb and consists of 160 trials: with 80 trials of
each MI task. The effectiveness of two channel selection possi-
bilities are analyzed by using C3 and C4 in order to discriminate
right hand and left hand MI tasks. Experimental results show
that the DFB selection from C4 yields better validation accu-
racy than using C3 in the proposed DFBCSP framework for
all subjects. Table II gives the validation error rates for FBCSP
and proposed DFBCSP algorithms respectively for all the nine
subjects in Dataset-II. Our DFBCSP provides an error rate re-
duction of 8.9% compared to FBCSP. The validation accuracies
for all subjects in Dataset-I and Dataset-II are plotted in Fig. 4.

IV. CONCLUSION

This paper presents a new method for selecting subject-
specific DFB for the classification of MI tasks. The proposed
DFBCSP method successfully replaces the feature extraction
from nine filter outputs followed by a feature selection proce-

Fig. 4. Validation accuracies for all subjects in Dataset-I and Dataset-II using
FBCSP and proposed DFBCSP.

dure in FBCSP, by DFB selection and feature extraction pro-
cesses. The DFBCSP selects the subject-specific discrimina-
tive frequency bands using fisher ratio of filtered EEG signal
from channels C3 or C4. The proposed method enhances the
classification accuracy of BCI competition III dataset IVa and
BCI competition IV dataset IIb. Preliminary results of proposed
method are promising and future work includes more extensive
testing on a large population of subjects as well as applying the
proposed method for online adaptation.

REFERENCES

[1] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, “Optimal spatial
filtering of single trial EEG during imagined hand movement,” IEEE
Trans. Rehabil. Eng., vol. 8, no. 4, pp. 441–446, Dec. 2000.

[2] N. Sharma, V. M. Pomeroy, and J. C. Baron, “Motor imagery: A backdoor
to the motor imagery system after stroke?” Stroke, vol. 37, pp. 1941–1952,
2006.

[3] C. Guger, H. Ramoser, and G. Pfurtscheller, “Real time EEG analysis with
subject specific spatial patterns for a brain-computer interface,” IEEE
Trans. Rehabil. Eng., vol. 8, no. 4, pp. 447–456, Dec. 2000.

[4] G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio, and K.-
R. Muller, “Combined optimization of spatial and temporal filters for
improving brain-computer interface,” IEEE Trans. Biomed. Eng., vol. 53,
no. 11, pp. 2274–2281, Nov. 2006.

[5] Q. Novi, C. Guan, T. H. Dat, and P. Xue, “Sub band common spatial
pattern for brain-computer interface,” in Proc. 3rd Int. Conf. Neural Eng.
IEEE Eng. Med. Biol. Soc. (EMBS), May 2007, pp. 204–207.

[6] K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, “Filter bank common
spatial pattern (FBCSP) in brain-computer interface,” in Proc. IEEE Int.
Joint Conf. Neural Netw., Jun. 2008, pp. 2390–2397.

[7] P. T. Kavitha, C. Guan, C. T. Lau, and A. P. Vinod, “An adaptive filter
bank for MI based brain-computer interface,” in Proc. 30th Annu. Int.
Conf. IEEE Eng. Med. Biol., Aug. 2008, pp. 1104–1107.

[8] R. Mahesh and A. P. Vinod, “Coefficient decimation approach for realizing
reconfigurable finite impulse response filters,” in Proc. 2008 IEEE Int.
Symp. Circuits Syst., pp. 81–84.

[9] G. Pfurtscheller and C. Neuper, “MI activates primary sensorimotor area
in humans,” Neurosci. Lett., vol. 239, pp. 65–68, 1997.

[10] H. Liu, J. Wang, C. Zheng, and P. He, “Study on the effect of different
frequency bands of EEG signals on mental tasks classification,” in Proc.
27th Int. Conf. IEEE EMBS, Jan., 2006, pp. 5369–5372.

[11] D. Guido, B. Benjamin, G. Curio, and K. R. Müller, “Boosting bit rates
in non-invasive EEG single-trial classifications by feature combination
and multi-class paradigms,” IEEE Trans. Biomed. Eng., vol. 51, no. 6,
pp. 993–1002, Jun. 2004.

[12] B. Blankertz, K.-R. Muller, D. Krusienski, G. Schalk, J. Wolpaw,
A. Schloegl, G. Pfurtscheller, Jd.R. Millan, M. Schroeder, and N. Bir-
baumer, “The BCI competition. III: Validating alternative approaches to
actual BCI problems,” IEEE Trans. Neural. Syst. Rehabil. Eng., vol. 14,
no. 2, pp. 153–159, Jun. 2006.

[13] R. Leeb, F. Lee, C. Keinrath, R. Scherer, H. Bischof, and G. Pfurtscheller,
“Brain-computer communication: Motivation, aim, and impact of explor-
ing a virtual apartment,” IEEE Trans. Neural. Syst. Rehabil. Eng., vol. 15,
no. 4, pp. 473–482, Dec. 2007.

Authorized licensed use limited to: National University of Singapore. Downloaded on November 8, 2009 at 21:35 from IEEE Xplore.  Restrictions apply. 


