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Abstract—Conventional brain computer interfaces rely on a
guided calibration procedure to address the problem of consider-
able variations in electroencephalography (EEG) across human
subjects. This calibration, however, implies inconvenience to the
end users. In this paper, we propose an online-adaptive-learning
method to address this problem for P300-based brain computer
interfaces. By automatically capturing subject-specific EEG char-
acteristics during online operation, this method allows a new user
to start operating a P300-based brain–computer interface without
guided (supervised) calibration. The basic principle is to first learn
a generic model termed subject-independent model offline from
EEG of a pool of subjects to capture common P300 characteristics.
For a new user, a new model termed subject-specific model is then
adapted online based on EEG recorded from the new subject and
the corresponding labels predicted by either the subject-indepen-
dent model or the adapted subject-specific model, depending on a
confidence score. To verify the proposed method, a study involving
10 healthy subjects is carried out and positive results are obtained.
For instance, after 2–4 min online adaptation (spelling of 10–20
characters), the accuracy of the adapted model converges to that
of a fully trained supervised subject-specific model.

Index Terms—Brain–computer interfaces (BCIs), event related
potential, online model adaptation, P300-based word speller.

I. INTRODUCTION

T HE emerging technology of brain–computer interfaces
(BCIs) has attracted increasing interests from multidisci-

plinary domains [1]–[4]. Currently, user calibration is still an
important part of electroencephalography (EEG)-based BCIs
because of considerable variations across subjects [5]–[7]. Take
mu–beta control as an example. The mu–beta training in [5]
requires each subject to participate in three training sessions
per week where each training session takes around 30 min and
the whole training process lasts up to 6–8 weeks.

A typical user calibration procedure often starts with a user
preparation stage during which an electrode cap is attached and
a user briefing is conducted including the introduction of the
experiment protocol and the delivery of the detailed instructions
to be followed. After that, a certain amount of subject EEG is
collected during the user calibration process, which can then be
used to build a subject-specific classification model (SSCM).
The learned SSCM can be further used to classify the future
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Fig. 1. Interface of a P300-based word speller: Six rows and six columns shown
above flash alternatively in a random order during each flashing round. A P300
event-related potential (ERP) will be elicited when the row or the column spec-
ifying the focused cell flashes. The row and the column specifying the focused
cell can be determined through the identification of P300 ERP within the EEG
recorded during the flashing process.

EEG of the subject under study. However, the user calibration
renders most existing BCIs inconvenient for practical uses.

A number of methods have been reported to speed up the
user calibration process. For example, Blankertz et al. [6] pro-
pose to reduce the training data for motor imagery through the
regularization of the covariance matrix that needs to be evalu-
ated for Fisher’s linear discriminant. Li et al. [8], [9] propose
to reduce the training data through self-training that first learns
a weak classifier from a small amount of labeled data and then
improves the weak classifier based on unlabeled data and corre-
sponding labels predicted by the weak classifier itself. However,
it is still an open question to use BCIs directly without the user
calibration.

This paper presents the first attempt to address this issue for
P300-based BCIs. It extends and consolidates our earlier work
[10] on preliminary research of adaptive P300-based BCIs.
In particular, this paper reports an online model adaptation
technique that makes use of EEG of other subjects and allows
use with no training for a new subject. Before introducing the
methodology, we would like to give a brief overview of prior
work on P300 and P300-based BCIs (more specifically on
P300-based word spellers).

P300 is an endogenous event-related potential (ERP) which
presents as a positive deflection at a latency of around 300 ms
after the onset of external stimuli [11], [12]. Farwell and
Donchin [13] first demonstrate the use of P300 for BCIs in a
so-called oddball paradigm. In that paradigm, the computer
displays a matrix of cells shown in Fig. 1 representing different
letters and flashes rows and columns round by round. In each
flashing round the six rows and the six columns flash one time
alternately in a random order. Subjects trying to spell a char-
acter need to focus on the related cell visually for a short while,
meanwhile a P300 ERP will be elicited when the row or the
column specifying the focused cell flashes. The elicited P300
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Fig. 2. P300 event-related potential of ten healthy subjects under study: P300 is measured at channel Cz where axis gives the time from the stimulus onset
and the P300 curves are derived by averaging 820 EEG trials with P300 (41 characters 10 rounds 2 flashes including one row flash and one column flash that
specify the focused cell). The gray area in each subfigure shows the 95% confidence interval with sample size at 820.

can then be identified by certain machine learning algorithms
[7], [14]–[18].

Many studies [19]–[21] have shown that P300 varies across
subjects as illustrated in Fig. 2 where P300 of ten healthy
subjects is calculated through averaging 820 EEG trials with
P300. In particular, P300 amplitude and latency vary among
both normal and clinical populations. Such cross-subject vari-
ations are found to be closely related to the background EEG
activity [22] and have been linked to individual differences in
cognitive capability. Due to the P300 variations across subjects,
a computational P300 classification model learned from EEG
of one subject usually would not apply well to classify EEG of
another subject [23].

This paper presents an online model adaptation technique that
makes use of EEG of other subjects and allows zero user cali-
bration. To the best of our knowledge, this is the first attempt
to adapt a SSCM online so that a new user can directly use
P300-based BCIs without the user calibration. The proposed
technique is based on three observations [20], [22], [23] in-
cluding: 1) P300 of the same subject is pretty consistent within
a short period (say, 5–10 h), though it may vary after a long pe-
riod of time such as aging; 2) P300 of different subjects shares
common waveform characteristic as defined, namely, a positive
peak at channels such as Cz shown in Fig. 2 after around 300 ms
of the onset of external stimuli; 3) P300 usually varies across
subjects in terms of the peak amplitude and the peak latency.

Fig. 3 shows the framework of our proposed technique. First,
an EEG model is built offline to capture common P300 char-
acteristics by learning from EEG of a pool of subjects. Such

model will be uniformly referred by subject-independent clas-
sification model (SICM) later because it is learned from EEG
of a pool of subjects and so independent of any specific subject.
Starting from the SICM, we further derive a SSCM through an
online adaptation process. In particular, EEG from a new subject
is first classified by the SICM at the initial adaptation stage. A
subject-specific model is then built based on the classified sub-
ject EEG and the corresponding labels predicted by the SICM.
After that, the newly built subject-specific model is iteratively
updated through the incorporation of the ensuing EEG of the
new subject and the corresponding labels predicted by either it-
self or the SICM, depending on a confidence score. In the en-
suing discussions, we uniformly denote the adapted SSCM (by
our proposed method) and supervised SSCM (learned from la-
beled subject EEG) by using ASSCM and SSSCM, respectively.

The rest of this paper is organized as follows. Section II first
presents the proposed EEG classification technique. Section III
then evaluates the proposed technique by using EEG collected
from ten healthy subjects. After that, the proposed technique is
discussed in Section IV. Some concluding remarks are finally
drawn in Section V.

II. PROPOSED EEG CLASSIFICATION TECHNIQUE

This section presents our proposed EEG classification tech-
nique. In particular, we will divide this section into three sub-
sections, which deal with the EEG preprocessing and classifi-
cation by Fisher’s linear discriminant, the subject-independent
EEG modeling and classification, and the adaptive EEG mod-
eling and classification, respectively.
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Fig. 3. Framework of the proposed EEG modeling and classification technique: A subject-independent classification model is first learned from EEG of a pool of
subjects. Starting from the SICM, a subject-specific model is then derived through the adaptation of subject EEG recorded online.

A. EEG Preprocessing and Classification

Subject EEG recorded in each epoch (EEG segment
between 150–500 ms following an external stimulus) needs to
be preprocessed before its classification. In the proposed tech-
nique, each epoched EEG is first fed to a low-pass filter
and then down-sampled at 60 Hz with sampling rate at 250 Hz.
Such down-sampling reduces the data size and at the same time
speeds up the ensuing EEG processing significantly. After that,
the epoched EEG is further filtered by a ten-order Cheby-
shev II type IIR filter where the passband cutoff frequency is set
at 10 Hz as described in [24].

Ocular artifacts are then removed by treating each epoched
EEG as a linear superposition of the electrooculograph
(EOG) and the real EEG as follows [25], [26]:

(1)

where is the number of sites at which the EOG is measured,
two in our setup. Since the dynamic range of is small in
comparison to , the propagation constants can be computed
through the least square minimization. The model in (1) assumes
that the real EEG is uncorrelated, which cannot be sat-
isfied in real situations. To relax this assumption, a difference
model for the artifact propagation can be assumed as follows:

(2)

The difference model in (2) follows from the one in (1), which
removes the intersample correlations of the required EEG .
Our experiments show that the difference model consistently
outperformed the one in (1). We therefore remove ocular ar-
tifacts by using the difference model throughout the study re-
ported here.

In an oddball paradigm, 12 flashes intensify in a random order
within each flashing round where one row flash and one column
flash specifying the focused cell have P300 and the rest has no
P300. Therefore, EEG classification in P300-based BCIs is actu-
ally a two-class classification problem. To facilitate the ensuing

EEG classification, we first concatenate the preprocessed EEG
from different channels into an EEG feature vector as follows:

(3)

where refers to the preprocessed EEG segment that is
recorded from the th channel. Parameter refers to the number
of channels selected (8 channels in our setup).

Practically, we approximate the distribution of the converted
EEG feature vector in (3) by a multivariate Gaussian distri-
bution as follows:

(4)

where refers to the EEG feature vector converted from the
preprocessed EEG and is equal to the dimension of . In the
proposed technique, we define two classes, namly, and

to represent the mode of EEG trials with and without
P300, respectively. Therefore, parameters and , , 2
in (4) refer to the mean and the covariance matrix of EEG feature
vectors with and without P300.

Different EEG classification techniques have been reported
for P300-based word spellers. As evaluated in [27], support
vector machine (SVM) and Fisher’s linear discriminant (FLD)
outperforms others in most cases. We design an EEG classifier
based on FLD because of its lower computational cost compared
with SVM. In particular, FLD attempts to find a linear vector
to project a high-dimensional feature into a 1-D feature so that
the ratio between the projected between-class and within-class
variance is maximized

(5)

where and correspond to the between-classes scatter ma-
trix and within-classes scatter matrix that can be evaluated as
follows [28]:

(6)
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where and denote the number and the mean of samples in
class , respectively. refers to the mean of samples within all
two classes (EEG with and without P300). The linear projection
vector in (5) can be estimated by [28].

As the EEG feature vector has a normal distribution, the
linear vector can also be determined by the discriminant func-
tion evaluated by the posterior probability as follows [29]:

(7)

where , , 2 denote two hypotheses of EEG feature vec-
tors with and without P300, respectively. The quantity ,

, 2 refer to the prior probability of the two classes. Ac-
cording to the protocol of P300-based word spellers, ,

, 2 is equal to 1/6 and 5/6, respectively, for EEG trials with and
without P300. The distribution parameters and , ,
2 can be estimated from EEG feature vectors that are converted
from the training data. In practice, EEG feature vectors with and
without P300 are approximated to have the same covariance ma-
trix (i.e., ).

P300 can thus be identified based on the discriminant evalu-
ated in (7). Due to various types of noise within the collected
subject EEG, most P300-based word spellers usually record
multiple rounds of subject EEG and identify P300 by averaging
the discriminant of EEG collected in each round. To combine
the discriminant of multiple rounds of subject EEG properly,
we first normalize the discriminant evaluated in (7) to a pair of
numbers that represent the probability of EEG with and without
P300 as follows:

(8)

where corresponds to the discriminant of EEG
with and without P300, respectively. Function returns the
mimimum of the discriminant vector . Clearly, the minus of
the followed by a division operation in (8) converts the
discriminant , , 2 into a pair of numbers (i.e., , , 2
that represent P300 and non-P300 probabilities) that lie between
0 and 1 and at the same time sum up to 1 (i.e., ).

P300 can thus be identified by the row and the column
that have the maximum P300 probability. For P300-based
word spellers, each round of flashing shown in Fig. 1 is
composed of six row-flashing and six column-flashing. We
therefore create two P300 probability vectors and
of dimension six each to store the P300 probability (i.e., )
of EEG trials extracted during the six row-flashing and six
column-flashing (within one particular flashing round), re-
spectively. As P300-based word spellers usually implement
multiple rounds of flashing for the spelling of a single character,
we identify the row-flashing and the column-flashing (EEG
trials with P300) that specify the focused cell as follows:

(9)

where parameter denotes the number of flashing rounds im-
plemented for the spelling of a single character, which is set
at 10 in our setup (to be described in Section III-A). and

denote the two P300 proba-
bility vectors. In particular, subscript changes from 1 to 6, indi-
cating the number of the row-flashing and the column-flashing,
respectively. Subscript denotes the round of
flashing instead.

B. Subject-Independent EEG Modeling and Classification

Though many studies [19]–[21] have shown that P300 varies
across subjects, different subjects usually share common wave-
form characteristics within their P300 as illustrated in Fig. 2.
Therefore, compared with a subject model learned from EEG of
any other specific subject, a classification model (SICM) learned
from EEG of a pool of subjects is more capable of capturing
such common waveform characteristics and accordingly should
be more capable of classifying EEG of a new subject without
the user calibration.

The idea of the subject-independent EEG modeling and clas-
sification is quite simple. First, we have a large amount of EEG
collected from many previous subjects (EEG of a new subject
to be studied is not included here) and the corresponding labels
as follows:

(10)

where and refer to EEG feature vectors converted from
EEG of the th subject and the corresponding label vector, re-
spectively. In particular, each element of a label vector is equal
to 1 or 2 to indicate the mode of EEG trial with or without
P300, respectively. With the pooled subject EEG and the
corresponding labels , the Gaussian distribution ,

, 2 in (7) can be estimated and a SICM can accordingly
be built as described in Section II-A. Experiments (to be de-
scribed in Section III-C) show that SICMs significantly outper-
form the cross-subject model learned from EEG of a single pre-
vious subject.

C. Adaptive EEG Modeling and Classification

This section presents the adaptive EEG modeling and classi-
fication technique. The SICM in the last subsection is capable of
classifying EEG of a new subject with no user calibration. How-
ever, the classification accuracy is usually much lower than the
SSSCM accuracy. The lower accuracy can be explained by the
fact that SICMs capture the common instead of subject-specific
P300 waveform characteristics.

One direct solution to compensate the deficiency of the SICM
described above is to build a model that captures the subject-spe-
cific EEG characteristics. Different from the traditional user cal-
ibration approach, we build such model through an online adap-
tation process as follows. Given labeled EEG of a pool of pre-
vious subjects and a new subject to be studied, EEG recorded
from the new subject is first classified by the SICM online at the
initial adaptation stage. An ASSCM is then built by learning
from the just classified subject EEG and the corresponding la-
bels predicted by the SICM. After that, the ASSCM is iteratively
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Fig. 4. Evaluation of the proposed EEG classification confidence score: (a) P300 probability of EEG trials extracted during 12 flashes within one flashing round;
(b) Results of the function in (11); (c) Histogram of accumulated over 10 rounds of flashing; (d) Another histogram of accumulated over another
10 rounds of flashing.

updated by incorporating the ensuing EEG of the new subject
and the corresponding labels predicted by either the SICM or
the ASSCM itself, depending on its confidence score. Algorithm
I below describes the proposed online model adaptation tech-
nique step by step.

Algorithm I:
Input: Labeled EEG from many previous subjects and a
new subject to be studied
Output: An ASSCM that is capable of classifying EEG of
the new subject plus the classification results of the subject
EEG that is used for the online adaptation.

Step 1) Preprocess the pooled subject EEG and con-
vert it into a set of EEG feature vectors. Build
a label vector corresponding to the converted
EEG feature vectors.

Step 2) Train a SICM by learning from the labeled EEG
feature vectors specified in Step 1.

Step 3) Preprocess and convert the initial EEG segment
(EEG trials extracted during the twenty rounds of
flashing that are used to spell the first two charac-
ters) from the new subject into EEG feature vec-
tors . Then classify by using the SICM built
in Step 2.

Step 4) Build an ASSCM based on and the corre-
sponding labels that are predicted by the SICM
in Step 3.

Step 5) Preprocess and convert the ensuing EEG segments
(EEG trials extracted during the ten rounds of
flashing used to spell a character) of the new sub-
ject into EEG feature vectors . Classify by
both the SICM and the ASSCM. Determine the
labels of (i.e., ) by either the SICM or the
ASSCM, depending on a confidence score de-
fined in (11).

Step 6) Update the ASSCM by using a subset of EEG seg-
ments classified so far and the corre-
sponding labels determined in Step 3 and Step 5.

Step 7) Repeat Steps 5 and 6 until a certain amount of EEG
of the new subject has been adapted.

In Step 5 of Algorithm I, a confidence score is required to se-
lect the SICM and the ASSCM when they are applied to predict
the labels of the next EEG segment. Besides, a confidence score
is also needed in Step 6 to select a subset of the classified sub-
ject EEG. In the proposed technique, both confidence scores are
evaluated based on the model’s EEG classification consistency
defined as follows:

(11)

where represents the number of the flashing rounds for the
spelling of a character. and denote the row and the
column P300 probability vectors of EEG trials extracted during
the th round of flashing, respectively. Function returns a
6-D vector that sets the row or column with the maximum P300
probability at 1 and the rest at 0 as illustrated in Fig. 4(b). Func-
tions and return the peak and second-peak frequency
of the row and column with the maximum P300 probability (ac-
cumulated over rounds of flashing), respectively, as illustrated
in Fig. 4(c) and (d).

As (11) shows, the confidence score is actually evaluated
according to its classification consistency. Such evaluation is
based on the observation that EEG with P300 shows specific
pattern but those without P300 are much more random. In par-
ticular, a model’s confidence score will be high when 1) the peak
frequency of the row/column with the maximum P300 proba-
bility is high and 2) the difference between the peak and the
second-peak frequency is high. The second requirement ensures
the saliency of the peak frequency of the row/column with the
maximum P300 probability.
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Fig. 4 further illustrates how the confidence score is evalu-
ated in (11). Particularly, Fig. 4(a) shows the P300 probability
of the 12 flashes within one specific flashing round. Fig. 4(b)
shows the results of the function in (11). Fig. 4(c) shows
the frequency of the row and the column with the maximum
P300 probability that is accumulated over 10 rounds of flashing.
Clearly, the peak/second-peak frequencies of the row-flashing
and column-flashing reach up to 6/1 and 7/1, respectively. The
confidence score can therefore be evaluated at 11 (i.e.,

). But for another ten rounds of flashing shown in Fig. 4(d),
though the peak and second-peak frequencies are the same as
that in Fig. 4(c), the confidence score is just evaluated as 7 (i.e.,

) because of the lower saliency of the peak frequency.
Consequently, the label of the ensuing EEG segment of the

new subject can be uniformly determined based on confidence
scores of the SICM and the ASSCM as follows:

if
otherwise

(12)

where and refer to confidence scores of the
SICM and the ASSCM, respectively. and refer
to the label predicted by using the SICM and the ASSCM,
respectively. Clearly, the label of the ensuing subject EEG
segment is determined by the model (either the SICM or the
ASSCM) with a higher confidence score.

As described in Algorithm I, the proposed technique derives
an ASSCM through an online adaptation process, which is ac-
tually very similar to the semi-supervised learning that is often
used while only a small amount of labeled training data is avail-
able [8]. However, the proposed technique requires no labeled
EEG of the new subject compared with the semi-supervised
learning. Instead it uses a SICM (learned from EEG of a pool
of previous subjects offline) as a seed model to make an ini-
tial label prediction. At the same time, as the SICM is capable
of achieving pretty high EEG classification accuracy shown in
Fig. 6 (to be discussed in Section III-D), the proposed technique
is capable of classifying EEG accurately even at the very initial
adaptation stage (when the ASSCM suffers from under-fitting
severely).

It should be noted that we do not use all classified subject
EEG to update the ASSCM as described in Algorithm I. In
particular, we update the ASSCM by using 80% most confi-
dent subject EEG classified so far. The use of 80% most con-
fident subject EEG is based on the observation that the accu-
racy of SICMs shown in Fig. 6 is usually higher than 80% and
the accuracy of the ASSCM also surpasses 80% quickly after
around 30–50 rounds of online adaptation. Therefore, the labels
of the 80% most confident subject EEG should be pretty accu-
rate, though they may not be perfect accurate. In addition, the
accuracy of the ASSCM saturates and converges to that of the
SSSCM after around 200 rounds of subject EEG are adapted on-
line shown in Fig. 6. Therefore, 300–400 rounds of online adap-
tation should be enough to derive a stable ASSCM as stated in
Step 7 in Algorithm I.

III. EXPERIMENTAL RESULTS

The proposed EEG modeling and classification technique is
evaluated in this section. First, data collection from a P300-

based word speller is briefly described. After that, P300 vari-
ations across subjects are studied based on the performance of
the cross-subject EEG classification. Lastly, the proposed sub-
ject-independent and adaptive EEG modeling and classification
techniques are evaluated extensively based on the collected EEG
data.

A. Data Collection

The proposed EEG classification technique is tested over a
P300-based word speller reported in our earlier work [16]. In
that speller system, subject EEG is first amplified by a Neu-
roscan amplifier called SynAmps2 and then piped to a server
by the Neuroscan software. The SynAmpls2 has 64 monopolar
channels and we just use eight channels that are proposed in
[30]. In particular, the work in [30] tests different channel sets
and finds that the combination of three classical channels (i.e.,
Fz, Cz, Pz) and five channels at the posterior region (i.e., PO7,
PO8, OZ, P3, P4) produces the best classification performance.

During the EEG collection stage, subjects sit in front of a
6 6 matrix of characters shown in Fig. 1 where the six rows
and columns flash alternatively in a random order. Subjects need
to focus on one specific cell visually during each flashing round
(defined by the flashing of the six rows and six columns one
time). When a particular row or column flashes, a corresponding
stimulus code is generated in a time-locked fashion, which di-
vides the collected EEG into epoch of 500 ms starting from the
time of stimulus onset. Therefore, one row flash and one column
flash within each flashing round indicate the focused cell, which
can be determined through the identification of the P300 from
the recorded EEG.

In our study, EEG of ten healthy subjects is collected by
using the P300-based word spell described above. For each sub-
ject, two EEG sessions are collected sequentially, which corre-
spond to the spelling of the same set of 41 characters “THE
QUICK BROWN FOX JUMPS OVER LAZY DOG 246138
579” two times but in different orders in each time. In partic-
ular, ten rounds of flashing are implemented for the spelling of
each character and EEG between 150 and 500 ms after the onset
of each flash is used for the EEG classification. Throughout our
experiments, we evaluate the proposed techniques by using the
two EEG sessions collected from each of the ten healthy sub-
jects under study.

B. Intersubject EEG Variance

We study P300 variations through the examination of the
performance of the cross-subject EEG classification. Particu-
larly, ten SSSCMs are first built by learning from the first EEG
session (or the second session for two-fold cross validation)
of the ten healthy subjects, which are then applied to classify
the second EEG session (or the first) of the ten healthy sub-
jects, respectively. Table I shows the EEG classification accu-
racy that is defined by the fraction of EEG samples correctly
classified. In particular, the first row and the first column show
the testing and training EEG of the ten healthy subjects, respec-
tively. Therefore, the diagonal items actually show the SSSCM
accuracy, which is evaluated by using the classification models
learned from the subjects’ own EEG. On the other hand, the
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TABLE I
ACCURACY (FRACTION OF EEG SAMPLES CORRECTLY CLASSIFIED) OF CROSS-SUBJECT EEG CLASSIFICATION

Fig. 5. Accuracy of SSSCMs (black bars), SICMs (gray bars), and cross-subject models (white bars): The accuracy is evaluated through the two-fold cross vali-
dation over the two EEG sessions that are collected from the ten healthy subjects described in Section III-A. The accuracy of cross-subject models (white bars) is
evaluated by averaging the nondiagonal items in Table I column by column.

nondiagonal items show the cross-subject model accuracy,
which is evaluated by the classification models learned from
EEG of other subjects.

Fig. 5 further compares the accuracy of the subject-spe-
cific and cross-subject EEG classification models of the
ten subjects under study. In particular, for each subject
the black bar on the left shows the SSSCM accuracy.
The white bar on the right instead shows the cross-subject
model accuracy that is evaluated by averaging the nondiag-
onal items in Table I column by column. As Fig. 5 shows,
the cross-subject model accuracy is significantly lower than

the SSSCM accuracy, indicating the EEG variations across
subjects.

C. Subject-Independent EEG Modeling and Classification

The subject-independent EEG modeling and classification
technique has also been tested. For each of the ten healthy
subjects, a SICM is first built by learning from the first EEG
session (or the second for two-fold cross validation) collected
from the other nine subjects. The trained SICM is then ap-
plied to classify the second EEG session (or the first session)
of the subject under study.
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Fig. 6. Accuracy of SICMs (dashed graph), ASSCMs (solid heavy dark graph), and SSSCMs (solid light dark graph). The accuracy of the SICMs does not change
with respect to the online adaptation process, while the accuracy of the SSSCMs and ASSCMs increases when more labeled and unlabeled EEG of the new subject
is adapted online. It should be noted that the spelling of each character requires ten rounds of flashing.

The gray bars in Fig. 5 show the SICM accuracy of the ten
subjects under study. As Fig. 5 shows, the SICM accuracy is
generally much higher than the cross-subject model accuracy.
Such results indicate that the use of the pooled EEG does im-
prove the EEG classification performance greatly. On the other
hand, the SICM accuracy is normally more or less lower than
the SSSCM accuracy. In particular, the SICM accuracy may be
significantly lower than the SSSCM accuracy for some specific
subjects (i.e., the second, fifth, and tenth subjects). Such results
concurrently indicate the limitation of SICMs, i.e., they cap-
ture the common instead of the subject-specific P300 waveform
characteristics.

D. Adaptive EEG Modeling and Classification

The adaptive EEG modeling and classification technique has
been evaluated extensively. To remove the possible effect of the
EEG collection order, we first randomly sort the 41 characters
in one session and then segment the sorted characters into 40
segments including two characters in the first segment and 1
in each of the remaining 39 segments. In addition, ten rounds
of the random EEG sorting and segmentation described above
are implemented for each of the two EEG sessions (the other
session will be used as the testing data as a whole). It should be
noted that the use of two characters in the first EEG segment is
to avoid the singularity of the covariance matrix that need to be
evaluated in (7).

Considering the two-fold cross validation and the ten rounds
of EEG sorting and segmentation, 20 sets of ASSCMs (i.e.,

2 10) are built for each subject where each set is composed
of 40 ASSCMs. In addition, 20 sets of SSSCMs (40 in each set
as well) are also built based on the 20 sets of sorted and seg-
mented subject EEG. In particular, the th SSSCM in each set is
built by learning from the first segments of the labeled subject
EEG. The accuracy of the two groups of SSCMs is evaluated
by applying them to the other EEG session of the ten subjects
under study.

Fig. 6 shows EEG classification accuracy averaged over the
20 sets of SSSCMs and ASSCMs, respectively. As Fig. 6 shows,
the adaptation process can be divided into three stages where
the first stage refers to the initial adaptation period (around the
first 30 rounds of EEG). In this stage, ASSCM accuracy is sig-
nificantly higher than SSSCM accuracy when SSSCMs suffer
from under-fitting severely. The higher ASSCM accuracy can
be explained by SICMs that determine the EEG label because
of their higher confidence score shown in Fig. 7. The second
stage corresponds to 30–200 rounds of online adaptation shown
in Fig. 6. In this stage, SSSCM accuracy surpasses ASSCM
accuracy because of error of EEG labels predicted by either
SICMs or ASSCMs themselves. The third stage corresponds to
200–400 rounds of online adaptation. In this stage, ASSCM ac-
curacy converges to SSSCM accuracy, indicating the stability of
the proposed method.

Fig. 7 shows the averaged confidence scores of SICMs and
ASSCMs, respectively. As SICMs are fixed during the model
adaptation process, SICM confidence scores (labeled by heavy
dark graph) vary within a small range throughout the online
adaptation procedure. In addition, ASSCM confidence scores
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Fig. 7. Confidence score of SICMs (solid heavy graph) and ASSCMs (solid light graph). The confidence score of SICMs is stable because SICMs are fixed during
the online adaptation process. But the confidence score of ASSCMs increases steadily when more subject EEG is adapted. It should be noted that the spelling of
each character requires ten rounds of flashing.

(labeled by light dark graph) are normally lower than SICM con-
fidence scores at the early adaptation stage. However, they in-
crease and surpass SICM confidence scores quickly after a small
amount of subject EEG is adapted online. It should be noted that
ASSCM confidence scores in Fig. 7 are averaged over the 20 sets
of ASSCMs described above. For different sets of ASSCMs,
their confidence scores may surpass SICM confidence scores at
different points.

In addition, Fig. 8 further shows the accuracy standard devi-
ation of the 20 sets of ASSCMs and SSSCMs described above.
In particular, for each subject the light gray and the heavy
graph show the accuracy standard deviation of the SSSCM
and the ASSCM, respectively. As Fig. 8 shows, the accuracy
standard deviation of ASSCMs consistently converges to that
of SSSCMs. Such results also indicate the stability of the
proposed online adaptation technique.

IV. DISCUSSION

Compared with SSSCMs, SICMs and ASSCMs both remove
the traditional user calibration procedure. In addition, ASSCMs
are capable of achieving virtually the same performance as
SSSCMs after a small amount of subject EEG (100–200
rounds) is adapted online. Furthermore, subject EEG used for
the online adaptation is also classified accurately. For the 20
sets of ASSCMs of each subject described in Section III-C, the
accuracy of EEG of the ten subjects (used for the online adap-
tation) reaches up to 84.77%–96.19%. This property enables
users to use P300-based word spellers directly without the user
calibration. It also explains the stable performance improve-

ment of ASSCMs and their quick convergence to SSSCMs as
illustrated in Fig. 6.

Several issues need to be further investigated. First, it should
be noted that a certain number of subjects have no evident
P300 and so cannot use P300-based word spellers even after
a traditional user calibration. For these subjects, the proposed
technique cannot adapt a good ASSCM either. Second, for
disabled subjects, P300 may not be detected from the eight se-
lected channels properly. Under such circumstance, automatic
online channel selection should be studied to identify sub-
ject-specific channels with evident P300. Third, the proposed
technique is solely evaluated over ten healthy subjects. But
for people from a more diverse population, a higher degree of
EEG variations can be expected, which may prolong the online
adaptation process more or less, depending on the degree of
the EEG variations. One possible solution to this problem is
to build multiple category-specific SICMs. Then for a new
user, a category-specific SICM can be selected based on the
category of the new user. Fourth, the proposed technique is
only evaluated by a P300-based word speller. But the ideas
of learning a SICM from a pool of subjects and the iterative
online adaptation from a SICM to an ASSCM have potentials
to be applied to other BCI tasks such as motor imagery. We
will further study these issues in our future work.

V. CONCLUSION

This paper presents an unsupervised EEG modeling and clas-
sification technique and its applications to P300-based word
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Fig. 8. Accuracy standard deviation of ASSCMs (solid heavy graph) and SSSCMs (solid light graph). The standard deviation of ASSCMS is very small and
converges to that of SSSCMs when more subject EEG is used for the model adaptation. It should be noted that the spelling of each character requires ten rounds
of flashing.

spellers. In the proposed technique, a SICM is first built by
learning from EEG of a pool of subjects, which captures the
common P300 characteristics and greatly outperforms the sub-
ject model learned from EEG of one specific subject. Starting
from a SICM, an ASSCM is then adapted online for a new
subject through an iterative adaptation procedure. Experiments
over ten healthy subjects show that the ASSCM is capable of
achieving virtually the same performance as the SSSCM. This
indicates that it is feasible to avoid the traditional user calibra-
tion procedure and accordingly making P300-based BCIs more
convenient for practical uses.
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