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Voxel Selection in fMRI Data Analysis Based on
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Abstract—Multivariate pattern analysis approaches toward de-
tection of brain regions from fMRI data have been gaining at-
tention recently. In this study, we introduce an iterative sparse-
representation-based algorithm for detection of voxels in functional
MRI (fMRI) data with task relevant information. In each iteration
of the algorithm, a linear programming problem is solved and a
sparse weight vector is subsequently obtained. The final weight
vector is the mean of those obtained in all iterations. The char-
acteristics of our algorithm are as follows: 1) the weight vector
(output) is sparse; 2) the magnitude of each entry of the weight
vector represents the significance of its corresponding variable or
feature in a classification or regression problem; and 3) due to the
convergence of this algorithm, a stable weight vector is obtained.
To demonstrate the validity of our algorithm and illustrate its ap-
plication, we apply the algorithm to the Pittsburgh Brain Activity
Interpretation Competition 2007 functional fMRI dataset for se-
lecting the voxels, which are the most relevant to the tasks of the
subjects. Based on this dataset, the aforementioned characteris-
tics of our algorithm are analyzed, and a comparison between our
method with the univariate general-linear-model-based statistical
parametric mapping is performed. Using our method, a combina-
tion of voxels are selected based on the principle of effective/sparse
representation of a task. Data analysis results in this paper show
that this combination of voxels is suitable for decoding tasks and
demonstrate the effectiveness of our method.

Index Terms—Functional MRI (fMRI), prediction, sparse rep-
resentation, statistical parametric mapping (SPM), voxel selection.

I. INTRODUCTION

IN FUNCTIONAL MRI (fMRI), an fMRI scanner measures
the blood-oxygenation-level-dependent (BOLD) signal at all

points in a 3-D grid, or image of the brain. Each grid of the 3-D
image is known as a voxel. A typical fMRI dataset is composed
of time series (BOLD signals) of tens of thousand voxels. High
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volume is a characteristic of fMRI data. Therefore, voxel se-
lection plays an important role in fMRI data analysis because
of the following: 1) heavy computation burden and 2) uncorre-
lation (or redundancy) of a large number of voxel time series
with respect to the stimulus/task presented to the subject. Much
of current fMRI research such as identifying brain regions acti-
vated in response to a task or stimulus is related to the issue of
voxel selection.

General linear model (GLM) is a classical univariate approach
toward detection of task-related activation in the brain. A typical
example is the statistical parametric mapping (SPM) based on
the GLM. SPM is a powerful tool for the analysis of fMRI data
including voxel selection [2]–[4]. Correlation-based methods,
which are univariate approaches, are also useful for detection of
task-related activations in the brain [5].

Recent multivariate approaches draw from pattern classifi-
cation and machine learning theory, including classifier-based
method [6], multiple regressor model [7], as well as least square
regression with 
 � (ridge) and 
 � (Lasso) regularization [8]. Re-
cently, an elastic net regression technique was proposed in [9].
This technique achieves both sparsity and clustering effect by
using a weighted combination of 1-norm and 2-norm penalties
on top of the least-squares problem, was applied to the analysis
of the fMRI dataset of Pittsburgh Brain Activity Interpretation
Competition (PBAIC) 2007. Considering sparsity and clustering
effect simultaneously, the authors demonstrated the distributed
nature of neural activities and the importance of localized clus-
ters of activity.

In this paper, we present a novel sparse-representation-based
method for voxel selection in fMRI data.

The sparse representation of signals can be modeled by

y � Aw (1)

where y ∈  � is a given signal vector and A ∈  � ×� (� �
� ) is a basis matrix. In the context of fMRI data analysis, in
model (1), A represents a data matrix of which each column is
a time series of a voxel, and y is the stimulus/task function con-
volved with a hemodynamic response function to translate ex-
pected task related neural activity to expected BOLD response.

The task of sparse representation is to find a solution w ∈  �

for (1) such that this solution is as sparse as possible. In many
references, such as [11], a basis pursuit (BP) algorithm was
presented, in which a sparse solution (i.e., � -norm solution) can
be found by solving the following optimization problem:

� � � ‖w‖� � s.t. Aw � y (2)

where 1-norm ‖w‖� is defined as
∑ �

� � � 
 � � 
 .
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Setting w � u − v, where u, v ∈  � are nonnegative, (2)
can be converted to the following equivalent linear programming
problem:

� � �
�∑

� � �

� � � � � � � � � � � � � A� −A� � u� � v � � � � y � u� v ≥ � �

(3)
The solution of a linear programming problem is generally
unique [19], which can be obtained by standard software pack-
ages. In this paper, all linear programming problems are solved
using the MATLAB function “linprog.”

Sparse representation of signals has received a great deal
of attention in recent years (e.g., see [11]–[16]). For instance,
Donoho and Elad discussed optimal sparse representation in
general (nonorthogonal) dictionaries via � � minimization [17].
In practical applications, sparse representation can be used in un-
derdetermined blind source separation (BSS), which is difficult
to deal with using a standard independent component analysis
(ICA) method [18]–[23]. BP is also an important application
of sparse representation [11], [17]. Recently, it has been found
that model (2) has applications in feature selection and detection
tasks. Equation (2) was successfully used in [22] for cross-modal
localizations of sound-related region in the video, where A was
constructed from the video and y from the accompanying audio.

A related method is � -norm support vector machine (SVM).
Similar to the BP algorithm, 1-norm SVM solves a linear pro-
gramming problem to obtain a sparse solution. Thus, it is also
called sparse SVM [24]–[29]. 1-norm SVM has potential appli-
cations in feature selection including dimension reduction [24],
detection of region of interest of images [25], detection of ma-
chine damage, or highlighting abnormal features (localization)
in medical data [29]. There are differences between the models
(2) and � -norm SVM. For instance, when 1-norm SVM and
model (2) are used for the same dataset, there are more vari-
ables and constraints for 1-norm SVM than for (2). This implies
a heavier computational burden is required for 1-norm SVM.
Another related method is the so-called Lasso regularization,
which is also used in the potential SVM [30], [31]. Compared
with Lasso method or the potential SVM with quadratic ob-
jective functions, (2) can be converted into a standard linear
programming problem and has computational advantage espe-
cially when the number of the variables is extremely large as in
fMRI data.

In the following, we compare the model (1) with the GLM
model, and analyze the difference between the two models.
GLM model is represented by

x� � Gβ� � e� (4)

where x� ∈  � is a time series of the � th voxel, G ∈  � ×	

is called a design matrix, β� ∈  	 is an unknown parame-
ter vector to be estimated for each voxel, e� ∈  � is an error
(noise) vector, � � � � � � � � � . Each column of G corresponds
to an explanatory variable related to the specific experimental
conditions under which the data were collected, β� represents
the weights of the explanatory variables (columns) of G.

Considering all voxels, the matrix form of (4) becomes

X � Gβ � E (5)

where X ∈  � ×� is the data matrix, which is the same as A
in (1), β ∈  	 ×� , E ∈  � ×� .

Multiplying both sides of (5) by the Moor–Penrose inverse
β � of β, we have

G � Xβ � − Eβ � � (6)

Furthermore, considering each column g� of G and letting the
noise vector be included implicitly in the coefficient vector, (6)
can be rewritten as

g� � X� β �
� � "e� � (7)

where "e� � −X� Eβ �
� .

Since g� , representing a specific experimental condition, is
the convolution of a stimulus/task function and a hemodynamic
response function (HRF), it is y in (1). Furthermore, in view
of X in (7) and A in (1) representing the same data matrix, (7)
is equivalent to the model in (1). The previous analysis shows
how the model in (1) is related to the GLM model in (4). The
main differences between these two models are as follows: 1) in
model (1), a transformed stimulus/task function is linearly rep-
resented by the time series of a set of voxels. The assumption
of sparse representation implies that the number of voxels used
in this representation is as small as possible. Note that although
only a small number of voxels are needed in sparse represen-
tation, they are generally representative voxels distributed in
different activated brain areas. In contrast, in (7), the time series
of each voxel is linearly represented by the columns of a design
matrix, of which each column is a transformed stimulus/task
function, or a function related to noise, etc., and 2) model (1)
is a multivariate approach because the relationship of different
voxels is extracted using (1). Conversely, all the stimulus/task
functions are considered simultaneously in the GLM model (4).
It is the relationship of different stimulus/task functions that is
extracted in (4) rather than the connection of different voxels.
Thus, model (4) is a univariate approach. The relationship be-
tween different voxels is generally taken into account (e.g., by
random field method) in later analysis of SPM.

In this paper, we develop a sparse representation algorithm
based on the linear programming problem (2) for voxel selection
in fMRI data analysis. The aim of sparse representation is to find
a coefficient vector w of model (1) such that w is as sparse as
possible. The motivations for using sparse representation here
are:

1) Considering a huge number of voxels of the brain, only
a small number of voxels are useful for representing a
stimulus/task function y in (1). This is reflected by the
sparsity of w.

2) Through sparse representation, we obtain a combination
of voxels. This combination of voxels can represent the
stimulus/task function y with a high efficiency since it
contains a small number of voxels (w is sparse). Thus, the
links between those voxels in the combination are empha-
sized through an effective/sparse representation of y.
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3) The voxels picked by sparse representation can be cat-
egorized into two sets: one where the times series are
correlated with y, and the other set of voxels whose time
series are not significantly correlated to y, but still con-
tain important information necessary to represent y. The
first set of voxels can be identified using routine statistic
parametric methods, e.g., GLM–SPM. However, the sec-
ond set of voxels are difficult to be identified using these
statistic parametric methods (see Fig. 7).

4) In the model (1), the combination of voxels are selected
based on the principle of effective/sparse representation
of a task. As shown in our data analysis of this paper,
the voxel selection based on model (1) could be more
suitable for decoding tasks than GLM model in which the
representation of a task is not considered.

To elaborate the advantages of our method as summarized ear-
lier, we apply it to the fMRI dataset of PBAIC 2007. These data
were collected for a prediction task. Stimuli in the experiments
performed to obtain these datasets are rich and nonrepetitive.
Therefore, it is difficult to perform voxel selection satisfactorily
using typical methods such as Pearson-correlation-based meth-
ods. After voxel selection with our method, we perform the
prediction of experience-based cognitive tasks from the fMRI
dataset of PBAIC 2007 as in [8] and [10]. The prediction results
will be used in evaluation of our method. In our data analysis,
we also compare our method with the benchmark approach: the
GLM–SPM method.

The remaining part of this paper is organized as follows.
Our detection algorithm is presented in Section II. The analy-
sis of convergence and effectiveness of this algorithm are also
included. In Section III, we use our algorithm for voxel se-
lection in fMRI data analysis. Additional discussions related
to fMRI data analysis are included in Appendixes I and II.
Finally, conclusions are presented in Section IV to review our
method.

II. MATERIALS AND METHODS

A. Algorithm

In this section, we describe our algorithm for voxel selection.
The algorithm includes a few more steps than just solving (2)
because of the following three aspects: 1) the number of nonzero
entries of w generally equals to � [19]. This means that the
sparsity of w decreases with the increasing of � . This leads to
a situation where increase in the amount of training data may
not lead to any improvement in the feature selection by (2); 2)
equation (2) is not suitable for the overdetermined case in which
� � � ; 3) when � is not sufficiently large, w obtained by a
single optimization iteration (see shortly) may not reflect the
important data features well. Even if � is sufficiently large, this
problem still exists because of the presence of noise. In order
to address these three problems, we extend (2) and present an
iterative detection algorithm in this paper.

Suppose that each row of A in (2) represents a data sample,
y can be speech signal, stimulus, labels etc.

In this paper, A is an fMRI data matrix of which each column
is the time series of a voxel (and hence each row represented

many voxels at one point in time), y is the stimulus/task func-
tion convolved with a hemodynamical response function. The
following algorithm is designed to detect the parts in the rows
of A (e.g., pixels or voxels) relevant to y.

Algorithm 1:
Step 1: For � � � � � � � , do the following Steps 1.1 to 1.4.

Step 1.1: Randomly choose 
 rows from � a � � � � � � a � 	
to construct a 
 × � matrix denoted as A� ,
the corresponding 
 entries of y form a col-
umn vector denoted as y � ∈  
 .

Step 1.2: Solve the following optimization problem.
Similar to (2), this optimization problem can
be converted to a standard linear program-
ming problem

� � � ‖w‖� � s.t. A � w � y� � (8)

The optimal solution of (8) is denoted by
"w � � � .

Step 1.3: Let

w � � � �
�
�

�∑

� � �

"w � � � � (9)

Step 1.4: If � � � � � ‖w � � � − w � � −� � ‖� � α or � �
	 � , where α is a predefined small positive
constant and 	 � is a predefined limiting up-
per bound for the number of iterations (e.g.,
	 � � 
 � � ), set w � w � � � and go to Step 2.
Otherwise go to Step 1.1.

Step 2: For a given positive θ, define  � � � 
 
 � � 
 � θ � � �
� �    � � 	 . Then,  is our detected part of interest in
all rows of A.

Remark 1: 1) Note that each "w � � � in (9) is obtained by solving
a linear programming problem in the � th iteration. Suppose that
there exists error vector denoted as e� associated with "w � � � , then
the error vector with respect to the output of � iterations is the
mean of e� , i.e. � � � � �

∑ �
� � � e� . Thus, from the viewpoint of

statistics, the error does not increase as increasing number of
iterations and 2) although noise is not explicitly expressed in
(8), the weight vector w is generally affected by noise [see (7)].
Through the average operation in (9), the effect of noise can be
reduced (see Appendix III: Robustness analysis). Furthermore,
through randomly selecting 
 rows from A, "w � � � obtained in
(8) can be seen as a random sample of w, while w � � � in (9) can
be thought of as an approximation to the mean of w. Suppose
that Algorithm 1 terminates after 	 iterations. This implies
that we obtain 	 random samples of w and then their mean is
obtained. The number of iterations (i.e., the number of random
samples) can be easily determined because of the convergence
of Algorithm 1, as shown later.

In the following, we discuss the setting of three parameters

 , α � and θ in Algorithm 1. Note that each "� � � � is obtained
through solving a standard linear programming problem, thus
Algorithm 1 is not involved in setting the initial vector w � � � .

To select the parameter 
 , following two aspects should
be taken into account: 1) 
 should not be very small since
the columns of A� and y � in (8) contain temporal evolution
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information and should not be lost and 2) 
 should not be very
large so that the computational burden for solving the optimiza-
tion problem (8) is not heavy. It will be explained in Appendix I
that the data analysis results are not sensitive to the value of 

provided that 
 is not very small. In this paper, we generally
choose 
 � � � � � . Other choices, e.g., 
 � � � � � � , � � � � � � and
� � � � , are also acceptable.

As will be proved later, Algorithm 1 is convergent, we can
easily choose a small α (e.g., α � � � � � ) to obtain a stable w.

The threshold parameter θ can be chosen in various ways
depending on the applications. One way is the cross-validation
method, which is elaborated in Appendix II. Here, we present
a probability method. Considering the entries of w are sparse,
we assume that the probability distribution of the entries of
w is Laplacian. Using all entries of w as samples, we esti-
mate the mean, the variance, and the inverse cumulative dis-
tribution function � −� of this Laplacian distribution. We then
define  � � � 
 
 � � 
 � θ � � � � �    � � 	 , where θ is chosen as
� −� � � � � , � � is a given probability (e.g., � � �  � in this paper).
As will be shown in Section III, this method for determin-
ing θ is acceptable. The values of the parameter θ determined
by the cross-validation method and the probability method
are generally different. We suggest the use of cross-validation
method in a case where there is a lot of training data available
and decoding is the main purpose and we suggest the use of
probability based method if the aim is localization, i.e., detec-
tion of localized regions in the brain that contain task-relevant
information.

We now analyze the convergence and effectiveness of
Algorithm 1.

Convergence: Suppose that in � th iteration of Algorithm 1,
we have the output

w � � � �
�
�

�∑

� � �

"w � � � � (10)

Let

� � � � � � � ‖w � � � � � − w � � � ‖� � (11)

From (10)

w � � � � � − w � � � �
�

� � �

� � �∑

� � �

"w � � � − �
�

�∑

� � �

"w � � �

�
�

� � �∑
� � �

"w � � � − � � � � �
�∑

� � �
"w � � �

� � � � � �

�
� "w � � � � � −

�∑
� � �

"w � � �

� � � � � �
� (12)

In Algorithm 1, for given data matrix A and parameter

 , there are in total � 


� � � � � � � − � �    � � − 
 � � � � � 
 � �
choices of the pairs (A� , y� ) in (8). For each pair (A� , y� ),
there is a weight vector "w � � � , which is the solution of (8).
Let γ� � � �  � ‖ "w � � � ‖� � � � � � � � � � � 


� 	 , then ‖ "w � � � ‖� � γ� .

Fig. 1. Three iterative curves demonstrating the convergence of Algorithm
1 with parameter 
 set to be � � , � � � and  � � respectively, where � � � � is the
convergence index of Algorithm 1. The execution time for the three cases are
� 
  , 
 � � , and  � � s, respectively.

From (12), we have

‖w � � � � � − w � � � ‖� ≤ � � � � γ�

� � � � � �
�

� γ�

� � �
� (13)

Therefore, � � � � →∞ � � � � � � , i.e., Algorithm 1 is convergent.
In fact, the convergence of Algorithm 1 originates from the

fact that there are finite number of weight vectors "w � � � , which
are bounded [each "w � � � corresponding to a pair (A� , y � )].
Although the number of "w � � � is huge, generally (� 


� ),
Algorithm 1 converges in several hundred of iterations (see
Fig. 1 in our data analysis section).

Although w � � � in (10) is generally not so sparse as "w � � � , our
simulations and data analysis results show that a large fraction
of entries of w � � � are close to zero. Thus, we say that w � � � is
still sparse.

Effectiveness: Regarding the effectiveness of Algorithm 1,
we have the following explanation. Here, we only consider the
underdetermined case where � � � . First, we define a set of
� -dimensional vectors � such that ∀w � !A � !y � ∈ � , w � !A � !y �
is the 1-norm solution of the equations !Aw � !y, where !A is
composed by 
 rows randomly taken from A, !y is a vector
composed by 
 corresponding entries of y. Note that there
are � 


� vectors in � . Next, we define a � -dimensional ran-
dom vector v � � � � � � � � � � � � � , where v randomly takes values
in � .

For a sample w � !A � !y � of v in � , it is sparse since it has at
most 
 nonzeros. Generally, the magnitude of the � th entry of
w � !A � !y � reflects the significance of the � th column of !A for
the constraint !Aw � !y. Obviously, the output of Algorithm 1
satisfies w � � � � � �

∑�
� � � "w � � � ≈ � � v � , i.e., the expected value

of v. Now, we show that � � � � � can reflect the significance of
the � th column of A for the regression between A and y.

For "w � � � obtained in the � th iteration Algorithm 1, we have

A "w � � � � y � n� � � (14)

where n� � � � � � � � �
� �    � � � � �

� � � , � � � �
� � � if � ∈ Ind� (Ind � is the

set of indexes of the 
 rows of A� in A), otherwise � � � �
� �

� � − a �  "w � � � .
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Furthermore, we have

Aw � A

(
�
�

�∑

� � �

"w � � �

)
� y �

�
�

�∑

� � �

n� � � � (15)

Note that � � � �
� can be positive, negative, or zero. In many

cases, especially when the parameter 
 in Algorithm 1 is not
small, the expectation of � � � �

� can be assumed to be close to zero,

i.e., � � � � �
∑�

� � � n� � � ≈ 0 for sufficiently large � . Thus,

Aw ≈ A� � v � ≈ y � (16)

Therefore, the correlation between Aw and y is close to � and
w is close to a regression coefficient vector between training
data matrix A and y.

From the previous analysis and the definition of w in
Algorithm 1, we can see the following: 1) the magnitude of
w [i.e., � � � � � ] reflects the significance of the � th column of A
to the satisfaction of (16); 2) if 
 in Algorithm 1 is fixed, we
can obtain a consistent w. This is due to the convergence of
Algorithm 1; 3) more importantly, w is still sparse. This will
be demonstrated in our data analysis examples. Based on the
sparsity of w, the voxels that are the most correlated to the
stimulus/task function can be selected.

B. Voxel Selection in Functional MRI Data

In this section, we apply Algorithm 1 to the fMRI data of
PBAIC 2007 [34] for voxel selection. The fMRI data were col-
lected by Siemens 3T Allegra scanner with imaging parameters
TR and TE being � �  � s and � � ms, respectively. Three sub-
jects’ data were available in the competition. Each subject’s
data consist of three runs. Each run consists of � � � volumes
of fMRI data (704 volumes if you include fixation), of which
each volume contain � 
 × � 
 × 	 
 voxels. The size of a voxel
is 	 � � × 	 � � × 	 � � mm	 . The preprocessed data provided by the
competition are used in this paper. The data preprocessing at-
tempted to remove some standard artifacts that occur in fMRI
data that may hinder data analysis. The functional and structural
data were preprocessed with analysis of functional NeuroImage
(AFNI) and NeuroImage software (NIS) in the following steps:
slice time correction, motion correction and detrending. The fea-
ture data were preprocessed by convolving the raw feature vec-
tors with the double gamma hemodynamic response filter (HRF)
produced by the SPM (see http://www.fil.ion.ucl.ac.uk/spm/).

Upon applying a threshold on the BOLD signal intensity
to mask out the nonbrain voxels, the total number of vox-
els in the brain was ≈	 � � � � . Thus, the fMRI data for each
run is represented by a matrix of ≈	 � � � � columns (voxels)
and � � � rows (time points). Each column of the matrix is the
time series of a voxel. When the scans were obtained, the sub-
ject was performing several tasks (e.g., listen to instructions,
pick up fruits) in a virtual reality (VR) world. The ratings
for these tasks were computed by considering the delay of
hemodynamic responses and form the task functions. � 	 tasks
were considered in the competition. Only the tasks for the first

two runs were distributed at www.braincompetition.org. There-
fore, here, we use only data from the first two runs for analy-
sis. We present detailed results mainly for the following four
tasks.

1) The hits task, times when subject correctly picked up fruit
or weapon or took picture of a pierced person.

2) The instructions task, which represents the task of listen-
ing to instructions from a cell phone in the virtual world.

3) The faces task, times when subject looked at faces of a
pierced or unpierced person.

4) The velocity task, times when subject was moving but not
interacting with an object.

For more detailed description of the data, see [34]. The goal
of the competition was to predict the task functions of the
third run using the fMRI data. Our final submission based on
Algorithm 1 to this competition was ranked the tenth based on
the average score of the features. As pointed out in [9], a fair
comparison with other methods cannot be made, as postprocess-
ing had decisive effect on performance.

Since the number of voxels among which we are looking
for task related information is large, voxel selection plays an
important role in fMRI data analysis. Using the instructions
task as an example, we describe our data analysis method in
detail.

The preprocessed fMRI data obtained from the com-
petition website (www.braincompetition.org) is first filtered
temporally and spatially. The temporal filter is �


 � � � � � � � ,
while the spatial filter is a cube with � � � � � � � � � 
 � � � � � � � � � ,
� � � 
 � � � 
 � � � 
 � � � � � � � , � � � � � � � � � 
 � � � � � � � � � (similar to a 3-D
Gaussian kernel). We then perform twofold cross-validation as
follows. In the first fold, we use run 1 data to calculate the
Pearson correlation between the time series of each voxel and
the transformed instructions task function. The voxels with high
absolute value of this correlation are chosen to form a set of
voxels, � . Then, our algorithm is used for a second selection
of voxels to obtain  ⊂ � . In Algorithm 1, A ∈  � � � ×
 � 
 , of
which each column is a time series of a voxel in � , y ∈  � � �

is a transformed task function. The parameters in Algorithm 1
are chosen as follows. The number of iterations is fixed to � � �
to evaluate the details of algorithm convergence, 
 is � � � and
θ can be chosen as described in Section II-A (or using a cross-
validation method presented in Appendix II). Ridge regression
is used on the time series of voxels ∈  to predict the trans-
formed instructions task function of Run 2. Prediction accuracy
is measured as the Pearson correlation between the actual trans-
formed task and the predicted task. In the second fold, we use
Run 2 data for training and predict the transformed instructions
task function for Run 1.

For the purpose of comparison, we use the GLM–SPM
method to replace our method for the selection of voxels and
perform the twofold cross-validation, as described earlier. Note
that when the GLM–SPM method is used for voxel selec-
tion, all � 	 transformed/convolved task functions provided by
PBAIC 2007 are used to construct the design matrix. For each
voxel and a task, a t-statistics is calculated as in [4]. For a
task, those voxels with high absolute values of t-statistics are
selected.
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Fig. 2. (First row) Weights of voxels in � obtained by Algorithm 1 for
subject 1 and instructions task. (Second row) Correlation coefficients for the
same subject and task, each is calculated using the time series of a voxel in �
and the transformed task function. The two columns correspond to two runs
(i.e., twofolds in cross-validation), respectively.

III. RESULTS AND DISCUSSIONS

In this section, we present our data analysis results to illus-
trate the convergence of Algorithm 1 and the sparsity of the
weight vector w. By comparing our method with the GLM–
SPM method, we demonstrate the advantages of our algorithm
for voxel selection.

Convergence of Algorithm 1: As an example, we show our
convergence analysis result for instructions task in run 1 of sub-
ject 1. In the initial selection of voxels, we fix 
 � 
 to � � � . Three
cases are considered, in which the parameter 
 [the number of
constraints in (8)] of Algorithm 1 is set to be 25, 50, and 75,
respectively. The three subplots in Fig. 1 show three iterative
curves of the convergence index � � � � � ‖w � � � − w � � −� � ‖� of
Algorithm 1, which correspond to the three cases, respectively.
From Fig. 1, we can see that Algorithm 1 converges after ≈ 	 � �
iterations in the three cases. However, the execution time in our
PC computer (2.3 GHz CPU, 3 G RAM) for the three cases
are � 
  , 
 � � , and  � � s, respectively. Therefore, computational
burden increases rapidly with increasing 
 .

Sparsity of weights: Fig. 2 plots two weight vectors w ob-
tained by Algorithm 1 (top) and correlation coefficients (bottom)
for the voxels in � obtained in the twofold cross-validation for
subject 1 and instructions task. From this figure, we can see the
sparsity in weights when compared to correlation coefficients.
Therefore, we conclude that the weight vector obtained from
our algorithm is more suitable for localization of voxels than
Pearson correlation.

Effectiveness: First, we check the correlation between Aw
and y, where A and y are fMRI data matrix and a transformed
task vector, respectively. As mentioned in Section II-A, the
weight vector w can be seen as regression coefficients between
A and y. This means that the correlation between Aw and y
is big. Fig. 3 shows the iterative curves of this correlation for
the instructions task of three subjects for fold 1 (run 1 used for
training). As the number of iterations increases, the three cor-
relation curves increase and tend to three limits that are larger
than 0.9. This confirms our analysis. When sparse representa-
tion approach is used for voxel selection, a voxel whose fMRI
time series is highly correlated to y can generally be selected.

Fig. 3. Iterative curves of correlation between Aw and y (instructions task)
for three subjects and run 1, each subplot corresponds to one subject.

TABLE I
AVERAGE PREDICTION ACCURACY RATES OVER TWOFOLDS OBTAINED WITH
ONE VOXEL FOR THREE SUBJECTS, FOUR TASKS, AND TWO METHODS (THE

ACCURACY RATES OBTAINED BY GLM–SPM METHOD ARE IN BRACKETS)

However, if there are a set of voxels, e.g., belonging to the same
brain area of which the fMRI time series are highly correlated
to each other, then only a small part of representative voxels are
selected. The iterative Algorithm 1 of which each iteration uses
different time points may alleviate the loss of these voxels that
are highly correlated to y.

Next, we analyze the prediction accuracy. We compare Al-
gorithm 1 with GLM–SPM method for voxel selection. First,
we compare the ability of each method in choosing the most
relevant voxel. In Table I, we present the prediction accuracies
(averaged over twofolds) for �  � � for three subjects, four
transformed tasks. Hereafter, �  denotes the number of voxels
of  , the set of selected voxels. From Table I, we can see that
the voxels selected by Algorithm 1 is more correlated to the
transformed task functions in most of cases than those selected
by GLM–SPM method.

Furthermore, we test if Algorithm 1 is consistently bet-
ter than GLM–SPM method for voxel selection. Let b �
� � � � � 
 � � � � � 	 � � � . For each � (� � � � � � � � � � � ), we set �  � � � ,
and predict the four transformed task functions for all subjects
and average the results over twofolds of cross-validation. Fig. 4
shows the plots of average prediction accuracy with respect to
b for the four methods and three subjects and four tasks. In
several cases, e.g., shown in the subplot in the first row and the
second column of Fig. 4, the performance of Algorithm 1 is
comparative to that of GLM–SPM method, while in the other
cases, e.g., shown in the subplot in the second row and the third
column, the performance of Algorithm 1 is significantly better
than that of GLM–SPM method.

We also analyze the effectiveness of choosing R using θ as
described in Section II-A. Example, for instructions task, the
number of voxels in  obtained using Algorithm 1, � � � are:
subject 1, 12 (fold 1), 29 (fold 2); subject 2, 24 (fold 1), 21
(fold 2); subject 3, 28 (fold 1), 20 (fold 2). The corresponding
prediction accuracy (averaged over twofolds) for the three sub-
jects is 0.8151, 0.7469, and 0.8591, respectively. The prediction
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Fig. 4. Prediction accuracy curves obtained by two methods. In each subplot,
solid line: Algorithm 1; dash-dotted line: GLM–SPM method. The four rows
correspond to four tasks (hits, instructions, faces, velocity), respectively. In each
subplot, the average prediction accuracy marked by “*” is determined by θ as
in Section II-A.

Fig. 5. Two percentage curves (� ) showing the performance of two methods
in 	 � cases (three subjects and 13 tasks). Solid line (top): Algorithm 1; dash-
dotted line: GLM–SPM.

accuracy (averaged over twofolds) for the four tasks are marked
with a “*” in Fig. 4. Even though � � � does not achieve the best
prediction accuracy, it had led to a satisfactory result. From this
analysis, we conclude that the method described in Section II-A
for selecting θ is acceptable, except for the task 3 of subject 1 in
which the correlation between fMRI data and this task is always
low.

Until now, we have presented our analysis results for four
tasks. Considering that � 	 tasks are available for the three sub-
jects in the dataset, we have 	 � cases (one case corresponds
to one task and one subject). We analyzed each case as de-
scribed earlier for the four tasks. After obtaining the predic-
tion accuracy averaged over twofolds of cross-validation by
Algorithm 1, we count the number of times, � � that Algorithm 1
shows the best prediction accuracy among the four methods
for each �  � � � , b � � � � � � 
 � � � � � 	 � � � . Performing the simi-
lar counting for GLM–SPM method, we obtain � � � � � �

� . Next,
we calculate two ratios (percentages) for the two methods:
� � � � 	 � � × � � � � , � � � � � � �

� � 	 � � × � � � � . Fig. 5 shows the two
ratio curves, from which we can see Algorithm 1 has higher
ratios.

Fig. 6. Distribution of 100 selected voxels (radiological view, L � R), of
which 50 voxels (highlighted in red) correspond to the first 50 highest weights
calculated by Algorithm 1, while the other 50 voxels (highlighted in green)
correspond to the first highest values of � -statistics calculated by GLM–SPM
method for task 2 (instructions), run 1, and subject 3. If two voxels obtained by
two methods are the same, then it is highlighted in yellow. Slices are numbered
from inferior to the superior parts of the brain.

Localization: Now, we analyze the effectiveness of
Algorithm 1 in selecting voxels from the perspective of
information-based detection of task-relevant brain regions rather
than the perspective of predictive ability. Each of the four tasks
evaluated here (hits, instructions, faces, velocity), can be related
to activity in specific region(s) of the brain. For example, we
should expect motor cortex (involved in movement) and sup-
plementary motor area (involved in planning actions) to contain
information relevant to the hits and velocity events, auditory
cortex is expected to contain information relevant to the in-
structions event, and the fusiform face area (FFA) located on
the ventral surface of the temporal lobe is expected to contain
information for events involving faces.

Now, we choose two representative cases to show our results
of localization. The first case is for task 2 (instructions), run 1,
and subject 3, while the second case is for task 3 (faces), run
1, and subject 2. In this two cases, Algorithm 1 has better per-
formance of prediction than GLM–SPM method. For the other
cases in which our algorithm has better performance of predic-
tion, we have similar conclusion presented in the following.

For instructions task, Fig. 6 shows 100 voxels, of which 50
voxels are selected by Algorithm 1, while the other 50 voxels
are selected by GLM–SPM method. The brain slices are in
radiological space (L � R). It follows from this figure that there
are several voxels that can be selected by both Algorithm 1
and GLM–SPM method. Furthermore, many voxels selected
by the two methods are close in locations although they are
not overlapped. However, the voxels selected by GLM–SPM
method are mainly located in slices 14 and 15, which form a
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Fig. 7. (First row) Two voxels of which the first one is selected by both
Algorithm 1 and GLM–SPM method and the second one is selected only by
Algorithm 1. The t values in the brackets are obtained in the SPM detection.
(Second row) fMRI signals corresponding to the two voxels, respectively.

TABLE II
SIX VOXELS WITH THEIR TALAIRACH COORDINATES AND CORRESPONDING
BRAIN AREAS (NEUROLOGICAL SPACE, L � L) SELECTED BY ALGORITHM 1
(THE NUMBERS IN THE VOXEL COLUMN: THE INDEXES OF THE SELECTED

VOXELS IN THE COORDINATE DATA PROVIDED BY PBAIC 2007;
ABBREVIATIONS—R: RIGHT, L: LEFT, S: SUPERIOR, M: MIDDLE, I: INFERIOR,

F: FRONTAL, T: TEMPORAL, O: OCCIPITAL, FF: FUSIFORM, G: GYRUS)

cluster (highlighted with circles in Fig. 6). The voxels selected
by Algorithm 1, which do not form clusters, are distributed in
more slices than those selected by GLM–SPM method.

There exist several voxels that can be selected by
Algorithm 1, but not by GLM–SPM method, and useful for
prediction/decoding. The two subplots in the first row of Fig. 7
show two voxels, in which the first one with the highest � value
in SPM detection is selected by both Algorithm 1 and GLM–
SPM method, the second one is selected only by Algorithm 1
other than GLM–SPM method. The second row show the corre-
sponding fMRI signals of the two voxels. Obviously, the fMRI
signals of the two voxels contain useful information related to
the task.

We can see that most of these voxels selected by the two
methods are in the appropriate areas of the brain. For instance,
rows 2–4 in Table II show three typical voxels with their coordi-
nates in the normalized Talairach space selected by Algorithm 1.
These voxels correspond, as expected, to language areas, includ-
ing Brodmann areas (BA) 21, 22, 45 (Broca’s area) [9].

For faces task, Fig. 8 shows the distribution of the � � � vox-
els, of which � � voxels are selected by Algorithm 1, while the
other � � voxels are selected by GLM–SPM method. Similarly
as in Fig. 6, we can see that several voxels (highlighted in yel-
low) selected by both Algorithm 1 and GLM–SPM method are
common or close. However, the voxels selected by GLM–SPM
method form two clusters, one is located in slice 11 (highlighted

Fig. 8. Distribution of � � � selected voxels (radiological view, L � R), of
which � � voxels (highlighted in red) correspond to the first � � highest weights
calculated by Algorithm 1, while the other � � voxels (highlighted in green)
correspond to the first highest values of � -statistics calculated by GLM–SPM
method for task 3 (faces), run 1, and subject 2. If two voxels obtained by two
methods are the same, then it is highlighted in yellow. Slices are numbered from
inferior to the superior parts of the brain.

with a circle in Fig. 8), the other one is located in slices 14 and
15 (highlighted with rectangles in Fig. 8). Most of these vox-
els selected by the two methods are in the appropriate areas of
the brain. For instance, rows 4–7 in Table II show three typical
voxels with their coordinates in the normalized Talairach space,
which are selected by Algorithm 1. These voxels correspond, as
expected, to visual functional areas including BAs 37 (Fusiform
area), 8 (including frontal eye fields), 19.

Algorithm 1 based on sparse representation selects a com-
bination of voxels that are generally distributed in wider brain
areas than those selected by GLM–SPM method. Since this com-
bination of voxels is used to represent the corresponding task
function, Algorithm 1 is more suitable for prediction/decoding
of tasks in many cases than GLM–SPM method. Conversely,
since it is easily for GLM–SPM method to show cluster effect,
this method is suitable for localization of active brain areas.
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Parameters setting: In the following, we present our parame-
ter settings of Algorithm 1 in this data analysis section.

1) From our analysis, the number of initially selected voxels
does not make any significant contributions to the results.
This parameter is set to 500 voxels in this paper. We have
tested our methods with 1000 and 2000 voxels for initial
selection and confirmed the insensitivity of the results to
this parameter.

2) The number of iterations corresponding to the parame-
ter α in Algorithm 1 is fixed to 600. From the fact that
Algorithm 1 is convergent (Section II-A) and that the
changes in weights after 300 iterations are not signifi-
cant (see Fig. 3), the obtained results should be consistent
as long as the number of iterations is sufficiently large.

3) The number of constraints 
 in (8) is set to � � except that
it is specifically pointed out. The results of Algorithm 1
are not very sensitive to 
 provided that 
 is not too small.
In Appendix I, we analyze the sensitivity of the results to

 and provide supports for the previous statement. An-
other approach toward selecting L would be to choose its
value randomly in each iteration. Although this is valid,
we concluded from our analysis that the results are not
significantly better. Therefore, the value of L is chosen to
be small, but big enough for Algorithm 1 to be valid so
that the computational burden is minimized.

4) The parameter θ in Algorithm 1 (corresponding to �  )
determines the number of voxels selected by Algorithm 1.
If the objective is to localize important voxels, it can be
set as in Section II-A. If the objective is to predict tasks
as described previously, this number can be chosen from
a wide range (see Fig. 4). Typically, it can be set to a
number around � � � . Another method for setting θ is cross-
validation, which is described in Appendix II.

IV. CONCLUSION

In this paper, we presented an iterative detection algorithm
based on sparse representation. Then, we analyzed its conver-
gence and effectiveness. This algorithm can be used for feature
selection, localization, novelty detection, etc., as 1-norm SVM.
Here, we presented one application for voxel (feature) selection
in fMRI data analysis. The results demonstrate that this method
can be used for voxel selection in the cases of both repeated
stimulus/tasks (e.g., instructions task) and nonrepeated stimu-
lus/tasks (e.g., faces task). The sparse representation model used
in our algorithm can be seen as the opposite of the GLM model
widely used for fMRI analysis; however, there exists significant
difference between the two models. In the sparse representa-
tion model, many voxels are considered simultaneously, but
the task/stimulus conditions are considered separately. Using
our algorithm, a combination of voxels are selected. This com-
bination of voxels plays an important role in effective/sparse
representation of a task/stimulus function. Conversely, voxels
are considered separately, but the task/stimulus conditions are
considered simultaneously in GLM model. The validity of our
method was shown through the comparison with GLM–SPM
method in our data analysis.

Fig. 9. Three prediction accuracy curves obtained by Algorithm 1 with the
numbers of constraints in (8) set to be 25 (dotted line), 50 (solid line), and 75
(dashed-dotted line), respectively, in Appendix I. The four rows correspond to
four tasks (hits, instructions, faces, velocity), respectively.

In addition to voxel selection as shown in this paper, the sparse
representation approach also can be used for decoding a task
based on the information contained in the fMRI BOLD signal.
A simple implementation strategy can be the following: first, a
sparse regression model is trained using model (2), where A is
a known fMRI data matrix constructed from selected voxels and
y is a measured task function. Then, task function for the same
task can be decoded during future acquisitions using model (1),
where A is a new fMRI data matrix of selected voxels, w is
a sparse coefficient vector obtained in the training phase. Our
initial analysis results has shown the effectiveness of this decod-
ing method in several cases. However, investigation is required
in order to improve the performance of this decoding method
since the constraint equation in model (2) is underdetermined
and noise is neglected.

APPENDIX I

ON SETTING THE NUMBER OF CONSTRAINTS

IN ALGORITHM 1

In this appendix, we first show our results obtained by
Algorithm 1 with the numbers 
 of constraints in (8) set to
be 
 � � � � , 
 � � � � � and 
 	 �  � � respectively.

Let b � � � � � � 
 � � � � � 	 � � � as in Section III. For each pair of
� (� � � � � � � � � � � ) and 
 (
 � � � � � � �  � ), we set �  � � � and
obtain average prediction accuracies by Algorithm 1 with pa-
rameter 
 (averaged over twofolds of cross-validation) for the

 tasks, and 	 subjects. Each subplot of Fig. 9 shows three pre-
diction accuracy curves (with respect to � � ) for 
 � � � , � � � and
 � � respectively. Note that the prediction accuracy curves for

 � � � (solid lines) are the same as those in Fig. 4. By compar-
ing these curves in each subplot of Fig. 9, we can see that the
prediction results are not sensitive to the parameter 
 .
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Fig. 10. Ratio curves showing the degree that the two selected voxel sets are
overlapped in Appendix I. (Solid line) � � � � � obtained by Algorithm 1; (dashed-
dotted line) "� � � � � obtained by randomly taking two sets of voxels.

Next, we compare the sets of voxels selected by Algorithm 1
with its parameter 
 set as 
 � � � � and 
 � � � � � respectively.
For the � th task ( � � � � � � � � � 	 ), the � th subject (� � � � � � 	 ),
the � th run ( � � � � � ), we calculate weight vectors w
 � � � � � � �

and w
 � � � � � � � using Algorithm 1. For a given number � � (� � �
� � � � 
 � � � � � 
 � � ), we choose two sets of voxels  
 � � � � � � � � � � �
and  
 � � � � � � � � � � � from � (the initially selected � � � voxels)
using w
 � � � � � � � and w
 � � � � � � � , respectively. Furthermore, we
calculate the number � � � � � � � � � � � of voxels ∈  
 � � � � � � � � � � � ∩
 
 � � � � � � � � � � � and the ratio ratio � � � � � � � � � � � � � � � � � � � � � � � � � .
Averaging ratio� � � � � � � � � � across � � � � � , we obtain the mean of
ratio� � � � � � � � � � denoted as � � � � � . Fig. 10 shows the curve of
� � � � � with � � (solid line).

For each � � (� � � � � � � 
 � � � � � 
 � � ), we also randomly take two
subsets of � . Denote the two subsets as " � � � � and " � � � � , each
of which contains � � voxels. We also calculate the ratio "� � � � �
with which " � � � � and " � � � � are overlapped. The curve of "� � � � �
is shown as the dashed line in Fig. 10.

From Fig. 10, we can see that if � � � ≈  � , � � � � � �  � � . Fur-
thermore, the ratio � � � � � . "� � � � � . Therefore, the two voxel sets
 
 � � � � � � � � � � � and  
 � � � � � � � � � � � determined by Algorithm 1
with two constraint parameters 
 � and 
 � , respectively, are
overlapped to a high degree, i.e., most of the voxels selected
by Algorithm 1 with different parameters 
 are the same. This
is possibly why the results obtained by Algorithm 1 are not
sensitive to 
 .

APPENDIX II

CROSS-VALIDATION METHOD FOR SETTING THE NUMBER

OF VOXELS FOR PREDICTION OF TASKS IN � MRI DATA

In this section, we show a cross-validation method for setting
θ in Algorithm 1, which determines the number of voxels used
to predict the tasks. First, for each subject and task, the dataset
(including fMRI data and task data) of run 1 and run 2 is equally
divided into four parts, each consisting of 250 time points. The
first three parts are used for threefold cross-validation, while
the fourth part is used as an independent test dataset. In one of
the threefold cross-validation, we use two parts for training, and
predict the task of the left part. For each value of �  (1–500, the
number of selected voxels), a prediction accuracy of the valida-
tion feature is obtained. After the threefold cross-validation is
performed, three the prediction accuracy curves (with respect to

Fig. 11. Average prediction accuracy curves for independent test set for three
subjects and four tasks in Appendix II, where the four rows correspond to the
four tasks (hits, instructions, faces, velocity), respectively. In each subplot, “*”:
average prediction accuracy determined by θ.

�  ) are obtained. An average prediction accuracy curve is then
obtained by taking the mean of the three ones. Suppose that this
average prediction accuracy curve has maximum at � � , i.e., if
� � voxels are selected, the average prediction accuracy is the
maximum.

Next, we use any two of the first three parts for training,
and obtain a weight vector w. If we rearrange the vector 
 w 

(the absolute value vector) in descending order, and denote it
as � 
 � � � 
 � � � � � 
 � � � � � 
 � , then θ � 
 � � � �


 . We now predict the task
of the independent test set using the � � voxels with weights
� � � � � � � � � � � � �

	 . Three prediction accuracies are obtained us-
ing different combinations of two parts for training, i.e. the three
folds of cross-validation. Similarly as before, we also obtain an
average prediction accuracy curve with respect to �  (1–500)
for the task of this independent test set. Note that the value of
� � is the point at which the average of the prediction curves
of the threefolds is maximum. In each subplot of Fig. 11, an
average prediction accuracy curve for the independent test set is
presented for one task of one subject and the “*” represents the
average prediction accuracy determined by θ. From this figure,
we can see that this cross-validation method for determining the
parameter θ is acceptable.

APPENDIX III

ROBUSTNESS ANALYSIS

In this appendix, we analyze the robustness of Algorithm 1 to
noise. Consider the following noisy model corresponding to (2):

� � � ‖w‖� � s.t. � A � V � w � y (17)

where V ∈  � ×� is a noise matrix. The optimal solution of
(17) is denoted by w� . In this paper, A and y are a data matrix
and a transformed task function, thus we add noise to A other
than y.

Denote all � × � -dimensional submatrices of A and V as
A � � � and V � � � , respectively, where � � � � � � � � � �

� . Since A is
a real data matrix, we can assume that all submatrices A� � � are
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Fig. 12. Each of the three subplots of the first row shows the weight vectors
w (with “o”) and w � (with “� ”) obtained by Algorithm 1 after � � � iterations
in noiseless case and noise case, respectively, in Appendix III, where A and y
are the same fMRI data matrix and transformed task function as in Fig. 1, w �
corresponds to 
 � dB simulated zero mean Gaussian noise. Each of the three
subplots of the second row shows the error w − w � . The three columns of this
figure correspond to three parameter settings of Algorithm 1: 
 � � � � � � �  � �
respectively.

Fig. 13. Each subplot shows two iterative curves of Algorithm 1 obtained
in noiseless case (solid curve) and � � dB noise case (dashed-dotted curve) in
Appendix III, where A and y are the same fMRI data matrix and transformed
task function, as shown in Fig. 1. The three subplots correspond to the three
settings � � � � � � and  � of the parameter 
 in Algorithm 1, respectively.

full of rank. In this case, it follows from linear programming
theory [19] that there is a submatrix say A� � � � , such that the
1-norm solution w� of (2) satisfies

w� � � A � � � � � −� y (18)

i.e.,

‖� A � � � � � −� y‖� � � � � � ‖� A� � � � −� y‖� � � � � � � � � � � �
� 	 �

(19)
Note that

� � �
‖V‖→�

‖� A � � � � V � � � � −� y‖� � ‖� A� � � � −� y‖� � � � � � � � � � � �
� �

(20)
It follows from (19) and (20) that when ‖V‖ is sufficiently small

‖� A � � � � � V � � � � � −� y‖� � � � � � ‖� A� � � � V � � � � −� y‖�

� � � � � � � � � �
� 	 � (21)

i.e., � A� � � � � V � � � � � −� y is the 1-norm solution w� of (17) with
sufficiently small noise. Furthermore, since w� is close to w�
in (18), w� can be represented by

w� � w� � /w� (22)

Fig. 14. Each subplot shows two prediction accuracy curves obtained by
Algorithm 1 in noiseless case (solid curve) and � � dB noise case (dashed-dotted
curve), respectively, in Appendix III. The four rows correspond to four tasks
(hits, instructions, faces, velocity), respectively.

where /w� is a disturbance vector resulted by the noise matrix
V. It follows from (20) that /w� is small if ‖V‖ is sufficiently
small.

In the following, we consider the following noisy model cor-
responding to the model (8) in Algorithm 1,

� � � ‖w‖ � � s.t. � A� � V � � w � y� (23)

where V � ∈  
 ×� is a noise matrix. The optimal solution of
(23) is denoted by "w � � �

� . From the previous analysis, "w � � �
� can

be represented by

"w � � �
� � "w � � � � / "w � � � (24)

where "w � � � is the solution of (8).
Thus, the output of Algorithm 1 after 	 iterations in noise

case is

w � 	 �
� �

�
	

	∑

� � �

"w � � � �
�
	

	∑

� � �

/ "w � � �
� � (25)

When ‖V � ‖ (� � � � � � � � 	 ) are sufficiently small, � � � 	 �∑	
� � � / "w � � �

� is close to zero. This is due to the following rea-
sons: 1) ‖/ "w � � �

� ‖ is small, their mean is still small and 2) the
mean of each entry of / "w � � �

� is generally zero. Thus, we have

w � 	 �
� ≈ w � 	 � (26)

where w � 	 � is the output of Algorithm 1 after 	 iterations in
noiseless case, i.e., the weight vector obtained by Algorithm 1
is robust to noise at least to some degree.

Fig. 12 shows three pairs of w (black) and w� obtained by
Algorithm 1 in noiseless case and 
 � dB noise case, respectively.
When the noise is sufficiently small, we can see that w� is close
to w.

Now, we enlarge the additive noise in model (23) to 25 dB,
data analysis results (see Figs. 13 and 14) show that the weight
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vector obtained by Algorithm 1 is still effective for voxel
selection.
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