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Abstract—While brain–computer interfaces (BCIs) can provide
communication to people who are locked-in, they suffer from a
very low information transfer rate. Further, using a BCI requires
a concentration effort and using it continuously can be tiring. The
brain controlled wheelchair (BCW) described in this paper aims
at providing mobility to BCI users despite these limitations, in a
safe and efficient way. Using a slow but reliable P300 based BCI,
the user selects a destination amongst a list of predefined loca-
tions. While the wheelchair moves on virtual guiding paths en-
suring smooth, safe, and predictable trajectories, the user can stop
the wheelchair by using a faster BCI. Experiments with nondis-
abled subjects demonstrated the efficiency of this strategy. Brain
control was not affected when the wheelchair was in motion, and
the BCW enabled the users to move to various locations in less time
and with significantly less control effort than other control strate-
gies proposed in the literature.

Index Terms—Brain–computer interface (BCI), P300, wheel-
chair.

I. INTRODUCTION

T HE brain controlled wheelchair (BCW) described in this
paper was designed to provide mobility to individuals who

have lost most voluntary muscle control, but who are able to
use a bain–computer interface (BCI). However, BCIs typically
suffer from a very low information transfer rate. This means
that either the uncertainty on the command will be high, or the
time between consecutive commands will be large, i.e., several
seconds. Can such a low bandwidth signal be used to safely and
efficiently control a wheelchair, which requires specifying linear
and angular velocities in real-time? This is the challenge we
addressed in the BCW [1], which this paper tests and compares
with existing brain controlled wheelchairs.

To let individuals who are severely disabled move to desired
locations, a robotic wheelchair must fulfil the following condi-
tions.
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• It must be safe, since it transports a particularly vulnerable
person.

• The control must be ergonomic: the wheelchair should
provide efficient and intuitive navigation with as little
(mental) effort as possible. Using a BCI requires concen-
tration which can cause fatigue and using it continuously
is tiring. This was observed in one of our experiments with
a P300-based speller and people with severe disabilities,
and was separately reported in [2]–[4]. Hence the control
of the BCW must be as easy as possible, yet allow certain
freedom to the user, such as stopping or changing course
during motion. Moreover, the trajectory should be smooth
and correspond to the user’s understanding of a trajectory.

• Cost generally is the first factor mentioned by end users and
physiotherapists. Therefore, the wheelchair should be low
cost, in the sense that the customization of a conventional
wheelchair should be minimal, so that people who need it
can afford it.

Tanaka et al. [6] developed probably the first brain controlled
wheelchair. A discrete approach was used to the navigation
problem, in which the environment is discretized in 1
squares, and the user decides where to move next by imagining
left or right limb movements. A similar principle was used in
the sophisticated wheelchair system recently developed by Itur-
rate et al. [7], where a virtual reconstruction of the surrounding
environment (as inferred from laser range scanner data) is
displayed. A set of points in the free space is presented, that
can be selected using a P300 BCI, and these short term goals
are reached automatically. However, the large number of steps
required to reach a destination with these two systems might
exhaust the subjects. For instance, Iturrate et al. report that it
took 11 minutes and nine decision steps to realise a 40-m-long
path with this system [7].

Millán et al. [8] proposed to use a BCI continuously analyzing
the user’s EEG to detect mental states associated with “for-
ward,” “left,” and “right” commands which the robotic wheel-
chair executes while avoiding obstacles. The user is required to
provide continuous commands during the motion, which may be
tiring. Further, wrongly detected commands and conflicts with
the autonomous controller, possibly leading to unwanted moves,
may stress the user.

The alternative strategy we propose to control the BCW re-
lies on a slow but safe and accurate P300 EEG brain interface,
which allows the user to select an item in a menu with high con-
fidence (see Fig. 1). Strategic locations in a known environment
are predetermined. These are typical locations where the user
usually goes to, e.g., living room (with the TV), kitchen, toilet,
and bedroom. In order to simplify motion control, the wheel-
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Fig. 1. Overview of the BCW: the user selects the destination (here the TV)
using the P300 BCI and the wheelchair follows a guiding path to it. On the
laptop’s monitor is the menu where items are flashed randomly. If the user fo-
cuses his attention on an item, the EEG signal will present a peak around 300 ms
after the target has been flashed (sketch adapted from [5]), which determines the
destination.

chair is constrained along paths predefined in software joining
the selected locations.

With this strategy the control of the wheelchair is reduced
to the selection of appropriate destinations thus requiring min-
imum effort from the user. Since guiding paths are software de-
fined and not hard coded, they can be easily modified if the en-
vironment changes [9]. To allow the user to stop the wheelchair
during motion, two faster BCIs are proposed: one based on a fast
P300 algorithm with only one item, the other on motor imagery
( -BCI).

The paper is organized as follows. Section II describes the
BCW and the control strategy, and Section III the evaluation
of the P300 BCI for destination selection performed with five
healthy subjects. Section IV presents the fast P300 BCI algo-
rithm and the -BCI used for stopping, and evaluation re-
sults. Section V compares our BCW with other brain controlled
wheelchairs.

II. PRINCIPLE OF THE BCW

A. Motion Guidance Provides Driving Assistance

Using a slow user interface for controlling the wheelchair re-
quires equipping it with some autonomy. We therefore decided
to use a control strategy based on supervision by the user rather
than by sensor based reasoning. The environment is represented
as a graph containing nodes representing locations of interest,
linked by virtual paths designed beforehand automatically or by
a human helper, which can be flexibly modified as needed when
the environment changes. The wheelchair follows those guiding
paths using a dedicated controller [10].

This simple, adaptable motion control strategy is motivated
by several reasons. In our opinion, state of the art autonomous
mobile robots are not safe enough to transport a person who
will not be able to press the emergency stop button fast, there-
fore semi-automatic motion is necessited. Also, dealing with the
complexity of real world situations requires equipping such au-
tonomous mobile robots with an array of sensors, which makes

the wheelchair system more expensive. Further, decisions taken
by autonomous systems may be felt as awkward and stress the
user [9], [11]. Finally, people affected by motor disabilities still
want to be in charge of their movements as much as possible, as
in our motion control.

Our strategy, however, has two drawbacks. First, the system
can only be used in an environment where paths are defined, and
only predefined locations can be reached. Second, when mod-
ifications in the environments occur (such as changes in furni-
ture location), the guiding paths must be updated accordingly.
However, we believe that this is a solution especially attractive
to people who are locked-in, providing just the mobility they
can control, and modifications of the paths can be performed by
caregivers who have performed changes in the environment.

B. P300 BCI for Destination Selection

Selecting a destination from a list of predefined locations is
similar to selecting letters in the alphabet. P300-based BCIs
[12]–[17] have proved very successful with spelling devices as
they allow selecting from a list of up to several dozens of items
with reasonable time (typically 10–20 s) and great accuracy
(i.e., above 95%). In contrast, faster BCIs such as those based
on motor imagery [5] or mental task classification [18] enable
choosing between only two or three possibilities. Besides, using
a P300 BCI requires no training, the performances are stable
over time, and can be used by people with severe disabilities,
including people suffering from ALS [19].

In our setup, nine destinations are displayed on screen in a
3 3 matrix (see Fig. 1), and flashed in a random order. To select
an item, the user focuses his or her attention on it; a simple way
for focusing is to count the number of times the target is flashed.
Around 300 ms after the target is presented, a peak appears in
the EEG signal (see Fig. 1), and the target can be determined as
the stimulus that occurred 300 ms earlier.

The algorithm used for P300 detection [17] works as follows.
EEG signal is first cleaned from artefacts, filtered and down-
sampled. The resulting signal is then segmented into epochs
from 100 to 500 ms after the onset of a button flashing. The re-
sult as well as its dynamic features form a feature vector which
is fed to a support vector machine algorithm (SVM) for classi-
fication.

Each epoch is then assigned a score computed from the
SVM’s output and representing the confidence that it contains
a P300 signal. The last eight scores for each item are averaged,
and the item with the highest score is selected if its score is
higher than a decision threshold.

The menu displayed on the interface is context dependent:
only the locations connected to the current position by a guiding
path are listed. Upon selection of a destination on the interface,
the wheelchair starts heading toward it. This enables subjects to
reach their goals efficiently and in a reasonable time.

C. Faster BCIs for Stopping

The P300 interface used for destination selection is too slow
to be used to stop the wheelchair during motion; a BCI with a
shorter response time is required. The system switches between
the fast and slow BCIs depending on the state of the wheel-
chair: when stopped the destination selection interface is pre-
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Fig. 2. Placements of the 15 electrodes used in our experiment (plus reference
and ground points) in shade.

sented, whereas while in motion the fast BCI for stopping is
used. We have tested two possible BCIs for stopping: a faster
version of the P300 interface used for destination selection, and
a BCI based on motor imagery. Both allow to issue a stop com-
mand within five seconds (see Section IV).

D. BCW Prototype

The robotic wheelchair used for our BCW, described in [20],
is built on a Yamaha JW-I power wheelchair. Sensors are lim-
ited to two optical rotary encoders attached to glide-wheels used
for odometry, a bar code scanner for global positioning, and a
simple proximity sensor mounted in front of the wheelchair to
avoid collisions. When an obstacle is detected within 50 cm, the
wheelchair stops to avoid collision. The interface switches then
back to the destination selection menu, from which the user can
resume motion if the obstacle is moving away, or choose an al-
ternative route or destination.

Compared to BCWs using a laser range scanner or other com-
plex sensors [7], [8], the BCW requires fewer and much cheaper
sensors, and fewer modifications of a user’s wheelchair.

A laptop with a DAQ card runs the path following controller
[1], [10], [21] and drives the wheelchair. This controller com-
municates with the BCI process: it sends the commands to be
displayed on the interface and receives the user’s selection. In
our experiments, the scalp EEG signal was acquired using a Nu-
Amps device from Neuroscan Inc. The EEG was recorded at
250 Hz from 15 Ag/AgCl electrodes placed above the inferior
frontal, central, and parietal regions of the cortex, as shown in
Fig. 2.

III. EVALUATION OF THE P300 INTERFACE FOR

DESTINATION SELECTION

We define the following parameters to analyze the perfor-
mance of the BCIs.

• The response time (RT) is the interval from the time the
user initiates the control to the time the command is issued.
Note that the measure of RT encompasses the true positive
and false negative rates due to our moving average window
based algorithm: if a P300 epoch is misclassified, more
time is required for the selection.

• The false activation rate (FA) is the number of times per
minute that a command is issued when the subject is not
intending to activate the interface. While unintended acti-
vations are often expressed in the percentage samples that
are false positives, expressing unintended activations per
minute using the FA is more suitable for a time-critical ap-
plication, such as the control of our wheelchair.

• The error rate (Err) is the ratio of wrongly selected targets
divided by the total number of selections during an experi-
ment, expressed in percentage. This measure does not take
into account selections due to false positives.

A. Data Collection for Static Analysis

To conduct analysis of our P300 interface we collected EEG
data from five subjects (subjects 1–5), all males between 22
to 36 years without known pathology. Note that no subject
screening was conducted. The experiments were approved by
the institutional review board of the National University of
Singapore.

The interface used for presenting the stimuli was a 3 3 ma-
trix as illustrated in Fig. 1. Buttons were flashed one after the
other round by round, where a round is a random sequence of
the nine buttons. Flash duration was 100 ms with an inter-flash
interval of 10 ms, thus one round took 990 ms. Data collection
was performed in a single session during which control and non-
control tasks were interleaved, with a break of 2 min in between
two tasks. The subjects were guided through the tasks by an in-
teractive program indicating on the monitor when to rest and
what button to focus on.

In the control task, the subject was asked to focus on the in-
terface. The control task was divided into four sections. In Sec-
tions 1–3, the subject attended to one button (the target) for eight
rounds, paused 2 s, and moved on to the next button until he/she
had gone through all the nine buttons. Each round yielded one
epoch of target data corresponding to when the target button
was flashed and which should contain a P300 signal, and eight
epochs of nontarget data corresponding to when the other but-
tons were flashed. Each of these three sections hence contained
72 (9 8) epochs of target data and 576 (9 8 8) epochs of
nontarget data. These three sections were used to train the SVM.
The setting of the fourth section was the same as that of the first
three, except that the subject had to attend to the targets for 50
rounds instead of eight. Hence the fourth section contained 450
epochs of target data and 3600 epochs of nontarget data. Data
from this section was used to evaluate the trained SVM.

In the noncontrol task, the subject paid no attention to any
button nor to the computer display. It was divided in three sec-
tions of 50 rounds, corresponding to 4050 (50 9 9) epochs of
noncontrol EEG data per section. In the first section, the subject
was reading a newspaper. In the second one the subject was re-
laxed with closed eyes. In the third one the subject was given a
question sheet including a few arithmetic tasks, and needed to
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Fig. 3. Results of the P300 BCI evaluation for a typical subject. Top: distri-
butions (PDF) of scores for target, nontarget, and noncontrol epochs. Bottom:
RT, Err, and FA for different values of the decision threshold. Note that a single
ordinate is used to represent the three different units.

finish the tasks quickly. No significant difference was found in
the behavior with these three conditions, which were thus com-
bined in the subsequent analysis, yielding 12 150 epochs.

According to the timing scheme mentioned before, the eight
rounds tasks took approximately 1 min and the 50 rounds tasks
8 min. So the data collection on each subject ran for approxi-
mately 30 min, excluding the EEG preparation time.

B. Results

Top panel of Fig. 3 shows the score distribution for the target,
nontarget, and noncontrol epochs. The three distributions are ap-
proximately normal, as revealed by the Kolmogorov–Smirnov
test (p-values are 0.83, 0.15, 0.13, respectively). There is no sig-
nificant difference between the means of the nontarget and the
noncontrol distributions (Cohen’s d effect size is 0.12) but there
is a significant difference between the mean of the target distri-
bution and the mean of the nontarget and the noncontrol distri-
butions (Cohen’s d effect size is 1.23).

Bottom panel of Fig. 3 shows RT, Err, and FA for dif-
ferent values of the decision threshold. RT increases with the
threshold: there are less epochs with a high score, therefore it
takes a longer time until one of the scores reaches the threshold.
Conversely, FA is high for low threshold values, and tends to
zero for high values. The maximum possible value for FA is

since scores are averaged over the last eight rounds.
Err is below 5% and decreases for large values of the threshold.

TABLE I
OPTIMUM PERFORMANCES

A good destination selection will be obtained with low error
and low false activation rates. In order to ensure this, the best
threshold value was selected, for each subject, so as to minimize
the following cost function:

(1)

where the selected normalization factors s,
s and , corresponding to typical values ob-

tained during preliminary performance, ensure a balance be-
tween the three terms. Table I gives the resulting optimum per-
formances for each subject as well as the average performances.

The optimal value of the threshold varies slightly from trial to
trial, due to changes in the electrodes placement and in the user’s
cognitive state. Therefore, a quick calibration is required before
using the interface. Calibration consists in recording a few data
using an automatic protocol, training of the SVM, and searching
the optimal threshold using the above cost function. Following
the data collection protocol above, this requires recording two
eight round sessions of control task and one 50 round session of
noncontrol task, which takes approximately 10 min.

C. Locking the Interface

As the FA rate is not zero, the interface is expected to generate
random commands while the user is not using it. However, in a
daily usage, the user would normally spend large amount of time
not using the interface, for instance when resting, or performing
another activity. In this case, the wheelchair could start moving
to a random destination once every 85 s on average (as

).
To prevent this, we implemented an interface scheme similar

to the keyboard locking facility on cellular phones: the interface
is locked by selecting the lock button twice. Once locked, no
command can be issued before a sequence of keys is entered.
Using a key sequence of three characters and assuming

, the false unlocking rate is , or once
every 20 h.

D. Evaluation With the Wheelchair

Navigation experiments were conducted in a part of our lab
building including five floors connected by a lift. We emulated a
smart environment where the lift communicates with the wheel-
chair by manually operating the lift. At each floor, four desti-
nations were interrelated by six guiding paths, which were de-
signed prior to the experiment.
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Our five subjects were asked to navigate between ten pairs
of locations. All locations were on a different floor, hence three
selections were required to reach the destination (30 selections
per subject in total). All subjects succeeded at their first trial
to reach all of the desired locations, taking an average of 15 s

to issue a command, and no wrong command was
selected .

IV. EVALUATION OF THE BCIs USED FOR STOPPING

The P300 BCI has a too large response time to be used for is-
suing a stop command. This section will however describe how
it can be adapted to obtain a faster response. An alternative fast
BCI based on motor imagery will also be presented.

A. Stopping With a Fast P300 BCI

While in motion, the most relevant action is to stop the
wheelchair. Hence, a menu with only one STOP button can be
used when the wheelchair is moving toward its destination. In
this configuration, the other buttons are deactivated, i.e., do not
trigger a selection even when their score reach the threshold.
As a consequence the false activation rate is greatly reduced:
when not looking at the interface, buttons scores follow the
same distribution, and the probability that their score reaches
the threshold is the same for all of them. However, since only
the stop button is active, the overall probability of a selection
is divided by nine. It is then possible to reduce the threshold,
hence the response time, while keeping an acceptable false
activation rate.

In our setup, scores are averaged over the last three rounds;
the stop button is selected if its score is higher than the eight
others and higher than the threshold. In that configuration, the
maximum number of false activations per minute is 20. Besides,
since only the stop button can trigger a response, thus the error
rate does not include selections due to false positives, there is
no possible error (i.e., ) with this interface.

This interface was evaluated using data collected for the
evaluation of the P300 interface for destination selection
(Section III-A). For each subject, the optimal threshold value
was determined so as to minimize the cost function in (1).
Normalization factors and were used as we
expect RT to be in the order of 5 s and FA in the order of two
occurrences per minute.

B. Stopping With a BCI

The alternative fast BCI we have tested relies on motor im-
agery and is described in [22]. It has been shown that people
can learn to regulate the EEG power in the (8–12 Hz) and
(18–26 Hz) bands by imagining left or right movements. This
ability can be used as a control channel as follows.

EEG is recorded over the sensorimotor cortices (using six
electrodes FC3, FC4, C3, C4, CP3, CP4, which are a subset
of the electrodes used for the P300 BCI, see Fig. 2). Before a
user starts using the system, the baseline and powers for
each channel must be computed, which will be used as refer-
ence. To obtain the baseline, the user is asked to stay in “idle”
state, in which the user does not move or try to regulate his EEG
power, during three minutes. The collected baseline EEG signal
is then divided into 250 ms segments, and the and powers in

each segment are calculated by using the fast Fourier transform
(FFT), then averaged to obtain the baselines.

In the control stage, the computer calculates the EEG powers
in and bands in each 250 ms EEG and forms a joint fea-
ture vector consisting of 12 variables (six channels and two fre-
quency bands): . The control output is
given by , where denotes the vector of
baseline powers. The vector can be learned using empirical
data [23]. Visual feedback in the form of a cursor with position
proportional to the value of the control output is presented to
the user.

While most people can use a P300 interface [24] without
training, using a motor imagery based interface generally re-
quires lengthy training. Two subjects (A and B) who were able
to move the cursor within a couple of seconds after a short
training (in the course of a previous study with motor imagery)
were selected to participate in our experiment. One of them re-
ported using left and right hand finger tapping to control the
cursor, the other imagined himself walking and making left or
right turns.

In a first experiment, their response time was evaluated by
asking them to move the cursor beyond the threshold line as fast
as possible following an audio cue, for 30 times. In a second
experiment designed to evaluate the false activation rate, they
were instructed to simply relax for five minutes.

C. Effect of Motion on the Performances

The perception of motion by the brain and the stress induced
by sitting on a moving robot are factors that might prevent the
usage of our BCIs to issue a stop command. It was shown in [25]
that the P300 signal of subjects placed on a Stewart platform is
not affected by sinusoidal motions. However the movements of
a wheelchair are less predictable and the background is con-
tinuously changing. We tested how the two stopping BCIs per-
formed when the wheelchair was in motion, and compared with
the performance obtained when the wheelchair did not move.
The subjects were using a BCI while sitting on the wheelchair
which was moving on a circular guiding path at a constant ve-
locity of 0.5 ms . In a first experiment subjects were required
to issue a stop command as fast as possible after a cue. In a
second experiment we examined the occurrence of false activa-
tion FA, i.e., when a STOP command was issued involuntarily.
For this purpose, the subjects were required to not activate the
STOP command and were observed for 20 runs of 2 min max-
imum.

D. Results

The static evaluation of the P300 interface for stopping
yielded results presented in the upper part of Table II: on
average subjects could issue a stop command in 6.0 s
and the false activation rate was 1.2/min . The lower
part of Table II shows the performances of the static evaluation
of the interface: on average subjects could issue a stop
command in 4.9 s and there was no false activation.
No significant difference was observed between static and
in-motion performances with either the fast P300 or inter-
face, and the response times with the two different modalities
were also similar (see Table II).
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TABLE II
STATIC AND IN-MOTION PERFORMANCES FOR THE P300 AND ��� STOP BCIS

TABLE III
EVALUATION OF STRATEGIES TO CONTROL A WHEELCHAIR WITH A BCI

V. COMPARISON OF CONTROL EFFICIENCY

This section evaluates the overall performance of our BCW
and compares it with the brain controlled wheelchair systems
described in the literature. Simulations are performed of the time
taken to move between locations, considering the statistics from
above results and from [7], [8], and [26]. To concentrate on the
BCI control aspects, the performances are compared on obstacle
free paths. We use the following metrics.

• The mission time, defined as the time from the moment
the user initiates the command to reach a destination to the
moment this destination has been reached.

• The concentration time, defined as the time spent control-
ling the BCI.

These metrics are normalized by the nominal time which is the
minimal time required by the wheelchair to reach the destina-
tion. The addition of corresponding mission time ratio and con-
centration time ratio will then be used as a measure of control
efficiency expressing the wish to minimize both the time and the
concentration required to perform successful movements.

A. Performance of the BCW

Our BCW is evaluated from simulations based on the selec-
tion times and false stop rates presented in Sections III and IV.
The task consists in navigating the wheelchair between loca-
tions connected by a 50-m-long path. The wheelchair’s nom-
inal velocity is 0.5 ms , hence the nominal travel time is 100
s. We analyze two scenarios characterized by the option chosen
for stopping the wheelchair. Scenario A considers that there is
no false stops. This corresponds to either using the inter-
face , or to disabling the stop feature. Scenario B cor-
responds to using the P300 stop interface, hence we will have
some false stops from time to time.

With our BCW, the mission time is the time to select a destina-
tion plus the total travelling time, which is computed as follows.
First, a selection time is picked up randomly according to the RT
distribution. For scenario A, the mission time is simply this se-
lection time plus the nominal time of 100 s. For scenario B, a
false stop rate is selected randomly according to the FA distribu-
tion, and the corresponding time to stop , as well as
the distance travelled by the wheelchair in this time ,
are computed, where ms . If this distance is greater
than 50 m, the wheelchair has reached the destination without
stopping. If the distance is smaller than 50 m, the wheelchair has
stopped before reaching its destination and has to be restarted,
so a selection time is again picked, and the same process is re-
peated until the total distance reaches 50 m. The concentration
time is the mission time minus the nominal time.

Table III shows the value of the two metrics and the perfor-
mance cost for scenarios A and B over 500 simulation trials. In
scenario A, the mission time is 112 s on average s , the
concentration time ratio is 0.13 and control efficiency is 1.26. In
scenario B, the mission time is 128 s s with an average
of 1.2 false stops , yielding a concentration time ratio
of 0.28 and control efficiency measure of 1.56. It is also worth
noting that in the case of scenario A, the 12 s overhead is inde-
pendent from the length of the path.

B. Comparison With Other Wheelchair Systems

To put the above results in perspective, we compute the same
cost function on results published by other brain controlled
wheelchair projects [7], [8], [26]. In the MAIA project [8],
average trajectory times range from 130 to 270 s depending
on subject and active behaviours. Taking 200 s as their mean
mission time yields a mission time ratio of 2. Since the control
of the wheelchair requires continuous concentration, we take
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200 s as the concentration time, yielding a concentration time
ratio of 2 and a control efficiency of 4.

We next evaluate the cost of the Toyota/Riken wheelchair
[26]. One subject managed to drive the wheelchair on an eight-
shaped course in 22.88 s on average s . While driving
on the same course with a joystick, the average time was 16.96 s

s , hence the mission time ratio is 1.35. Since the
control of the wheelchair requires continuous concentration, we
take 22.88 s as concentration time, yielding a concentration time
ratio of 1.35 and the control efficiency is 2.70. Note that this cor-
responds to the results of a subject which may be exceptional,
and more subjects are required to confirm the performance.

Data for the brain controlled wheelchair by Iturrate et al. [7]
is also available, which was evaluated on two different circuits.
The first circuit was designed to accomplish complex manoeu-
vrability tasks and avoidance of obstacles in constrained spaces
(length of optimal path: 12 m). The second circuit involved nav-
igation in open spaces (length of optimal path: 32 m). The re-
spective mean mission times were 571 and 659 s, and the re-
spective concentration time were 447 and 439 s. From this data,
the mission time ratios can be computed as 25 and 10.3, and the
concentration time ratios as 18.6 and 6.8, yielding control effi-
ciency measures of 43.6 and 17.1, respectively.

Table III summarizes the evaluated measures for each of those
strategy in comparison with our strategy.

VI. DISCUSSION

Current BCIs enable one to deliver commands only infre-
quently or with very low confidence. Given that fact, two main
questions are 1) whether current BCIs can be used to control a
wheelchair safely and efficiently? and 2) which control scheme
is more appropriate?

To develop a brain controlled wheelchair for navigation in
familiar environments, we decided to use a slow but reliable
interface for destination selection, and motion guidance for safe
and autonomous navigation. The results obtained with healthy
subjects demonstrate that our strategy enables them to move the
wheelchair in a building environment safely, efficiently, with
limited effort and in a reasonable time. Although we have not
tested the BCW with individuals who are locked-in, previous
studies have shown that these subjects are able to use the P300
and BCIs, and that their performances are roughly similar
to those of healthy individuals [27]–[30].

With our BCW the user needs about 15 s to select one of nine
context dependent destinations with almost 100% confidence
using a P300 BCI. Using either a fast P300 BCI or a -BCI
the user can stop the wheelchair during motion within 5 s on
average. This time corresponds to a distance of 1.5 m at the
nominal velocity of 0.5 . Therefore, an additional sensor-
based system is required, implemented in our system using an
ultrasonic sensor.

To put these numbers in perspective, we can compare the BCI
control with conventional joystick based control: healthy sub-
jects may be able to generate a stop command in about 100 ms,
however disabled subjects as tested in [31] will have less than
perfect commands such that for example the hand may vibrate
widely, and will typically not be able to stop the wheelchair in
less than 1 s.

The two BCIs tested for stopping showed both similar re-
sponse times. The interface had no false stops, however it
requires significant training, thus may not be used with all sub-
jects. Comparison of performance while moving or not further
showed that performances of those BCIs are not affected by mo-
tion.

By comparing the movement time and concentration time
required to move between locations, our control strategy was
found to be more efficient than other existing wheelchairs. The
published data do not allow comparison of other factors such
as comfort and safety, the reaction to obstacles, financial cost
of the equipment, and the amount of training required to use
the BCI. However, the comparison with other BCI controlled
wheelchairs showed that the control strategy we have proposed
enables an efficient control with little mental effort. We believe
that these are fundamental conditions for brain control wheel-
chairs to be actually used.
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