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Abstract
This paper addresses an important issue in a self-paced brain–computer interface (BCI):
constructing subject-specific continuous control signal. To this end, we propose an alternative
to the conventional regression/classification-based mechanism for building the transformation
from EEG features into a univariate control signal. Based on information theory, the
mechanism formulates the optimum transformation as maximizing the mutual information
between the control signal and the mental state. We introduce a non-parametric mutual
information estimate for general output distribution, and then develop a gradient-based
algorithm to optimize the transformation using training data. We conduct an offline simulation
study using motor imagery data from the BCI Competition IV Data Set I. The results show that
the learning algorithm converged quickly, and the proposed method yielded significantly
higher BCI performance than the conventional mechanism.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent advances in neural engineering have spurred a
surge of interest in developing EEG-based brain–computer
interface (BCI) technology, which caters to the demands from
rehabilitation, assistive technology, and beyond [1, 2]. The
operation of BCI can be broadly divided into synchronous (also
known as cue-based or machine-paced) and self-paced (also
known as asynchronous) categories (e.g. [2, 3]). The former
(e.g. [4–7]) requires the user to execute mental activity in time
windows determined by the machine, while the latter allows
the user to perform BCI control at any time at will. There
is a growing awareness of the importance of self-paced BCI
systems [8–13], because of their more natural and potentially
higher speed interfacing (e.g. [14]).

This paper focuses on a particular type of self-paced
BCI, which transforms EEG into a continuous control signal
(e.g. [15–17]). Providing the user with continuous control is

essential for efficient and natural cursor control applications.
It also serves two usages: first, it allows the user to sense
and predict the system’s action in a continuous and real-time
manner so as to plan the mental states to activate desired BCI
actions [15]; second, it enables feedback training in which the
users, e.g. patients with ALS [17], can learn to regulate brain
waves so as to gain better BCI operation.

The current methodology of transforming EEG features
into a continuous control signal generally uses a regression
approach. For instance, the works in [3, 16, 18] built a
classifier to distinguish between two or multiple classes of
EEG, while taking the continuous output of the classifier as
the actual control signal. Thus, the classifier performed like
a special regression machine. In the BCI Competition IV
Data Set I [19], regression error in terms of mean-square error
(MSE) was used as the metric for comparing un-cued motor
imagery detection algorithms. At each time point, the error
was measured between the output signal and the true mental
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state label: 0 for non-control (NC), and −1 and 1 for two
motor imagery classes separately.

The regression approach is based on the MSE criterion and
intuitive target values, while its link to actual BCI performance
metrics is vague (see the related discussions in section 5).
Therefore, it is interesting to see if an alternative method to
regression can improve the BCI performance.

This paper proposes such a method, by using an
information theoretic measure termed Shannon’s mutual
information [20] to design the transformation from EEG
features to a univariate control signal. We consider the mutual
information between the brain state (i.e. user’s intention) and
the control signal. Then the mutual information can be
viewed as reduction of uncertainty about the mental state by
observation of the control signal. Larger mutual information
would mean less uncertainty or, in other words, better
controllability of the signal by the mental state. Furthermore,
the mutual information has been recommended in [21] for
evaluating continuous BCI performance. It is then interesting
to use the mutual information for directly optimizing the
transformation (i.e. optimizing the control signal).

There are two technical challenges toward mutual
information-based control signal design: (1) accurate
estimation of the mutual information for general output
distributions, and (2) learning of the optimum transformation
such that the mutual information estimate is maximized. Note
that the first point has been raised in [21], which pointed out
that existing mutual information evaluation techniques were
based on Gaussian assumption rather than on general output
distributions.

The present work aims at solving these two problems.
First, we introduce a non-parametric mutual information
estimate, and formulate the optimum transformation for
designing a univariate control signal. It thus enables us
to consider more general data distributions than a simple
Gaussian. Next, we develop a gradient-based optimization
algorithm to learn from training data the optimum linear
transformation. In addition, we assess the proposed method
using human motor imagery data from the BCI Competition
IV Data Set I. A cross-validation is performed, in which we
study the convergence property of the proposed optimization
algorithm and evaluate the performance using the receiver–
operator-characteristics (ROC) analysis.

The rest of the paper is organized as follows. Section 2
describes the mutual information estimate for designing the
optimum control signal. Section 3 develops a gradient-based
learning solution. Section 4 describes the evaluation of the
proposed approach, followed by discussions in section 5.
Section 6 concludes this paper.

2. Maximum mutual information estimate for BCI
control

We consider a 1D control BCI system using motor imagery
[22], which refers to the imagination or mental rehearsal
of a motor action without any real motor output. The
primary phenomenon of motor imagery in EEG is event-
related desynchronization (ERD) [22, 23]—the attenuation

of the rhythmic activity over the sensorimotor cortex in the
µ (8–14 Hz) and β (14–30 Hz) rhythms. The ERD can be
induced by both imagined movements in healthy people or
intended movements in paralyzed patients [17].

Effective control requires distinguishing and mapping the
ERD and the NC signal (also called the idle state EEG) into
a univariate signal that can differentiate various mental states.
To this end, the spatio-spectral filtering approach [6, 24–26]
has been quite successful for producing discriminative
features. Using the spatio-spectral features, we design an
un-cued BCI system as illustrated in figure 1.

The input to the system is a time sequence of multi-
channel EEG x̂(t), while the output is a univariate control
signal z(t). The procedure of transforming x̂(t) into z(t)

comprises the following.

• Feature extraction yields a feature vector a to represent the
EEG data at each time point (or practically at a fixed small
interval of e.g. 0.5 s). The features contain discriminative
spatio-spectral information among different mental states
(i.e. motor imagery classes and NC). Below is a sequence
of processing steps.

(i) Processes raw EEG x̂(t) with a band-pass filter
h. The output signal is denoted by x(t). This
step is meant for extracting subject-specific rhythmic
activities in EEG. The responsive ERD rhythm needs
to be identified, since it varies from one subject to
another [24]. To this end, we select a band-pass
filter h in conjunction with the spatial filters [26] (see
section 4.1).

(ii) Computes discriminative spatial components y by
projecting x onto an array of vectors (representing
individual spatial patterns)

y(t) = WT x(t). (1)

The matrix W contains the spatial patterns in
columns. This step addresses the subject-specific
spatial patterns of the ERD. The matrix W can
be constructed using the common spatial pattern
algorithm [27].

(iii) Computes the features in the form of log-power of
the spatial components.

a(t) = log
[

1
L

∫ L

0
[y(t − τ )]2 dτ

]
, (2)

where L is the length of a short-time window (L =
2 s in this work) for computing the instantaneous
power. The logarithm operation has been widely
used since the introduction of CSP in [27], which
described its purpose as ‘to approximate normal
distribution of the data’. We would like to note
that another positive effect of the logarithm operation
is the reduced dynamic range, which facilitates the
subsequent processing. In addition, extreme feature
values (suspected artifacts) in some EEG blocks can
be largely reduced before the corrupted information
(such as intra-class variance) is fed into the learning
machine.

2
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Figure 1. Diagram of learning and processing of motor imagery EEG for a self-paced continuous control BCI. Unlike in prior designs, the
linear mapping has no preset target values for different mental states. Instead, it constructs a linear projection that maximizes the mutual
information between the control signal and the mental state.

• Linearly transforms the log-power features into a
univariate control signal z.

z(t) = rT a(t), (3)

where r is the projection vector, obtained as described
below.

In the following we derive a formulation of the objective
function for designing optimum linear transformation in
equation (3), using the information theoretical measure of
mutual information.

Mathematically, the mutual information between the
control signal variable Z and the mental state variable C is
given by [20]

I (Z, C) = H(Z) − H(Z|C) = H(Z) −
∑

c∈C
H(Z|c)P (c).

(4)

Here H(Z) denotes the entropy of the continuous 1D control
signal variable Z (z ∈ Z being a particular control signal
value), C is the categorical brain state variable (c ∈ C being a
particular mental state) and H(Z|c) is the conditional entropy
of the control signal for the particular brain state c.

Shannon’s entropy H(Z) of the control signal and the
conditional entropy H(Z|c) are respectively defined by

H(Z) = −
∫ ∞

−∞
pz(z)log(pz(z)) dz, (5)

and

H(Z|c) = −
∫ ∞

−∞
pz(z|c)log(pz(z|c)) dz. (6)

Theorem 1. Under the following transformation of the
control signal z,

z′ = g1z + g0, (7)

the mutual information is invariant if g1 %= 0.

Proof. The entropy of the transformed signal becomes

H(g1Z + g0)

= −
∫ ∞

−∞
p(g1z + g0)log(p(g1z + g0))d(g1z + g0) (8)

= −
∫ ∞

−∞
g1

1
|g1|

pz(z)log
(

pz(z)

|g1|

)
dz (9)

= −
∫ ∞

−∞
pz(z)log(pz(z))dz + log(|g1|) (10)

= H(Z) + log(|g1|), (11)

where pz is the probability density function of the variable Z .
However, the change in the entropy is canceled out in the

mutual information:

I (g1Z + g0, C)

= H(g1Z + g0) −
∑

c∈C
Pc(c)H(g1Z + g0|c) (12)

= H(Z) + log(|g1|) −
∑

c∈C
Pc(c)[H(Z) + log(|g1|)] (13)

= H(Z) −
∑

c∈C
Pc(c)H(Z) (14)

= I (Z, C), (15)

where Pc is the probability function of the variable C.
Hence, the mutual information remains the same as before

the transformation. &'

The invariant property above is desirable in designing
algorithms for a continuous control BCI, in which linear
transformation of the output signal shall have no effect on
the performance of the BCI.

The mutual information is a function of output density
distributions, and generally cannot be expressed in an explicit

3
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form. To address this problem, we introduce a mutual
information estimation method below.

The mutual information (equation (5) or equation (6))
can be expressed as an expectation [28], which in turn can
be approximated using empirical samples. Suppose there are
nz examples of the control signal: zi , i = 1, . . . , nz. The
approximation to H(Z) takes the following form:

H(Z) = −E[log(pz(z))] ∼= − 1
nz

nz∑

i=1

log(pz(zi)). (16)

The probability density function pz in the above
expression can be estimated using a Gaussian kernel density
estimator

p̂z(z) = 1
na

na∑

i=1

ϕ(z − zi), (17)

where

ϕ(z − zi) = α exp
(

−ψ−1

2
(z − zi)

2
)

. (18)

Here α is a factor that ensures that the integration of
equation (17) equals 1 so as to meet the requirement for a
probability density function. The bandwidth of the Gaussian
kernel, ψ , is computed by

ψ = ζ
1

nz − 1

nz∑

i=1

(zi − z̄)2 , (19)

where z̄ is the empirical mean of z, and the coefficient
ζ =

( 4
3nz

)0.1 according to the normal optimal smoothing
strategy [29].

By substituting equation (17) into equations (16), the
entropy of feature-vector variable can be estimated using

Ĥ (Z) = − 1
na

na∑

i=1

log





1
na

na∑

j=1

ϕ(zi − zj )




 , (20)

and the conditional intra-class entropy can be estimated
similarly by

Ĥ (Z|c) = − 1
nc

∑

zi∈c

log





1
nc

∑

zj ∈c

ϕ(zi − zj )




 . (21)

The mutual information estimate is then

Î (Z, C) = Ĥ (Z) −
∑

c

P (c)Ĥ (Z|c). (22)

This mutual information estimate shares the invariant
property with the original mutual information (see
theorem 1).

Theorem 2. The mutual information estimate in
equation (22) is invariant against nontrivial transformation
of the control signal z.

Proof. Suppose the control signal is transformed by
z′ = g1z+g0 (equation (7)), and the factor α (equation (18)) is
fixed. The bandwidth ψ in equation (19) changes accordingly

ψ ′ = g−2
1 ψ. (23)

The Gaussian kernel function in equations (20) and (21)
will become

ϕ̂(z′
i − z′

j ) = α exp
(

−ψ ′−1

2
(z′

i − z′
j )

2
)

= α exp

(

−g−2
1 ψ−1

2
g2

1(z − zi)
2

)

(24)

= α exp
(

−ψ−1

2
(z − zi)

2
)

= ϕ(z − zi). (25)

Therefore, the transformation does not result in change in
the Gaussian kernel function, thus has no effect on the entropy
estimate in equations (17) and (21) as well as the mutual
information estimate (equation (22)). &'

It can be easily seen that, if the bandwidth ψ is fixed and
not a function of z, the property would generally not hold.
Therefore, we would like to emphasize the importance of the
variable bandwidth ψ for z during optimization.

Now we formulate the learning of the optimum linear
projection vector ropt so as to maximize the mutual information
estimate:

ropt = argmax
r

Î (Z, C). (26)

Hereafter we refer to the linear projection with ropt as
optimum linear mapping or OLM.

3. Learning algorithm for optimum linear mapping

From equation (22), the gradient of mutual information
estimate with respect to the linear projection vector r can be
expressed as

∇rÎ (Z, C) = ∇rĤ (Z) −
∑

c∈C
P(c)∇rĤ (Z|c). (27)

From equation (20), we have

∇rĤ (Z) = − 1
na

na∑

i=1

βi

1
na

na∑

j=1

∂ϕ(zi − zj )

∂r
, (28)

where

βi =



 1
na

na∑

j=1

ϕ(zi − zj )




−1

. (29)

From equation (18), we have

∂ϕ(zi − zj )

∂r
= −1

2
ϕ(zi − zj )

[
2ψ−1(zi − zj )

∂(zi − zj )

∂r

+ (zi − zj )
2 ∂ψ

−1

∂r

]
. (30)

Since z = rT a,
∂(zi − zj )

∂r
= (ai − aj ). (31)

To compute ∂ψ−1

∂r , it follows from equation (19) that

∂ψ−1

∂r
= η

nz∑

i=1

∂(rT ai − rT ā)2

∂r
, (32)

4
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where

η = −ζ−1(nz − 1)

[
nz∑

i=1

(rT ai − rT ā)2

]−2

. (33)

We further develop equation (32):

∂ψ−1

∂r
= η

nz∑

i=1

∂(rT (ai − ā)(ai − ā)T r)
∂r

= η
∂

(
rT

[∑nz

i=1(ai − ā)(ai − ā)T
]

r
)

∂r
= 2η(nz − 1)rT)a, (34)

where )a is the empirical covariance matrix of the feature
vector variable a.

With the above equations, we are able to explicitly
compute the gradient ∇rĤ (Z). It can be seen that the
gradient of the class conditional entropy ∇rĤ (Z|c) can also be
computed with cth class EEG data only. Finally, the gradient
∇rÎ (Z, C) can be obtained, and an iterative optimization
procedure can be applied using the following update function:

rniter+1 = rniter + λ∇rÎniter(Z, C), (35)

where λ is the step size. We employ a backtracking search
procedure to determine the step size [30].

The mutual information estimate may not be a convex
function. So the above gradient-based optimization procedure
may fall into a local optimum instead of the global one.
In other words, the initial condition is important for the
optimization procedure. We tentatively use the multi-class
linear discriminant analysis to generate the initial r [31].

4. Experiments and results

4.1. EEG data and evaluation setting

The proposed method was evaluated using the BCI
Competition IV Data Set I [15], which was recorded from four
human subjects performing motor imagery tasks. Fifty-nine
EEG channels were used that were most densely distributed
over sensorimotor areas. Each subject participated in two
sessions: the calibration session and the evaluation session.

• Calibration. Each subject selected two classes of motor
imagery from left hand, right hand or foot. During data
collection, a visual cue was displayed in a computer
screen to the subjects who then started to perform a motor
imagery task for 4 s according to the cue. Each subject
performed a total of 200 motor imagery tasks (balanced
between the two classes). Consecutive motor imagery
tasks were interleaved with a 4 s break.

• Evaluation. The subjects followed the soft voice
commands from an instructor to perform motor imagery
tasks of varying length between 1.5 and 8 s. Consecutive
tasks were also interleaved with a varying length interval
from 1.5 to 8 s. This session was meant for validation
of un-cued motor imagery classification algorithms (see
[8]).

This experiment involves an offline cross-validation study.
The cross-validation assessed how the results generated by
the method would generalize to an independent data set. It
involved partitioning each subject’s data into ten continuous
blocks of equal duration, alternately performing the learning
on one block (called the training set), and validating the learned
model on the others (aggregated as the test set).

We applied the proposed method to generate a univariate
output continuously in an un-cued manner in both training
set and test set. After band-pass filtering (band-pass filter
selection to be described later) of the whole training/test set,
we employed a 2 s shifting window to extract EEG segments
with a shift step of 0.5 s. The EEG segments were labeled
according to the contained samples, and there were two
possible situations: if all the samples in a EEG segment were
during the same motor imagery period or the same NC period,
the EEG segment was labeled as belonging to the specific
motor imagery class or the NC class; otherwise, the EEG
segment was considered as transition data and was discarded
from this study.

EEG segments contaminated with electrooculography
(EOG) were removed. Specifically, a particular threshold
was selected for each data set after visual inspection of the
waveforms; the EEG segments that contained larger-than-
threshold samples were rejected. Statistically, approximately
5–8% of EEG segments were removed from each data set. We
would like to emphasize that removal of artifacts is important
for BCI research, since neurological phenomena should be
the only source of control in any BCI system. Artifacts
are undesirable signals that can interfere with neurological
phenomena [32]. In a self-paced BCI system, they can affect
the performance of the system either by changing the shape
of the neurological phenomenon during the control period or
by mimicking the neurological phenomenon during NC. The
consequence would be either a decreased true positive rate
(TPR) or an increased false positive rate (FPR).

We employed a recently developed algorithm [26] to
compute spatio-spectral features. In the training set, it first
decomposed EEG data into a continuous array of pass-bands,
using 8 Chebyshev Type II filters centered at frequencies from
8 Hz to 32 Hz at a constant interval in logarithm. All the
filters had a constant Q factor (bandwidth-to-center frequency)
of 0.33. The training EEG segments were then extracted
from the filtered data as mentioned earlier. The CSP method
learned the spatial filtering and was applied to the segments,
separately in each pass-band. The log-power features from
all the bands were aggregated to form a raw feature vector,
from which a small subset of the features was selected using a
feature selection technique based on mutual information. The
current implementation differed slightly from [33] in that it
constrained the algorithm to select features from one band.
Therefore, it effectively selected a single-frequency band for
each subject independently. The selected frequency band and
the CSP spatial patterns were used in the procedure described
in section 2 to generate spatio-spectral features that represent
EEG segments in both training set and test set.

Note that, unlike the traditional CSP method, the feature
extraction approach need not pair the spatial patterns and

5
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Figure 2. Convergence of the gradient-based optimization
procedure. The graph shows the curve of the mutual information
estimate (see section 2) over the iterations. Each curve corresponds
to a particular testing result from ten-fold cross-validation using the
calibration data from subject ‘b’.

can select an arbitrary number of features. Tentatively we
considered selecting three features only, though a larger
number of 4 or 5 yielded similar results according to our tests.

The study normalized the features to the range [−1 1],
and applied the proposed learning method (OLM) to optimize
the linear projection from the features into a univariate control
signal. We also compared the method to two linear regression
methods, including linear mean-square error regression (LMS)
and a linear support vector regression (SVR L) algorithm. The
LMS method was from MATLAB, while SVR L used ε-SVR
from the LibSVM toolbox [34]. The spatio-spectral features
were extracted before these methods under comparison were
applied such that every method processed the same set of
features.

4.2. Convergence of the optimization algorithm

We tested the optimization algorithm described in section 3
in each fold during the cross-validation, and observed the
number of iterations it took before this stop criterion was
met: the increase in the mutual information estimate was less
than 10−4. Figure 2 plots the results for the cross-validation
runs on the data from subject ‘b’, where each fold produced
a particular curve of mutual information estimate over the
number of iterations. It can be seen that the mutual information
picked up by approximately 10% in the first few iterations, and
converged quickly in about ten iterations. Our analysis shows
that, in all the cross-validation folds from every subject, the
iteration took minimum 3 and maximum 30 iterations to meet
the stop criterion, with a mean of 6.10 and a standard deviation
of 5.81 iterations.

4.3. Area under the ROC curve analysis

The area under the ROC curve (AUC) is a widely used
measure for assessing signal detection systems. It is equal

to the probability that a classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative one
[35]. In this study, we pay attention to the AUC for low
false positive rates, since prior studies on self-paced BCI have
indicated the importance of low FPR [36] for practical BCI
operation. Of particular interest here is the low FPR range
! 10%, which is selected according to [8] that reported a false
positive rate around 10% in most runs of a motor imagery
BCI, as well as [36] that emphasized FPR<8% in the analysis
graphs (though it was not a motor imagery BCI).

For AUC analysis we need to consider the definition of
FPR and TPR. The definition can be on a sample-by-sample
basis or on an event-by-event basis [3]. Sample-by-sample
approach breaks each event or nonevent up into a number of
pieces (like the overlapping EEG segments described earlier),
and assesses the outputs from each piece independently. On
the other hand, the event-by-event approach determines the
occurrence of events (each representing a discrete intent by
the user) and nonevents [37].

This study took the sample-by-sample approach to
evaluate the FPR and TPR measures and the AUC, for the
following reasons. First, as suggested in [37] (section 3.2),
the sample-by-sample metrics such as FPR can serve as a
reliable performance measure for comparing different systems
on the same data, provided that the sample-by-sample labeling
is reasonable and is done prior to the system outputs. Second,
event-by-event analysis generally requires additional post-
processing such as dwelling [3] that converts sample-based
outputs to event-based outputs. The additional process will
introduce more variables to the system performance metrics.
Furthermore, event-by-event analysis depends strongly on the
definition of the event intervals, which are entirely up to the
user and are subject to change during BCI operation.

The study adopted a multi-class estimation method from
[38] to compute the AUC in this three-class setting (including
two motor imagery classes plus NC). Please see the appendix
for details.

We conducted two cross-validation tests to evaluate the
method’s generalization performance. The first test ran the
cross-validation procedure as described earlier in section 4.1,
using data in the calibration session only. The second one ran
almost the same procedure except that the test set was replaced
by the evaluation session data. The two tests were denoted
respectively by ‘Calib’ and ‘Calib-Eval’. We also ran paired t-
tests to assess whether the mean AUC scores were statistically
different between OLM and LMS/SVR L. Besides, a virtual
subject was created and named as ‘All’, which aggregated all
the scores from the four subjects.

The results are shown in tables 1 and 2. In terms of the
AUC for the full range of FPR, OLM achieved a significantly
higher mean AUC score in all the tests except that on the
calibration session from subject ‘g’. For the low range of
FPR, OLM yielded significant improvement in the AUC in all
the tests. Besides, the scores were comparable between the
‘Calib’ and the ‘Calib-Eval’ tests.
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Table 1. AUC scores, for full false positive rate range. In mean (std) format. Refer to section 4.3 for related information. The first column
denotes the subjects; the second column denotes two types of cross-validation study (see section 4.3): ‘Calib CV’ stands for cross-validation
in the calibration session; ‘Calib-Eval’ replaces the test set in ‘Calib CV’ by the evaluation session. The two rightmost columns, under
p-value, show the t-test results for the hypothesis that the proposed method OLM produced the same mean AUC as LMS (least mean-square
error regression) or SVR L (linear support vector regression). Significant p-values (rejection at the 5% significance level) are in bold.

Mapping method p-value

Subject Test LMS SVR L OLM OLM = LMS OLM = SVR L

a CalibCV 41.7 (4.16) 42.0 (4.36) 49.0 (6.98) 0.02 0.02
Calib Eval 36.3 (0.13) 36.3 (0.15) 48.8 (7.04) 0.01 0.01

b CalibCV 38.7 (6.21) 43.0 (8.17) 54.2 (3.06) <0.01 <0.01
Calib Eval 36.2 (1.53) 39.3 (1.94) 44.3 (0.58) <0.01 <0.01

f CalibCV 39.8 (3.09) 39.6 (3.13) 49.6 (4.69) <0.01 <0.01
Calib Eval 34.42 (0.14) 34.51 (0.22) 40.5 (3.46) <0.01 <0.01

g CalibCV 42.6 (4.62) 42.4 (4.66) 45.2 (4.59) 0.21 0.19
Calib Eval 36.7 (1.12) 36.7 (1.17) 41.1 (3.44) 0.01 0.01

All CalibCV 40.7 (4.73) 41.8 (5.36) 49.5 (5.83) <0.01 <0.01
Calib Eval 35.9 (1.28) 36.7 (2.07) 42.4 (4.45) <0.01 <0.01

Table 2. AUC scores, for low false positive !10%. Refer to section 4.3 and the caption of table 1 for related information.

Mapping method p-value

Subject Test LMS SVR L OLM OLM = LMS OLM = SVR L

a CalibCV 3.27 (1.42) 3.36 (1.48) 10.7 (6.65) 0.01 0.01
Calib Eval 3.48 (0.06) 3.48 (0.12) 11.6 (6.80) <0.01 <0.01

b CalibCV 5.77 (3.26) 6.75 (3.38) 11.4 (3.70) <0.01 <0.01
Calib Eval 5.40 (0.78) 6.29 (0.48) 8.72 (0.79) <0.01 <0.01

f CalibCV 2.86 (1.53) 2.77 (1.42) 10.8 (3.65) <0.01 <0.01
Calib Eval 6.03 (0.17) 6.02 (0.21) 10.2 (1.83) <0.01 <0.01

g CalibCV 2.35 (0.87) 2.39 (0.84) 6.30 (3.56) 0.01 0.01
Calib Eval 2.64 (0.53) 2.63 (0.51) 9.34 (5.95) <0.01 <0.01

All CalibCV 3.56 (2.32) 2.79 (2.63) 9.81 (4.86) <0.01 <0.01
Calib Eval 4.39 (1.47) 4.61 (1.64) 10.0 (4.59) <0.01 <0.01

5. Discussions

Mutual information has been generally introduced to BCI as an
evaluation method for given outputs and class labels [21], or as
a feature selection criterion [21, 39]. In the feature extraction
case, however, only simple uni-modal Gaussian models were
considered. Furthermore, no numerical solution based on
mutual information was developed to learn and optimize 1D
signal design. In contrast, the purpose of this work was
not only to introduce a non-parametric mutual information
estimate that can account for high complexity of the EEG
data in self-paced BCI, but also to derive, from the mutual
information estimate, a numerical solution to the optimization
of BCI, especially in the linear transformation from EEG
features to a control signal.

The experimental results show that the proposed method
(OLM) can significantly improve the performance in terms
of the AUC. Here we discuss how OLM will affect the 1D
control signal and possibly why it can significantly improve
over the regression method. To this end, figure 3 illustrates
a comparison of OLM versus LMS in forms of their output
control signals. In the upper part of the figure, LMS mapped
the three classes into three pre-set target values, while OLM

was approaching maximum mutual information instead of any
target values for the linear mapping. In LMS, there was
apparently a discrepancy between training and test in the
output distributions. On the other hand, OLM has produced
more consistent results.

If we took the means of the control signal generated
by OLM as the target values for LMS, LMS would produce
similar results to that of OLM. This suggests that manipulation
of the target values in an ad hoc manner for a regression
machine may lead to improved BCI performance. On the other
hand, regression using intuitive but improper target values may
degrade the BCI system.

To further compare the outputs of different methods, we
plot in figure 4 the time courses of the 1D signal generated
by SVR L and OLM, respectively. The first half of the
calibration session was used for training and the rest for
testing. Only the outputs from testing are displayed here.
As can be seen, the outputs varied both among the subjects
and between the methods. Apparently, the outputs show large
difference between the two methods in all subjects except
‘g’. This may link to the abovementioned finding that the
calibration AUC score showed significant difference between
SVR L and OLM for the first three subjects but not the last
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Figure 3. Control signal generated by regression and the proposed OLM method. The data were from a cross-validation fold of subject ’b’
from the BCI Competition IV Data Set I. See section 5 for related discussions. The arrows starting from each class point to the respective
mean values after mapping.

Figure 4. Average time courses of output signal. The upper and lower panels show the average output signal produced by the proposed
method (OLM) and a regression method (SVR L), respectively. In the upper row of each panel, each color curve represents the average time
course (unit: second) of output signal for a particular class (MI-1 or MI-2) of motor imagery trials, where time point 0 represents the cue
time and the subjects were performing motor imagery in the [0s 4s] period, and the color rectangles denote the standard deviation by height,
and the time range of motor imagery or NC by horizontal span. The output signal in each graph is normalized such that the standard
deviation of NC output is 1. The lower panel plots the histograms of the output signal for the three classes separately.
(This figure is in colour only in the electronic version)

one (see table 1). Especially prominent difference in the time
courses can be found in subject ’b’ (corresponding to figure 3.
From the histograms of the output, it appears that SVR L was
not able to differentiate any class, whereas OLM managed to
automatically distinguish the two motor imagery classes from
NC.

In the above report, we considered a sample-by-sample
AUC. Practically, event-by-event performance measure will
be of greater interest to the end user. As section 4.3 describes,
converting sample-based measures to event-based measures
would introduce new variables that are difficult to handle

rigorously. Nevertheless, it is worthwhile to consider the low
sample-based FPR (detection rate at 2 Hz) at 10% together
with a simple event detection using a dwelling period [3] of
2 s. Hence, a positive event will be detected if the sample-by-
sample detections in the last 2 s time period are all positive.
Consider the worst case in which the false sample-based
detections are coherent in the 2 s time frame, the system would
produce three false detections per minute during NC. In the
ideal case where the sample-based detections are independent,
the false event detection rate would be very low: our Monte
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Carlo simulation showed that it would be 0.1±0.3 per minute
during NC.

It is also interesting to compare the computational cost
of the method with the conventional ones. Both LMS and
the proposed method perform a simple linear transformation.
The computational cost is minimal. The training process, on
the other hand, depends on the complexity of the learning
algorithm and the implementation. We measured the time cost
of the proposed method implemented in MATLAB without
optimization, and found that it could finish optimization in
each cross-validation training in <15 s. That seems to be
quite acceptable to offline calibration.

It is worthwhile to discuss the proposed mutual
information estimate in relation to evaluation criteria for BCI
research. For assessing synchronous system performance,
various criteria have been well established and studied [40, 41],
including classification accuracy, Cohen’s Kappa coefficient
[42], information transfer rate [43, 44], and more [45]. For
assessing self-paced BCI performance, the evaluation criterion
is still an ongoing research topic [21, 37]. Some studies used
information transfer rate [13, 18], while others resorted to the
ROC analysis [3, 9, 36]. The proposed estimate has been used
to optimize the BCI control signal and successfully improved
the performance in terms of the AUC. However, since it is
based on a non-parametric sample-based estimation method,
the estimate cannot serve as a metric for comparing different
data and/or different methods. Nevertheless, future extension
of the proposed estimate by appropriate normalization may
solve the problem.

Lastly, it would be interesting to extend the proposed
method to two- or multi-dimensional control signals [46].
Although it poses considerable difficulties to the user
and challenges to BCI system design, controlling two
variables simultaneously bears important potential for high-
performance BCI systems [46].

6. Conclusion

In this paper we considered the issue of designing a continuous
control signal for a self-paced BCI. We proposed a mutual
information estimate as the objective function for the design,
and derived from it a gradient-based optimization algorithm
to learn the OLM from EEG features to a univariate.
Results of our offline simulation showed that the optimization
algorithm converged quickly, and the proposed method yielded
significantly better results in terms of the AUC than the
conventional regression approach. Therefore, we expect
that continuing research will further explore the mutual
information estimate as the criterion for designing and
optimizing one- or even multi-dimensional BCI.
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Appendix. Multi-class AUC

As a system performance measure, AUC has the attractive
property that it avoids specifying the costs of the different
kinds of misclassification [38]. Besides, so far most of the
techniques for computing AUC are non-parametric, which
is insensitive to varying class distributions. Finally, it has
been demonstrated in [47] that the AUC is superior to the
often used misclassification rate for the evaluation of system
performance.

The basic form of the AUC is only applicable to two-class
cases. Various methods have been proposed to extend the AUC
for multi-class problems [38, 48]. In this work we adopt the
algorithm proposed in [38]. The algorithm is described below.

Suppose there are nc classes. The multi-class AUC is a
weighted average of AUC over all pairs of classes:

Ā = 2
nc(nc − 1)

nc∑

i=1

nc∑

j=i+1

ρ(i, j)A(i, j), (A.1)

where A(i, j ) is the AUC for the ith and the j th classes. ρ(i, j)

is the weight that equals the a priori probability that the true
class label is either i or j . The probability can be estimated
from the data.

To compute A(i, j ), we first note that the area under the
curve is an integral [38]:

A =
∫

G1(u)dG0(u) =
∫

G1(u)g0(u) du. (A.2)

Here u is a threshold, G1(u) (G0(u)) is the cumulative
distribution function that describes the probability that a
random positive (negative) class sample is larger than u and
g0(u) is the density function that a random negative class
sample equals u.

Therefore, A can be viewed as an expectation, whose
sample-based approximation is

A = E [G1(u)|u ∈ g0(u)] ∼=
1
N0

∑

uk

Ĝ1(uk), (A.3)

where uk is the kth sample from the negative class, N0 is the
number of negative class samples and Ĝ1 is the percentile of
the positive class samples larger than uk .

For the AUC in the range of low false positive rate, e.g.
G0(u) < flow, it is straightforward to adapt the above equation
as follows:

Alow = E [G1(u)|u ∈ g0(u) AND G0(u) < flow]

∼=
1
N0

∑

uk

Ĝ1(uk)δ(G0(uk) − flow), (A.4)

where δ(! 0) = 0 and δ(> 0) = 1.
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and Birch G E 2008 Comparison of evaluation metrics in
classification applications with imbalanced datasets Int.
Conf. on Machine Learning and Applications

10

http://dx.doi.org/10.1109/TBME.2008.921154
http://dx.doi.org/10.1109/TNSRE.2004.827220
http://dx.doi.org/10.1109/5.939829
http://dx.doi.org/10.1016/j.patrec.2008.01.030
http://dx.doi.org/10.1109/TBME.2008.919125
http://dx.doi.org/10.1109/86.847808
http://dx.doi.org/10.1109/TBME.2007.903709
http://dx.doi.org/10.1088/1741-2560/5/1/002
http://dx.doi.org/10.1109/TNSRE.2007.891382
http://dx.doi.org/10.1109/TNSRE.2003.814435
http://dx.doi.org/10.1016/j.clinph.2008.06.001
http://dx.doi.org/10.1109/TBME.2008.919128
http://dx.doi.org/10.1109/TNSRE.2003.816866
http://dx.doi.org/10.1016/j.neuroimage.2007.01.051
http://dx.doi.org/10.1109/TBME.2008.923152
http://dx.doi.org/10.1212/01.WNL.0000158616.43002.6D
http://dx.doi.org/10.1109/TBME.2004.827062
http://www.bbci.de/competition/
http://dx.doi.org/10.1016/S0013-4694(97)00080-1
http://dx.doi.org/10.1016/S1388-2457(98)00038-8
http://dx.doi.org/10.1109/MSP.2008.4408441
http://dx.doi.org/10.1109/TBME.2005.851521
http://dx.doi.org/10.1109/86.895946
http://dx.doi.org/10.1023/A:1007958904918
http://dx.doi.org/10.1016/j.clinph.2006.10.019
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1109/TBME.2004.827078
http://dx.doi.org/10.1023/A:1010920819831


J. Neural Eng. 7 (2010) 056009 H Zhang and C Guan
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