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An EEG-Based BCI System for 2-D Cursor Control
by Combining Mu/Beta Rhythm and P300 Potential
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Abstract—Two-dimensional cursor control is an important and
challenging issue in EEG-based brain–computer interfaces (BCIs).
To address this issue, here we propose a new approach by combin-
ing two brain signals including Mu/Beta rhythm during motor
imagery and P300 potential. In particular, a motor imagery de-
tection mechanism and a P300 potential detection mechanism are
devised and integrated such that the user is able to use the two sig-
nals to control, respectively, simultaneously, and independently, the
horizontal and the vertical movements of the cursor in a specially
designed graphic user interface. A real-time BCI system based on
this approach is implemented and evaluated through an online ex-
periment involving six subjects performing 2-D control tasks. The
results attest to the efficacy of obtaining two independent control
signals by the proposed approach. Furthermore, the results show
that the system has merit compared with prior systems: it allows
cursor movement between arbitrary positions.

Index Terms—Brain–computer interface (BCI), EEG, motor im-
agery, mu rhythm, P300 potential, two-dimensional cursor control.

I. INTRODUCTION

A S a communication and control pathway to directly trans-
late brain activities into computer control signals, brain–

computer interface (BCI) has attracted increasing attention in
recent years from multiple scientific and engineering disciplines
as well as from the public [1]–[5]. Offering augmented or re-
paired sensory-motor functions, it appeals primarily to people
with severe motor disabilities [6]. Furthermore, it provides a
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useful test bed for the development of mathematical methods in
brain-signal analysis [7].

An important issue in BCI research is cursor control, where
the objective is to map brain signals to movements of a cur-
sor on a computer screen. Potential applications include BCI-
based neuroprostheses. In the EEG-based BCI field, most related
studies were focused on 1-D cursor control, which was gener-
ally implemented through detecting and classifying the changes
of mu (8–12 Hz) or beta (13–28 Hz) rhythm during different
motor imagery tasks, e.g., imagination of left- and right-hand
movement [8]–[12]. The physiological background is that the
imagination of movement gives rise to short-lasting and circum-
scribed attenuation (or accentuation) in mu and beta rhythm ac-
tivities in EEG, known as event-related desynchronization (or
synchronization) (ERD/ERS) [13].

Compared with 1-D cursor control, multidimensional cursor
control enables considerably enhanced interfacing between the
user and the machine, implying a much wider range of appli-
cations. To date, most of the multidimensional cursor control
BCIs have been invasive [14] or with expensive neuroimaging
devices like magnetoencephalography [15]. On the other hand,
the development of noninvasive EEG-based 2-D control BCI
is impeded by the difficulty in obtaining two independent con-
trol signals from the noisy EEG data of poor spatial specificity.
Therefore, the first report of an EEG-based 2-D cursor control
BCI is remarkable [16]: the authors showed that through guided
user training of regulating two particular EEG rhythms (mu and
beta), two independent control signals could be derived from
combinations of the rhythmic powers. However, the downside
of this approach is the required intensive user training.

In recent years, other forms of 2-D BCI were also reported
that adopted a discrete control paradigm using the steady-state
visual evoked potential (SSVEP) [17]–[19]. Specifically, a few
visual stimuli sources were placed around the display, and EEG
was classified to determine if the SSVEP signal was registered
by a visual stimulus. A positive detection would mean that the
user was looking at that particular stimulus’s position; thus,
the system would move the cursor toward it. Faller et al. pro-
posed a configurable application framework seamlessly inte-
grate SSVEP stimuli within a desktop-based virtual environ-
ment [20]. An avatar in virtual environment was successfully
driven to perform several complex tasks such as navigation in
slalom scenario and apartment scenario. SSVEPs offer excel-
lent information transfer rates within BCI systems while requir-
ing only minimal training [20]. One common characteristic for
SSVEP-based 2-D control is that for each update of the position,
the cursor takes only one of a few fixed directions, e.g., turn 45◦
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Fig. 1. Illustration example for comparison between discrete direction control,
e.g., by SSVEP-based BCIs and arbitrary direction control, where the angle ϕ
is time-varying. See the Section I for explanation.

left, turn 45◦ right, or walk straight ahead in [20], and the speed
of the cursor is a constant. This, however, leads to unsmooth,
zigzag like moves of the cursor. Similarly, there also existed
several studies in which the P300 potential was used for 2-D
control [18], [24].

Real-word applications often require 2-D moves of a cursor,
etc. between arbitrary positions. A typical example is the com-
puter mouse in which the initial position of the mouse and the
positions of the targets are generally random in the screen. To
carry out the movement, the route taken by the cursor should be
smooth rather than zigzag. This requires that the cursor can take
an arbitrary direction and a flexible step size in each update of
position. We would like to illustrate an example in Fig. 1. The
left subplot shows a case of discrete control by, e.g., a SSVEP-
based system. The cursor (circle) is allowed to move in one of
the three given directions “a,” “b,” and “c” at this time. Since
the target (square) diverges from all the given directions, the
user must set a movement direction and later alter it during the
course of the movement. Furthermore, if the target is not located
in a zigzag-like route starting from the origin of coordinates in
this subplot, it will be difficult for the user to move the cursor
to hit the target. In contrast, the cursor in the right subplot can
move in arbitrary direction, resulting in more efficient 2-D con-
trol. This could be implemented through the combination of two
independent control signals, in which the length of a is adjusted
by the amplitude of the horizontal control signal.

Therefore, we propose a new paradigm for 2-D cursor control
by simultaneously detecting two brain signals: P300 and motor
imagery. We devise two uncued detection mechanisms for the
two brain signals, respectively, and design a special graphical
user interface (GUI) for 2-D cursor control. With this inter-
face, the user control the vertical movement by using a P300
paradigm. At the same time, the user also use a motor im-
agery paradigm to control the horizontal movement. The P300
paradigm allows to select one of the three states: moving up-
wards, moving downwards, or no vertical movement. The ve-
locity of vertical movement is fixed or zero. The motor imagery
paradigm translates motor imagery into a continuous value that
determine the direction and the velocity of the horizontal move-
ment. Through selecting the vertical movement state and ma-
nipulating the continuous horizontal speed with direction, users
will move the cursor along any direction in a self-paced manner.

A real-time bimodal BCI system based on this method is
implemented in which P300 is evoked by visual stimuli. Since

the neural mechanism of motor imagery differs largely from that
of P300, the two signals can be independently controlled by the
user. The independence between two control signals plays an
important role in 2-D cursor control as mentioned earlier. As
will be seen in this paper, the user can move the cursor from
random initial position to hit the target placed at another random
position based on this temporary independence.

To evaluate the proposed method, we conduct an online exper-
iment involving six subjects. After a short calibration session for
subject-specific P300 modeling and another for subject-specific
motor imagery modeling, the subjects undergo a few sessions
of feedback training using the GUI, and subsequently perform
cursor control tasks in test sessions. In particular, the feedback
training emphasizes on learning of motor imagery control. Pos-
itive results are obtained and analyzed that attest to the efficacy
of the proposed method.

It is interesting to note that the proposed system can be viewed
as a hybrid BCI. Hybrid BCIs have become an active research
topic in recent years [21]–[23]. Allison et al. [21], [22] demon-
strated that by combining multiple brain signals like motor im-
agery and SSVEP, the BCI can improve accuracy especially
for users with poor performance. While earlier studies were fo-
cused on cued (machine-paced) EEG-classification studies, this
particular paper pays attention to 2-D control.

The remainder of this paper is organized as follows. The
methodology including the GUI, the P300, and motor imagery
detection algorithms is presented in Section II. The experimental
results are presented in Section III. Further data analysis and
discussions are in Section IV. Section V finally concludes the
paper.

II. METHODOLOGY

A. System Paradigm

The system consists of two components: an EEG acquisition
device and a computer system. The EEG device from Com-
pumedics captures 32-channel electric potentials from the scalp
of the user wearing an EEG cap LT 37 referenced to the right
ear, digitized at a sampling rate of 250 Hz. The two components
are connected via a USB port and a parallel port, the former for
transmitting EEG data, while the latter for synchronization. In
our system, two channels horizontal electrooculograph (HEOG)
and vertical electrooculograph (VEOG) representing eye move-
ments are excluded for signal processing. The remaining 30
channels are used without further channel selection, which are
shown in Fig. 2.

The computer system receives the EEG data, detects P300
and motor imagery signals (see Section II-C), and translates the
detection outputs into a cursor’s movement in a special GUI
(see Section II-B). The user sits comfortably in an armed chair
in front of the computer display.

B. GUI and Control Mechanism

The GUI is illustrated in Fig. 3 in which the ball and the
square, respectively, represent a cursor and a target. In each trial,
the initial cursor and target randomly appear inside a rectangular
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Fig. 2. Names and distribution of electrodes.

Fig. 3. GUI for 2-D cursor control in which a cursor (circle), a target (square),
and eight flashing buttons (“up,” “down,” and “stop”) are included.

workspace. This means that the positions of the initial cursor and
the target as well as the distance between the two are random.

In our system, the GUI has a dimension of 1166 pixels ×721
pixels. The ratios of the size of the cursor, the size of the target,
and the size of workspace are fixed to be 0.00084:0.003:1. The
initial position of the cursor and the position of the target are
randomly generated from a uniform distribution.

Eight flashing buttons are located at the horizontal and vertical
edges of the screen, which would generate P300 potentials when
the user focus attention on one of them. They serve functions
for vertical movement control: we assign the three buttons at
the top to the “up” function, the three buttons at the bottom to
the “down” function, and the two buttons on both sides to the
“stop” function.

Therefore, the user controls the vertical movement of the
cursor by paying attention to one of the buttons, while ignoring
the other buttons. Since a single P300 potential is difficult to
detect due to low SNR, several repetitions of P300 are required
before a detection decision is made (see Section II-C Part A for
elaboration). In other words, the user needs to keep attention on
a particular button while the system flashes the buttons for a few
rounds, each round is a complete circle in which all the buttons
are flashed once in a random order.

If the user wants to move the cursor up, then he needs to focus
on one of the three “up” buttons. When the system detects his
P300 corresponding to this button, the cursor is moved upward.
To the contrary, if the user wants to move the cursor down, then
he needs to focus on one of the three “down” buttons such that

his P300 can be detected corresponding to this “down” button
and the cursor is moved downward. Finally, if he does not want
to move the cursor in vertical direction, then he can focus on
one of the two “stop” buttons.

The main objective for the arrangement of three “up” buttons
and three “down” buttons is for user’s convenient use. For ex-
ample, if the cursor is now in the right-hand side of the GUI,
then the user can choose the “up” or “down” button located in
the same side to control the vertical movement of the cursor.
Another consideration of this arrangement is to improve the
“oddball” effect using eight buttons instead of three buttons (1
“up” button, 1 “down” button, and 1 “stop” button).

The horizontal movement of the cursor is controlled by motor
imagery, similar to that in [11]. When the system detects a right-
/left-hand imagery, the cursor moves toward right (left) side.
Therefore, if the user wants to move the cursor toward right
side, he or she needs to imagine movement of the right hand,
and vice versa.

In this GUI, we use P300 and motor imagery for control-
ling the vertical movement and the horizontal movement of the
cursor, respectively. In this way, the direction of the horizon-
tal movement of the cursor (right or left) is consistent with the
user’s motor imagery (right hand or left hand). This design en-
sures that the user conveniently use the biofeedback during the
control. Thus, we do not take another choice in which P300 and
motor imagery are used for controlling the horizontal movement
and the vertical movement of the cursor, respectively.

A test trial for 2-D cursor control is described as follows. A
trial begins when a target and a cursor appear. At 100 ms later,
the eight buttons begin to flash alternately in a random order.
Each button is intensified for 100 ms, while the time interval
between two consecutive button flashes is 120 ms. From the
beginning of a trial, the subject attempts to move the cursor to
hit the target. The trial ends when the cursor hits the target or
when the 60-s timeout limit occurs. The interval between two
consecutive trials is 2 s.

The system simultaneously performs detection of P300 and
motor imagery, and uses the detection outputs to control the
cursor’s movement in each of the two dimensions in the 2-D
workspace. The cursor’s position is updated every 200 ms. It is
noteworthy that the user is able to control the cursor’s movement
at any time at will, without having to keep pace with machine-
generated cues like in synchronous systems (here, “cue” means
a symbol, e.g., “+” appearing in the GUI that represents the
beginning of a new detection of P300 or motor imagery). These
mechanisms similar to asynchronous ones are elaborated in
Section II-C. Briefly speaking, each detection mechanism of
P300 and motor imagery makes a decision from a sliding win-
dow of EEG ending at the current time point.

C. Models and Algorithms for 2-D Cursor Control

1) Control of Vertical Movement Based on P300 Potential:
The vertical movement of the cursor is determined by the output
of P300 potential detection. Let c(k) ∈ {1,−1, 0} represents the
output: 1 for “down,” −1 for “up,” and 0 for “stop” (applied
to vertical movement only). The vertical movement model is



2498 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 57, NO. 10, OCTOBER 2010

given by

y(k + 1) = y(k) + c(k)v0 (1)

where y(k) represents the vertical position at the kth update, at
a fixed interval of 200 ms and v0 is a positive speed constant.
We set v0 = 10 pixels initially, which is subject to adjustment
for maximization of each subject’s performance. Therefore, if
the output c(k) is 0, the cursor stops vertical movement; if the
output is 1 or −1, the cursor moves up or down at a speed of 10
pixels every 200 ms.

The output c(k) is generated by the P300 detection algorithm
described in the following.

Algorithm 1:
Step 1. Feature extraction based on the following Steps 1.1–

1.3.
Step 1.1. All 30 channel EEG signals are filtered in

the range of 0.1–20 Hz.
Step 1.2. Extract a segment of the EEG data of each

channel for every flash. Considering that
P300 generally occurs 300 ms post stim-
ulus, we use the time window from 0 to
600 ms after a button flashes. Furthermore,
downsample the segment of EEG signals
by taking the first time point from each
piece of 6 consecutive ones. The obtained
data vector is denoted as Pai,j,q , where
i, j, and q represent the ith channel, the jth
button associated with this flash, and the
qth round, respectively. Pai,j,q will con-
tain a P300 waveform for part of channels,
if the user is paying attention to this but-
ton. Note that the counting of the round
number is restarted, if an output of the di-
rection of the cursor’s vertical movement
is produced.

Step 1.3. Construct a feature vector corresponding
to the jth button and the qth round by
concatenating the vectors Pai,j,q from
all channels, i.e., Fej,q = [Pa1,j,q , . . . ,
Pa30,j,q ].

Step 2. Train a support vector machine (SVM) classifier.
During the training data-acquisition phase, the sub-
ject is asked to focus attention on six of the eight
buttons one by one (three “up” buttons and three
“down” buttons). In order to shorten the acquisition
time of training data, the subject is not instructed
to pay attention to the two “stop” buttons. The pe-
riod of attention for each button lasts 64 consecutive
rounds, where each round contains eight flashes from
the eight buttons, respectively. Using the feature vec-
tors of the training dataset {Fej,q , j = 1, . . . , 8; q =
1, . . . , 64} and their corresponding labels, we train
an SVM classifier. If the subject is focusing on the
jth button in the qth round, then the label of Fej,q is
1, while the labels of Feu,q (u &= j) is −1.

Step 3. P300 detection with SVM scores based on the fol-
lowing Steps 3.1 and 3.2.
Step 3.1. For the lth round (counted from the pre-

vious output of a direction of the cur-
sor’s vertical movement), we extract fea-
ture vectors Fej,l (j = 1, . . . , 8). Apply-
ing the trained SVM to these feature vec-
tors, we obtain eight scores denoted as sj,l

(the values of the objective function of the
SVM).

Step 3.2. P300 detection requires discriminating
between non-P300 rounds and P300
rounds, the former means that the user
is in the so-called idle state or does not
focus on a button. This may occur when
the user does not intend to alter the ver-
tical movement. The latter means that the
user is paying attention to a button. For
instance, when the user tries to alter the
vertical movement, he needs to focus on
a corresponding button. The detection of
P300 is accomplished in this system by a
threshold mechanism as below.

Calculate the sum of SVM scores for
each button obtained from l accumulated
rounds, then find the maximum and the
second maximum of the eight summed
scores. That is,

ssj = sj,1 + · · · + sj,l , j = 1, . . . , 8 (2)

ssj0 = max{ss1 , . . . , ss8}

ssj1 = max{{ss1 , . . . , ss8}\{ssj0 }} (3)

where the j1 th button is obviously differ-
ent from the j0 th button.

We now define a threshold condition by
comparing the aforementioned maximum
and the second maximum

1 − ssj1

ssj0

> θ0 (4)

where the threshold θ0 is a predefined pos-
itive constant, and is empirically set at 0.3
that works favorably in our online experi-
ment to be introduced later.

If the aforementioned threshold condi-
tion is satisfied, then the system makes
a decision that P300 potential occurs at
the j0 th button. Otherwise, the algorithm
continues P300 detection of next round.

In our system, we set 5 ≤ l ≤ 15. The
first inequality implies that the detection
of P300 for each round is based on at least
five rounds of flashes (this round and the
4 previous rounds). This lower bound of
l ensures sufficient time for classifying a
P300 to some degree. The upper bound
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of l implies that, if the aforementioned
threshold condition is not satisfied in 15
rounds, the algorithm will make a decision
that P300 occurs at the j0 th button with the
maximum score ssj0 .

Step 4. If P300 is detected for the lth round, which occurs at
the j0 button, then the system outputs a direction of
the cursor’s vertical movement corresponding to this
button. Specifically, if the j0 button is one of the three
“up” buttons, set c(k) = −1 (the cursor will go up);
if the j0 button is one of the three “down” buttons, set
c(k) = 1 (the cursor will go down); if the j0 button
is one of the two “stop” buttons, set c(k) = 0 (the
cursor will have no vertical movement). See the GUI
in Fig. 3.

If P300 is not detected for the lth round, i.e., the
threshold condition (4) is not satisfied, then the algo-
rithm does not reach a decision and the system does
not change the direction of the vertical movement of
the cursor, i.e., c(k) = c(k − 1).

Remark 1:
1) In Step 3.2 of Algorithm 1, if we only use the first max-

imum of SVM scores to determine the button eliciting a
P300, then the processing of P300 detection contained in
Steps 1, 2, and 3 is similar as in a standard P300-based
BCI, e.g., a P300-based BCI speller [25].

2) In (4), we set a threshold for P300 detection by compar-
ing the top two maximum scores. This is to emphasize
the difference between the P300 and the background. A
large difference indicates a higher probability of P300 oc-
currence. Extended visual attention to a flashing stimulus
will increase the difference measure, making a positive
detection more likely to happen.

3) If the threshold in (4) is set to zero, then the P300
detection only depends on the first maximum (Note:
1 − (ssj1 /ssj0 ) is always bigger than zero). In this case,
Algorithm 1 reaches a decision in each round of flashes
and outputs a direction of the vertical movement of the
cursor. Furthermore, the user needs to continuously focus
on his/her desired button. Otherwise, Algorithm 1 may
output a wrong direction. This is, however, quite incon-
venient for the user. On the other hand, the threshold in
(4) cannot be too large. Otherwise, P300 can hardly be
detected, making vertical speed control difficult for the
user.

4) Two cases may lead to the violation of threshold condition
(4) when the round number of flashes reaches the upper
bound 15. The first is that no P300 is elicited, and the
second is that two P300 potentials are elicited by two
neighboring buttons (e.g., two neighboring “up” buttons),
respectively. In these two cases, the difference between
the first maximum and the second maximum of SVM
scores defined in (3) may not be big enough for satisfying
threshold condition (4). We make the assumption that the
second case is not probable to happen in our system. This
is because compared to a typical P300-based BCI, e.g.,
in [26], the buttons in our GUI are much further apart

Fig. 4. Paradigm for training data acquisition of motor imagery (one trial).
In the initial state (0–2.25 s), the screen remains blank. From 2.25 to 4 s, a
cross appears in the screen to attract subject’s visual fixation. From 4 to 8 s,
a left-/right-arrow cue is shown and subject is instructed to imagine their left-
/right-hand movement according to the cue.

and the upper bound 15 of round number of flashes in our
GUI is sufficiently large. Since the user focuses on only
one button, it is unusual for its neighboring button(s) to
elicit a P300. Thus, more rounds of flashes lead to bigger
difference in scores between the desired button and its
neighboring button(s).

In Algorithm 1, linear SVM is used as a classifier for de-
tecting P300 as in [27]–[29]. The readers can also choose other
classifiers such as Fisher’s linear discriminant (FLD) [30], [31]
and stepwise linear discriminant analysis (SWLDA) [32], [33].
In [31], the authors compared five methods commonly used
for P300 classification, which were Person’s correlation, FLD,
SWLDA, linear SVM, and Gaussian kernel SVM. It follows
from their statistical test results based on an experimental dataset
that FLD, SWLDA, and linear SVM may provide better classi-
fication performance than the other two.

2) Control of the Horizontal Movement Through Motor Im-
agery: In our system, the horizontal movement of the cursor
is controlled by the user’s motor imagery using the following
model:

x(k + 1) = x(k) +
a

3
(f(k − 2) + f(k − 1) + f(k)) + b (5)

where k represents the kth update of the cursor position, x(k)
is the horizontal coordinate of the cursor, f(k) is the continu-
ous output (score) of the SVM classifier, and a and b are two
constants. f(k), a and b will be described in details in the fol-
lowing. We introduce delays into the control model (5) to make
the cursor move smoothly.

The score f(k) is generated by an SVM classifier at ev-
ery 200 ms. In specific, the system extracts the EEG block of
1200 ms ending at the current time point, and performs the
following pre-processing steps before SVM: 1) spatial filtering
with common average reference [8]; 2) bandpass filtering in spe-
cific mu rhythm band (8–13 Hz); and 3) spatial filtering based
on a common spatial pattern (CSP) transformation matrix W .

The parameters in the first two preprocessing steps are fixed,
while the CSP matrix W in the last step is learned in a subject-
specific manner to enhance the separability between left/right
motor imagery EEG data. In particular, the procedure of learning
of W is as follows. First, a training dataset is collected for
the user, where 60 trials of guided motor imagery tasks are
performed (see Fig. 4 for an illustration of the paradigm of a
trial). Second, the CSP matrix is constructed by the well-known
joint diagonalization method [8].
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The CSP-based spatial filtering essentially projects EEG data
samples onto spatial components that carry discriminative spa-
tial patterns for each motor imagery class. In this study, we select
the top three components and the bottom three components from
W , which best separate the two motor imagery classes. Further-
more, their logarithm variances are calculated and a 6-D feature
vector is constructed.

The feature vector is fed into an SVM classifier that is trained
using the training data to separate the two classes of feature
vectors. Instead of using the hard output, we use the continuous
output (score) of the SVM: f(k).

In motor imagery control, the cursor shall not move, if the user
is in idle state. This is accomplished here by the introduction of
the two parameters: a and b [see (5)]. Specifically, we introduce
the following procedure for the calibration of the two parameters
for each subject.

An EEG dataset is first collected when the user is in idle state
of motor imagery. This dataset contains N time segments of
200 ms (N = 600 in this paper), i.e., lasts 2 min. According
to the aforementioned method, we calculate the SVM scores
f(1), . . . , f(N).

Set

m =
1
N

N∑

k=1

f(k)

mi = min{f(k), k = 1, . . . , N}

ma = max{f(k), k = 1, . . . , N}. (6)

Then we calculate a and b as

a =
h

max{ma − m,m − mi} b = −am. (7)

In the aforementioned calibration, the parameter h in (7) is
used for adjusting the velocity of the cursor’s horizontal move-
ment. It may have different settings for different subjects. In our
experiments, h is fixed to 8 for all the subjects.

Considering the model (5) and the aforementioned parame-
ter setting of a and b, we can find that the average horizontal
movement during the idle state 1

N

∑N −1
k=1 (x(k + 1) − x(k)) is

close to zero. Thus, our calibration method has the advantage
that the cursor almost does not change its horizontal position, if
the subject is in the idle state of motor imagery. This has been
demonstrated in our online experiments.

Remark 2: In the aforementioned algorithm, we choose CSP
spatial filtering and linear SVM for feature extraction and classi-
fication, respectively. These two methods are commonly used in
motor imagery based BCIs and proved to be effective [34]–[37].
CSP method can be explained under the framework of Rayleigh
coefficient maximization like FLD [38]. Different classifiers
could be employed in this system; however since that is not
the focus of this study, the linear SVM was employed for
classification.

Combining the aforementioned algorithms for vertical move-
ment control and horizontal movement control, we obtain our
algorithm for 2-D cursor control of which the diagram is shown
in Fig. 5. It follows from Fig. 5 that for the kth movement
of the cursor, the horizontal coordinate x(k), and the vertical

Fig. 5. Diagram of the algorithm for 2-D cursor control.

coordinate y(k) are determined by motor imagery and P300 po-
tential, respectively. Furthermore, the horizontal movement con-
trol based on motor imagery and the vertical movement control
based on P300 are performed simultaneously in our algorithm
as well as in our online BCI system. As will be shown in our
data analysis, the two control signals are nearly independent.

III. ONLINE EXPERIMENTAL RESULTS

Six subjects, five males and one female aged from 22 to 30,
attended the online experiment. Two of them had limited prior
experience in the 2-D-cursor control system during the system’s
development. The other four subjects were naı̈ve users.

Before a subject controlled the cursor, three datasets were
collected for subject-specific system calibration. The three sets
were used in training P300 control model, training the motor
imagery control model, and calibration. Prior parameters of
the system were set as described in Section II. After system
calibration, the user started to perform 2-D cursor-control tasks.

The following control strategy was explained to the subjects.
To alter the vertical movement of the cursor, the user needs to
continuously focus on a corresponding button until the cursor
moves in his/her desired vertical direction. At the same time, the
user may perform motor imagery to control the horizontal move-
ment. This procedure can be seen at the beginning of all trials of
supplementary experiment 2 in Appendix 1. When the vertical
movement is set correctly, he may shift main attention to motor
imagery; however, it is not advisable to shift eyesight away from
the desired button to avoid false positives of P300 detection for
vertical movement control. No other specific instruction about
the route of movement was given to the subjects.

The training time for effectively using the system for the four
naı̈ve users ranged from two to eight independent sessions, of
which each training session lasted about 2 h including prepara-
tion. Specifically, two of them were trained for two sessions, the
other two were trained for five and eight sessions, respectively.
All the training sessions for a subject were arranged in several
consecutive weeks. Our criteria for terminating the training for
a new user was that he/she can achieve the hit rate of about 80%.
Note that each trial would automatically end, if the user could
not move the cursor to hit the target in 60 s. According to our
experience, the most difficult training task for a naı̈ve user is
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TABLE I
RESULTS IN EXPERIMENT 1

in controlling the horizontal movement of the cursor by motor
imageries. It is relatively easy to learn to combine the control
based on P300 and the control based on motor imageries.

Table I shows the experimental results including the numbers
of trials, accuracy rates for hitting the target, and the average
time of a successful trial for the six subjects. Note that for each
subject, all the trials were performed in a single session.

From Table I, we can find out that the accuracy rates of all the
six subjects are satisfactory. However, the control time of each
trial was not short (about 28 s in average). There are two main
reasons.

1) The relative small size of the cursor and the target. For
instance, the ratio of the target size and the workspace
size is just 0.3%. It is more difficult for the user to move
the cursor to hit the target for small sizes of cursor and
target than for large sizes of cursor and target. Therefore,
the subjects need a long time to control the cursor to hit
the target.

2) Triggering and effectively detecting P300 are time con-
suming to some degree. Our future researches are to re-
duce the time for detecting P300 and improve the speed
of our system.

IV. DATA ANALYSIS AND DISCUSSIONS

As described in the earlier section, we use P300 potential
and mu rhythm as two control signals in our 2-D cursor-control
system. For efficient 2-D control, the two control signals need to
be as independent as possible. In the following, we first analyze
the data collected from our online experiment and assess the
independence between the two control signals by correlation
method similarly as in [16].

In a trial of 2-D cursor control, there exist horizontal and
vertical control variables with values f(k), c(k) (see algorithms
in Section II), which are used for the kth update of the position
of the cursor. Here, f(k) is an SVM score from motor imagery,
while c(k) with value of 1, −1, or 0 is determined by the button
(“down,” “up,” or “stop”) at which P300 occurs. Furthermore,
the button at which P300 occurs is determined by ssj0 (k), the
maximum of 8 SVM scores corresponding to the eight buttons,
respectively (see Algorithm 1 in Section II). Since ssj0 (k) is
generally positive, we let c(k)ssj0 (k) to be a new vertical control
variable with signs and amplitude.

For each trial, we then define two position variables repre-
senting the relative position of the cursor and the target

x̄(k) = xt − xc, ȳ(k) = yt − yc (8)

TABLE II
CORRELATION COEFFICIENTS BETWEEN A CONTROL VARIABLE

(MU OR P300) AND A POSITION VARIABLE (x̄ OR ȳ),
AND BETWEEN THE TWO CONTROL VARIABLES

where xt and xc are the horizontal coordinates of the target and
the cursor (at its initial position), respectively, and yt and yc are
the vertical coordinates of the target and the cursor (at its initial
position), respectively.

We calculate the correlation coefficients for each pair of con-
trol variable (f(k) or c(k)ssj0 (k)) and position variable (x̄(k)
or ȳ(k)), and the correlation coefficient for the two control vari-
ables. These correlation coefficients shown in Table II are used
to assess the independence between two control signals.

From Table II, we can see that for each subject, each control
variable correlates strongly with its own dimension of target
cursor position and does not correlate with the other variables’
dimension and also does not correlate with the other variable.
Hence, such results support the independence of the horizontal
and vertical control variables.

Here, we would like to compare this system with the one
in [16]. In [16], initial sessions were designed for all users. In
these initial sessions, the transition from 1-D to 2-D control was
accomplished by gradually increasing the magnitude of move-
ment in the second dimension and/or by alternating between 1-D
runs in the vertical and horizontal dimensions, and then switch-
ing to 2-D runs. In the present study, such special initial sessions
are not necessary for training new users. Our experimental re-
sults indicate that a subject can use the system smoothly, as long
as he or she is able to generate distinguishable P300 EEG and
separable motor imagery EEG. In other words, if a user can
perform P300-based BCI control and motor imagery-based BCI
control separately, then in principle, he or she can use our 2-D
cursor-control system through a simple training for combining
mu/beta rhythm and P300 potential. Therefore, our system can
be relatively convenient for naı̈ve users.

Next, we present our data analysis results to show that the
subjects truly used P300 and motor imagery in the 2-D cursor
control.

We plot the topographies of average weights of SVM clas-
sifier used in P300 detection and the event-related potential
(ERP) curves. These average weights are calculated as follows:
from Algorithm 1, a feature vector associated with a button
flash is constructed by concatenating 30 subvectors from all 30
channels, respectively. Through training, an SVM classifier, a
weight vector is obtained for P300 detection. The components
of this weight vector can also be partitioned into 30 subsets cor-
responding to the aforementioned 30 subvectors, respectively.
The average weight corresponding to a channel is calculated by
averaging the absolute values of all SVM weights of the sub-
set related to this channel. For each of Subjects A and B, the
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Fig. 6. Topographies of average weights of the SVM used for P300 detection
and the ERP curves calculated from raw EEG signals for two subjects. Left: for
each subject, average weights of the SVM are presented as scalp distribution.
Right: for each subject, two green P300 ERP curves correspond to an “up”
button (button 2) and a “down” button (button 7), respectively. No significant
P300 waveform appears on the other buttons.

average weights of SVM classifier used in P300 detection are
displayed as a scalp map on the left of Fig. 6. It follows from
these two scalp maps that our P300 detection is mainly based on
those channels located in the occipital and parietal areas rather
than the frontal area, an area considered to be related to EOG.
Furthermore, for Subjects A and B, we choose an “up” button
and a “down” button separately, which the users pay attention to
during real-time control. For the “up”/“down” button, an ERP
curve is obtained by averaging 15 epochs of raw EEG signal
from channels “Pz” and “CPz” for subjects A and B, respec-
tively (see Fig. 2). Each epoch is the time frame from 100 to
600 ms after onset of stimulus. Similar processing is performed
for other buttons. The results are shown in the four subplots in
the right of Fig. 6 from which we can see P300 potentials elicited
by the two chosen buttons and no P300 potentials elicited by
other buttons.

We also plot the topographies of CSP filters and the power
spectra of two channels of raw EEG signals calculated based on
the training dataset. For subjects A and B, two of the selected
CSP filters (the first and the last rows of W ) are displayed as
scalp maps on the left of Fig. 7, which are easily related to the
motor imageries of right and left hands, respectively. Plots on
the right of Fig. 7 show the spectra calculated from two channels
(C3 and FC4) of raw EEG signals. The discriminability of the
brain signals corresponding to the motor imageries of right and
left hands is demonstrated.

Two supplementary experiments are presented in Appendix
1. In the first experiment, we show the trajectories of the cursor
starting at the center of the GUI and moving to one of the four
fixed targets at the four corners, respectively. These trajectories

Fig. 7. Topographies of two selected CSP filters and the spectra of two chan-
nels of raw EEG signals for two subjects. Left: for each subject, two of the
selected CSP filters (the first and the last rows of W ) displayed as scalp maps.
Right: for each subject, the spectra of two channels of raw EEG signals with
blue curves referring to the motor imagery of right hand and red curves referring
to the motor imagery of left hand.

are quite smooth. In the second experiment, we show that P300
control and motor imagery control can work simultaneously.

The user may shift primary attention between the two tasks:
visual attention for P300, and motor imagery. Our empirical
study suggests that it is not necessary to use the switched con-
trol mechanism: when P300 control is performed, motor im-
agery control is completely ignored, and vice versa. Please see
supplementary experiment 2 in Appendix 1 for details.

V. CONCLUSION

In this paper, we have presented a new BCI and its implemen-
tation for 2-D cursor-control by combining the P300 potential
and motor imagery. Two almost independent signals have been
obtained for controlling two degrees of movements of a cursor
simultaneously. In particular, a motor imagery detection mech-
anism and a P300 potential detection mechanism were devised
and integrated with a specially designed GUI. A real-time im-
plementation of the approach was assessed through an online
experiment involving six subjects performing 2-D cursor con-
trol tasks. Using our system, the six subjects successfully carried
out 2-D cursor control with satisfactory accuracies (>80%). The
results attest to the efficacy of obtaining two almost indepen-
dent control signals by the proposed approach. Furthermore, it
was demonstrated in our online experiment that: 1) a user can
use our 2-D BCI system, if he/she can perform motor imagery-
based BCI control and P300-based BCI control separately and
2) it allows cursor movement between arbitrary positions.

Hybrid BCIs should draw on existing principles of dual
task integration and strive to minimize destructive interference
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between the different tasks used to convey information [22].
In [22], it was shown that ERD activity was less apparent when
an SSVEP task was added. In our system, the two brain ac-
tivities, P300 and ERD, may also interfere with each other. To
alleviate the problem, we set a threshold in (4) in the P300 de-
tection algorithm (see Algorithm 1). With this threshold, the
user may not be required to pay attention all the time primarily
to the P300 stimulus associated with the desired vertical move-
ment. This effectively eases the user’s burden, and reduces the
interference problem.

Future work could explore combination of SSVEP and motor
imagery for 2-D cursor control. This combination was suggested
in [21] and [22].

APPENDIX

TWO SUPPLEMENTARY EXPERIMENTS

In this appendix, we present two supplementary experiments.
In the first experiment, we show the trajectories of the cursor
starting at the center of the GUI and moving to one of the four
fixed targets at four corners, respectively. While in the second
experiment, we show that P300 control and motor imagery con-
trol work simultaneously.

Supplementary experiment 1: In the GUI in Fig. 3, the initial
position of the cursor and the position of the target are random
for each trial. Thus, the trajectories of the cursor are different
for different trials. In order to show the average trajectory of the
cursor based on desired movements, we perform a supplemen-
tary experiment. In this supplementary experiment, the target
randomly appears at one of the four corners, while the starting
position of the cursor is fixed at the center of the GUI for each
trial.

Only Subject A attended this experiment, and 80 trials of
data were collected. The hit rate and the average control time
are 97.5% and 24.7 s (for successful trials), respectively. The
trajectories of single trials and the average trajectories for four
target positions are shown in Fig. 8, which are quite smooth.

Supplementary experiment 2: In this supplementary experi-
ment, we fix two targets, one at the middle of upper part, and
the other at the down-right corner, and fix the initial position of
the cursor at the middle left of the GUI as shown in Fig. 9. In
each trial, the subject needs to move the cursor to hit these two
targets sequentially without stop. There are two classes of trials
appearing in random order with the same probability. In the first
class of trials, the subject move the cursor to first hit the target
at the middle of upper part and then hit the target at down-right
corner, while in the second class, the subject move the cursor to
first hit the target at down right corner and then hit the target at
the middle of upper part.

Subject A attended this experiment, and 80 trials of data
were collected for two classes of trials (about 40 trials for each
class). To implement this task, the subject first moved the cursor
to the right by imagining right-hand movement, and focused
on the desired button simultaneously to elicit a P300. After
the cursor hits the first target, the subject focused on another
desired button to change the direction of the vertical movement.

Fig. 8. Results in the supplementary experiment 1. Left: trajectories of the
cursor obtained in 80 trials. Right: four average trajectories of the cursor for the
four target positions, respectively.

Fig. 9. Results in the supplementary experiment 2. First row: all trajectories
of the cursor (left) and the average trajectory of the cursor (right) for the first
class of trials. Second row: all trajectories of the cursor (left) and the average
trajectory of the cursor (right) for the second class of trials.

Simultaneously, using motor imagery, he moved the cursor to
the right for the first class or to the left for the second class of
trials.

The hit rate and the average control time are 98.75% and
49.1 s (for successful trials), respectively. The trajectories of
single trials and the average trajectories for two classes of trials
are shown in Fig. 9. From Fig. 9, we can see that for each
trial, the direction of vertical movement of the cursor is changed
while the cursor simultaneously moves to the right. Specifically,
we see only horizontal movement of the cursor at the beginning
of each trial, which implies that there is only motor imagery
control. After a while, there appears vertical movement for the
cursor. This means that P300 control starts to work. After the
cursor hit the first target, the cursor changes its direction of
vertical movement to hit the second target. In each trial of cursor
movement, the direction change in the vertical movement along
with the horizontal movement toward the target implies that
the cursor can be simultaneously controlled by the two control
signals of P300 and motor imagery.
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