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Regularizing Common Spatial Patterns to Improve
BCII Designs: Unified Theory and New Algorithms
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Abstract—One of the most popular feature extraction algorithms
for brain—computer interfaces (BCI) is common spatial patterns
(CSPs). Despite its known efficiency and widespread use, CSP is
also known to be very sensitive to noise and prone to overfitting.
To address this issue, it has been recently proposed to regularize
CSP. In this paper, we present a simple and unifying theoretical
framework to design such a regularized CSP (RCSP). We then
present a review of existing RCSP algorithms and describe how
to cast them in this framework. We also propose four new RCSP
algorithms. Finally, we compare the performances of 11 different
RCSP (including the four new ones and the original CSP), on elec-
troencephalography data from 17 subjects, from BCI competition
datasets. Results showed that the best RCSP methods can out-
perform CSP by nearly 10% in median classification accuracy and
lead to more neurophysiologically relevant spatial filters. They also
enable us to perform efficient subject-to-subject transfer. Overall,
the best RCSP algorithms were CSP with Tikhonov regulariza-
tion and weighted Tikhonov regularization, both proposed in this

paper.
Index Terms—Brain—computer interfaces (BCI), common spa-

tial patterns (CSP), electroencephalography (EEG), regularization,
subject-to-subject transfer.

1. INTRODUCTION

RAIN-COMPUTER interfaces (BCIs) are communica-
B tion systems, which enable users to send commands to
computers by using brain activity only; this activity being gen-
erally measured by ElectroEncephaloGraphy (EEG) [1]. BCI
are generally designed according to a pattern recognition ap-
proach, i.e., by extracting features from EEG signals, and by
using a classifier to identify the user’s mental state from such
features [1], [2]. The common spatial patterns (CSPs) algorithm
is a feature extraction method that can learn spatial filters maxi-
mizing the discriminability of two classes [3], [4]. CSP has been
proven to be one of the most popular and efficient algorithms
for BCI design, notably during BCI competitions [5], [6].

Despite its popularity and efficiency, CSP is also known to
be highly sensitive to noise and to severely overfit with small
training sets [7], [8]. To address these drawbacks, a recent
idea has been to add prior information into the CSP learning
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process, under the form of regularization terms [9]-[12] (see
Section IV-A for a review). These regularized CSP (RCSP)
have all been shown to outperform classical CSP. However,
they are all expressed with different formulations and therefore
lack a unifying regularization framework. Moreover, they were
only compared to standard CSP, and typically with four or five
subjects only [9]-[11], which makes it difficult to assess their
relative performances. Finally, we believe that a variety of other
priors could be incorporated into CSP.

Therefore, in this paper, we present a simple theoretical
framework that could unify RCSP algorithms. We present ex-
isting RCSP within this unified framework as well as four new
RCSP algorithms, based on new priors. It should be mentioned
that preliminary studies of two of these new algorithms have
been presented in conference papers [12], [13]. Finally, we
compare these various algorithms on EEG data from 17 sub-
jects, from publicly available BCI competition datasets.

This paper is organized as follows: Section II describes the
CSP algorithm while Section III presents the theoretical frame-
work to regularize it. Section IV expresses existing RCSP
within this framework and presents four new RCSP. Finally,
Sections V and VI describe the evaluations performed and their
results and conclude the paper, respectively.

II. CSP ALGORITHM

The CSP aims at learning spatial filters that maximize the
variance of bandpass-filtered EEG signals from one class while
minimizing their variance from the other class [3], [4]. As the
variance of EEG signals filtered in a given frequency band cor-
responds to the signal power in this band, CSP aims at achiev-
ing optimal discrimination for BCI based on band power fea-
tures [3]. Formally, CSP uses the spatial filters w that extremize
the following function:

wTXlTXlw
UJTX2TX2’LU
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where T" denotes transpose, X; is the data matrix for class ¢ (with
the training samples as rows and the channels as columns), and
C; is the spatial covariance matrix from class 7, assuming a
zero mean for EEG signals. This last assumption is generally
met when EEG signals are bandpass filtered. This optimiza-
tion problem can be solved (though this is not the only way)
by first observing that the function J(w) remains unchanged if
the filter w is rescaled. Indeed J(kw) = J(w), with k a real
constant, which means the rescaling of w is arbitrary. As such,
extremizing J(w) is equivalent to extremizing w? Cjw subject
to the constraint w’ Cyw = 1 as it is always possible to find
a rescaling of w such that w” Cyw = 1. Using the Lagrange
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multiplier method, this constrained optimization problem
amounts to extremizing the following function:

Lk w) = w! Crw — A(w” Cyw — 1). )

The filters w extremizing L are such that the derivative of L
with respect to w equals 0:

a—L =20 Cy — 22T Cy =0
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We obtain a standard eigenvalue problem. The spatial filters
extremizing (1) are then the eigenvectors of M = C Ly, which
correspond to its largest and lowest eigenvalues. When using
CSP, the extracted features are the logarithm of the EEG signal
variance after projection onto the filters w.

III. REGULARIZED CSP: THEORY

As mentioned earlier, to overcome the sensitivity of CSP to
noise and overfitting, one should regularize it. Adding prior in-
formation to CSP, and thus regularizing it, can be done at two
levels. First, it can be done at the covariance matrix estima-
tion level. Indeed, CSP relying on covariance matrix estimates,
such estimates can suffer from noise or small training sets, and
thus benefit from regularization. Another approach consists in
regularizing CSP at the level of the objective function (1), by
imposing priors on the spatial filters to obtain. The remaining
of this section presents these two approaches.

A. Regularizing the Covariance Matrix Estimates

The CSP requires to estimate the spatial covariance matrix
for each class. However, if the EEG training set is noisy and/or
small, these covariance matrices may be poor or nonrepresen-
tative estimates of the mental states involved and thus lead to
poor spatial filters. Therefore, it is appropriate to add prior infor-
mation to these estimates by using regularization terms. Based
on [10], it can be performed as follows:

Co=(1-7)C.+7I 3)
with éc = (1 - B)SCCC + ﬁGc “4)

where C, is the initial spatial covariance matrix for class ¢, C. is
the regularized estimate, [ is the identity matrix, s. is a constant
scaling parameter (a scalar), v and [ are the two user-defined
regularization parameters (v, 5 € [0, 1]), and G, is a “generic”
covariance matrix (see below). Two regularization terms are in-
volved here. The first one, associated to -, shrinks the initial
covariance matrix estimate toward the identity matrix, to coun-
teract a possible estimation bias due to a small training set.
The second term, associated to /3, shrinks the initial covariance
matrix estimate toward a generic covariance matrix, to obtain
a more stable estimate. This generic matrix represents a given
prior on how the covariance matrix for the mental state consid-
ered should be. This matrix is typically built by using signals
from several subjects whose EEG data have been recorded pre-
viously. This has been shown to be an effective way to perform

subject-to-subject transfer [10], [11], [13]. However, it should
be mentioned that GG, could also be defined based on neuro-
physiological priors only.

Learning spatial filters with this method simply consists in
replacing the covariance matrices C; and C used in CSP by
their regularized estimates Cy and C,. Many different RCSP
algorithms can thus be designed, depending on whether one or
both regularization terms are used, and more importantly, on
how the generic covariance matrix G. is built.

B. Regularizing the CSP Objective Function

Another approach to obtain RCSP algorithms consists in reg-
ularizing the CSP objective function itself (1). More precisely,
such a method consists in adding a regularization term to the
CSP objective function in order to penalize solutions (i.e., re-
sulting spatial filters) that do not satisfy a given prior. Formally,
the objective function becomes

wT Chw

wl Cow + aP(w)

Jp, (w) = )
where P(w) is a penalty function, measuring how much the
spatial filter w satisfies a given prior. The more w satisfies it, the
lower P(w). Hence, to maximize Jp, (w), we must minimize
P(w), thus ensuring spatial filters satisfying the prior. « is a
user-defined regularization parameter (o > 0, the higher «, the
more satisfied the prior). With this regularization, we expect
that enforcing specific solutions, due to priors, will guide the
optimization process toward good spatial filters, especially with
limited or noisy training data.

In this paper, we focus on quadratic penalties: P(w) =
|w||% = w? Kw, where matrix K encodes the prior. Interest-
ingly enough, RCSP with nonquadratic penalties have been pro-
posed [14], [15]. They used an /; norm penalty to select a sparse
set of channels. However, these studies showed that sparse CSP
generally gave lower performances than CSP (with all chan-
nels), although they require much less channels, hence perform-
ing efficient channel reduction. As the focus of this paper is
not channel reduction but performance enhancement, we only
consider quadratic penalties here. Moreover, quadratic penal-
ties lead to a close form solution for optimization (see below),
which is more convenient and computationally efficient. With a
quadratic penalty term, (5) becomes

wT Chw
w! Cow + aw” Kw
B w! Chw
wl(Cy + aK)w’
The corresponding Lagrangian is

Lp, (A, w) = w' Ciw — A(w” (Cy + aK)w —1).  (6)

Jp, (w) =

By following the same approach as previously (see Section II),
we obtain the following eigenvalue problem:

(Cy + oK) ' Crw = Aw. (7

Thus, the filters w maximizing Jp, (w) are the eigenvec-
tors corresponding to the largest eigenvalues of M; = (Cy +
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TABLE I
DIFFERENCES IN OBJECTIVE FUNCTION AND ALGORITHM OPTIMIZATION
BETWEEN A STANDARD CSP AND A RCSP

CSP RCSP
T T
J(w) _ chlw JP{I . (w) _ ~w C{1,2}w
wT Cow ’ wTCg 13w + aP(w)
Objective with
function P(w) = wl Kw
Ce=(1-7)Ce+AI
Cc = (1 — ﬁ)sccc + ﬁGc
eigenvectors eigenvectors corresponding
Solutions corresponding to the Ny largest
of the to the Ny largest eigenvalues of
optimization| and Ny lowest My = (C’g +aK )_1C~’1
problem eigenvalues and
OfM:C'2_lcl MQZ(él—l-aK)_lég

aK)~1Cy. With CSP, the eigenvectors corresponding to both
the largest and smallest eigenvalues of M (see Section II) are
used as the spatial filters, as they, respectively, maximize and
minimize (1) [4]. However, for RCSP, the eigenvectors corre-
sponding to the lowest eigenvalues of M| minimize (5), and as
such maximize the penalty term. Therefore, in order to obtain
the filters that maximize C'y while minimizing C, we also need
to maximize the following objective function:

wT Cyw

wl Chw + aP(w)

Jp, (w) = 8)
which is achieved by using the eigenvectors corresponding to
the largest eigenvalues of My = (O} + aK )~ C} as the filters
w. In other words, with RCSP, the spatial filters used are the
eigenvectors corresponding to the largest eigenvalues of M,
and to the largest eigenvalues of M,. With this approach, various
RCSP algorithms can be designed depending on the knowledge
encoded into matrix K.

C. Summary

We have presented two theoretical approaches to design
RCSP algorithms: one at the covariance matrix estimation level
and one at the objective function level. Naturally, these two ap-
proaches are not exclusive and can be combined within the same
framework. Table I summarizes this framework and highlights
the differences between CSP and RCSP. With this framework,
many different RCSP can be designed depending on 1) which of
the three regularization terms (associated to «, 3 and +) is (are)
used and on 2) how the matrices GG, and K are built. The fol-
lowing section presents several such variants, including existing
algorithms as well as four new ones.

IV. REGULARIZED CSP: ALGORITHMS
A. Existing RCSP algorithms

Four RCSP algorithms have been proposed so far: composite
CSP (CCSP), RCSP with generic learning, RCSP with diagonal
loading, and invariant CSP (iCSP). They are described shortly
within the presented framework.

1) Composite CSP: The CCSP algorithm, proposed by Kang
et al. [11], aims at performing subject-to-subject transfer by

regularizing the covariance matrices using other subjects’ data.
Expressed within the framework of this paper, CCSP uses only
the 3 hyperparameter (o« = v = 0) and defines the generic co-
variance matrices GG, according to covariance matrices of other
subjects. Two methods were proposed to build G..

With the first method, denoted here as CCSP1, (G, is built
as a weighted sum of the covariance matrices (corresponding
to the same mental state) of other subjects, by deemphasizing
covariance matrices estimated from fewer trials

N. Ne
G, = Z N, C! and s.= N,
ieq Tt e

©))

where € is a set of subjects whose data are available, C! is the
spatial covariance matrix for class ¢ and subject i, N! is the
number of EEG trials used to estimate C?, N, is the number of
EEG trials used to estimate C, (matrix for the target subject),
and NV, .. is the total number of EEG trials for class ¢ (from all
subjects in 2 together with the target subject).

With the second method, denoted as CCSP2, G, is still a
weighted sum of covariance matrices from other subjects, but
the weights are defined according to the Kullback-Leibler (KL)
divergence between subjects’ data

I 1
G.=S"2—— O with Z=S —F
¢ ;ZKL(Lt) e W ZKL(j,zt)

JEQ
where KL (i, t) is the KL-divergence between the target subject
t and subject ¢ and is defined as follows:

A | det(C.) iy
KL(i,t) = 5 (log (det(cg)) +tr(C. ' C) Ne) (11)

where det and tr are, respectively, the determinant and the trace
of a matrix, and N, is the number of electrodes used. With
CCSP2, the scaling constant s, is equal to 1.

2) Regularized CSP With Generic Learning: The RCSP ap-
proach with generic learning, proposed by Lu ef al. [10] and
denoted here as GLRCSP, is another approach, which aims at
regularizing the covariance matrix estimation using data from
other subjects. GLRCSP uses both the 3 and ~ regularization
terms, i.e., it aims at shrinking the covariance matrix toward
both the identity matrix and a generic covariance matrix G..
Similarly to CCSP, G, is here computed from the covariance
matrices of other subjects such that G. = s¢ >, C., where

1 .
S = Sa = and M is the number of
T T UM, 18y, My ¢
- c

trials used to compute the covariance matrix C'

3) Regularized CSP With Diagonal Loading: Another form
of covariance matrix regularization used in the BCI literature
is diagonal loading (DL), which consists in shrinking the co-
variance matrix toward the identity matrix. Thus, this approach
only uses the «y regularization parameter (3 = o = 0). Interest-
ingly enough, in this case, the value of « can be automatically
identified using Ledoit and Wolf’s method [16]. We denote this
RCSP based on automatic DL as DLCSPauto. In order to check
the efficiency of this automatic regularization for discrimina-
tion purposes, we will also investigate a classical selection of
~ using cross validation (CV). We denote the resulting algo-
rithm as DLCSPcv. When using Ledoit and Wolf’s method for

(10)
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automatic regularization, the value of ~ selected to regularize
C1 can be different than that selected to regularize C5. There-
fore, we also investigated CV to select a potentially different
regularization parameter for C; and Cy. We denote this method
as DLCSPcvdiff. To summarize, DLCSPauto automatically se-
lects two ~ regularization parameters (one for C; and one for
Cs); DLCSPcv selects a single v regularization parameter for
both C; and C5 using CV; finally, DLCSPcvdiff selects two ~
regularization parameters (one for C; and one for C) using CV.
It should be mentioned that, although covariance matrix regu-
larization based on DL has been used in the BCI literature (see,
e.g., [17]), to our best knowledge, it has not been used for CSP
regularization, but for regularization of other algorithms such as
linear discriminant analysis (LDA).

4) Invariant CSP: Invariant CSP, proposed by Blankertz
et al. [9], aims at regularizing the CSP objective function in
order to make filters invariant to a given noise source (it uses
8 =~ =0). To do so, the regularization matrix K is defined
as the covariance matrix of this noise source, e.g., as the co-
variance matrix of the changing level of occipital a-activity. It
should be mentioned that, to obtain this noise covariance matrix,
additional EEG measurements must be performed to acquire the
corresponding EEG signals and compute their covariance ma-
trix. Since such measurements are not available for the EEG
datasets analyzed here, iCSP will not be considered for eval-
uation in this paper. However, it still seems to be an efficient
approach to make CSP robust against known noise sources.

B. New RCSP Algorithms

In this section, we propose four new algorithms to regular-
ize CSP: a CSP regularized with selected subjects, a Tikhonov
RCSP, a weighted Tikhonov RCSP (WTRCSP), and a spatially
RCSP (SRCSP).

1) Regularized CSP With Selected Subjects: This first new
RCSP belongs to the same family as CCSP since it uses data
from other subjects to shrink the covariance matrix toward a
generic matrix G, (it uses § > 0 and o = v = 0). However,
contrary to CCSP or GLRCSP, the proposed algorithm does not
use the data from all available subjects but only from selected
subjects. Indeed, even if data from many subjects are available,
it may not be relevant to use all of them, due to potentially large
intersubject variabilities. Thus, we propose to build G, from
the covariance matrices of a subset of selected subjects. We
therefore denote this algorithm as RCSP with selected subjects
or SSRCSP. With SSRCSP, the generic covariance matrix is
defined as G. = ‘5,%79)‘ Dlies, (@) C!, where |A| is the number
of elements in set A and S; (2) is the subset of selected subjects
from €.

To select an appropriate subset of subjects S;(€2), we pro-
pose the subject selection algorithm described in Algorithm 1.
In this algorithm, the function accuracy = trainThen-
Test(trainingSet, testingSet) returns the accuracy obtained when
training an SSRCSP with 3 = 1 (i.e., using only data from other
subjects) on the dataset trainingSet and testing it on dataset fest-
ingSet, with an LDA as classifier. The function (best;, max ;)
= max; f(i) returns best;, the value of 7 for which f () reaches

Algorithm I: Subject selection algorithm for the SSRCSP (RCSP with
selected subjects) algorithm.

Input: D;: training EEG data from the target subject.
Input: Q@ = {D,},s € [0, NJ]: set of EEG data from the N,
other subjects available (D; 3 ).
Output: S;(Q2): a subset of relevant subjects whose data can be
used to classify the data D, of the target subject.
selectedy = {};
remainingo = £2;
accuracyo = 0; n = 1;
while n» < N, do
Step 1: (bestSubject,bestAccuracy) =
MALscremaining,, 1 trainThenTest(selectedn—1 +
{DS}: Dt);
selected,, = selectedn—1 + {DbestSubject |3
remaining, = remainingn—1 - {Doestsubject 1
accuracy, = bestAccuracy;
n=n+1,
Step 2: if n > 2 then
(bestSubject, best Accuracy) =
MATscselected, trainThenTest(selected, —
{D5}7 Dt);
if best Accuracy > accuracyn—1 then
selected,—1 = selected,, - {Dyestsubject };
remainingn—1 = remaining, + {DvestSubject 1
accuracyn—1 = best Accuracy;
n=n-—1;
go to Step 2;
else
go to Step 1;
end
end
end
(bestN, selectedAcc) = maxne(1, N,
S:(Q2) = selectedpesin;

ACCuracyn,

its maximum maxy ;). In short, this algorithm sequentially se-
lects the subject to add or to remove from the current subset
of subjects, in order to maximize the accuracy obtained when
training the BCI on the data from this subset of subjects and test-
ing it on the training data of the target subject. This algorithm
has the same structure as the sequential forward floating search
algorithm [18], used to select a relevant subset of features. This
ensures the convergence of our algorithm as well as the selection
of a good subset of additional subjects.

2) CSP With Tikhonov Regularization: The next new
algorithms we propose are based on the regularization of the
CSP objective function using quadratic penalties (with o > 0,
v= 0 =0, and s, = 1). The first one is a CSP with Tikhonov
regularization (TR) or TRCSP. TR is a classical form of regu-
larization, initially introduced for regression problems [19], and
which consists in penalizing solutions with large weights. The
penalty term is then P(w) = ||w|? = w’ w = w’ Iw. TRCSP
is then simply obtained by using K = [ in the proposed frame-
work (see Table I). Such regularization is expected to constrain
the solution to filters with a small norm, hence, mitigating the
influence of artifacts and outliers.

3) CSP With Weighted Tikhonov Regularization: With
TRCSP, high weights are penalized equally for each channel.
However, we know that some channels are more important
than others to classify a given mental state. Thus, it may be
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interesting to have different penalties for different channels. If
we believe that a channel is unlikely to have a large contribution
in the spatial filters, then we should give it a relatively large
penalty, in order to prevent CSP from assigning it a large con-
tribution (which can happen due to artifacts for instance). On
the other hand, if a channel is likely to be useful, we should
not prevent CSP from giving it high weights, as this channel is
likely to have a genuinely large contribution.

Formally, this leads to a penalty term of the form P(w) =
w? Dyw, where D, is a diagonal matrix such that D, =
diag(wg) and we (4) is the level of penalty assigned to channel
1. WTRCSP is then obtained by using K = D,,. These penalty
levels wg (¢) can be defined according to the literature, i.e., ac-
cording to which brain regions (and thus channels) are expected
to be useful. However, it may be difficult to select manually an
appropriate penalty value for each channel. In this paper, we
therefore use data from other subjects to obtain wg

2x N 1

1
2><Nf><|Q\ZZ

1€ f=1

wy

[l |

(12)

where w} is the fth spatial filter obtained using CSP (among
the eigenvectors corresponding to the N, largest and lowest
eigenvalues of M, see Table I) for the ith additional subject
available. In other words, the penalty level of a channel is set
to the inverse of the average absolute value of the normalized
weight of this channel in the CSP filters obtained from other
subjects (the less important the average channel weight, the
higher the penalty). By doing so, we expect that the degree of
usefulness of a given channel would be reflected by its weight
in the filters obtained with CSP from other subjects.

4) Spatially RCSP: The last algorithm we propose is a
SRCSP. The motivation behind this algorithm is that despite
being used to learn spatial filters, CSP completely ignores the
spatial location of EEG electrodes. SRCSP aims at making use
of this spatial information. More particularly, we would like to
obtain spatially smooth filters w, i.e., filters for which neighbor-
ing electrodes have relatively similar weights. Indeed, from a
neurophysiological point of view, neighboring neurons tend to
have similar functions, which supports the idea that neighbor-
ing electrodes should measure similar brain signals (if they are
close enough to each other). To ensure spatial smoothness of
the filters w, we use a Laplacian penalty term P(w) as in [20],
with the following regularization matrix K:

1l — v 12
K =Dg -G with G(i,j):exp(_HU%UJ”>

2 72

(13)
where v; is a vector with the 3-D coordinates of the 7th electrode,
Dy is a diagonal matrix such that D¢ (i,7) = 3, G(i, ), and
r is a hyperparameter defining the distance for which two elec-
trodes are considered close to each other. As w! (Dg — G)w =
> G0, 5)(wi —w;)? [21], the penalty term P(w) will be
large for nonsmooth filters, i.e., filters in which neighboring
electrodes have very different weights.

C. Hyperparameter Selection

All RCSP algorithms presented here (expect DLCSPauto)
have one or more regularization parameters whose value must
be defined by the user: «, 3, and ~y (see Table I). SRCSP has
also its own specific hyperparameter: » which defines the size of
the neighborhood considered for smoothing. In [10] and [11],
the selection of the regularization parameters for GLRCSP and
CCSP was not addressed, and the authors presented the results
for several values of the hyperparameters. In this paper, we used
CV to select these values. More precisely, we used as optimal
hyperparameter values, those that maximized the tenfold CV
accuracy on the training set by using LDA [2] as classifier.
We selected values among the set [0,0.1,0.2,...,0.9] for the
parameters (3 and ~y, among the set [1071°,107%,...,107!] for
«, and among [0.01,0.05,0.1,0.5,0.8,1.0, 1.2, 1.5] for .

D. The Best of Two Worlds?

So far, all the algorithms presented use a single form of regu-
larization: either they regularize the covariance matrices or the
objective function, but not both. However, it is easy to imagine
an algorithm combining these two approaches. We evaluated
some such algorithms, e.g., a SRCSP with DL or a TRCSP
with generic learning, among others. Unfortunately, none of
them reached performances as high as that of the corresponding
RCSP with a single form of regularization (results not reported
here due to space limitations). Thus, it seems that RCSP with a
single form of regularization are the simplest and most efficient
algorithms.

V. EVALUATION
A. EEG Datasets Used for Evaluation

In order to assess and compare the RCSP algorithms presented
here, we used EEG data from 17 subjects, from three publicly
available datasets of BCI competitions. These three datasets
contain motor imagery (MI) EEG signals, i.e., EEG signals
recorded while subjects imagine limb movements (e.g., hand or
foot movements) [1]. They are described shortly.

1) Data Set IVa, BCI Competition III: Data-set IVa [22],
from BCI competition III [6], contains EEG signals from five
subjects, who performed right hand and foot MI. EEG were
recorded using 118 electrodes. A training set and a testing set
were available for each subject. Their size was different for
each subject. More precisely, 280 trials were available for each
subject, among which 168, 224, 84, 56, and 28 composed the
training set for subject Al, A2, A3, A4, and AS5, respectively,
the remaining trials composing their test set.

2) Data Set Illa, BCI Competition III: Data set Ila [23],
from BCI competition II1 [6], comprises EEG signals from three
subjects who performed left hand, right hand, foot, and tongue
MI. EEG signals were recorded using 60 electrodes. For the
purpose of this study, only EEG signals corresponding to left
and right hand MI were used. A training and a testing set were
available for each subject. Both sets contain 45 trials per class
for subject B1, and 30 trials per class for subjects B2 and B3.
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TABLE II
CLASSIFICATION ACCURACIES (MEAN, MEDIAN, AND STANDARD DEVIATION (STD) IN %) OBTAINED FOR EACH SUBJECT FOR THE STANDARD CSP AND THE RCSP
ALGORITHMS PRESENTED IN THIS PAPER

BCI competition III BCI competition IV Overall
data set IVa data set IIla data set Ila

Subject Al | A2 | A3 | A4 | AS Bl | B2 | B3 Cl | C2 [ C3 | C4|C5)C6 | CT7T | C8 | C9 ||[Mean|Median| Std
CSpP 66.07(96.43(47.45|71.88| 49.6 ||95.56(61.67{93.33||88.89|51.39|96.53(70.14 |54.86|71.53|81.25|93.75|93.75|| 75.5| 71.9 |18.2
GLRCSP  [{72.32]96.43(66.84 | 67.86|89.29(/95.56|61.67| 90 ||86.11|58.33[93.75|67.36(55.56(65.2881.25(93.75|88.19|| 78.2 | 81.3 [14.3
CCSP1 66.96(96.43(63.27|71.8884.92((98.89| 45 [93.33((86.11{60.42|93.75[56.94|49.31|65.2881.25|93.75(88.19|| 76.2 | 81.3 |[17.5
CCSP2 65.18196.43(45.41(71.88| 49.6 ||95.56(61.67|93.33|(88.89(53.47|97.22(70.14|54.17|68.06(79.17|95.14(90.28 || 75 719 |[18.3
DLCSPauto ||66.96(96.4346.94|71.43| 50 [|94.44(63.33| 95 |[88.89(51.39]/96.53|70.14(56.94|71.53(81.94|93.75(93.75[| 759 | 71.5 | 18
DLCSPcv |[64.29[96.43(52.04|71.88(82.54((95.56(78.33/93.33 |[88.89|50.6996.53[70.14|55.56 | 62.5 [81.25]|93.75(86.81|| 77.7 | 81.3 [16.1
DLCSPcvdiff |[69.64 | 98.21 | 55.1 [71.88(82.54((95.56|66.67 |93.33 || 88.89(50.69(96.53|70.14|55.56| 62.5 |81.25(93.75[86.81|| 77.6 | 81.3 | 16
SSRCSP 70.54196.43(53.57|71.88|75.39(/95.56 |61.67 {96.67 || 88.89|53.47|97.22|70.14 | 56.25(68.75|79.17|97.22|190.28 || 77.8 | 75.4 |16.2
TRCSP 71.43196.43(63.27(71.88| 86.9 ||98.89(56.67(93.33||88.89|54.17|96.53|70.83| 62.5 [67.36|81.25|95.87|91.67|| 79.3 | 81.3 |15.3
WTRCSP |{69.64[98.21|54.59|71.88|85.32(/98.89|71.67|93.33||88.89|54.86(96.53(70.14|65.97|61.81|81.25(95.83({90.97|| 79.4 | 81.3 |15.3
SRCSP 72.32(96.43| 60.2 [77.68|86.51((96.67 [53.33[93.33(|88.89|63.19|96.53 (66.67 |63.19(63.89|78.47|95.83|92.36(| 79.2 | 78.5 |15.2

For each subject, the best result is displayed in bold characters.

3) Data Set Ila, BCI Competition IV: Data set Ila [24], from
BCI competition IV! comprises EEG signals from nine subjects
who performed left hand, right hand, foot, and tongue MI. EEG
signals were recorded using 22 electrodes. Only EEG signals
corresponding to left and right hand MI were used for the present
study. A training and a testing set were available for each subject,
both sets containing 72 trials for each class.

B. Preprocessing

In this paper, we considered the discrete classification of the
trials, i.e., we assigned a class to each trial. For each dataset
and trial, we extracted features from the time segment located
from 0.5 to 2.5 s after the cue instructing the subject to perform
MI (as done by the winner of BCI competition IV, data set IIa).
Each trial was bandpass filtered in 8-30 Hz, as in [3], using a
fifth-order Butterworth filter. With each (R)CSP, we used Ny =
three pairs of filters, as recommended in [4].

C. Results and Discussion

For each subject, the (R)CSP filters were learnt on the training
set available. The log-variances of the spatially filtered EEG
signals were then used as input features to an LDA, one of the
most efficient classifiers for BCI [2]. Table II reports on the
classification accuracies obtained on the test sets.

Results show that, except DLCSPauto and CCSP2, all RCSP
algorithms outperformed classical CSP, often substantially. The
best RCSP algorithms outperformed CSP by about 3% to 4%
in mean classification accuracy and by almost 10% in median
classification accuracy. This confirms that when using CSP, reg-
ularization should be used in order to deal with its nonrobust
nature. The performance variance is also lower for the RCSP
algorithms. This, together with a closer look at the results, sug-
gests that RCSP algorithms are more valuable for subjects with
poor initial performances (e.g., A3, A5, B2, C5) than for already
good subjects, whose performances are roughly unchanged.
This makes sense as regularization aims at dealing with noisy
or limited data, but not necessarily at improving performances
for already good and clean data.

Uhttp://www.bbci.de/competition/iv/

The best RCSP algorithm on these data is the WTRCSP, as
it reached both the highest median and mean accuracy. It is
only slightly better than TRCSP. These two algorithms have
only a single hyperparameter to tune («), which makes them
more convenient to use and more computationally efficient than
other good RCSP such as GLRCSP or SRCSP, both having two
hyperparameters.

In terms of statistical significance, a Friedman test [25], [26]
revealed that the RCSP algorithm used had a significant effect
on the classification performance, at the 5% level (p = 0.03). It
should be noted that we used the Friedman test, because it is
a nonparametric equivalent of the repeated measure ANOVA.
Indeed, the fact that the mean and median accuracies are rather
different in our data suggests that the accuracy may not be
normally distributed. This makes the use of ANOVA inappro-
priate [25]. Post-hoc multiple comparisons revealed that TRCSP
is significantly more efficient than CSP and DLCSPcvdiff. Ac-
tually, TRCSP appeared as the only algorithm, which is signifi-
cantly more efficient than CSP. However, other RCSP also seem
more efficient than CSP but perhaps not significantly so due to
the relatively modest sample size. Both TRCSP and WTRCSP
appeared as significantly more efficient than GLRCSP, CCSP1,
CCSP2, and DLCSPcv. Finally, SRCSP was significantly more
efficient than CCSP1 and DLCSPcv.

In general, regularizing the CSP objective function seems
more rewarding, in terms of performances, than regularizing the
covariance matrices. A possible explanation might be found in
Vapnik’s statistical learning theory, which advocates that “when
solving a given problem, try to avoid solving a more generic
problem as an intermediate step” [27]. Indeed, the objective of
RCSP algorithms is to promote the learning of good spatial fil-
ters. However, when using covariance matrix regularization, we
try to solve the more generic intermediate problem of obtaining
a good covariance matrix estimate. We then hope this will lead to
better spatial filters even though this was not directly addressed.
On the other hand, when regularizing the objective function, we
directly try to learn better spatial filters by enforcing some good
prior structures for these filters. This might be an explanation as
to why the latter approach is generally more efficient than the
former.
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Results obtained by CCSP, GLRCSP, SSRCSP, and WTRCSP
showed that subject-to-subject transfer in BCI is possible and
valuable. Despite large intersubject variabilities, knowing that
using data from other subjects can improve performances may
also benefit other EEG signal processing algorithms. Among
RCSP methods using only data from other subjects to regular-
ize the covariance matrices (i.e., CCSP1, CCSP2, and SSRCSP),
SSRCSP reached the highest mean accuracy, which suggests
that it is worth selecting subjects to build G.. However, over-
all, WTRCSP appears as the most efficient algorithm that ex-
ploits subject-to-subject transfer. Nevertheless, since RCSP al-
gorithms based on subject-to-subject transfer require EEG data
from additional subjects, it may not always be possible to use
them. Indeed, the performance improvement they offer may not
justify the additional time required to collect data from new
subjects. However, if data from other subjects are already avail-
able, which is likely to be the case if a given BCI system has
been used for some times, then such RCSP algorithms are worth
being used. Moreover, our study used a rather small number of
additional subjects (two to eight depending on the dataset). With
a larger database of additional subjects, performance improve-
ments due to subject-to-subject transfer may be even larger (see,
e.g., [28]).

Concerning the poor performances of DLCSPauto, it should
be mentioned that we also observed poor performance when
all training data were used in one of our previous studies [13].
However, when using this approach with a small training set,
DLCSPauto proved to be significantly more efficient than CSP.
This suggests DLCSPauto is most useful when very little
training data are available. A comparison of DLCSPcv with
DLCSPcvdiff showed that they obtained very similar perfor-
mances. Actually, for 13 subjects out of 17, DLCSPcvdiff se-
lected the same value for the regularization parameters of C
and Cy, i.e., it was equivalent to DLCSPcv. This suggests that it
may not be necessary to use different regularization parameter
values for each covariance matrix.

The fact that RCSP algorithms led to lower scores than CSP
on a few subjects is also surprising. Indeed, if the best results
could be obtained without regularization, then we could expect
that the hyperparameter selection procedure based on CV would
figure it out and set the regularization parameter to 0. However,
it sometimes seemed otherwise. This may suggest that, perhaps
due to the nonstationarity of EEG, CV is not a very good predic-
tor of generalization performances for BCI. This has also been
observed in one subject in [9]. We will investigate this issue in
the future.

Fig. 1 shows some examples of spatial filters obtained with
different (R)CSP algorithms for different subjects. In general,
these pictures show that CSP filters appear as messy, with large
weights in several unexpected locations from a neurophysio-
logical point of view. On the contrary, RCSP filters are gener-
ally smoother and physiologically more relevant, with strong
weights over the motor cortex areas, as expected from the liter-
ature [1]. This suggests that another benefit of RCSP algorithms
is to lead to filters that are neurophysiologically more plausible
and as such more interpretable.

SRCSP GLRCSP CsP

WTRCSP

Fig. 1. Electrode weights for corresponding filters obtained with different
CSP algorithms (CSP, GLRCSP, SRCSP, and WTRCSP), for subjects Al, A5
(118 electrodes), B2 (60 electrodes), and C6, C9 (22 electrodes).

VI. CONCLUSION

In this paper, we proposed a unified theoretical framework
to design RCSP. We proposed a review of existing RCSP al-
gorithms and presented how to cast them in this framework.
We also proposed four new RCSP algorithms. We evaluated 11
different RCSP algorithms (including the four new ones and the
original CSP), on EEG data from 17 subjects, from BCI compe-
tition datasets. Results showed that the best RCSP can outper-
form CSP by almost 10% in median classification accuracy and
lead to more neurophysiologically relevant spatial filters. They
also showed that RCSP can perform efficient subject-to-subject
transfer. Overall, the best RCSP on these data were WTRCSP
and TRCSP, both newly proposed in this paper. Therefore, we
would recommend BCI designers using CSP to adopt RCSP al-
gorithms in order to obtain more robust systems. To encourage
such an adoption and to ensure the present study replicability,
a MATLAB toolbox with all CSP algorithms evaluated in this
paper is freely available upon request to the authors (e-mail:
fabien.lotte @ gmail.com).

Future work could deal with investigating performances of
RCSP algorithms with very small training sets, so as to re-
duce BCI calibration time, in the line of our previous stud-
ies [13], [29]. It could also be interesting to adapt the presented
regularization framework to multiclass CSP approaches based
on approximate joint diagonalization such as [30]. We could
also cast the problem of subject-to-subject transfer for RCSP
as a multitask problem. In this case, the mean and/or variance
of spatial filters learnt across multiple subjects would be used
as prior information, in a similar flavor as what has been done
in [31] for learning linear classifiers. Finally, we could explore
the integration of the regularization terms proposed here into
one-step procedures, which learn the spatial filter and the clas-
sifier simultaneously, as in [32].
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