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Abstract
Inherent changes that appear in brain signals when transferring from calibration to feedback
sessions are a challenging but critical issue in brain–computer interface (BCI) applications.
While previous studies have mostly focused on the adaptation of classifiers, in this paper we
study the feasibility and the importance of the adaptation of feature extraction in a self-paced
BCI paradigm. First, we conduct calibration and feedback training on able-bodied naı̈ve
subjects using a new self-paced motor imagery BCI including the idle state. The online results
suggest that the feature space constructed from calibration data may become ineffective during
feedback sessions. Hence, we propose a new supervised method that learns from a feedback
session to construct a more appropriate feature space, on the basis of the maximum mutual
information principle between feedback signal, target signal and EEG. Specifically, we
formulate the learning objective as maximizing a kernel-based mutual information estimate
with respect to the spatial-spectral filtering parameters. We then derive a gradient-based
optimization algorithm for the learning task. An experimental study is conducted using offline
simulation. The results show that the proposed method is able to construct effective feature
spaces to capture the discriminative information in feedback training data and, consequently,
the prediction error can be significantly reduced using the new features.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Inherent changes in brain signals, either between calibration
sessions or from calibration to feedback application, pose
a critical challenge to EEG-based brain–computer interface
(BCI) research [1–3] and have recently attracted a surge of
attention in the field [4–12]. In particular, there has been
much interest in BCIs using motor imagery (MI) [2, 13, 14]—
the imagination or mental rehearsal of a motor action without
any real motor output.

The underlying non-stationarity of the EEG signal
accounts for many of the changes, where the distribution
of electrical fields on the scalp is subject to large variations
over time. The non-stationarity can be caused by shifts in

background brain activities, varying mental states or individual
users changing their strategy for BCI control [4]. Especially in
feedback applications, more brain functions can be activated to
further complicate the changes in EEG, giving rise to complex
EEG phenomena such as error potentials [15] or rhythmic
power shifts over the scalp [5]. Consequently, the feature
extraction and prediction models (e.g. a classifier) built on data
from past BCI sessions may become ineffective. Therefore,
there is a strong need for new mathematical models capable
of accurately predicting a user’s intentions from his/her brain
signals in session-to-session transfer. The adaptive BCI that
can learn from new data in a supervised, semi-supervised
or unsupervised manner is a viable approach to solve this
problem.
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So far most of the works on the adaptive BCI have focused
on the adaptation of the classifiers. In [5], three supervised
adaptation methods using labeled data were investigated.
These included a simple bias adjustment technique, a linear
discriminant analysis (LDA) retraining technique and a
technique which retrains both LDA and common spatial
pattern (CSP)-based feature extraction [16]. It was reported
that overall the LDA-retraining approach yielded the lowest
error rate. In [17], a covariance shift algorithm was introduced
for an unsupervised adaptation of the linear classifier. In
particular, the covariance shift algorithm is able to perform
with neither labeling data nor predicting labels. In [18], the
method for adaptation was further developed and combined
with a bagging approach that resulted in improved stability.
More recently, in [8] different types of adaptation method
were extensively studied using multiple BCI datasets, and the
result was in favor of a bias adjustment method rather than
generic covariance shift adaptation.

Another interesting online BCI was presented in [7],
where a quadratic discriminative analysis classifier was
adapted in every cue-based feedback trial. It showed that
the distribution of EEG features shifted significantly from
one session to another. The BCI was further studied in [10].
Different from those systems using CSP features mentioned
earlier, the BCI basically used adaptive autoregressive features
or band powers, or the combination of the two. In [6],
a classifier with band power features as input was updated
continuously, where only non-feedback (i.e. calibration)
sessions were used for offline study.

However, a few works have been devoted to the adaptation
of feature extraction models, especially for exploring feedback
training data including the idle state. As indicated in
experimental results in [7] and [8], it appears that the
non-stationarity may not be solved by adapting classifiers
alone. Rather, possible significant brain signal changes from
calibration to feedback training sessions may render the feature
space derived from calibration data ineffective where little
discriminative information can then be recovered.

Therefore, the primary purpose of this paper is to
validate the feasibility and the importance of adapting feature
extraction models, especially for a self-paced MI BCI that
allows continuous feedback control [19–24]. It seems that
adapting feature extraction models can be a challenging issue,
in view of the unsatisfactory performance of retrained CSP
models in [5].

First, we develop and test a new self-paced BCI, and study
calibration and feedback training on three able-bodied naı̈ve
subjects. The empirical result poses questions on the efficacy
of applying the feature space derived from calibration data to
feedback sessions.

Hence, we propose a new supervised method that learns
from a feedback session to construct a more appropriate feature
space. In particular, the method tries to account for the
underlying complex relationships between feedback signal,
target signal and EEG, using a mutual information formulation.
The learning objective is formulated as maximizing kernel-
based mutual information estimation with respect to the
spatial-spectral filters. We then derive a gradient-based
optimization algorithm for the learning task.

An experimental study is conducted using offline
simulation. The results show that the proposed method is
capable of constructing effective feature spaces that capture
more discriminative information in the feedback sessions.
Consequently, the prediction errors can also be significantly
reduced by using the new features.

The rest of the paper is organized as follows. Section 2
describes the data collection with a self-paced BCI, as well
as the online training result. Section 3 elaborates the new
method for learning effective spatial and spectral features
from feedback session data. Section 4 presents an extensive
analysis, followed by discussion in section 5. Section 6
concludes the paper.

2. Materials

2.1. Feedback training data collection

Three BCI-naı̈ve adults participated as BCI subjects in the
data collection. All gave informed consent, which was
reviewed and approved by the Institutional Review Board
of the National University of Singapore. The subjects were
seated comfortably in an armchair, with their hands resting
on the chair’s arms or on the table in front of them. A
20 inch widescreen LCD monitor was placed on the table at a
distance of approximately 1 m from the subject. The subjects
were asked to remain still and comfortable to avoid movement
artifacts.

EEG was recorded using a Neuroscan NuAmps 40-
channel data acquisition system, with electrodes placed
according to an extended international 10-20 system and a
sampling frequency of 500 Hz. A total of 30 channels were
used, including F7, F3, Fz, F4, F8, FT7, FC3, FC4, FT8, T7,
C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4,
P8, O1, Oz, O2, PO1 and PO2. The reference electrode was
attached to the right ear. A high-pass filter at 0.05 Hz was
applied in the Neuroscan’s data acquisition setting.

The subjects faced a graphic user interface displayed on
the LCD monitor, as illustrated in figure 1, which guided them
through the following sessions.

• Calibration session. This session consisted of 40 MI
tasks; each was 4 s long and followed by a 6 s idle
state. The MI tasks were evenly and pseudo-randomly
distributed into left- and right-hand MI tasks. A graphic
user interface illustrated in the left panel of figure 1
guided the subjects through the session, where a red
circle in the middle served as the eye fixation point. In
the background, a sequence of rectangular shapes was
scrolling upward, representing left/right-hand MI tasks
with blue color boxes on the left/right side and idle state
tasks with gray bars. Specifically, when the red circle
was in a gray color bar, the subject should relax while
minimizing physical movements; otherwise, the subject
should imagine left-/right-hand movement, if a blue color
box was on the left/right side of the circle.

The filter bank CSP (FBCSP) method [25–27], which
was the first winner of BCI Competition IV Dataset I
[28], was employed to build subject-specific MI detection
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Figure 1. The graphic user interface for calibration (left panel) and
for self-paced feedback training (right panel). The gray and blue
color blocks scroll smoothly upward in the background, and the red
circle in the center serves as the eye-fixation point. During feedback
training, the horizontal position of the red circle serves as the
feedback signal that updates every 40 ms, while its trajectory over
the background blocks is depicted by a red curve.

models. The method constructed two separate models
from the calibration data, one for differentiating between
the left-hand MI and idle state (hereafter referred to as
the L-model), and the other for differentiating between
the right-hand MI and idle state (hereafter the R-model).
For the L-model (or the R-model), each 2.5 s long shift
window of EEG with a step of 0.5 s was mapped to the
label of the data: 0 if the time window ended in an idle
state time period, 1 (or −1) if it ended in a left-hand (or
right-hand) MI period. The mapping parameters were
obtained using the linear least-mean-square method.

Since a user’s mental state could be uncertain and
variable during the transition period from one state to
another, we defined the gray region as [−1 1] s with
respect to the boundary of each idle/MI task, and excluded
from FBCSP learning any EEG segments with centers in
this gray region.

• Feedback training sessions. After calibration, each
subject participated in four sessions of feedback training,
i.e. two sessions of left-hand MI BCI training using the
L-model and two sessions of right-hand MI training using
the R-model. This arrangement allowed a subject to
concentrate in each session on a particular MI task. A
training session consisted of 20 MI tasks, where each
lasted 5 s and was followed by a 6 s idle state. A graphical
user interface illustrated on the right panel of figure 1
guided the user through the session. The meaning of the
graph was similar to that for calibration, except that the red
circle was moving horizontally as a feedback signal: its
horizontal position was determined by the FBCSP output
updated every 40 ms.

During the feedback training, the subjects tried to
move the red circle to the left/right side as far as possible
during left-hand/right-hand MI tasks. We would like

to emphasize that the subjects were requested not to
voluntarily control the feedback signal by any means
during periods of the idle state. This is because voluntary
control of the feedback signal would spoil the idle state
data.

In between sessions were short breaks. The first feedback
training session started within 5 min after the calibration
session. And the interval between consecutive feedback
sessions was from 1 to 5 min. Note that a special tryout
session was in place after the calibration, where every subject
tried online feedback for a short while so as to get a feeling
for the feedback and also to prepare for the actual training
sessions. The tryout session was not included in the analysis.

We would like to briefly introduce the FBCSP method
used in the online experiment as it will also be compared with
the proposed learning method later. FBCSP was introduced in
[25] as a feature selection algorithm that combines a filter
bank framework with the spatial filtering technique CSP.
More specifically, it decomposes EEG data into an array of
pass-bands, performs CSP in each band and selects a reduced
set of features from all the bands. Its efficacy was demonstrated
in the latest BCI Competition [28], where it served as the basis
of all the winning algorithms in the EEG categories. FBCSP
was improved in [26] by employing a robust maximum mutual
information criterion for feature selection.

2.2. Data screening

The recorded EEG data during feedback training sessions were
inspected visually using MATLAB by the authors. Any EEG
segments identified with EOG and EMG contamination [29]
were rejected and excluded from the analysis. Again, we
defined the gray regions in a similar way to the calibration
method described above. Therefore, any EEG segments
centered within [−1 1] s with respect to any task boundary
were excluded from the analysis.

2.3. Online performance and initial data analysis

Online performance was assessed using the mean-square-error
(MSE) measure between the feedback signal and the target
signal. Figure 2 plots the bar graph of MSE in each feedback
training session. The error was apparently comparable
between the first and the second training session in most
cases. This actually indicates that online feedback training
in the BCI can be a difficult task since it was anticipated
that the subjects should have gained better control of the BCI
over training sessions. Again, this indicates the necessity of
adapting models during session-to-session transfers.

To further understand the feedback training data, we plot
in figure 3 the distribution of EEG feature vector samples
produced by FBCSP. Note that for clarity of presentation, we
used evenly re-sampled feature vector samples because the
original samples count up to thousands. As expected, the MI
class samples and the idle class samples were easily separable
in the calibration data, but the discriminative information
had disappeared in the same feature space in most feedback
training sessions. As a consequence, either there was no
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Figure 2. Online performance of subjects in terms of MSE between the feedback signal and the target. There is a strong bias shift (from
calibration to feedback) in right MI sessions in subject 3, which explains his particularly large error.

effective separation between the two classes, or the separation
hyper-plane was severely altered (similar to some cases in
[7, 8]).

Therefore, it is advisable to first look into the issue
of ineffective feature space before trying to adapt a
classifier/regressor. To address this issue, we propose a new
method to learn an effective feature space from feedback data.
We would also like to note that, compared with calibration
data, online feedback training data pose more challenges
to effective feature extraction, because the feedback may
involve more brain functions and produce more complex EEG
phenomena [5, 15].

3. The new learning method

3.1. Spatio-spectral features

The primary phenomenon of MI EEG is event-related
desynchronization (ERD) or event-related synchronization
(ERS) [2, 13], the attenuation or increase of the rhythmic
activity over the sensorimotor cortex generally in the µ (8–
14 Hz) and β (14–30 Hz) rhythms. The ERD/ERS can be
induced by both imagined movements in healthy people or
intended movements in paralyzed patients [21, 30, 31]. It is
noteworthy that another neurological phenomenon called the
Bereitschaftspotential is also associated with MI EEG but is
non-oscillatory [14]. In this paper, we consider ERD/ERS
features only.

The feature extraction of ERD/ERS is, however, a
challenging task due to its poor low signal-to-noise ratio.
Therefore, spatial filtering in conjunction with frequency
selection (via processing in either temporal domain or spectral
domain) in multi-channel EEG has been highly successful in
increasing the signal-to-noise ratio [16, 27, 32–34].

Let us consider the spatial-spectral filtering in the spectral
domain, where each nc-channel EEG segment with a sampling
rate of Fs Hz can be described by an nc × nf matrix:

X =




x11 · · · x1nf

...
. . .

...

xnc1 · · · xncnf



 , (1)

where xij denotes the discrete Fourier transform of the ith
channel at frequency ωj = j−1

2nf
Fs .

A joint spatial-spectral filter on X can be essentially
represented by a spatial filtering vector w ∈ Rnc×1 and a
spectral filter vector f ∈ Rnf ×1. The feature y0 is the energy
of the EEG segment after filtering:

y0 = diag{w̃T X(wT X)}f, (2)

where the wave line ˜ on the right-hand side denotes the
conjugate of a complex value and the diag( ) function stands
for the diagonal vector of a matrix.

In this paper, we consider a general case in which multiple
spatial filters are associated with one particular spectral filter.
Therefore, the feature extraction model is determined by the
matrix f and a vector W, the latter being the collection of
spatial filters in columns:

W = [w1 . . . wnw
]. (3)

Suppose the spectral filters in F are given (see the last
paragraph of section 3.3 for details), we can use the following
shorthand for the auto-correlation matrix of EEG processed by
the kth spectral filter:

X̂k =
nf∑

i

fiXX̃, (4)

and express the logarithmic feature vector by

y =
[
log

(
w1X̂1wT

1

)
, . . . , log

(
wnw

X̂nw
wT

nw

)]T
. (5)
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Figure 3. Feature distributions during MI calibration and feedback training sessions, for left MI in the upper three rows and for right MI in
the lower three rows. The horizontal axis and the vertical axis are the first and the second FBCSP features. The axis range is made
consistent in each column (i.e. each subject). The red circles represent MI samples, while the black crosses denote idle state samples. Note
the especially significant change in the distribution of MI samples.
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3.2. Formulation of the objective function for learning

To capture the underlying complex structure of spatio-
spectral data in ERD/ERS, we would like to design a
mutual information-based objective function for learning W
and F. Mutual information [35], which stemmed from
information theory, basically measures the reduction of
uncertainty about class labels due to the knowledge of the
features. Readers interested in mutual information-based
feature extraction/selection may find related works in [36–41].

For feedback training data, we consider a mutual
information measure Î between the class labels and the EEG
features as well as the feedback signal. Specifically, mutual
information is between the class label (i.e. the variable to be
predicted) and the observations, including both the feedback
signal and the EEG feature vector. Let the random variables
of the label, the EEG feature vector and the feedback signal
be C, Y and Z , respectively. There is

Î ({Y,Z}, C) = Ĥ (Y,Z) −
∑

c

P (c)Ĥ (Y,Z|c), (6)

where Ĥ denotes the entropy measure of a random variable.
Like [39, 41], we resort to a non-parametric approach for

mutual information estimation since it does not rely on the
underlying distributions.

Suppose the feedback training data comprise l samples
of EEG to be represented by the feature vectors yis and the
concurrent feedback signal zis (i ∈ [1, . . . , l]). The non-
parametric approach computes each entropy in equation (6)
separately, e.g. Ĥ (Y,Z) by

Ĥ (Y,Z) = −1
l

l∑

i=1

log





1
l

l∑

j=1

ϕy(yi , yj )ϕz(zi, zj )




 , (7)

and ϕy and ϕz are kernel functions and usually take a Gaussian
form. For example,

ϕ(y, yi ) = α exp
(
− 1

2 (y − yi )
T%−1(y − yi )

)
. (8)

The coefficient α is discarded hereafter because it will be
canceled out when equation (8) is substituted into equation
(7) and then substituted into equation (6). It should be noted
that the kernel size matrix % is diagonal, and each diagonal
element is determined by

ψk,k = ζ
1

l − 1

l∑

i=1

(yik − ȳk)
2 , (9)

where ȳk is the empirical mean of yk , and we set the coefficient
ζ =

( 4
3l

)0.1 according to the normal optimal smoothing
strategy [42].

The conditional entropy Ĥ (Y|c) in equation (6) can also
be estimated similar to equation (7), but using samples from
class-c only.

Using the maximum mutual information principle [36],
we now define the learning task as searching for the optimum
spatial and spectral filters W and F that satisfies

{W, F}opt = argmax
{W,F}

Î ({Y,Z}, C). (10)

The above formulation describes the inter-dependency
between the target signal, the feedback signal and the EEG

signal as a function over the feature extraction parameters
in spatial-spectral filters. It basically aims to maximize the
information about the target signal to be predicted, contained
in the extracted features in conjunction with feedback. Refer
to section 5 for a further discussion on this formulation.

3.3. Gradient-based solution to the learning problem

Here, we propose a numerical solution to equation (10)
by devising a gradient-based optimization algorithm. We
consider a spatial filter vector wk , and note that the gradient of
the objective function Î with respect to wk is

∇wk
Î ({Y,Z}, C) = ∇wk

Ĥ (Y,Z) −
∑

c∈C
P(c)∇wk

Ĥ (Y,Z|c).

(11)

From equation (7), we have

∇wk
Ĥ (Y,Z) = −1

l

l∑

i=1

βi

1
l

l∑

j=1

ϕz(zi, zj )
∂ϕy(yi , yj )

∂wk

, (12)

where

βi =



1
l

l∑

j=1

ϕz(zi, zj )ϕy(yi , yj )




−1

. (13)

From equation (8), we have

∂ϕy(yi , yj )

∂wk

= −1
2
ϕy(yi , yj )

∂(yi − yj )
T%−1(yi − yj )

∂wk

.

(14)

Let us denote the quadratic function (yi − yj )
T%−1(yi −

yj ) by ϑij , which can be further decomposed into

ϑij =
do∑

k1=1

do∑

k2=1

ψ−1
k1k2

(yik1 − yjk1)(yik2 − yjk2). (15)

Hence, the gradient of ϑij is

∂ϑij

∂wk

=
do∑

k1=1

do∑

k2=1

[
∂ψ−1

k1k2

∂wk

(yik1 − yjk1)(yik2 − yjk2)

+ψ−1
k1k2

∂(yik1 − yjk1)(yik2 − yjk2)

∂wk

]
. (16)

Consider that (yik1 − yjk2)
2 is a function of wk if and only

if k1 = k and/or k2 = k, and ψ−1
k1k2

is a function of wk if and
only if k1 = k2 = k. Furthermore, ψ−1

k1k2
= 0 only if k1 %= k or

k2 %= k. The expression of the gradient above can be written
as

∂ϑij

∂wk

= ∂ψ−1
kk

∂wk

(yik − yjk)
2 + ψ−1

kk

∂(yik − yjk)
2

∂wk

. (17)

From equation (9), we have

∂ψ−1
k,k

∂wk

= − 2ζ
ψ2

k,k(l − 1)

l∑

i ′=1

(yi ′k − ȳk)
∂ (yi ′k − ȳk)

∂wk

, (18)

6
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where ȳk denotes the mean value of yi ′ks, and its partial
derivative w.r.t. wk can be expressed by

∂ ȳk

∂wk

= 1
l

l∑

i ′′

∂yi ′′k

∂wk

. (19)

We further note that X̂ki (the auto-correlation matrix for
the ith EEG sample processed by the kth spectral filter, see
equation (4)) is conjugate symmetric, and

∂yik

∂wk

=
(
X̂ki + X̂T

ki

)
wk

yik

= 2 Re(X̂ki)wk

yik

, (20)

where Re( ) denotes the real part of a complex matrix. The
derivatives of yi ′k and yjk can be computed the same way as
above.

We can summarize the above steps as follows:

∇wk
Ĥ (Y) = Awk, (21)

where

A = 2
l2

l∑

i=1

βi

l∑

j=1

ϕz(zi, zj )ϕy(yi , yj )

[
−ζ(yik − yjk)

2

ψ2
k,k(l − 1)

×
l∑

i ′=1

(yi ′k − ȳk)

(
Re(X̂ki ′)

yi ′k
− 1

l

l∑

i ′′

Re(X̂ki ′′)

yi ′′k

)

+ψ−1
kk (yik − yjk)

(
Re(X̂ki)

yik

− Re(X̂kj )

yjk

)]

. (22)

There will be, for each conditional entropy Ĥ (Y|c), an
equation similar to equation (21). Then the gradient of the
objective function I with respect to the spatial filter wk is

∇wk
Î ({Y,Z}, C) =

(

A −
∑

c

P (c)Ac

)

wk. (23)

We would like to note that the above equation does not
suggest that the gradient is a linear function over wk since the
multiplier term

(
A −

∑
c P (c)Ac

)
itself is a rather complicated

function over {yi}, which in turn is a function of W.
With the gradient information, our iterative optimization

algorithm updates a spatial filter by

w(iter+1)
k = w(iter)

k + λ∇wk
Î ({Y (iter),Z}, C), (24)

where λ is the step size. In this paper, we utilize a line search
procedure to determine the step size in each of the iteration.
Note that all spatial filter vectors in W are updated together.

In our implementation, the line search procedure tests
a number of (tentatively 16) λ values in the range of
[−0.05 0.10]×ξ , and decreases ξ in the logarithm scale until
a local maximum of I is found but not at λ = 0. The λ for the
local maximum is then used to update all the spatial filters wks
in equation (24), and then the optimization procedure proceeds
to the next iteration.

The iterations will terminate when a convergence criterion
is met. In this paper, we use a simple criterion: mutual
information gain less than 1×10−5. Since the iterative
algorithm is a typical gradient-based greedy optimization
method, the pseudo-code is omitted to save space.

The initial values for wk can be learned by the CSP method
[16] that maximizes the Rayleigh coefficient

wk

∑l1
i=1 X̂kiwk

wk

∑l0
j=1 X̂kj wk

, (25)

where X̂ki denotes the ith sample of MI EEG while X̂kj the
j th sample of idle state EEG.

Finally, we describe how to select the spectral filters
for F. Like FBCSP, we can also create a set of candidate
spectral filters consisting of band-pass filters that cover the
MI EEG spectrum. For instance, in the experimental study
to be introduced in the following section, we borrowed the
filter banks configuration from [26] that had eight band-pass
filters with central frequency ranging from 4 to 32 Hz. After
band-pass filtering in the spectral domain, we trained CSP
according to equation (25) to extract discriminative energy
features. Then we selected the optimum nw features from all,
using the method in [26]. The spectral filters associated with
the optimum features then comprised the matrix F.

4. Results

We conducted an offline simulation of the self-paced BCI using
the online feedback training data. The simulation was carried
out in MATLAB, and the proposed method was implemented
in hybrid MATLAB and C code so as to improve computation
and programming efficiency. The EEG features together with
the feedback signal z served the inputs to a regressor (refer
to section 5 for a related discussion), in order to predict the
target value of 0 (idle state), −1 (right-hand MI) or 1 (left-
hand MI). We employed a linear support vector regression
using the LibSVM toolbox [43]. Note that we had attempted
other regression methods such as Gaussian-kernel nonlinear
support vector regression and linear MSE regression. But no
significant difference was found in the results, and we will
only show the linear support vector regression results here.

Similar to the online feedback training described in
section 2, the offline simulation tested left-hand MI BCI and
right-hand MI BCI separately. For example, for the left-
hand MI BCI, the first left-hand MI training session was used
to learn the optimum spatial-spectral filtering and then the
linear support vector regressor was trained. Next, the feature
extraction and regression was tested on the second left-hand
MI training session. The simulation used a 2 s long shift
window with a step of 0.4 s.

For a comparative analysis with the state of the art, we
also tested FBCSP using the same setting.

4.1. Convergence of the optimization algorithm

We studied the convergence of the optimization algorithm.
First, we considered a simple scenario that only included three
EEG channels (CP3, CPz, CP4) and one spatial filter. We
would like to note that similar findings were also obtained in
our extensive tests that used different selection of channels
around the sensorimotor cortex regions, e.g. C3, Cz, C4.

Since the mutual information measure is always invariant
to the non-zero norm of the spatial filter, we set the norm of
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Figure 4. Optimization on the mutual information surface: an
example with a spatial filter vector for three-channel EEG. See
section 4.1 for details.

the spatial filter to 1 without loss of generality. Therefore,
the spatial filter can be represented by two variables in
the spherical coordinate system: θ = acos(w3) and φ =
atan(w2

w1
). This should not be confused with the Euclidean

space where the actual optimization takes place. The two-
variable representation is just meant for visualization.

Figure 4 shows a typical example from the left-hand MI
learning in subject 2. The spatial filter solution migrated
in four steps from the initial point (generated by CSP) to
approximately a local maximum where the iteration converged
(mutual information gain <1×10−5).

The algorithm was initialized using the method described
in the previous section, and then in most cases the optimization
algorithm converged within seven iterations. We also tested
random spatial filters for initialization, and the iteration
procedure generally became longer but converged within 50
iterations in all 100 test runs.

4.2. Feature distributions

We used the first feedback training session to learn two spatial-
spectral filters by the proposed method and extracted EEG
features from the second feedback session. Figure 5 plots the
distribution of the features (as the original samples amount to
thousands, we used evenly re-sampled feature vector samples
for a clear presentation).

Comparing with those features produced by calibration
models in figure 3 (especially in the bottom row for the same
training session), the new features appear to be more separable
between the MI classes and the idle states. To verify this,
we assess the separability in terms of classification accuracy
by a linear support vector machine (using the same LibSVM
toolbox from [43]). The results for the original and the new
features are compared in table 1.

The table clearly indicates that the proposed method,
which adapted both the classifier and the feature extraction
model, produced significantly better performance in terms of
class separability than when only the classifier was adapted.
This verifies our argument in the introduction that the non-
stationarity in EEG may not be solved by adapting classifiers

Table 1. Class separability: new feature space (‘This method’)
versus original feature space (‘Original’). Class separability is
measured as the classification accuracy by a linear support vector
machine that is adapted to the data (feedback training session 2).
Note ‘Original’ uses the adaptation of the classifier only, while ‘This
method’ adapts both the classifier and the feature extraction model.
The higher accuracy rates between the two feature spaces are shown
in bold. See section 4.2 for related description.

Features Sub 1 Sub 2 Sub 3

Left MI Original 73.7% 79.0% 66.9%
This method 85.0% 84.8% 81.0%

Right MI Original 67.9% 59.7% 78.1%
This method 80.0% 69.6% 84.0%

alone. Rather, it is advisable to adapt both the feature
extraction model and the classifier so as to accurately capture
the variation of EEG over time.

4.3. Accuracy of feedback control prediction

We investigate whether the new features can generate better
prediction of the user’s state. We would also like to test
the adaptation of the regressor since the classification hyper-
plane may have shifted from the first feedback session to the
second. Therefore, we tested a supervised adaptation, which
used a portion (called adaptation data which started from the
beginning of the session) of the second feedback session, and
re-trained the regressor (using both the adaptation data and
the first feedback session data); we also tested the models on
the remainder of the second feedback session. We examined
different sizes for the adaptation data in terms of the percentage
of the whole session, ranging from 0 (i.e. no adaptation) to
0.45.

FBCSP was also evaluated using the same method for
comparison. And the comparative results are illustrated in
figure 6. Apparently, both FBCSP and the proposed method
can learn a much more accurate predictor from the first
feedback session than the original BCI that used only the
calibration data. Furthermore, the prediction error was also
effectively reduced by the supervised adaptation. But, this
improvement is not as significant as the improvement observed
from the original BCI to the proposed method. Furthermore,
the proposed method also consistently outperformed FBCSP,
significantly in most cases.

We examined the impact of the new method on the
feedback signal curves. Figure 7 illustrates a graph comparing
the new feedback signal to the original feedback signal, for
subject 2. Clearly, the new feedback signal curve followed the
target curve much more accurately.

We also investigated if the new method works with a
reduced set of channels. In particular, we tested 15, 9 and
6 channels (see table 2 for the channel names), and carried
out the proposed method and FBCSP, using the same method
as described above (see figure 8), and performed the t-test
to check if our method produced lower MSE with statistical
significance compared with FBCSP and the original feedback
training result.

The result indicates that the new method improved the
performance in terms of MSE with statistical significance in
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Figure 5. Feature distributions by the proposed learning method for the left/right MI feedback training session 2. The horizontal axis and
the vertical axis are, respectively, the first and the second features learned by the learning method. The graphs in the upper row are generated
from left MI training data, while those in the lower row are from right MI training data. The red circles represent MI samples, while the
black crosses denote idle state samples. See figure 3 (especially the bottom row for the same session) for a comparison.
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Figure 6. Comparison of the prediction error in terms of MSE by different methods. The horizontal axis denotes the percentage of the
second feedback session being used for re-training the support vector regression machine that maps EEG features to the target signal. For
the original online feedback, there is no re-training but MSE is computed at each percentage point using the same test set. The test set is the
second feedback session excluding the part for regressor re-training. The curves plot the average of MSE over the three subjects, while the
vertical line centered at each point represents the standard deviation by its length. See section 4.3 for related description.

Table 2. Statistical paired t-test (p-value shown here) of comparing the new method’s MSE with that of FBCSP or the original feedback
training result, using a different number of channels. Significant results with p-value <0.05 are shown in bold.

p-value

No of channels Data This versus FBCSP This versus Original Channel names

All Left MI <0.01 <0.01 All 30 channels (see section 2)
Right MI <0.04 <0.01

15 Left MI <0.01 <0.01 F3,F4,FC3,FCz,FC4,T3,Cz,
Right MI 0.09 <0.01 C4,T4,CP3,CPz,CP4,P3,P4

9 Left MI <0.01 <0.01 FC3,FCz,FC4,C3,Cz,C4,CP3,
Right MI 0.86 <0.01 CPz,CP4

6 Left MI 0.48 <0.01 FC3,FC4,C3,C4,CP3,CP4
Right MI 0.93 <0.01

all the channel sets being tested. While if we compare the new
method with FBCSP, it still yielded significant lower MSE
with as few as nine channels. In the case of six channels,

the method and FBCSP produced comparable results, while
both significantly outperformed the original model constructed
from calibration only.
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Figure 7. Comparison between the target, the original feedback signal and the new prediction by the proposed method. Here is an example
from the left MI training session of subject 2. The timing is in alternation between approximately 5 s MI (target = 1) and 6 s idle state
(target = 0), except the first idle state period, which is slightly longer.
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Figure 8. Comparison of the prediction error in MSE by different methods using nine EEG channels only. See figure 6 and section 4.3 for
descriptions.

5. Discussions

Figure 6 gives clear evidence that the proposed method of using
the new spatial-spectral learning algorithm can significantly
increase the prediction accuracy. The MSE for left (or
right) MI feedback training was effectively reduced from
approximately 0.3 (or 0.5) to a slightly lesser value of 0.2
(or 0.25). The improved accuracy can also be seen in the
prediction curves in the example case of figure 7, which
actually showcases a reduction of MSE from 0.24 to 0.13.

The increased accuracy can be largely attributed to the
improved feature space shown in figure 5 in contrast to the
original feature spaces in figure 3. The original feature
space that was used in feedback training was built using
the calibration data. The changes in feature distributions
in the original feature space have highlighted the effect of
session-to-session transfer, which is generally consistent with
prior studies on the adaptive BCI. Thus, during feedback
sessions, the MI EEG and idle state EEG were predominantly
non-separable. Even if they were separable it was subject
to distribution shift. On the other hand, the new feature
space was learned from feedback training data comprised of
three sources of information; namely, EEG, target signal and
feedback signal. Therefore, it has been able to capture essential
information for user state prediction during online feedback
training.

It is also worthwhile to mention again that the new model
uses a non-parametric formulation for learning, which aims
to account for arbitrary dependences among EEG, target
and feedback signals. Section 4.1 has shown that our
optimization algorithm, derived through the new formulation,
has good convergence properties. Figure 4 has shown that
the objective function surface for the three-channel EEG data
is smooth, which is a favorable condition for the greedy
algorithm. However, we expect that the mutual information
surface can become far more complicated, especially for
EEG data with a large number of channels. Therefore,
future research may investigate more advanced optimization
techniques. However, such techniques would usually incur
much heavier computational costs.

While this paper has focused on the development and
validation of a new learning method for the adaptive BCI,
it would be interesting to investigate its performance during
online training. Even though it is beyond the scope of this
paper, it is within the scope of our ongoing research. Generally,
a large number of subjects would be required in order to
draw statistically significant comparisons between adaptive
and non-adaptive BCI systems.

It is also interesting to look back into the formulation
of objective formulation in section 3.2. As stated earlier,
the goal is to maximize the information about the target
signal to be predicted, contained in the EEG features in
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conjunction with the feedback. It is therefore advisable to
include both the new EEG features and the prediction outputs
of the current model as inputs to the classifier or regression
machine in the new model. Importantly, the feedback serves
two purposes: not only does it serve as a visual ‘stimulus’
to the subject, but it also represents the current prediction
model that contains essential information extracted from
earlier calibration/feedback sessions. The first rationale is
that the feedback and its relative position to the target signal
may have an effect on brain activations to complicate MI
EEG. The second function gives rise to multiple implications,
as explained below. First, the formulation considers only
the output of the current BCI model, but not the internal
mechanism of the model. Thus, it can work with any BCI
model and adapt it during new feedback training sessions.
Secondly, if a user with a prediction model can control the
feedback signal to match the target signal satisfactorily during
a feedback session, further re-adaptation of the prediction
model can be unnecessary, as co-adaption of the user and
machine has already been achieved. This can also be viewed
as a special case of the objective function (10): if the feedback
variable Z in the objective function already carries essential
information about the target signal C, re-adaptation of the BCI
by including new EEG features would produce no significant
gain in the objective function.

We would like to emphasize again that the proposed
method works in a supervised learning fashion. In other words,
it requires the data labels for adaptative learning. Unlike the
unsupervised or semi-supervised online learning approach,
this enables the learning system to measure the compliance
of a subject to the BCI tasks, so as to ensure the stability of
the adaptation process.

The proposed method with the current solution may be
better suited for offline adaptation than for online adaptation.
In online adaptation both user training and machine adaptation
take place at the same time. While in offline adaptation,
machine adaptation is performed after the user finishes a
training session. Although this method is applicable to online
adaptation, the expensive computation can be a serious concern
for practical online use. We estimate that the computational
complexity of computing the gradient by equations (23) and
(22) is of the order of O

(
l2n2

c

)
and that of evaluating the

objective function by equations (7) and (6) is O
(
l2nc

)
. Here

l denotes the number of samples and nc the number of
channels. In our experimental setup for the results presented
in section 4, we implemented a learning code using hybrid
MATLAB and C coding without multi-threading. On our
test computer with a Xeon CPU at 2.93 GHz, the code took
approximately 130 s to complete one iteration for nc = 30-
channel EEG data, or 18 s for nc = 6-channel EEG data, both
of l = 2230 time segment samples. The primary cause of the
high computational complexity is the non-parametric (kernel-
based) nature of the method that requires computation in each
pair of samples. Therefore, a possible solution to this problem
will be to reduce the number of samples for adaptation but
without losing useful information.

6. Conclusion

In this paper we have studied and addressed the critical issue
of session-to-session transfer at a brain–computer interface
(BCI). While previous studies have often focused on the
adaptation of classifiers, we have shown the importance of
and the feasibility of adapting feature extraction models within
a self-paced BCI paradigm. First, we conducted calibration
and feedback training on able-bodied naı̈ve subjects using a
new self-paced MI BCI including the idle state. The online
results suggested that the feature extraction models built from
calibration data may not generalize well to feedback sessions.
Hence, we have proposed a new supervised adaptation method
that learns from feedback data to construct a more accurate
model for feedback training. Specifically, we formulated
the learning objective as the maximization of kernel-based
mutual information estimation with respect to spatial-spectral
filters, and derived a gradient-based optimization algorithm
for the learning task. We have conducted an experimental
study through offline simulations and the results suggest that
the proposed method can significantly increase prediction
accuracies for feedback training sessions.
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