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a b s t r a c t

We present a new linear discriminant analysis method based on information theory, where the mutual
information between linearly transformed input data and the class labels is maximized. First, we
introduce a kernel-based estimate of mutual information with a variable kernel size. Furthermore, we
devise a learning algorithm that maximizes the mutual information w.r.t. the linear transformation. Two
experiments are conducted: the first one uses a toy problem to visualize and compare the transformation
vectors in the original input space; the second one evaluates the performance of the method for
classification by employing cross-validation tests on four datasets from the UCI repository. Various
classifiers are investigated. Our results show that this method can significantly boost class separability
over conventional methods, especially for nonlinear classification.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Discriminant analysis (DA) (also referred to as discriminant
feature extraction) aims to find a transformation of input variables
into latent variables (features) with maximum class separability
[1]. It comprises one of the key subjects in pattern recognition, and
differs largely from feature selection (e.g. [2,3]) in that, while
feature selection ranks and selects the input variables according to
their predictive significance, feature extraction transforms the
variables by, e.g. a linear combination. In this work, we focus on
linear DA in favor of its simplicity and possibility for nonlinear
extension via the kernel trick [4].

The most widely used DA method is known as Fisher linear
discriminant analysis (LDA) [5,6], based on Fisher’s criterion that the
ratio of inter-class scatter over intra-class scatter is maximized. It is
designed for 2-class problems under the homoscedastic condition that
all classes share one Gaussian covariance matrix. The non-optimality
or sub-optimality of LDA is well recognized in the literature (see [7–
9]): neither is it able to deal with heteroscedastic data (i.e. classes do
not have equal covariance matrices) in a proper way, nor it is Bayes
optimum for more than 2-class problems.

A number of alternative LDA techniques have been proposed in
the past to address the problems. For multi-class problems, non-
parametric scatter matrices were proposed in the so-called non-
parametric discriminant analysis (NDA) [10]. The matrices were
generally of full rank, allowingmore features than the class number
to be extracted. Besides, the non-parametric methodology allowed

DA toworkwell even for non-Gaussian datasets. Another extension
of LDA to multi-class was reported in [11], where the approximate
Pairwise Accuracy Criteria (aPAC) replaced Fisher’s criterion.
Specifically, aPAC weighted the contribution of individual class
pairs in terms of Bayes error (a similar weighting scheme was
reported in [12]). More recently, a minimum Bayes error method
was reported for dealing with multi-class homoscedastic data [7].

In the heteroscedastic discriminant analysis (HDA) [13], all the
classes were allowed to have different covariance matrices. It was
derived in a maximum-likelihood framework to handle hetero-
scedastic data. Without closed-form solution, the method resorted
to numerical optimization. Another heteroscedastic extension of
LDA (HELDA) was presented in [14] that utilized the Chernoff
criterion to handlemulti-class, heteroscedastic data. Favorably, the
Chernoff criterion led to a closed-form solution.

Generally, these methods are limited with their unimodal
Gaussian assumptions. Furthermore, theoretical analysis [8] has
concluded that generalized eigen-based linear equations (widely
used in many methods above) may not work whether or not the
data are homoscedastic or heteroscedastic.

An alternative is to use themaximummutual information (MMI)
criterion. Stemmed from information theory, mutual information
[15] basically measures how much knowing the features reduces
theuncertainty about the class labels. In [9], the authors studied the
relationship between MMI and the criteria of LDA and its hetero-
scedastic extensions. Importantly, the study has shown thatMMI is
Bayesian optimum under more general conditions than that for
earlier criteria. Besides, MMI can connect to minimum Bayes error
via lower and upper bound [16]. The criterion has also been applied
to feature selection [2,3,17,18].

In view of its superior capability for handling complex data
distributions,MMI-baseddiscriminant analysis [19] or blind source
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separation [20]was promoted recently. Especially in [19], themethod
‘‘MeRMaID_SIG’’ used Renyi’s quadratic entropy, in favor of its lower
computational complexity, to replace Shannon’s entropy for the
mutual information formulation. However, the quadratic entropy
generally diverges from Shannon’s entropywhich is the fundamental
of information theory behind the MMI approach. Furthermore, that
method is limited to predefined or annealed [21] kernel size,while, as
wewill show later at the end of Section 2, a kernel size as an intrinsic
function of the transformation parameters is preferable for making
MMI a consistent measure of separability.

In this paper we propose a new MMI-based DA method and
demonstrate its superiority. In particular, we introduce a non-para-
metric, kernel-based estimate of mutual information based on
Shannon’s entropy. Particularly, thekernel size is defined as a function
of the feature distributions, and the estimate is invariant against of
dilatation/contractionofoutputdimensions. Inotherwords, thekernel
sizebecomesa functionof theDAtransformationmatrix. Furthermore,
we derive from the estimate a gradient-based learning algorithm.

We investigate the method using a toy problem firstly. The
transformation vectors are visualized in the original 2D input space.
We then evaluate themethod using cross-validation on four datasets
fromtheUCI repository,while comparing itwith existingDAmethods
including aPAC, HELDA and MeRMaID_SIG. For assessing the class
separability of features generated by different methods, we employ a
linear and a nonlinear support vectormachines (SVMs) in addition to
a Parzen window classifier ([1, Section 6.1]).

The remainder of the paper is organized as follows. Section 2
presents a robust mutual information estimate for the objective
function of linear discriminant analysis. Section 3 describes a
gradient-based learning algorithm, followed by experimental
results in Section 4. Section 5 presents discussions, and Section 6
finally concludes the paper.

2. Mutual information estimate

Let a variable in the original space be xARn. It is linearly
transformed into a latent variable (i.e. a feature vector) yARm by

y¼Wx, ð1Þ

where WARm$n is a projection matrix that comprises nw column
vectors.

The mutual information between the variable Y of y and the
class variable C is known as

IðY,CÞ ¼HðYÞ%HðYjCÞ ¼HðYÞ%
X

cAC
HðYjcÞPðcÞ, ð2Þ

where c is a particular class label. The entropy HðYÞ is determined
by probability density function py(y):

HðYÞ ¼ %
Z

y
pyðyÞlogðpyðyÞÞ dy: ð3Þ

Now we show that the mutual information is invariant under
nonsingular linear transformation of the feature space. Consider
two linear transformation matricesW andWu, each transforms the
original data vector x to y and yu, respectively. Consider the feature
vector y being transformed by a nonsingular (i.e. full rank) square
matrix G and a constant vector g0.

yu¼ Gyþg0, i:e: Wux¼ GWxþg0: ð4Þ

We would like to note that the transformation as Eq. (4)
between two feature spaces (y and yu) is equivalent to a transfor-
mation between the two linear methods’ matricesW andWu¼ GW
plus a constant additive vector g0.Wewould like to emphasize that
the nonsingular transformation G refers to the relationship
between two feature spaces. And, it should not be confused with
the usually non-square transformation matrix W.

The mutual information becomes

HðYuÞ ¼HðGYþg0Þ ¼%
Z 1

%1
pyuðGyþg0ÞlogðpyuðGyþg0ÞÞdðGyþg0Þ:

ð5Þ

Since G is a full-rank square matrix, we note

det
dðGyþg0Þ

dy

! "####

####¼ jdetðGÞj, ð6Þ

and write the following:

HðYuÞ ¼%jdetðGÞj
Z 1

%1

pyðyÞ
jdetðGÞj

log
pyðyÞ

jdetðGÞj

! "
dy

¼ logðjdetðGÞjÞ%
Z 1

%1
pyðyÞlogðpyðyÞÞ dy¼HðYÞþ logðjdetðGÞjÞ:

ð7Þ

Therefore, the entropy is changed by logðjdetðGÞjÞ. But the
change is cancelled out in the mutual information:

IðYu,CÞ ¼HðYuÞ%
X

cAC
PcðcÞHðYujcÞ

¼HðYÞþ logðjdetðGÞjÞ%
X

cAC
PcðcÞ HðYjcÞþ logðjdetðGÞjÞ

$ %

¼HðYÞ%
X

cAC
PcðcÞHðYjcÞ ¼ IðY,CÞ: ð8Þ

Hence, the mutual information is invariant against nonsingular
linear transformation like Eq. (4). This is an important property
required for ametric of feature extraction: since nonsingular linear
transformation is invertible, it shall have no effect in the class
separability of the features under transformation.

Shannon’s mutual information is a functional of underlying
probability distributions, thus it has no analytical form for com-
putation. Instead, like in [22,18,3] we resort to a Monte Carlo
approximation described below.

Suppose there are l samples of data: {xi}, i¼1,y,l, transformed
to fyig by Eq. (1). Now consider how to estimate the mutual
information of {yi} with the corresponding class labels. First of all,
we note that the entropy of the feature vectorY can be expressed as
the expectation of log(py(y))

HðYÞ ¼%E½logðpyðyÞÞ(ffi%
1
l

Xl

i ¼ 1

logðpyðyiÞÞ: ð9Þ

Subsequently, py(y) can be estimated with kernel density
estimation [23]:

pyðyÞffi
1
l

Xl

i ¼ 1

jðy%yiÞ, ð10Þ

where j usually takes a Gaussian form:

jðy%yiÞ ¼ aexpð%1
2ðy%yiÞ

TW%1ðy%yiÞÞ: ð11Þ

Here the factor a shall make the integral of p̂yðyÞ equal to 1, as
required for probability density function. In thisworkwe consider a
constant a. The kernel size matrixW is diagonal, and each diagonal
element is determined by

ck,k ¼ z 1
l%1

Xl

i ¼ 1

ðyik%yk Þ
2, ð12Þ

where yk is the empirical mean of yk, and we set the coefficient
z¼ ð4=3lÞ0:1 according to thenormaloptimal smoothing strategy[24].

By substituting Eq. (10) into Eq. (9), the entropy of the feature
vector can be estimated using

ĤðYÞ ¼%
1
l

Xl

i ¼ 1

log
1
l

Xl

j ¼ 1

jðyi%yjÞ

8
<

:

9
=

;, ð13Þ
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and the conditional intra-class entropy ĤðYjcÞ can be estimated
similarly by using class c samples only.

The mutual information estimate becomes

ÎðY,CÞ ¼ ĤðYÞ%
X

c

PðcÞĤðYjcÞ: ð14Þ

Importantly, we show in below that the mutual information
estimate is invariant against the following transformation:

yu¼ Fyþg0, ð15Þ

where F is a full-rank diagonalmatrix whose k-th diagonal element
is denoted by fk,k, and g0 is a translation vector. In a geometric sense,
the transformation is equivalent to dilating (if fk,k41)/contracting
(if fk,ko1) the dimensions of the latent variable y, in addition to
translation. Therefore, such a transformation is invertible, and the
class separability remains the same after the transformation.

Now we study the impact of the transformation on the mutual
information estimate. After the transformation, the diagonal
matrixC (Eq. (12)) becomes a diagonal matrixCuwhose elements
are given by

cuk,k ¼ f 2k,kck,k: ð16Þ

With the new diagonal matrixCu, the Gaussian-kernel function by
Eq. (11) becomes

ĵðyui%yujÞ ¼ aexp %
1
2
ðyui%yujÞ

TCu%1ðyui%yujÞ
! "

¼ aexp %
1
2

Xdy

k ¼ 1

ðfk,kyikþ f0k%fk,kyik%f0kÞ
2f%2

k,k ck,k

 !

¼ aexp %
1
2
ðy%yiÞ

Tc%1ðy%yiÞ
! "

¼jðy%yiÞ: ð17Þ

Therefore, the transformation in Eq. (15) does not change the
Gaussian kernel function output, thus has no effect on the entropy
estimate in Eq. (10) as well as on the mutual information estimate
in Eq. (2).

The above property is important for the mutual information
estimate as the metric (criterion) for class separability in discri-
minant analysis. It is known that Bayes error is the best criterion for
class separability, but it is just too complex and useless as an
analytical tool ([1, Chapter 10]). Therefore, other criteria are needed
in practice that shall be as consistent as possible with the Bayes
error. If there is a nonsingular transformation between two linear
analysis transforms, they are equivalent in Bayes error [25] since no
classification information is lost under the transformation. Accord-
ingly, criteria for discriminant analysis shall also be invariant under
such a transformation, at least under dilating/contracting. In this
sense, themutual information estimate is favorable comparedwith
prior arts: for example, the criterion used in [19] employed a fixed
kernel size and would not be invariant under dilating/contracting.
On the other hand,we can see from the above development that the
key point of the proposed estimate is in its kernel size being
described as an appropriate function of the features (i.e. as a
function of the linear projection matrix W).

Therefore, we propose to use the mutual information estimate
ÎðY,CÞ as the objective function (i.e. criterion) for discriminant
analysis, and derive in the following an algorithm to learn the
optimum W which produces maximum mutual information.

3. Learning algorithm

The objective of learning is therefore to find the optimum
transformation matrix W that maximizes the mutual information
estimate ÎðY,CÞ. However, the mutual information estimate
expressed by Eqs. (13) and (14) takes a rather complicated form,

and there is no closed-form solution to maximization. (The
estimate can be viewed as combinations of a number of Gaussian
functions, which are in turn determined by the transformation
matrix W for the discriminant analysis.)

Herewe propose a numerical solution by employing a gradient-
based optimization algorithm. To this end, we first consider each
projection vector, e.g. the k-th projection vector wk in the linear
transformation matrix, and note that the gradient of mutual
information estimate with respect to the projection vector is

rwk
IðY,CÞ ¼rwk

HðYÞ%
X

cAC
PðcÞrwk

HðYjcÞ: ð18Þ

From Eq. (13), we have

rwk
HðYÞ ¼%

1
l

Xl

i ¼ 1

bi
1
l

Xl

j ¼ 1

@jðyi%yjÞ
@wk

, ð19Þ

where

bi ¼
1
l

Xl

j ¼ 1

jðyi%yjÞ

0

@

1

A
%1

: ð20Þ

From Eq. (11), we have

@jðyi%yjÞ
@wk

¼%
1
2
jðyi%yjÞ

@ðyi%yjÞ
TC%1ðyi%yjÞ
@wk

: ð21Þ

Let us denote the quadratic function ðyi%yjÞ
TC%1ðyi%yjÞ by Wij.

And, Wij can be decomposed as below:

Wij ¼
Xdo

k1 ¼ 1

Xdo

k2 ¼ 1

c%1
k1k2

ðyik1%yjk1 Þðyik2%yjk2 Þ: ð22Þ

The gradient of Wij is

@Wij

@wk
¼
Xdo

k1 ¼ 1

Xdo

k2 ¼ 1

@c%1
k1k2

@wk
ðyik1%yjk1 Þðyik2%yjk2 Þ

"

þc%1
k1k2

@ðyik1%yjk1 Þðyik2%yjk2 Þ
@wk

&
:

ð23Þ

Consider that ðyik1%yjk2 Þ
2 is a function of wk if and only if k1¼k

and/or k2¼k, and c%1
k1k2

is a function of wk if and only if k1¼k2¼k.
Furthermore, c%1

k1k2
¼ 0 if k1ak or k2ak. The expression of the

gradient above can be written as

@Wij

@wk
¼

@c%1
kk

@wk
ðyik%yjkÞ

2þc%1
kk1

@ðyik%yjkÞ
2

@wk
: ð24Þ

For the computation of @c%1
kk =@wk, we first note from Eq. (12)

that ckk can be expressed as a direct function of wk:

ck,k ¼ z
1

l%1

Xl

i ¼ 1

wT
k ðxi%xiÞðxi%x iÞ

Twk * zwT
kFwk, ð25Þ

where x is the empirical mean of x, and F denotes the empirical
covariance matrix of x. It then follows that

@c%1
kk

@wk
¼
Z
2

@ðwT
kFwkÞ
@wk

¼ ZFwk, ð26Þ

where for simplicity we denote

Z¼%2z%1ðwT
kFwkÞ

%2: ð27Þ

Furthermore,

@ðyik%yjkÞ
2

@wk
¼ 2ðxi%xjÞðxi%xjÞTwk: ð28Þ

With the above equations, we can write the gradient of the
entropy estimate ĤðYÞ as

rwk
ĤðYÞ ¼Awk, ð29Þ
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where

A¼
1
2l2
Xl

i ¼ 1

bi

Xl

j ¼ 1

jðyi%yjÞ½ZFðyik%yjkÞ
2þ2c%1

kk ðxi%xjÞðxi%xjÞ
T (:

ð30Þ

Similarly for each within-class entropy, we have Ac. Therefore,
the gradient of the mutual information is given by

rwk
IðY,CÞ ¼ A%

X

c

PðcÞAc

 !
wk: ð31Þ

Note that because the multiplier ðA%
P

cPðcÞAcÞ contains rather
complicated functions of W, the gradient in the above equation is
indeed a nonlinear function of allwk. Using the above equations to
compute the gradient for each projection vector wk, we employ
an iterative optimization procedure to update the projection
vectors by

wðiterþ1Þ
k ¼wðiterÞ

k þlrwk
IðiterÞðY,CÞ, ð32Þ

where l is the step size. In this work, we perform a local line search
procedure to determine the step size. The method tries a number
(tentatively 15) of l in the range of [0 0.01] to updateW, and checks
if a local maximum of mutual information exists within the range
excluding the boundary points. If a local maximum exists, the
method uses that l as the final step size in this iteration. Otherwise,
it increases the range (tentatively by a factor of 1.5) and repeats the
line search procedure.

The pseudocode of the optimization procedure is described in
Fig. 1. Since the above method is a deterministic process, it is
important to set an appropriate initial value forW. In the work, we
consider selecting initial value among a randomly generated set. In
the following studies, we generate 50 samples for the initial value,

and choose the one that produces the largest mutual information
estimate.

4. Experimental results

4.1. Toy problem

We used a toy problem to investigate the proposed method, by
visualizing the generated transformation vectors in the original
space. Unlike the real world datasets to be used later that have high
dimensionality (b3), the toy problem consists of bivariate input
samples, allowing visualization in an explicit form.

Fig. 2 illustrates the problem and the result. The two classes
were not linearly separable: while the positive class (in red color)
has a unimodal Gaussian distribution, the negative class (in blue
color) is randomly scattered around a half-circle that surrounds the
positive class. After applying variousmethods including aPAC, PCA,
MeRMaID_SIG and the proposed method (MMILA), we plotted the
resultant transformation vectors as lines starting from the zero
point (note that the data were zero-meaned beforehand).

The near-horizontal line by aPAC can be reversed without
affecting the learning and classification system. Hence, the three
existing methods created quite similar transformation vectors.
Furthermore, the vectors were almost parallel to the two axes,
implying that none of the three methods can well explore the data
structure.

The proposed method MMILA produced fairly different results.
Interestingly, the two transformation vectors can be viewed as
piece-wise linear approximations to the arc-shape separation
between the two classes. Therefore, it seems that the MMILA
features can better describe the discriminative data structure.

Themethodswere further tested under strong additive noise. As
in subfigure (b), the sample distributions of the two classes were

Input: A set of training samples {x i}l
i=1 with corresponding class labels {ci}l

i=1 .

Output: A linear transformation matrix W .

Algorithm:

1. Initialization: iteration step iter = 0 , generate a number (e.g. 50 in the present

work) of random W , and choose the one as W (0) which produces the largest

mutual information estimate;

2. Compute the gradient of W (iter ) according to Eq. 31 and related equations;

3. Perform a linear search that intuitively seeks a local maximum mutual information

along the gradient direction. In the present work we simply try a range of the step

size (λ in Eq. 32, see also Section 3 below Eq.32) to update W (iter ) and check the

mutual information estimate respectively, if no local maximum exists in the range,

increase the search range and repeat the search until a local maximum is found and

set it as W (iter +1) ;

4. Iteration step iter = iter + 1 ;

5. Check termination condition: compute the gain of mutual information estimate in

this interation; terminate learning if the gain is smaller than a preset small threshold

value (1e-4 in the present work), otherwise proceed to Step 2;

Fig. 1. The learning algorithm for the proposed maximum mutual information linear discriminant analysis.
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quite overlapped due to noise. Nevertheless, MMILA still produced
similar and reasonable results like in subfigure (a).

4.2. Real-world datasets

We used four real-world classification datasets from the UCI
repository, include both 2-class data and multi-class data. The

nature of the data is largely different among the sets. Details about
the datasets are summarized in Table 1.

The experiment was conducted in MATLAB, where every
attribute in the data was linearly normalized to the range of
[0 1] beforehand. The general objectives of the experiment are: to
study the convergence of the iterative optimization method; to
assess the performance of the MMI-based discriminant analysis
method (referred toMMILAhereafter), in termsof class separability
of the features.

We evaluated the class separability in terms of classification
accuracy using randomized cross-validation and different classi-
fiers. A 5$5-fold cross-validation is conducted using the Matlab
function ‘‘crossvalind’’ from theMATLAB bioinformatics toolbox to
generate random cross-validation partitions of data. Each cross-
validation test was initialized with different random seeds. We
used a linear support vector machine (SVM-L) a Gaussian-kernel
support vector machine (SVM-G) (using the LIBSVM toolbox [26]),
and a Parzen window classifier (referred to as Parzen hereafter) [1]
that shared the same kernel size with MMILA. Each classifier
learned from the training set to classify the test set samples during
cross-validation.

The proposed method were compared against three exis-
ting methods, namely, aPAC, HELDA, PCA and MeRMaID_
SIG. The randomized cross-validation settings were consistent
across different DA methods, output dimensions, and the classifier
choice.

The statistics of the classification result is summarized in
Tables 2 and 3. Consider each combination of dataset and dimen-
sion as a particular case (e.g. ‘‘Musk’’ and dimension¼¼1). Among
all the 15 cases, MMILA yielded highest mean accuracy rate in 11
cases, aPAC in two cases, HELDA in two cases and PCA in one
case only.

Since the classification performance varies with the output
dimension of features [27,28], we plot the classification accuracy as
a function of the output dimension in Fig. 3 so as to facilitate the
analysis of the results. In the ‘‘Musk’’ and the ‘‘Glass’’ datasets,
MMILA improved classification accuracy significantly over other
discriminant analysis methods in the 42 dimensions. In ‘‘Yeast’’
and ‘‘Vehicle’’, MMILA also yielded the highest accuracy rates in
most cases.

To further examine the statistical significance of the MMILA
results compared with others, we ran t-tests of the hypothesis that
MMILA produced a higher mean classification accuracy. Paired
t-test using cross-validation results was performed using the
Matlab function ‘‘ttest’’. Particularly, we compared the results of
MMILA against those by aPAC (which provided overall the best
accuracy among the existingmethods) and those byMeRMaID_SIG,
the state-of-the-art mutual information-based feature extraction
method.

Fig. 4 further summarizes the comparison results in terms of
statistics. Specifically, it illustrates how likely MMILA would out-
perform significantly (p-valueo0:05) the two existing methods of
aPAC and MeRMaID_SIG. Compared with aPAC, MMILA tends to
produce significant improvement in nonlinear classification and
higher dimension. Compared with MeRMaID_SIG, MMILA also
outperformed in nonlinear classification.

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
aPAC
PCA
MeRMaID_SIG
MMILA

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
aPAC
PCA
MeRMaID_SIG
MMILA

Fig. 2. Toy problem for discriminative feature extraction. (2-class problem) The two
class samples are plotted as red circles or blue dots in (a), and (2-class problemwith
strong noise) as red crosses or blue dots in (b). See Subsection 4.1 for further
description. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 1
Datasets used for evaluation. Only predictive attributes are considered.

Name #instance #attribute #class Remark

Musk 476 166 2 Real-value attributes; class distribution: 43.5%, 56.5%
Yeast 1484 8 10 Real-value attributes; class distribution: 16.4%, 28.9%, 31.2%, 29.6%, 23.6%, 34.4%, 11.0%, 2.0%, 1.4%, 0.3%
Glass 214 9 6 Real-value attributes; the null class (i.e. no samples) from the original seven classes is removed; class distribution: 32.7%, 35.5%, 7.9%,

6.1%, 4.2%, 13.6%
Vehicle 846 18 4 Integer attributes in [0 1018] range; class distribution: 23.5%, 25.7%, 25.8%, 25.1%

H. Zhang et al. / Pattern Recognition 44 (2011) 877–885 881



Table 2
Classification accuracyMEAN(STD) on datasets ‘‘Musk’’ and ‘‘Yeast’’ from randomized five runs of fivefold cross-validation. Each entry here shows the statistics of the accuracy
rate samples (i.e. 25 samples from 5-by-5 cross-validation) in form of MEAN(STD).

Dataset Classifier Dimension DA methods

aPAC HELDA MeRMaID_SIG PCA MMILA

Musk SVM-L 1 0.800(0.035) 0.662(0.067) 0.758(0.043) 0.565(0.003) 0.806(0.032)
2 0.803(0.031) 0.709(0.051) 0.752(0.040) 0.565(0.003) 0.806(0.031)
4 0.804(0.030) 0.747(0.034) 0.778(0.025) 0.626(0.050) 0.803(0.029)
8 0.800(0.033) 0.759(0.040) 0.769(0.031) 0.680(0.044) 0.765(0.045)

12 0.800(0.033) 0.766(0.038) 0.769(0.029) 0.724(0.034) 0.770(0.045)

SVM-G 1 0.804(0.034) 0.697(0.042) 0.766(0.038) 0.595(0.032) 0.805(0.032)
2 0.803(0.032) 0.754(0.037) 0.781(0.030) 0.647(0.034) 0.835(0.043)
4 0.812(0.033) 0.792(0.044) 0.811(0.031) 0.684(0.037) 0.872(0.043)
8 0.821(0.038) 0.800(0.042) 0.815(0.025) 0.768(0.045) 0.884(0.037)

12 0.818(0.041) 0.795(0.037) 0.816(0.025) 0.874(0.029) 0.889(0.037)

Parzen 1 0.800(0.033) 0.690(0.038) 0.763(0.036) 0.565(0.003) 0.806(0.032)
2 0.802(0.029) 0.748(0.035) 0.771(0.036) 0.620(0.039) 0.823(0.042)
4 0.810(0.033) 0.797(0.031) 0.806(0.029) 0.687(0.043) 0.860(0.048)
8 0.818(0.035) 0.804(0.037) 0.808(0.025) 0.771(0.037) 0.878(0.039)

12 0.818(0.038) 0.810(0.030) 0.806(0.028) 0.868(0.034) 0.883(0.039)

Yeast SVM-L 1 0.419(0.017) 0.311(0.002) 0.453(0.031) 0.390(0.033) 0.418(0.021)
2 0.524(0.026) 0.395(0.018) 0.516(0.033) 0.457(0.033) 0.523(0.034)
3 0.548(0.030) 0.506(0.047) 0.532(0.018) 0.504(0.029) 0.549(0.031)
4 0.567(0.023) 0.541(0.028) 0.540(0.018) 0.559(0.023) 0.560(0.026)
5 0.579(0.023) 0.565(0.019) 0.544(0.020) 0.562(0.019) 0.565(0.030)

SVM-G 1 0.423(0.019) 0.311(0.002) 0.472(0.027) 0.406(0.032) 0.417(0.019)
2 0.535(0.022) 0.403(0.029) 0.523(0.031) 0.474(0.038) 0.539(0.031)
3 0.556(0.029) 0.513(0.040) 0.542(0.014) 0.538(0.032) 0.566(0.030)
4 0.572(0.026) 0.558(0.023) 0.548(0.017) 0.577(0.027) 0.574(0.026)
5 0.592(0.025) 0.583(0.024) 0.555(0.019) 0.582(0.027) 0.578(0.027)

Parzen 1 0.409(0.023) 0.311(0.002) 0.450(0.023) 0.381(0.022) 0.398(0.021)
2 0.511(0.024) 0.395(0.022) 0.508(0.032) 0.435(0.028) 0.513(0.023)
3 0.534(0.026) 0.491(0.041) 0.522(0.015) 0.456(0.024) 0.539(0.019)
4 0.559(0.024) 0.531(0.025) 0.536(0.020) 0.508(0.019) 0.565(0.026)
5 0.570(0.024) 0.554(0.024) 0.539(0.021) 0.537(0.030) 0.573(0.025)

Table 3
Classification accuracy MEAN(STD) on datasets ‘‘Glass’’ and ‘‘Vehicle’’ from randomized five runs of fivefold cross-validation. Each entry here shows the statistics of the
accuracy rate samples (i.e. 25 samples from 5-by-5 cross-validation) in form of MEAN(STD).

Dataset Classifier Dimension DA methods

aPAC HELDA MeRMaID_SIG PCA MMILA

Glass SVM-L 1 0.555(0.066) 0.553(0.056) 0.436(0.080) 0.365(0.028) 0.544(0.077)
2 0.568(0.088) 0.563(0.068) 0.546(0.070) 0.518(0.086) 0.556(0.063)
3 0.617(0.082) 0.566(0.067) 0.576(0.055) 0.586(0.081) 0.589(0.070)
4 0.621(0.077) 0.582(0.061) 0.581(0.056) 0.582(0.071) 0.596(0.084)
5 0.620(0.084) 0.588(0.053) 0.582(0.058) 0.591(0.048) 0.617(0.079)

SVM-G 1 0.571(0.070) 0.549(0.066) 0.496(0.061) 0.525(0.056) 0.559(0.067)
2 0.574(0.086) 0.558(0.062) 0.576(0.053) 0.590(0.075) 0.578(0.054)
3 0.627(0.052) 0.564(0.066) 0.604(0.044) 0.661(0.058) 0.645(0.056)
4 0.627(0.061) 0.567(0.053) 0.614(0.049) 0.671(0.057) 0.675(0.068)
5 0.624(0.062) 0.590(0.050) 0.609(0.044) 0.686(0.058) 0.690(0.061)

Parzen 1 0.540(0.060) 0.547(0.054) 0.469(0.054) 0.418(0.088) 0.535(0.083)
2 0.550(0.084) 0.524(0.045) 0.545(0.056) 0.548(0.101) 0.564(0.065)
3 0.578(0.055) 0.521(0.042) 0.572(0.043) 0.604(0.092) 0.623(0.064)
4 0.605(0.067) 0.548(0.062) 0.581(0.058) 0.625(0.095) 0.639(0.064)
5 0.598(0.073) 0.556(0.062) 0.589(0.052) 0.628(0.070) 0.656(0.065)

Vehicle SVM-L 1 0.573(0.036) 0.490(0.032) 0.542(0.026) 0.313(0.026) 0.593(0.025)
2 0.730(0.021) 0.731(0.026) 0.694(0.047) 0.433(0.029) 0.733(0.023)
3 0.745(0.029) 0.745(0.027) 0.717(0.028) 0.452(0.028) 0.734(0.021)
4 0.746(0.026) 0.757(0.028) 0.723(0.033) 0.448(0.039) 0.755(0.035)
5 0.752(0.028) 0.763(0.032) 0.725(0.031) 0.575(0.029) 0.760(0.023)

SVM-G 1 0.581(0.027) 0.498(0.027) 0.560(0.039) 0.441(0.028) 0.591(0.028)
2 0.739(0.022) 0.730(0.025) 0.716(0.037) 0.524(0.028) 0.744(0.025)
3 0.752(0.026) 0.766(0.027) 0.737(0.026) 0.539(0.033) 0.764(0.026)
4 0.771(0.027) 0.786(0.025) 0.748(0.023) 0.531(0.023) 0.793(0.030)
5 0.782(0.026) 0.789(0.026) 0.759(0.026) 0.625(0.031) 0.815(0.020)

Parzen 1 0.580(0.035) 0.498(0.031) 0.553(0.033) 0.332(0.033) 0.582(0.028)
2 0.743(0.024) 0.723(0.030) 0.709(0.036) 0.490(0.033) 0.748(0.026)
3 0.745(0.032) 0.751(0.023) 0.727(0.025) 0.510(0.028) 0.753(0.020)
4 0.768(0.032) 0.771(0.024) 0.745(0.024) 0.529(0.029) 0.785(0.030)
5 0.773(0.031) 0.770(0.026) 0.747(0.025) 0.605(0.028) 0.796(0.019)
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Fig. 3. Classification results using different feature extraction methods and a Parzen Window classifier (see Section 4.2). Here ‘‘MMILA’’ denotes the proposed method. The
horizontal and the vertical axes denote the output dimension (i.e. number of features) and the classification accuracy, respectively.
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Fig. 4. Percentage of cases (see Section 4.2) in which the proposedmethod (MMILA) outperforms aPAC (left panel) orMeRMaID_SIG (right panel), with statistical significance
(p-valueo0:05 in paired t-test). The black bars correspond to linear classification using SVM-L, while the blank bars to both nonlinear classifiers including SVM-G and Parzen.
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5. Discussions

Result from the toy problem suggests that MMILAmay produce
fairly different linear transformation from those by existing
methods. Particularly, it can better described the nonlinear separa-
tion between the two classes in hand. Thismay be attributed to the
fact that the mutual information essentially measures nonlinear
relationship between variables. Interestingly, this is also consistent
with the finding in the real data classification results that MMILA
tends to bemore suitable for nonlinear classification than for linear
classification.

As a generic feature extraction method, MMILA is also model-
independent or hyper-parameter free,meaning that no assumption
is made about the data structure. Therefore, the learning algorithm
does not involve ad-hoc tuning of any hyper-parameters like
learning ratio or kernel size. This also makes the implementation
and numerical study straightforward.

It is worthwhile to emphasize that MMILA is a supervised
learningmethod that utilizes the class labels of the data. Generally,
it would lead to better classification results than unsupervised
learning such as PCA, or its various extensions [29,27,30–32]. This
can be verified in the classification results presented in Fig. 3,
Tables 2 and 3.

Further development of the proposed method is intriguing. For
example, we may look into more effective optimization procedure
than the deterministic gradient-based optimization, since the
deterministic gradient optimization can be prone to slow or
premature convergence [33]. Therefore, it is interesting to inves-
tigate if global or stochastic optimization methods (such as [34])
can further improve MMILA.

Besides, while the present work was focused on linear
analysis or linear feature extraction that is certainly useful for
both pattern classification applications or visualization, its non-
linear extension can be interesting. An inspiringworkwas reported
in [35], which performed mutual information-based learning
(similar to [19]) in only the linear part of a radial basis function
network. Besides, its extension to unsupervised learning and semi-
supervised learning are also interesting. For example, active
learning may be used to take into account the unlabelled
samples [36]. Another possible direction, inspired by [37], would
be to redesign the algorithm in a unified framework called graph
embedding.

6. Conclusion

In this paper we have presented a MMI-based method for
discriminative analysis or feature extraction. The method is
based on a non-parametric mutual information estimate which
measures the dependency between features and class labels.
The kernel size for the mutual information estimate is taken as
an intrinsic explicit function of the linear transformation matrix.
And we have derived the expression of the gradient of the mutual
information estimate with respect to the transformation matrix.
We also devised a gradient-based learning algorithm using line
search.

The toy problem study has indicated that, comparedwith existing
methods, MMILA can produce fairly different linear transformations
that better describe the nonlinear separation between the classes.We
have also evaluated the method using four real world datasets from
the UCI repository, while comparing it with existing DA methods
including aPAC, HELDA andMeRMaID_SIG. The results demonstrated
overall superiority of the proposed method (MMILA), which yielded
best classification accuracy in 11 out of 15 cases. The results also
indicate that the proposed method is more suitable for nonlinear
classification than for linear classification.
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