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ABSTRACT
Brain-computer interface (BCI) technology has the prospects of

helping stroke survivors by enabling the interaction with their environ -
ment through brain signals rather than through muscles, and restoring
motor function by inducing activity-dependent brain plasticity. This
paper presents a clinical study on the extent of detectable brain signals
from a large population of stroke patients in using EEG-based motor
imagery BCI. 

EEG data were collected from 54 stroke patients whereby finger
tapping and motor imagery of the stroke-affected hand were performed
by 8 and 46 patients, respectively. EEG data from 11 patients who
gave further consent to perform motor imagery were also collected for
second calibration and third independent test sessions conducted on
separate days. Off-line accuracies of classifying the two classes of
EEG from finger tapping or motor imagery of the stroke-affected hand
versus the EEG from background rest were then assessed and
compared to 16 healthy subjects.

The mean off-line accuracy of detecting motor imagery by the 46
patients (µ=0.74) was significantly lower than finger tapping by 8
patients (µ=0.87, p=0.008), but not significantly lower than motor
imagery by healthy subjects (µ=0.78, p=0.23). Six stroke patients
performed motor imagery at chance level, and no correlation was
found between the accuracies of detecting motor imagery and their
motor impairment in terms of Fugl-Meyer Assessment (p=0.29). The
off-line accuracies of the 11 patients in the second session (µ=0.76)
were not significantly different from the first session (µ=0.72, p=0.16),
or from the on-line accuracies of the third independent test session
(µ=0.82, p=0.14). Hence this study showed that the majority of stroke
patients could use EEG-based motor imagery BCI.

INTRODUCTION
Stroke is the third leading cause of death and the leading cause of

severe disabilities in the developed world.1 Stroke affects the quality of
life of the survivors in their daily functioning in the workplace, home,
and community. However, with effective rehabilitation, stroke patients
can partially regain their motor control and continue their activities of
daily living. A recent review has explicated some future prospects of
brain-computer interface (BCI) technology in helping stroke survivors,
such as to interact with their environment through brain signals rather
than through muscles, and to restore motor function by inducing
activity-dependent brain plasticity.2 Current researches in the latter

include: using BCI to module specific EEG rhythms,3 using BCI to
trigger functional electrical stimulation (FES) to assist movement
practice,4 and using BCI to drive an orthosis and a robot to assist
movement.5 Hence research in the use of BCI to restore motor function
by inducing activity-dependent brain plasticity has just begun and
several issues need to be resolved. These include the extent of
detectable brain signals in stroke patients, how these brain signals can
be used, and the potential of BCI in improving motor functions.2

Since physical movements by stroke patients are often not possible,
alternate strategies are needed. Motor imagery, which is the mental
rehearsal of physical movement tasks, represents an alternate approach
to access the motor system for rehabilitation at all stages of stroke
recovery.6 Motor imagery is not dependent on residual motor perform -
ance, and direct cellular recordings of primates had shown that the pri -
mary motor cortex (M1) is involved during motor imagery.7 Evidence also
revealed a shared neural substrate between motor imagery and motor
execution in healthy subjects.8 Furthermore, a functional imaging study
in subcortical stroke had shown that the motor system is activated during
motor imagery despite the lesion.9 Since the capacity to perform motor
imagery is not impaired by stroke,10,11 it may be substituted for motor exe -
cution with the aim to activate the motor network in stroke.6 Unlike motor
execution which can be checked by observation, motor imagery is con -
cealed within the patient. Thus it is difficult to assess the performance of
motor imagery without involving functional magnetic resonance imag ing
(fMRI), positron-emission tomography (PET), scalp-recorded magneto -
encephalography (MEG) or electroencephalography (EEG).6 Neverthe -
less, studies have shown that distinct phenomena such as event-related
desynchronization or synchronization (ERD/ERS)12,13 are detect able
from EEG during motor imagery in healthy subjects.8,14-16 Hence, EEG-
based motor imagery brain-computer interface (MI-BCI),17-20 which
translates motor imagery into commands, can be used to objectively as -
sess the performance of motor imagery.2

At present, studies have investigated the use of BCI to detect motor
imagery on a large healthy subject population21 and on BCI-naïve
healthy subjects.17 However, there is relatively scanty information
available on stroke patients.6 To the best of the authors’ knowledge,
available studies include: MEG-based BCI on 8 stroke patients,3 and
EEG-based BCI on 5 or less stroke patients.22-25 As stroke patients
suffer neurological damage to their brain, the portion of their brain that
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is responsible for generating ERD/ERS can be compromised. Hence a
study on the extent of detectable brain signals on a larger population
of stroke patients is desired.6

This report is of the ability of stroke patients to use EEG-based
motor imagery BCI. Firstly, EEG data were collected from 54 stroke
patients recruited from a neurorehabilitation facility linked to a local
hospital. The stroke patients’ ability to use EEG-based motor imagery
BCI was assessed from the accuracy of classifying the EEG from
finger tapping or motor imagery of the stroke-affected hand versus the
background EEG during rest, using the Filter Bank Common Spatial
Pattern algorithm.26,27 The off-line accuracies of detecting motor
imagery of the stroke-affected hand from 46 stroke patients were
reported and compared to the off-line accuracies of detecting finger
tapping from 8 stroke patients, and motor imagery from 16 healthy
subjects. Subsequently, EEG data were collected from 11 of the stroke
patients who gave further consent to perform motor imagery of the
stroke-affected hand on separate days. The off-line and on-line
accuracies of detecting the motor imagery were also compared to the
results in the first part of the study.

METHODS
The study (refer NCT00955838 in ClinicalTrials.gov) was

conducted in 2 parts carried out over two and a half years. 
Participants

Ethics approval was obtained from the hospital institutional review
board and informed consent was obtained from the participants before
recruitment into the study. The participants included healthy research
staff and students recruited from the research institute, and stroke
patients admitted to a neurorehabilitation facility which was linked to a
local hospital. For the recruitment of patients, the following inclusion
criteria were applied: (1) 21 to 65 years old; (2) single clinical stroke
(ischemic or hemorrhagic); (3) moderate to severe upper extremity
(UE) weakness post-stroke; (4) able to give own consent, understand
simple instructions and learn through practice. The following exclusion
criteria were applied: (1) patients suffering from recurrent stroke,
underwent brain surgery, spasticity of Modified Ashworth scale greater
than 2; (2) fixed contracture of any upper limb joint; (3) ataxia, dystonia
or tremor of the involved upper limb or previous cervical myelopathy;
(4) upper limb pain or painful joints in upper limb; (5) severe cognitive
impairment (Abbreviated Mental Test <7/10), or (6) severe aphasia or
history of seizures in the past 12 months.

A total of 16 healthy subjects (14 males, age 17-44, 14 right-
handed), and 54 BCI naïve hemiparetic stroke patients were recruited.
The demographic variables of the patients included the type of stroke
(ischemic or hemorrhagic), side of stroke (right or left) from
neuroimaging, nature of the stroke (cortical or subcortical), and 66-
point upper extremity section of the Fugl-Meyer Assessment of Motor

Recovery After Stroke (FMA). The FMA assesses several impairment
dimensions using a 3-point ordinal scale (0=cannot perform; 1=can
perform partially; 2=can perform fully).28 Table 1 shows the
demographic of the 54 stroke patients recruited.
Experimental paradigm

In the first part, EEG data were collected from subjects who
performed single-trial motor imagery or finger tapping of the left and
right hand in the screening session. Figure 1(a) shows the timing
scheme of the screening session, which consists of four runs of 40
trials each for a total of 160 trials and an inter-run break of at least 2
minutes was given after each run. The subjects performed finger
tapping or motor imagery tasks depending on the degree of motor
deficit. They were instructed to perform finger tapping on the left and
right hand. However, if they were too weak to perform finger tapping
using the stroke-affected arm, they were instructed to perform
kinesthetic motor imagery of the stroke-affected arm instead. EEG data
were collected from 8 stroke patients who performed finger tapping
using the stroke-affected hand, and 46 stroke patients who performed
motor imagery of the stroke-affected hand. EEG data from 16 healthy
subjects who performed motor imagery of the left and right hand were
also collected to assess their ability to use EEG-based MI-BCI. No
feedback was provided for the first screening session and the EEG
data were analyzed off-line.

In the second part, EEG data were collected from stroke patients
who performed motor imagery of the stroke-affected hand on separate
days for the second and third sessions. Figure 1(b) shows the timing
for the calibration session, which consists of four runs of 40 trials each
for a total of 160 trials and an inter-run break of at least 2 minutes was
also given after each run. Each subject also performed single-trial
motor imagery or background rest with on-line robotic feedback in the
third independent test session. Figure 1(c) shows the timing for the
independent test session, which consists of 40 trials. EEG data were
collected from 11 out of the 54 stroke patients because the remaining
patients could not commit the time required for the study. The average
time lapse between the screening session in the first part and the
calibration session in the second part of the study was about two
months. The second session collected EEG data for calibration
purpose and thus no feedback was provided. The EEG data of the
second calibration session were also analyzed off-line. Subsequently,
the detection model was computed using EEG data from the second
session, and was then used in the third session to provide on-line
feedback using the Immotion2 MIT-Manus robotic arm.29

On-line BCI robotic feedback
The Inmotion2 MIT-Manus planar shoulder and elbow robotic arm

was used to provide the on-line BCI robotic feedback to the stroke
patients in the second part of the study. The MIT-Manus is a robotic
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Table 1
Demographic of stroke patients recruited for the first part (n = 54)

Stroke
Gender Handed ness Type Side Nature Mean age CVA to screen days FMA
M/F (%) R/L (%) I/H (%) R/L (%) C/S (%) (Range) (Range) (Range)

30 M 49 R 25 I 30 R 14 C 51.8±9.1 105±143 14.9±11.7
(55.6) (90.7) (46.3) (55.6) (25.9) (23-66) (12-589) (2-45)

M indicates Male; F, Female; R, Right; L, Left; N, None; I, Infarction; H, Hemorrhagic; C, Cortical; S, Subcortical.; CVA, Cerebrovascular accident;
FMA, Fugl-Meyer Assessment.



system that provides unrestricted unilateral passive and active shoulder
and elbow movements in the horizontal plane for stroke rehabilitation.29

In this system, the patient’s stroke-affected forearm was fixed to the
end-effector of the robot by means of a splint, and a computer screen
provided visual feedback to indicate the target location and movement
of the robot’s end-effector. For both the background rest and the motor
imagery tasks, visual feedback was provided on the screen to indicate
the success or failure of the trial. For the motor imagery task, an
additional passive movement feedback was provided by the MIT-Manus
robot when a successful motor imagery trial was completed. 

The visual and movement feedbacks were provided according to
the clock exercise therapy of the MIT-Manus robot by passively moving
the stroke-affected limb from the center position towards a target
displayed on the screen and then back to the center position.30 The
clock exercise therapy of the MIT-Manus is comprised of eight
peripheral targets that are equally spaced around a center position.
The clock exercise allows the stroke patients to draw the hands of a
clock by moving from the center to the peripheral targets and back. In
this study, the clock exercise therapy of the MIT-Manus robot was only
used to provide passive movement feedback, and the stroke patients
were instructed not to move their stroke-affected arm. 
Experimental setup

EEG measurements from 27 channels shown in Figure 2 were
collected using the Nuamps EEG acquisition hardware (http://
www.neuroscan.com) with unipolar Ag/AgCl electrodes channels,
digitally sampled at 250 Hz with a resolution of 22 bits for voltage ranges
of ±130 mV. EEG recordings from all channels are bandpass filtered
from 0.05 to 40 Hz by the acquisition hardware. The instructions were
presented in the form of visual cues displayed on the computer screen
in each trial with a rest period between trials. The subjects were
instructed to minimize physical movement and eye blinking throughout
the EEG recording process. 
EEG signal processing

The challenge in the analysis of the EEG recordings was the huge
inter-subject variability with respect to the brain signal characteristics.17

Literature suggests that the common spatial pattern (CSP) algo -
rithm17,31 is effective in constructing optimal spatial filters that

discriminates two classes of EEG measurements in MI-BCI.31-34 How -
ever, due to huge inter-subject variability, the performance of this
algorithm depends on its operational frequency band.33 Hence this
study employed the filter bank common spatial pattern (FBCSP)
algorithm to address this issue by performing autonomous selection of
key temporal-spatial discriminative EEG characteristics.26,27

The FBCSP algorithm comprises four progressive stages of EEG
processing to construct a subject-specific motor imagery detection
model. The first stage employs a filter bank that decomposes the EEG
into multiple frequency pass bands using Chebyshev Type II filters. A
total of 9 band-pass filters are used, namely, 4-8 Hz, 8-12 Hz,…, 36-40
Hz. The second stage performs CSP spatial filtering.33 Each pair of
band-pass and spatial filter computes the CSP features that are
specific to the band-pass frequency range by linearly transforming the
EEG using

TZb,i = W  Eb,i, 1)b

where Eb,i∈ ℜc×t denotes the single trial EEG from the bth band-pass
filter of the ith trial; Wb∈ ℜc×c denotes the CSP projection matrix; c is
the number of channels; t is the number of EEG samples per channel;
and T denotes transpose operator.

The spatial filtered signal Zb,i in equation (1) using Wb maximizes
the differences in the variance of the 2 classes of band-pass filtered
EEG. The m pairs of CSP features for the bth band-pass filtered EEG
is given by

T T T Tvb,i = log (diag (W
–

b Eb,i Eb,i W
–

b) / tr[W
–

b Eb,i Eb,i W
–

b]), 2)

where vb,i∈ ℜ2m; W
–

b represents the first and last m columns of Wb;
diag(•) gets the diagonal elements of the square matrix; tr[•] gets the
sum of the diagonal elements in the square matrix.

The FBCSP feature vector for the ith trial is formed using vi = [v1,i,
v2,i, …, v9,i] such that the FBCSP feature matrix from training data is V
= [vT

1 vT
2 …   vT

n]T whereby n denotes the total number of trials in the
training data, and V∈ ℜ.nx(9*2m)

The third stage selects discriminative CSP features from V for the
subject’s task using the Mutual Information-based Best Individual
Feature (MIBIF) algorithm to select k=4 best features from a total of
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Figure 1(a).
Timing of the motor imagery or finger tapping of left and right hand tasks for
the screening session in the first part of the study; (b) timing of the motor
imagery of the stroke-affected hand or background rest tasks for the
calibration session in the second part of the study; and (c) timing of the motor
imagery of the stroke-affected hand or background tasks with on-line robotic
feedback for the independent test session in the second part of the study.

Figure 2.
Positions of EEG channel locations. The reference electrode is located on
the Naison.



9*2m features.26,27 Since CSP features are paired, the corresponding
features that are paired with the selected k features are included. The
training data after feature selection is denoted as X

–
∈ ℜnxd where d

ranges from 4 to 8. For example, d=4 if all 4 features selected are from
2 pairs of CSP features; d=8 if all 4 features selected are from 4 pairs
of CSP features, since their corresponding pair is included.

The fourth stage employs the Naïve Bayesian Parzen Window
(NBPW) classification algorithm26,27 to model and classify the selected
CSP features. Given that x =[x1, x2, … xd] denotes a random
evaluation trial, the NBPW classifier estimates p(x|ω) and P(ω) from
training data samples and predicts the class ω with the highest
posterior probability p(ω|x) using 

ω = arg max p(ω|x). 3)
ω-1,2

Data analysis
In the first part of the study, the EEG data of stroke patients that

comprised 80 trials of motor imagery or finger tapping on the stroke-
affected upper limb and 80 single-trials of background rest were
analyzed. The EEG data of healthy subjects that comprised 80 trials of
motor imagery of the left hand and 80 single-trials of background rest
were also analyzed. The analysis on the motor imagery of the left hand
by the healthy subjects was arbitrarily chosen to compare with the motor
imagery or finger tapping of the stroke-affected hand by the patients. The
analysis was performed without any removal of artifacts such as
Electrooculogram (EOG). The EEG data of motor imagery or finger
tapping were extracted 0.5 to 2.5 s after the visual cue was shown to the
subject. The EEG data of the background rest were extracted 0.5 to 2.5
s before the visual cue was shown to the subject. The performance of
each subject in the first screening session was evaluated by performing
single-trial classification of the temporal-spatial filtered EEG data using
the FBCSP algorithm. The performance was objectively evaluated from
10 runs of 10-fold cross-validated EEG data. In each run, the EEG data
extracted from all the 160 trials were randomly split into 10 equal portions
in which 9 portions were used as training data and the remaining portion
as test data by the FBCSP algorithm. The classification accuracy over
10-folds was noted (mean±standard deviation). This process was then
repeated for a total of 10 runs by randomizing the manner in which the
data were divided into 10 equal portions. The objective performance of
the subject in using the EEG-based MI-BCI was then computed from the
averaged accuracy of all 10 runs.

In the second part of the study, since the subjects were instructed
to perform either motor imagery or background rest, the EEG data of
both the motor imagery and background rest were extracted 0.5 to 2.5
s after the visual cue was shown to the subject. The performance of
each subject in the second calibration session was evaluated in the
same way as the first screening session. The third session conducted
on a separate day was treated as an independent test session where
the performance of each subject was evaluated on-line using the motor
imagery detection model trained from the second calibration session.

RESULTS
Figure 3 shows the 10×10-fold cross-validation off-line accuracies

of detecting motor imagery of the stroke-affected hand by 46 patients,
finger tapping of the stroke-affected hand by 8 patients and motor
imagery of left hand by 16 healthy subjects whereby standard
deviations are plotted as vertical bars. The 95% confidence estimate of
the accuracy on the respective action at chance level is approximately
0.43 to 0.58 using the inverse of binomial cumulative distribution
function. Hence any subject whose accuracy falls between 43% and
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Figure 3.
Plot on the off-line
accuracies of
classifying motor
imagery (MI) of the
stroke-affected hand
versus the
background rest
(BR) by 46 patients,
the off-line
accuracies of
classifying finger
tapping (FT) of the
stroke-affected hand
versus BR by 8 patients and the off-line accuracies of classifying MI of the left
hand versus BR by 16 healthy subjects. The vertical axis represents the
accuracies of detecting MI or FT computed from 10×10-fold cross-validations.
The horizontal axis represents the subjects sorted by increasing accuracy of
detecting MI or FT, and the subjects’ labels were omitted for clarity.

Figure 4.
Plot on the sorted off-line accuracies of classifying motor imagery (MI) of the
stroke-affected hand versus the background rest (BR) by 46 patients and the
Fugl-Meyer Assessment (FMA) of the patient. The left vertical axis represents
the accuracies of detecting MI computed from 10×10-fold cross-validations.
The horizontal axis represents the patients sorted by increasing accuracy of
detecting MI, and the patients’ labels were omitted for clarity. The right vertical
axis represents the FMA of the correspondingly sorted patients.

Figure 5.
Plot on the off-line
accuracies of
detecting motor
imagery (MI) of the
stroke-affected
hand versus
background rest
(BR) by 11 patients
in the first
screening session,
off-line accuracies
of detecting MI
versus BR by the
patients in the second calibration session, and on-line accuracies of a third
independent test session. The vertical axis represents the accuracies of
detecting MI whereby the off-line accuracies computed from 10×10-fold cross-
validations. The horizontal axis represents the patients’ labels.



58% can be deemed as performing at chance level. The results showed
that 6/46 stroke patients performed motor imagery at chance level.

Two hypotheses on the results in Figure 3 were tested: (1) Off-line
accuracies of detecting motor imagery are different from finger tapping
of the stroke-affected hand by the patients. (2) Off-line accuracies of
detecting motor imagery of the stroke-affected hand by patients are
different from motor imagery by healthy subjects. To test these two
hypotheses, two-sample t-tests with a significance level of 0.05 were
performed. The accuracies of detecting motor imagery by the stroke
patients (µ=0.74) were significantly lower than finger tapping by the
stroke patients (µ=0.87, p=0.008), but not significantly lower than
motor imagery by the healthy subjects (µ=0.78, p=0.23). 

Figure 4 shows a plot of the off-line accuracies of detecting motor
imagery of the stroke-affected hand by 46 patients sorted in ascending
accuracy with a plot of the Fugl-Meyer Assessment score of each
patient. The hypothesis that the accuracies of detecting motor imagery
by the stroke patients are related to their Fugl-Meyer Assessment was
tested using Pearson correlation coefficient with a significance level of
0.05. The results showed that the accuracies of detecting motor
imagery was not linearly correlated to stroke patients’ Fugl-Meyer
Assessment (r=0.16, p=0.29).

Figure 5 shows a plot of the off-line and on-line accuracies of
detecting motor imagery of the stroke-affected hand by 11 patients who
gave further consent to perform motor imagery for the second and third
sessions. The off-line accuracies of detecting motor imagery of the
stroke-affected hand in the second calibration session and the on-line
accuracies of the third independent test session are also plotted. The
results showed that all the 11 patients performed motor imagery of the
stroke-affected hand better than chance level. 

Two hypotheses on the results in Figure 5 were tested: (1) Off-line
accuracies of detecting motor imagery in the second calibration session
are different from the first screening session. (2) Off-line accuracies of
detecting motor imagery in the second session are different from the on-
line accuracies in the third independent test session. To test these two
hypotheses, two-sample t-tests with a significance level of 0.05 were
performed. The results showed that the off-line accuracies of detecting
motor imagery of the stroke-affected hand by the 11 patients in the
second calibration session (µ=0.76) were not significantly different from
the first screening session (µ=0.78, p=0.62), and the on-line accuracies
in the independent test session (µ=0.80, p=0.25). 

DISCUSSION
The first part of this study showed that averaged off-line accuracy in

classifying the EEG from motor imagery of stroke-affected hand versus

the EEG from background rest of 46 patients was 74%. This was
significantly lower than the accuracy of 87% in detecting the finger
tapping of the stroke-affected hand of 8 patients, but was not
significantly lower than the accuracy of 78% in detecting the motor
imagery of the left hand by 16 healthy subjects. Off-line accuracies of
detecting motor imagery of the stroke-affected hand from 6 out of 46
patients were at chance level. Analysis on the off-line accuracies and
the motor deficit in terms of Fugl-Meyer Assessment of the upper
extremity did not show any correlation.

The second part of this study on 11 patients showed that the off-line
accuracies of the second calibration session were not significantly
different from those of the third independent session and those of the first
screening session. All of the 11 patients performed motor imagery of the
stroke-affected hand better than chance for the second session and the
third session.

While it is apparent that the accuracy of detecting motor imagery is
dependent on the method of EEG signal processing used in this study,
the accuracies reported may be improved by using a more advanced
method. Therefore, the significance of this clinical study is limited to the
use of the particular classifier to distinguish motor imagery from
background rest condition in a stroke population. Nevertheless, this
study has demonstrated that motor imagery and background rest
condition can be adequately discriminated on a large clinical
population of stroke patients, and a group of this population is able to
use EEG-based BCI over time. The results showed that a majority of
stroke patients (87%) could use MI-BCI; their accuracies were better
than chance level, and no correlation was found between the
classification accuracies and their motor impairment in terms of Fugl-
Meyer Assessment of the upper extremity. Finally, the analysis of the
functional effects from the use of BCI with robotic feedback is beyond
the scope of this paper. Ongoing research is currently being conducted
to evaluate the effectiveness of BCI-based robotic rehabilitation
compared to mechanical robotic based rehabilitation, and the details
will be reported in a separate paper.
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