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Abstract
In an electroencephalogram (EEG)-based brain–computer interface (BCI), motor imagery has
been successfully used as a communication strategy. Motor imagery causes detectable
amplitude changes in certain frequency bands of EEGs, which are dubbed event-related
desynchronization\synchronization. The frequency components that give effective
discrimination between different types of motor imagery are subject specific and identification
of these subject-specific discriminative frequency components (DFCs) is important for the
accurate classification of motor imagery activities. In this paper, we propose a new method to
estimate the DFC using the Fisher criterion and investigate the variability of these DFCs over
multiple sessions of EEG recording. Observing the variability of DFC over sessions in the
analysis, a new BCI approach called the Adaptively Weighted Spectral-Spatial Patterns
(AWSSP) algorithm is proposed. AWSSP tracks the variation in DFC over time adaptively
based on the deviation of discriminative weight values of frequency components. The
classification performance of the proposed AWSSP is compared with a static BCI approach
that employs fixed DFCs. In the offline and online experiments, AWSSP offers better
classification performance than the static approach, emphasizing the significance of tracking
the variability of DFCs in EEGs for developing robust motor imagery-based BCI systems. A
study of the effect of feedback on the variation in DFCs is also performed in online
experiments and it is found that the presence of visual feedback results in increased variation
in DFCs.
(Some figures in this article are in colour only in the electronic version)

1. Introduction

A brain–computer interface (BCI) aims to develop a direct
communication and control pathway from the human brain
to a computer. This new communication channel does not
depend on the brain’s normal output pathway of nerves
and muscles and it is a promising technology for paralyzed
patients to communicate with the external world [1–6].

BCIs based on electroencephalograms (EEGs) use various
neurological phenomena, such as visually evoked potentials,
slow cortical potentials, P300 potentials and event-related
desynchronization (ERD) or event-related synchronization
(ERS) during motor imagery in order to translate the user’s
intent into control signals for external devices. It has been
observed that the performance of motor imagery evokes
neural activation at the primary motor cortex. Preparation
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Figure 1. The DFC selection procedure.

for the actual movement or motor imagery is accompanied
by a rhythmic power decrease or increase in the primary
sensorimotor areas of the brain, which are called ERD\ERS,
respectively [7–13]. Based on the antagonistic ERD\ERS
patterns, the left- and right-hand motor imagery tasks can be
identified.

In order to discriminate motor imagery tasks, common
spatial pattern (CSP) [14–20] is an effective feature extraction
technique with respect to the topographic patterns of brain
rhythm modulations during motor imagery. The most
informative frequency bands for discriminating different motor
imagery patterns are subject specific. Reports in [12]
and [15] state that the selection of these discriminative
frequency components (DFCs) is important when extracting
features related to motor imagery tasks and for improving the
classification accuracy. Therefore, the performance of CSP
also heavily depends on its operational frequency bands.

Conventionally, the DFCs of the CSP algorithm were
either manually tuned or set to a broad band filter [17]. In
order to compute the optimal DFC, the authors in [18] proposed
the Common Spatio Spectral Pattern (CSSP) algorithm. CSSP
tried to optimize the frequency filters for each channel together
with spatial filters. The Common Sparse Spectral Spatial
Pattern (CSSSP) algorithm [17] was then proposed to optimize
an arbitrary finite impulse response (FIR) filter within the CSP
analysis. Sub-band CSP (SBCSP) [19] was later proposed to
filter the multi-channel EEG signals using the Chebyshev type
2 infinite impulse response (IIR) filter bank. The algorithm
determines the classification capabilities of each frequency
band based on the SBCSP features. The Filter Bank Common
Spatial Pattern (FBCSP) [20], which employed a fixed filter
bank of nine equal bandwidth Chebyshev type 2 IIR filters
followed by feature selection and classification algorithms,
was then proposed. Subsequently, the Discriminative Filter
Bank Common Spatial Pattern (DFBCSP) was proposed in
[21] to use subject-specific discriminative filters selected on
the basis of Fisher ratio values. The system uses a parent filter
bank of 12 FIR filters in the frequency range of 6–40 Hz. The
parent filter bank filters the subject’s EEG, and the Fisher ratio
at each filter output is used to decide the subject-specific filter
bank. Then, CSP features are extracted from the filtered EEG
for classification.

All of the above-mentioned works in [14–21] focus on the
selection of subject-specific DFCs related to motor imagery.
But the stability of these subject-specific DFCs over time and
its effect on the classification performance of different classes
of motor imagery are hardly discussed in the literature.

Therefore, in this paper, we present the following:

(i) A study of the variation in DFCs over various sessions.
In order to estimate the DFCs, a new algorithm based
on discriminative weight (DW) values of frequency
components has been employed.

(ii) The BCI approach named Adaptively Weighted Spectral-
Spatial Patterns (AWSSP) tracks the variation in DFCs
over time. The DW of each frequency component is
computed from the Fisher ratio pattern of EEG signals.
In order to demonstrate the impact of tracking the
variability in DFCs on the performance of the BCI, a
static classification approach that employs fixed bands is
also presented for comparison.

(iii) Online and offline experiments to evaluate the proposed
BCI approaches.

(iv) Online experiments to study the effect of feedback on the
DW values of DFCs.

The paper is organized as follows. Section 2 presents
the methodology, including the DFC selection and BCI
approaches. The experimental data are discussed in section 3.
Section 4 presents an analysis of the offline EEG dataset
and discusses the variation in DFCs over the sessions.
Section 5 discusses the classification results of offline and
online experiments and section 6 offers our conclusions.

2. Methodology

2.1. DFC selection technique

Proper identification of DFCs during various motor imagery
tasks (such as left hand and right hand imagery) is important
for achieving good classification performance in BCIs [5, 12,
22]. Figure 1 shows the various steps in the proposed DFC
selection procedure using DW values. The technique uses
the DW values of the EEG signal computed from the time–
frequency Fisher ratio pattern for finding out the DFCs. The
Fisher ratio is an effective measure of discrimination between
two classes of data. In our context, two types of motor imagery
are analyzed: the imagination of right hand and left hand
movement.

In order to obtain the Fisher ratio values, it is necessary
to compute the power spectral density of EEG signals. For
every single trial EEG, the power spectral density is computed
using the short-time Fourier transform (STFT). A single trial
EEG is the multi-channel EEG signal recorded for a certain
length of time when the subject is performing motor imagery
tasks in response to a visual cue. In the STFT estimation
for each single trial EEG, a 256-point FFT is used with a
window of length 800 ms and an overlap of 500 ms. Thus,
each trial is associated with a discrete time–frequency density
pattern In(f, t). Then, the Fisher ratio FR(f, t) is calculated
to measure the discriminative power of each time–frequency
point across trials and classes,

SW(f, t)=
C∑

k=1

nk∑

n=1

(In(f, t)− mk(f, t))(In(f, t)− mk(f, t))T

(1)

2
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SB(f, t) =
C∑

k=1

nk(m(f, t) − mk(f, t))(m(f, t) − mk(f, t))T

(2)

FR(f, t) = SB(f, t)

SW (f, t)
. (3)

In equations (1) to (3), SW , SB , mk , m and FR are two-
dimensional matrices where SW(f, t) and SB(f, t) represent
the within-class and between-class variances, respectively,
mk(f, t) is the average time–frequency density pattern for class
k, m(f , t) is the average time–frequency density pattern over
k classes where k = {1, 2,. . .,C}, and nk denotes the number
of trials for class k. The DW(f ) is computed from the time–
frequency Fisher ratio pattern FR as

DW(f ) =
T∑

t=1

FR(f, t), (4)

where T represents the number of time segments obtained by
the STFT transformation.

After obtaining the DW(f ), the band selection algorithm
identifies the DFC iteratively. The number of iterations
equals the number of bands to be estimated from the DW(f ).
Initially, the most discriminative band is estimated from the
DW(f ) using steps 1 to 5 explained here. Then, the second
discriminative band is estimated by searching the DW(f )
(from steps 1 to 5) avoiding the selected band, i.e. by replacing
the weight values of frequency components under the selected
band by zero. For example, if the first discriminative band is
selected as 8–14 Hz, the second band is estimated from the
DW(f ) after replacing the DW values for the frequency points
9, 10, 11, 12 and 13 Hz as zero. This procedure is repeated until
the desired number of bands are determined. The algorithm
for selecting the discriminative band in each iteration is shown
in figure 2. In this figure, the steps are separated by downward
arrows and are explained here.
Step 1. Initially, a rectangular window of width 3 Hz slides
from the frequency point at 6 Hz of the DW(f ) to the final
point at 40 Hz. The width of the rectangular window is varied
from 3 to 9 Hz in steps of 1 Hz, as shown in figure 2. In
total, we have seven distinct bandwidth specifications denoted
as BWj , where {j = 1, 2,. . ., 7}.

Step 2. We determine the energy distribution α according
to equation (5) for every location obtained when sliding the
rectangular window along the frequency axis of the DW(f ),

α(Fi, BWj ) =
fj +

BWj
2∑

f =fj −
BWj

2

DW(f ), (5)

where Fi stands for the center frequency of the ith band
location obtained while sliding the rectangular window along
the frequency axis. For example, sliding the rectangular
window of width 3 Hz results in 32 band locations, such as
6–9, 7–10, 8–11,. . ., 37–40 Hz.

Step 3. We estimate the location F
opt
j among all locations Fi ,

which provides maximum energy values α according to:

F
opt
j = arg max

Fi

α(Fi, BWj ). (6)

This computation is repeated for every BWj . Thus, for each
j , optimum energy measures α

opt
j related to center frequencies

F
opt
j are obtained.

Step 4. We compute the relative change in consecutive αopt

values in order to compare the discriminative capability of
various BWj . The relative change δj is estimated according
to equation (7) for j = {2, 3,. . ., 7}. For instance, initially
the value of δ2 is computed using values of α

opt
2 and α

opt
1 , as

shown in figure 2,

δj =
α

opt
j − α

opt
j−1

α
opt
j

× 100. (7)

Step 5. After estimating δj values, we compare its values to
a threshold of δmin. The threshold δmin is selected from the
experimental analysis and is fixed for all subjects. For various
values of δmin, such as 10%, 20%, 30%, 40%. . ., the bands
estimated by the algorithm have been noted and it is found
that as the threshold increases, the tendency to select only
3 Hz bandwidth is high. Hence, to incorporate all frequency
components in a larger bandwidth, even with a slightly higher
discriminative power contribution, the threshold is chosen as
10%. In other words, we compare the value of δ2 with δmin to
check whether the increase in bandwidth from BW1 = 3 Hz to
BW2 = 4 Hz contains frequency components that contribute
to the discriminative power. If δ2 > δmin, we look for the
contribution from the next higher bandwidth by computing δ3

and so on.
The details of steps 4 and 5 are shown in figure 3. The

search stops when δj < δmin and the (j − 1)st location is
taken as the first discriminative band, or Band 1. In order
to demonstrate the effect of selecting proper DFCs on the
classification accuracy of motor imagery tasks, we present the
calibration and evaluation procedures for developing a BCI.
In both the calibration and evaluation systems, the DFCs are
determined based on the DW values of frequency components
computed from the Fisher ratio pattern.

2.2. Classification of motor imagery patterns in the BCI

The classification process of BCI tasks includes two phases:
calibration and evaluation. During the calibration phase,
the subject undergoes a training process and the machine
learns a set of subject-specific model parameters from the
EEG data recorded. During evaluation, the learned subject-
specific model is applied to the new EEG trials to predict
which type of imagery activity has been performed. In this
paper, the calibration procedure is presented initially, and then
two evaluation methods named AWSSP and Static Weighted
Spectro-Spatial Pattern (SWSSP) are discussed. SWSSP
processes the new EEG signals using the DFC learned from
the calibration phase, whereas AWSSP uses the variable DFC
learned from new motor imagery patterns. The calibration
and evaluation phases are given in sections 2.2.1 and 2.2.2,
respectively.

3
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Figure 2. The data flow diagram for the proposed band selection process using DW values. In step 1, rectangular windows of bandwidth
varying from 3 to 9 Hz in steps of 1 Hz slide along the frequency axis of DW(f ). In step 2, the energy values are estimated according to
equation (5). Step 3 selects the optimum frequency location using equation (6) for all bandwidths and step 4 computes δ values according to
eqation (7). Step 5 does the comparison of the δ values to estimate the discriminative band.

2.2.1. Calibration phase. The calibration phase has four
stages, as illustrated in figure 4. Stage 1. Estimate the subject-
specific DFC based on the DWs of frequency components.

Stage 2. After getting the frequency bands, design the required
bandpass filters using a coefficient decimation technique and
filter the EEG.

Stage 3. Apply CSP to the bandpass filtered EEG to extract
the features.

Stage 4. Classify the extracted features to predict the task
performed. The various steps are presented in the following
subsections.

Estimation of DFC. During motor imagery, the EEG signals
recorded by electrodes on sensorimotor cortices give the

highest discrimination between various ERD\ERS patterns
[13]. Therefore, the proposed method uses the Fisher ratio
values of the EEG channel C4 in order to find out the
DFC according to the procedure explained in section 2.1.
After estimating the DFC, the bandpass filters are designed
accordingly.

Bandpass filtering using the coefficient decimation approach.
The discriminative bands located by analyzing the DW values
are used for the subject-specific filter bank design. For
the subject-specific filter design, our work uses a coefficient
decimation-based approach proposed in [23] to implement
low complexity reconfigurable FIR filters. This technique
is a computationally efficient approach to realize FIR filters
and has flexible frequency responses. The basic principle of
coefficient decimation is as follows. If every Mth coefficient

4
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Figure 3. Comparison of δ values in the band selection process.
This corresponds to steps 4 and 5 in the DFC selection algorithm.

of an FIR filter h(n) (called the modal filter) is kept unchanged
and all other coefficients are replaced by zeros, we get h′(n),
which has a multi-band frequency response,

h′(n) = h(n)CM(n), (8)

where

CM(n) =
{

1, for n = kM , k = 0, 1, 2, . . . ,M − 1

0, otherwise.
(9)

The frequency response of h′(n) is scaled by M with respect
to that of h(n) and the replicas of the frequency spectrum are
introduced at integer multiples of 2π/M . By changing the
value of M, different numbers of frequency response replicas
located at different center frequencies can be obtained. If all
of the coefficients of the coefficient decimated filter obtained
using equation (8) are grouped together after discarding the in-
between zeros, a decimated version of the original frequency
response is obtained whose pass-band width is M times that
of the original modal filter. If the multi-band frequency
responses obtained are selectively masked using inherently low
complex wide transition-band frequency response masking
filters, different low-pass, high-pass, bandpass and band-stop
filters can be obtained. This technique offers good control
over the locations of center frequencies and pass-band widths.
Depending on the frequency band information from DW
values, desired bandpass filters in the BCI system can be
obtained by choosing appropriate decimation factors. More
details of the coefficient decimation technique can be found

Figure 4. The framework during calibration.

in [23–25]. Thus, the required bandpass filters are designed
using the coefficient decimation technique to perform multi-
band filtering.

Feature extraction using CSP and classification. The CSP
technique allows us to determine spatial filters that maximize
the variance of signals of one condition and at the same
time minimize the variance of signals of another condition
[16]. These spatial filters are obtained by simultaneously
diagonalizing the two covariance matrices associated with two
populations of EEG signals. The spatially filtered signal Z of
a single trial EEG is given by

Z = WE, (10)

where E is a C × S matrix representing the raw EEG
measurement data of a single trial; C is the number of channels;
S is the number of measurement samples per channel; and W

is the CSP projection matrix. According to the CSP technique,
features from the first and last rows of Z provide maximum
discrimination between signals from two classes. Hence, a
small number (m) of the first and last rows of Z ( Zp where
p ∈ 1, . . . , 2m) are given as inputs to the classifier. The
feature vector Fp is formed according to

Fp = log

[

(var(Zp))

/ (
2m∑

i=1

var(Zi)

)]

. (11)

In this work, the CSP features are extracted from two
discriminative filter outputs and therefore each trial is
accompanied by four features corresponding to m = 1 in the
CSP algorithm. Then, features are classified using the naive
Bayesian classifier [20].

2.2.2. Evaluation phase. Two evaluation methods are
described here for classifying the new motor imagery
activities, named AWSSP and SWSSP. The AWSSP and
SWSSP algorithms differ in the way they process the new
EEG signals. Both schemes adopt the same procedure for
learning the subject-specific model.

AWSSP algorithm. Due to the non-stationarity of EEGs and
the presence of an oscillating ERD\ERS patterns, the subject-
specific DFCs may vary with time during motor imagery [13,
19, 26]. A BCI system is said to be robust if it can keep track of
the spectral non-stationarities in the EEG signals. Motivated
by this fact, we propose an adaptive method, AWSSP, that
tracks the variation in informative bands. The proposed
evaluation technique keeps estimating the DW values over
time and updates the filtering process adaptively. Figure 5
shows a schematic of the AWSSP algorithm.

5
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?

Figure 5. The framework for the Adaptively Weighted Spectral-Spatial Pattern algorithm (AWSSP) during evaluation.

Before carrying out the evaluation, a subject-specific
model is learnt from calibration. The calibration develops
the subject-specific bandpass filters, CSP projection matrix
for spatial filtering and a classifier model, as explained in
section 2.2.1. At the beginning of the proposed evaluation
process, a few motor imagery tasks are processed using the
same model parameters learnt from the calibration session.
We have fixed the number of tasks processed in the calibrated
parameters as 40 because it is found that about 30 or 40 tasks
are required to give a fair estimate of DW values. Therefore,
until the 40th task in evaluation sessions, the classifier model,
CSP transformation matrix and bandpass filters are fixed.
After the 40th task, the DW values are re-computed from
these 40 trials. Then, these updated DW values are deviated
from the calibrated DW values. This percentage deviation in
DW (DDW) is computed according to

∑Nbands
n=1

∑BW/2
k=−BW/2[DWi (fn + k) − DWi−1(fn + k)]

∑Nbands
n=1

∑BW/2
k=−BW/2 DWi−1(fn + k)

× 100,

(12)

where Nbands is the number of bands estimated (here it is 2)
and fn is the center frequency of the nth band. DWi and
DWi−1 represent the DW values in the ith and (i − 1)st trial.
At the end of the ith trial, the deviation in the DW of the
current bands is estimated using the above equation. When
DDW is greater than or equal to the threshold, the frequency
bands are estimated from the DWi values. Consequently, the
bandpass filters in the system are reconfigured. The (i + 1)st
trial is processed using the updated bands. If DDW is less
than the threshold, current bands are used for the next tasks
too, without any updates. The same procedure is repeated for
the subsequent EEG signals in every single trial too.

The various steps in the evaluation phase of the AWSSP
algorithm upon receiving a new single trial EEG during a
motor imagery task are summarized here in steps 1 to 10.
This procedure is fixed for both offline and online experiments
presented in this paper. Before proceeding to the classification
of a new EEG trial (E) in the evaluation, the subject-specific
model has to be learnt through calibration. In the explanation
given, n represents the index of motor imagery task or the
received single trial EEG matrix E of size C × S, where C is
the number of channels and S is the number of time samples.

Steps to perform the AWSSP algorithm:

(1) Initialize the index of the new single

trial EEG (E) as n = 1.

(2) Filter the EEG in the given single trial

(E) using the selected bandpass filters,

extract the CSP features (using

equations (10) and (11) in section Feature extraction using

CSP and classification) and predict the task performed

using the classifier.

(3) Compute the power spectral density of the

data E using STFT and save it in the left/right

power spectral density matrix depending on

the predicted/true class label.

(4) If n < 40, go to step 9.

If n ! 40, go to step 5. This is because the

algorithm starts updating its model parameters only

after receiving 40 motor imagery trials

in the evaluation phase.

(5) Compute the new DW (f )according to

equations (1)−(4) from the saved power spectral

density matrix of the previous 40 motor imagery tasks.

(6) Calculate DDW as per equation (12) by

comparing the existing and new DW(f ) values.

(7) If the DDW is greater than the threshold,

go to step 8. Otherwise, no updates are done;
proceed to step 9.

(8) Update frequency bands from the new DW(f )

based on equations (5)−(7). Reconfigure the

bandpass filters according to the updated bands

and retrain the classifier using the

features from the previous tasks.

(9) Wait for the next trial.

(10) When a new EEG is received,

n = n + 1; proceed to step 2.

6
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Figure 6. Effect of the threshold chosen on the performance of AWSSPsup: (a) variation in classification accuracy versus the threshold in
DDW and (b) variation in number of updates done versus the threshold in DDW.

The threshold mentioned in step 7 of the algorithm stands
for a minimum value of deviation (DDW) allowed in the DW
values of existing frequency components. This is determined
from the experimental analysis and is fixed for all subjects.
In order to study the effect of the threshold set for DDW
on the classification performance of motor imagery tasks by
AWSSPsup, the classification accuracies of the algorithm are
noted for various values of the threshold. Figure 6(a) shows the
average percentage accuracy of classification for nine subjects
in the four evaluation sessions of BCI competition IV dataset
IIb [27] for different threshold values. The details of the data
are presented in section 3.1. In order to find the threshold
setting that gives good performance with fewer updates, its
value is varied from 0% to 70%. If DDW > threshold, the
bandpass filters and classifer are updated. Obviously, as the
threshold value decreases, the number of updates done will
increase. Figure 6(b) shows the number of updates done
over four evaluation sessions per subject for various threshold
values. From the analysis, we fixed the value of the threshold
as 30% for all subjects in our analysis as it gives a comparable
performance with fewer updates compared to threshold values
of 10% and 20%.

In AWSSP, the DFC and classifier are updated using either
the true labels or the predicted labels. These two evaluation
methods are termed as supervised AWSSP (AWSSPsup) and
unsupervised AWSSP (AWSSPunsup), respectively, in the
sequel. These algorithms update the DWs of frequency
components when new EEG tasks are received. Based on
the DDW values, the bands from updated weight information
are used for processing the new task. In both AWSSPunsup and
AWSSPsup, the classifier is retrained using previous features
whenever the bands are updated.

SWSSP algorithm. In SWSSP, the model parameters
developed during calibration are fixed during evaluation also,
without any updates. The subject-specific bandpass filters,
CSP transformation matrix for spatial filtering and classifier
model used for new EEG samples are the same as those
developed during calibration. Classification accuracies of
this static algorithm can be compared to AWSSP in order
to demonstrate the impact of tracking the DFC on the
classification performance of a BCI system.

3. Experimental data

The proposed methods are analyzed using offline and online
experiments. The offline analysis is done using the publicly
available BCI competition IV dataset IIb [27]. In the online
experiments, the performance of three subjects are analyzed.

3.1. Offline data

The offline data, the BCI competition IV dataset IIb, were
collected from nine normal right-handed subjects performing
left and right motor imagery tasks. Three bipolar EEG
measurements were recorded from electrodes C3, Cz and C4,
and sampled at 250 Hz. They were bandpass filtered between
0.5 and 100 Hz, and a notch filter at 50 Hz was enabled.
During motor imagery, subjects were sitting in an armchair,
watching a screen monitor placed approximately 1 m away at
eye level. The cue-based data-recording paradigm consisted
of two classes, which were motor imagery of the left hand
and the right hand. Each trial started with a fixation cross
on the screen with an additional short acoustic warning tone
(1 kHz, 70 ms). A few seconds later a visual cue (an arrow
pointing to the left or right, according to the required class) was
presented for 1.25 s. Afterwards, the subjects had to imagine
the corresponding hand movement over a period of 4 s.

The data for each subject comprise five sessions of EEGs
recorded over different days. Each of sessions 1 and 2 has a
total of 120 motor imagery trials, with 60 left and 60 right hand
motor imagery trials per session. There are 160 trials in each
of sessions 3, 4 and 5, having 80 repetitions of both left and
right hand motor imagery tasks per session. The exceptions
are session 4 of subject 2 with 120 trials, session 2 of subject
4 with 140 trials, and session 2 of subject 4 with 140 trials.

3.2. Online experiments

The online experiments were conducted at the Institute
for Infocomm Research, Agency for Science, Technology
and Research, Singapore, using the Neuroscan NuAmps 32
channel EEG amplifier. Recorded EEGs were bandpass
filtered between 0.5 and 100 Hz and a notch filter of 50 Hz
was enabled. The sampling rate was set to 250 Hz. EEG

7
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Figure 7. The timing protocol for online experiments: (a) during
calibration and (b) during evaluation with feedback.

signals were recorded using 25 electrodes around the motor
cortex, which were F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4,
FT8, T7, C3, CZ, C4, T8, TP7, CP3, CPz, CP4, TP8, P7,
P3, Pz, P4 and P8. EEG data were taken from three subjects,
and for each subject data collection was performed on three
different days with an interval of a few weeks. After learning
the calibration model, three sessions of EEGs were recorded
each of 120 trials, consisting of 60 left and 60 right hand
movement imaginations for each subject.

During data collection, the subject was sitting in a
comfortable armchair 150 cm in front of a computer monitor
and was instructed not to move, and to keep both arms
and hands relaxed. The timing protocol for calibration and
evaluation is shown in figures 7(a) and (b), respectively. As
shown in figure 7(a), the experiment started with a display of
a fixation cross that was shown in the center of the monitor.
After 2 s, a warning stimulus was given in the form of a beep.
From 3 to 4.5 s, an arrow pointing toward the left or right was
shown on the monitor. The subject was instructed to imagine a
left or right hand movement for 5 s, depending on the direction
of the arrow. Each trial was followed by a short break of at least
1.5 s. Using the calibration session, a subject-specific model
was learnt for each subject as explained in section 2.2.1. This
model was used to evaluate new EEG signals recorded in the
online sessions.

For the evaluation session, the subject was instructed to
imagine left or right hand movement according to the cue
displayed. As given in figure 7(b), the subject performed
motor imagery between 3 and 8 s, depending on the cue.
Between 8 and 9 s, the EEG was classified online and the
classification result was translated into a feedback stimulus
in the form of a horizontal bar that appeared in the center of
the monitor. If the person imagined a left hand movement,
then the bar varying in length extended to the left, as shown
in figure 7(b). Assuming correct classifications in figure 7(b),
horizontal feedback bars have been shown toward left and

right for left and right hand motor imagery tasks, respectively.
The length of this feedback bar depends on the confidence
score of classification of the corresponding task. The time
interval between two trials was 1.5 s. The online experiments
with feedback were conducted on three different days for all
subjects. Accordingly, the experiments were divided into three
sessions. The part of the whole online experiments conducted
in one single day is referred to as a ‘session’. In each session,
adaptive and static evaluations of EEG signals were performed
separately. The details are as follows.

3.2.1. Session 1. The first online evaluation session was
conducted on the same day as the calibration for each subject.
After developing a subject-specific model according to the
procedure explained in section 2.2.1, the new trials were
processed with and without incorporating spectral updates
over time. In session 1, the first set of 120 motor imagery
trials (including 60 left and right hand trials) was processed
and classified online using the calibration model parameters
(using SWSSP). The next set of 120 motor imagery trials was
evaluated by the adaptive algorithm, addressing the spectral
non-stationarity over time (using AWSSPsup). In AWSSPsup,
the first 40 motor imagery tasks were processed using the
calibrated model parameters. The following EEG samples
were evaluated by employing the filtering and classifier
updates based on the procedures explained in section 2.2.2.

3.2.2. Session 2. The second stage of experiments,
or session 2, was conducted around 5 weeks after the
session 1 experiments. In session 2, we did the adaptive
and non-adaptive evaluations of motor imagery trials using
the AWSSPsup and SWSSP algorithms, respectively. By
performing repetitive left or right hand motor imagery tasks,
the subject may adaptively learn his or her own optimum
strategy to improve the classification performance. In order to
minimize the effect of bias that may creep in due to this subject
adaptation along with machine adaptation, we performed the
adaptive evaluation first and the static evaluation later, in
session 2. The experiments in session 2 were conducted
under the same experimental setup as that of session 1 for
each subject. The results of the experiments are discussed in
section 5.2.

3.2.3. Session 3. Both the static and adaptive evaluations in
sessions 1 and 2 were performed with feedback only. The study
in [12] reports that the relevant frequency bands can change
due to the visual feedback as the subject may try to optimize
his or her strategy with feedback, leading to changes in EEG
patterns. Therefore, one more online experimental session
(session 3) was also performed in order to investigate the
effect of feedback on the variation in the DFC. In this session,
experiments were conducted with and without feedback using
static and adaptive evaluation techniques. The specific aim of
this session was to study the effect of feedback on the variation
of DDW values of frequency components. At first, the subject
was presented with a set of 120 motor imagery trials (60 left
and 60 right) without providing feedback and then another set
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Figure 8. DW values for session 1 in subjects 1–9 of BCI competition IV dataset IIb: (a) for subjects 1, 2, 3, 4 and 5 and (b) for subjects 6,
7, 8 and 9.

Table 1. The selected frequency bands for the nine subjects.

Subject S1 S2 S3 S4 S5 S6 S7 S8 S9

Band 1 (Hz) 10–14 11–17 7–12 10–13 24–30 12–15 10–15 9–13 23–27
Band 2 (Hz) 8–11 34–39 25–30 18–22 22–25 19–27 17–25 7–10 36–40

of 120 trials along with feedback. The signals were processed
and classified using the adaptive scheme. Finally, one more set
of 120 trials was recorded with feedback, and classified using
the static scheme. During the experiment, the deviation in DW
values was computed for every new bunch of 30 single trial
motor imagery EEGs according to equation (12), compared
to the DW values obtained during the calibration phase. This
has been done for all EEGs recorded in session 3 and the
experimental results are provided in section 5.2.

4. Offline data analysis

In order to investigate the discriminative spectral variability
during the performance of motor imagery, the DFC in various
sessions of BCI competition IV dataset IIb [27] are analyzed
here. The dataset consists of five sessions of EEG recorded
from nine subjects and each session is analyzed separately
using the respective DW function.

4.1. Selection of DFC from DW values

The DFCs have been effectively located by the proposed
band selection algorithm explained in section 2.1 and can be
used in the automatic estimation of frequency bands in BCI
applications. The plots in figures 8(a–c) show the variation in
the DW values with frequency components for nine subjects
in the BCI competition IV dataset IIb in session 1. The band
selection algorithm effectively locates frequency components
with higher DW values and the estimated bands from the DW
values are given in table 1.

Based on the experimental analysis, the number of bands
is fixed as 2 in the study and increasing the number of bands
did not provide a noticeable improvement in the classification
performance. Also, the criterion level δmin is chosen as 10 for
all subjects from the analysis. The bands of relative change
less than δmin are eliminated as the corresponding frequency
components do not contribute much to the discriminative
energy distribution of the Fisher ratio pattern.
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Figure 9. Variation in DFCs in five sessions for nine subjects. The black and red plots represent the first and second most discriminative
bands respectively for the corresponding session. The x-axis represents sessions 1, 2, 3, 4 and 5 and the y-axis is the frequency in Hz.

4.1.1. Inter-session variability in DFCs. In order to analyze
the discriminative spectral variability over various sessions, the
10-fold cross-validation procedure is performed in each of the
five sessions independently in a trial-based manner. Each 10-
fold cross-validation divides the single trials of each session
into ten equal partitions. Each part comprises 12 complete
single trials of data. The data samples in each single trial are
always kept together and data samples among trials are never
mixed. In the cross-validation of each session, the single
trials of one partition are used for testing while the remaining
nine partitions are used for training. Therefore, the samples
present in test data never appear in the training data. From
each training set, we develop two discriminative frequency
bands that are used for bandpass filtering the EEG signals in
the test set. From each of the training sets in the 10-folds, 10
sets of frequency bands (total 20 bands) are estimated. Then,
the fold-specific bands are noted and the number of times each
band appears is computed. The first and second discriminative
bands are selected based on the number of times they are
selected in all folds, i.e. the most frequent band is selected as
the first discriminative band.

The 10-fold cross-validation is done on all sessions
individually and the two discriminative bands are noted.
Figures 9(a–i) show the selected discriminative bands in
five sessions for subjects 1 to 9, respectively. The black
and red plots in figure 9 represent the first and second
most discriminative bands, respectively. After choosing the
session-specific discriminative bands (based on the procedure
explained in section 2), the 10-fold cross-validation procedure
is repeated by processing all of the folds in these two selected

frequency bands in the respective sessions for all subjects.
Features from these two selected discriminative bands gave
similar or higher classification accuracies in most of the
sessions in all of the subjects compared to fold-specific bands.
Hence, the selected bands plotted in figure 9 represent the
discriminative spectral information in all sessions.

Figure 9 reveals significant inter-session variation in DFCs
in all subjects. But the degree of discriminative band variation
is found to be subject specific. For example, in subject 1, the
selected bands for sessions 1, 2, 3, 4 and 5 are {11–14 and
9–12 Hz}, {10–14 and 8–11 Hz}, {19–23 and 11–14 Hz}, {11–
14 and 22–26 Hz} and {23–29 and 35–39 Hz}, respectively.
Similarly, in all nine subjects, the discriminative bands vary
from session to session. Hence, the variability in frequency
bands over time should be addressed in a BCI to improve the
performance. The following section provides classification
results of online and offline datasets using the AWSSP and
SWSSP algorithms.

5. Classification results and discussion

5.1. Results of offline data

Among the five sessions available in the competition dataset,
the first session is used for calibration and the other four
sessions are taken for evaluation. After performing the
calibration, sessions 2, 3, 4 and 5 are evaluated using the
SWSSP and AWSSP methods.

In order to find the optimal channel for the band selection
process, the classification accuracies for various channel
selection possibilities have also been investigated. The average
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(a)

(b)

Figure 10. Comparison of classification accuracies using SWSSP, AWSSP and FBCSP: (a) in nine subjects and (b) in five sessions.

Table 2. Average classification accuracy in nine subjects over four
sessions with channels used for band selection.

Channel C3 Cz C4 C3, Cz and C4

Average accuracy 71.29% 69.25% 74.30% 68%

classification accuracies in the dataset using AWSSPsup are
presented in table 2. As the classification accuracy obtained
for C4 is better than that of other channels, we fixed C4 as the
band selection channel for our experiments.

Figure 10(a) shows the average accuracies over four
sessions for all nine subjects. The results show that the
proposed AWSSPsup method performs better than SWSSP in
most of the subjects. AWSSPsup outperforms SWSSP because
it tracks the variation in informative frequency components
over time. Making use of the true labels, AWSSPsup performs
better than AWSSPunsup, which depends on the predicted
class labels only. The classification performances using our
proposed algorithms SWSSP, AWSSPsup and AWSSPunsup

and FBCSP [20] are presented in figure 10(b). FBCSP is
the winning algorithm of the BCI competition IV held in
2008 for the discussed dataset IIb. Figure 10(b) shows the
average classification accuracies and standard deviation over
nine subjects in four evaluation sessions. It is found that,
on average, the proposed AWSSPsup method outperforms all
of the other methods listed here. The statistical analysis of
the classification accuracies obtained in the four evaluation
sessions by AWSSPsup gives a two-tailed p value of 0.002 in

a paired t-test compared to the results obtained by SWSSP.
Even though the classification performance of AWSSPsup is
better than AWSSPunsup and FBCSP, more effective techniques
have to be developed in future to obtain statistically significant
performance enhancement.

5.2. Results of online data

In the online study, the thresholds in the DDW and EEG
channel selected for band selection are consistent with those
used in the offline evaluation also. The threshold in DDW
is kept as 30% and the bands are estimated from the EEG
channel C4.

5.2.1. Results of sessions 1 and 2. Three subjects named SG,
SM and SS participated in the online experiments. The subject-
specific model learnt from the calibration session evaluates
the EEG signals recorded in the new online sessions with and
without adaptation. The results of the online experiments are
tabulated in table 3. Sessions 1 and 2 in table 3 represent
the experiments conducted on two different days, separated by
almost 5 weeks. In both sessions, 120 motor imagery trials
were evaluated adaptively as well as 120 trials non-adaptively,
using AWSSPsup and SWSSP, respectively. In sessions 1 and
2, the adaptive evaluation of all three subjects provide higher
classification accuracies than when using the static method. In
session 2, the adaptive evaluation offers an average accuracy of
86.11% whereas it is 80.11% without adaptation, even though
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Table 3. Classification results of online data for three subjects in
sessions 1 and 2.

Session Session 1 Session 2

Subject Static Adaptive Static Adaptive

SG 86.25% 91.25% 87.50% 90%
SM 87.50% 92.50% 85% 93.75%
SS 81.25% 85% 78.75% 81.25%
Average 85% 89.58% 83.75% 88.33%

Table 4. Details of the online updates in subject SM in session 1.

Index of trial DDW Updated bands Processing time

40 38.50% 15–19 and 10–14 Hz 250 ms
55 31.86% 10–17 and 28–34 Hz 271 ms
74 32.00% 7–14 and 16–20 Hz 248 ms

114 32% 9–13 and 15–20 Hz 237 ms

Table 5. Details of the online updates in subject SG in session 1.

Index of trial DDW Updated bands Processing time

40 59.35% 13–17 and 19–25 Hz 280 ms
60 31.45% 10–17 and 22–29 Hz 271 ms
84 31.03% 20–27 and 9–15 Hz 242 ms

112 31.15% 8–12 and 16–21 Hz 236 ms

session 2 was done 5 weeks after the subject-specific model
development.

It is observed that the adaptive method consistently
shows improvement in all of the subjects. This shows the
effectiveness of adaptive tracking of the spectrum variations
over time, by the proposed method. For the adaptive method
AWSSPsup, as mentioned in section AWSSP algorithm, until
the 40th trial, the signals are processed using the calibrated
model and DW values are re-computed after the 40th trial.
Then, the filtering and classifier updates are done based on the
DDW values computed according to equation (12). Whenever
DDW is greater than 30%, the bandpass filters and the classifier
model are updated. Therefore the values given in table 3
are the classification accuracies out of 80 trials in static and
adaptive methods. The first 40 trials have not been considered
in computing accuracy as they are classified before adaptation
in the adaptive method.

During calibration for subject SM, 9–15 and 20–24 Hz
were selected as the two discriminative frequency bands.
When new samples were received, four updates were done
in the adaptive evaluation of session 1 to track the variations in
the signal and the details are shown in table 4. The time taken
for displaying the feedback by the algorithm after receiving
the input EEG is also provided to show the feasibility of the
proposed method in real time applications. The processing
time mentioned here is using an Intel(r)Xeon(R) 2.00 GHz
processor of 3.25 GB RAM. In session 2 of subject SM, the
adaptation of frequency bands offers an accuracy of 93.75%
whereas it is 85% using the static method. The online updates
of DFC and DDW values for all three subjects SM, SG and SS
in the two sessions have been provided in tables 4 to 9.

Considering the performance of all three subjects, the
average times for processing a single trial with and without

Table 6. Details of the online updates in subject SS in session 1.

Index of trial DDW Updated bands Processing time

40 37.10% 9–12 and 31–37 Hz 278 ms
85 63.03% 10–13 and 15–18 Hz 264 ms

100 30.83% 9–13 and 17–23 Hz 270 ms

Table 7. Details of the online updates in subject SM in session 2.

Index of trial DDW Updated bands Processing time

40 46.18% 15–20 and 7–13 Hz 260 ms
61 31.86% 8–14 and 16–23 Hz 256 ms
98 32.21% 9–14 and 18–24 Hz 236 ms

113 30.80% 9–13 and 14–21 Hz 253 ms

Table 8. Details of the online updates in subject SG in session 2.

Index of trial DDW Updated bands Processing time

40 55.38% 15–21 and 9–16 Hz 265 ms
62 33.97% 9–13 and 18–24 Hz 250 ms
78 32.10% 20–27 and 7–12 Hz 236 ms
99 34.70% 9–14 and 19–25 Hz 236 ms

Table 9. Details of the online updates in subject SS in session 2.

Index of trial DDW Updated bands Processing time

40 51.17% 9–13 and 14–18 Hz 265 ms
59 31.40% 10–13 and 37–40 Hz 240 ms
68 35.43% 10–13 and 28–33 Hz 245 ms
98 33.17% 10–13 and 6–10 Hz 254 ms

updates are 250 and 110 ms, respectively. However, the
online updates are found to be effective in improving the
classification accuracies. Also, comparing the online adaptive
and non-adaptive evaluation results of the subjects SG, SM
and SS in two sessions, the paired t-test provides a two-tailed
p value of 0.005. The online and offline results reflect the
significant performance improvement by the adaptive method
over the static, and emphasize the importance of tracking the
non-stationary EEG spectral components in real time BCI
applications based on motor imagery.

5.2.2. Results of session 3: effect of feedback on DDW. The
study of the effect of feedback on the variation in DFCs is
performed by computing the DDW values for every new bunch
of 30 motor imagery trials received in each EEG recording.
After estimating DW values for every bunch, the DDW of
these DW values compared to the subject-specific DW values
obtained during calibration are estimated. Hence % DDW
values are estimated at trials 30, 60, 90 and 120. This
computation is repeated for all three subjects in the EEG
recordings with and without feedback. Figure 11 shows the
% DDW values for subjects SG, SM and SS with and without
feedback for EEG signals evaluated by the adaptive method.
It is observed from the figure that the deviation in DW values
in EEGs is higher in all subjects with feedback compared to
the signals without feedback.
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In order to present the variation in DDW with feedback,
the average values of % DDW values for all subjects are
computed and plotted. Figures 12 and 13 represent the average
% DDW values for EEG recordings with and without feedback
for EEGs for the three subjects in session 3, in the adaptive
and static recordings, respectively. Comparing the % DDW
values with and without feedback given in figures 12 and 13,
the percentage increase in average % DDW values over three
subjects with feedback is found to be 21.88% and 12.80% in
adaptive and static methods, respectively. This study clearly
shows that visual feedback in online experiments makes the
subject optimize his or her strategy of thinking and results in
an increased percentage DDW. As the presence of feedback
influences the variation in DFCs, the adaptation of these
informative frequency components becomes essential in BCI
experiments with feedback.

From the online and offline experimental analysis, it is
observed that the classification accuracies can be improved
by updating the DFC and bandpass filters adaptively over
time. During calibration, three calibration model parameters
are developed that comprises the discriminative bands,

Figure 13. For static evaluation.

CSP projection matrix W (or spatial filter) and classifier
model. The same classifier hyperplane and CSP matrix are
applied throughout the evaluation sessions in SWSSP. The
frequency bands and the classifier are updated in AWSSP. The
experimental results emphasize the fact that discriminative
bands play a significant role in the BCI system even though
the weights of channels obtained by the CSP matrix are kept
fixed all throughout the analysis. If two discriminative bands
cannot be estimated from a certain set of DW values, a possible
enhancement of system protocol can be made by selecting the
alpha and beta bands which generally appear in the range of
8–13 and 14–18 Hz, respectively [12, 13, 15]. This setting
will be helpful in handling real time studies.

Also, for real time applications, the design of filters
using the coefficient decimation approach can reconfigure
the frequency bands at a reduced computational complexity.
However, updating the spatial filter W and classifier model
will further improve the classification accuracy and new
adaptive methods are necessary for better results. A real
time robust BCI system should be able to track the time,
frequency and spatial domain non-stationarities of the EEG
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signal adaptively. In the preliminary online experiments, we
have used the supervised updating strategy to estimate the DW
values over time and retrain the classifier. In future, we will
be focusing on effective unsupervised updating methods for
the frequency/spatial filters and classifier model to achieve
further performance improvement [28–30].

6. Conclusion

In EEG-based BCI studies, the motor imagery patterns have
been successfully used to provide a direct communication
pathway from brain to computer. In order to accurately
classify the different motor imagery activities in a BCI, it is
important to select the subject-specific DFCs. Even though the
variability of these DFCs between subjects has been discussed
in the literature, their variation over time is hardly discussed.
Therefore, we analyze EEG signals recorded on different
days and investigate the consistency of DFCs during motor
imagery over various sessions. In the study, it is found that
the DFCs vary from session to session. Hence, we propose
a new adaptive method, AWSSP, that tracks the variability
in DFCs adaptively in a BCI framework. It is done by
continuously estimating the variations in the discriminative
weight values of DFCs and reconfiguring the subject-specific
bandpass filters. In offline and online experiments, AWSSP
yields significantly better classification accuracies than the
BCI scheme that employs the static DFCs. The performance
improvement offered by AWSSP over SWSSP emphasizes
the importance of addressing the spectral non-stationarities
in the EEG signal during motor imagery tasks. The study
of the effect of visual feedback on the DW values of frequency
components also emphasizes the requirement of updating the
discriminative frequency components over time. Further work
is needed to optimize the unsupervised adaptation techniques
and also to improve the updating strategies in time, frequency
and spatial domains.
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