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Abstract—Multichannel EEG is generally used in brain–
computer interfaces (BCIs), whereby performing EEG channel
selection 1) improves BCI performance by removing irrelevant or
noisy channels and 2) enhances user convenience from the use of
lesser channels. This paper proposes a novel sparse common spatial
pattern (SCSP) algorithm for EEG channel selection. The proposed
SCSP algorithm is formulated as an optimization problem to select
the least number of channels within a constraint of classification
accuracy. As such, the proposed approach can be customized to
yield the best classification accuracy by removing the noisy and
irrelevant channels, or retain the least number of channels without
compromising the classification accuracy obtained by using all the
channels. The proposed SCSP algorithm is evaluated using two
motor imagery datasets, one with a moderate number of channels
and another with a large number of channels. In both datasets, the
proposed SCSP channel selection significantly reduced the number
of channels, and outperformed existing channel selection methods
based on Fisher criterion, mutual information, support vector ma-
chine, common spatial pattern, and regularized common spatial
pattern in classification accuracy. The proposed SCSP algorithm
also yielded an average improvement of 10% in classification ac-
curacy compared to the use of three channels (C3, C4, and Cz).

Index Terms—Brain–computer interface (BCI), EEG channel
selection, motor imagery, sparse common spatial pattern (SCSP) .

I. INTRODUCTION

ABRAIN–COMPUTER INTERFACE (BCI) measures, an-
alyzes, and decodes brain signals to provide a nonmuscu-

lar means of controlling a device. Thus, BCIs enable users with
severe motor disabilities to use their brain signals for communi-
cation and control [1]–[5]. In BCI applications, the brain signals
are generally measured by EEG, due to its low cost and high
time resolution compared to other modalities, such as fMRI,
fNIRS, etc.

Manuscript received December 14, 2010; revised February 17, 2011;
accepted February 17, 2011. Date of publication March 22, 2011; date of current
version May 18, 2011. This work was supported by the Agency for Science,
Technology and Research (A.STAR), and the Nanyang Technological Univer-
sity, Singapore. Asterisk indicates corresponding author.

*M. Arvaneh is with the School of Computer Engineering, Nanyang Tech-
nological University, Singapore 639798 (e-mail: stuma@i2r.a-star.edu.sg).

C. Guan and K. K. Ang are with the Institute for Infocomm Research, Agency
for Science, Technology and Research (A*STAR), Singapore 138632 (e-mail:
ctguan@i2r.a-star.edu.sg; kkang@i2r.a-star.edu.sg).

C. Quek is with the School of Computer Engineering, Nanyang Technologi-
cal University, Singapore 639798 (e-mail: ashcqek@ntu.edu.sg).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TBME.2011.2131142

To achieve good performance, most BCIs require signals from
multiple sites of the scalp [6]. However, applying a large number
of EEG channels may include noisy and redundant signals that
degrade the BCI performance [7], [8]. Moreover, using a large
number of channels involves a prolonged preparation time that
directly impacts the convenience in the use of the BCI. There-
fore, selecting the least number of channels that yield the best or
required accuracy can balance both needs for performance and
convenience. However, how to perform optimal channel selec-
tion is not a trivial task, since selecting channels manually based
on neurophysiologic knowledge does not necessarily yield op-
timal results compared to using all the EEG channels [6].

Various channel selection methods have been proposed in
the literature. In [7]–[10], channel selection is embedded in
a classifier such as support vector machine (SVM) [8], [9],
which recursively eliminates the least-contributed channels in
the classification accuracy. These methods generally rely on the
performance of a specific classifier to evaluate the quality of a
set of features. In [11] and [12], the channels are ranked based
on the mutual information (MI) between the channels and the
class labels. Although these methods are independent of the
classifier, they rank the channels individually without consider-
ing the correlation between them. The common spatial pattern
(CSP) algorithm is also used for channel selection [13], [14],
whereby the channels are directly selected according to their
CSP coefficients without deriving the features corresponding
to each channel. The CSP algorithm is shown to be effective
in discriminating two classes of EEG measurements in BCI
applications [15]. It considers all the channels simultaneously,
independent of any other applied machine learning algorithms.
Since EEG measurements are generally contaminated by arti-
facts and noise, the CSP algorithm is, thus, highly sensitive to
these contaminants [16]. This motivated the research for sparse
solutions in the CSP algorithm [17]–[19]. In these methods, the
sparse spatial filters project the signals in the most discrimina-
tive direction based on a smaller number of electrodes at the
expense of lowering the accuracy.

Despite various studies, finding the optimal number and po-
sitions of EEG electrodes in a BCI application still remains
a challenging issue. Although subject-independent channel
sets are useful for a new subject, a relatively larger number
of channels is required to suit all the subjects at the same
time [10]. In contrast, subject-dependent channel selection usu-
ally incur inconvenience for the first calibration session for a
subject whereby all the channels are used, but the inconvenience
is alleviated once a reduced number of channels is used in the
following sessions. This paper focuses on subject-dependent
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channel selection to answer the following research questions in
EEG-based BCI applications: how many channels are required
for the best classification accuracy? What is the minimum num-
ber of channels required to achieve the same accuracy as ob-
tained by using all the channels? The term “all the channels”
refers to the initial set of channels that are generally used in
EEG-based BCI, for example, all the channels in a 10–20 sys-
tem. In some studies [20]–[22], a minimum number of channels
(namely C3, C4, and Cz) are deployed for motor imagery-based
BCI. Using these three channels certainly alleviates the incon-
venience of BCI preparation time, but at the expense of the
accuracy of the system. This paper also investigates the extent
of accuracy deterioration in the use of three channels compared
to the use of optimally selected channels.

To address the research questions, a novel sparse common
spatial pattern(SCSP) algorithm is proposed in this paper for
optimal EEG channel selection. The proposed algorithm mini-
mizes the number of channels by sparsifying the common spatial
filters within a constraint of classification accuracy. In order to
evaluate the performance of the proposed SCSP algorithm, two
datasets from publicly available BCI competitions are used, one
with moderate number of initial channels (22 channels) [23], and
another with much denser electrodes (118 channels) [24]. The
performance of the proposed algorithm is also compared with
several other channel selection methods, based on the Fisher
criterion (FC), MI, SVM, CSP coefficients, and the regularized
common spatial pattern (RCSP) in [17].

The remainder of this paper is organized as follows. Sec-
tion II describes the proposed method. The applied datasets and
the performed experiments are explained in Section III. Sec-
tion IV presents the experimental results and finally Section V
concludes this paper.

II. METHODOLOGY

A. CSP Algorithm as an Optimization Problem

The CSP algorithm [15], [25] is effective in discriminating
two classes of EEG data by maximizing the variance of one
class while minimizing the variance of the other class. Let � ∈
� � ×	 denotes a matrix that represents the EEG of a single trial,
where � and 	 denote the number of channels and number of
measurement samples, respectively. The CSP algorithm projects
� to spatially filtered 	 as

	 � � � (1)

where the rows of the projection matrix � are the spatial filters
and the columns of � −� are the CSP.

The CSP algorithm computes � by simultaneous diagonal-
ization of the covariance matrices from both classes. For each
centered � , the normalized covariance matrix can be obtained
from

� �
� � �

� � � � � � � � � �
(2)

where � denotes the transpose operator, and � � � � � � � � gives the
sum of diagonal elements of � . The covariance matrix of each
class � � and � � are computed by averaging over the multiple

trials of EEG data. The composite covariance matrix and its
eigenvalue decomposition are given by

� � � � � � � � � � � ψ � �
� (3)

where � � is a matrix of normalized eigenvectors with corre-
sponding matrix of eigenvalues ψ.

The whitening transformation matrix

� � ψ−� � � � �
� (4)

transforms the covariance matrices as

� ′
� � � � � � � � � ′

� � � � � � � (5)

where � ′
� and � ′

� share common eigenvectors, and the sum of
corresponding eigenvalues for the two matrices are always one,
such that

� ′
� � � Λ� � � � � ′

� � � Λ� � � � Λ� � Λ� � � (6)

where � is the identity matrix. � and Λ, respectively, denote the
matrix of eigenvectors and the diagonal matrix of eigenvalues.
The eigenvalues are sorted in descending order and the CSP
projection matrix is defined as � � � � � , which projects the
covariance matrix of each class as

� ′′
� � � � � � � � � � � Λ� � � ′′

� � � � � � � � � � � Λ�
(7)

where Λ� � Λ� � � . Since the sum of two corresponding eigen-
values is always one, the maximum variance of one class leads to
the minimum variance of the other class. This property makes
the CSP effective for classification of two distributions. The
projection of the whitened EEG signals onto the eigenvectors
corresponding to the largest eigenvalues of Λ � and Λ� gives
feature vectors that are optimal for discriminating two groups
of EEG in the least-squares sense [26].

The CSP algorithm, in computing the projection matrix � ,
can be formulated as an optimization problem given by

� � �

 �

� � �∑

� � �


 � � � 
 �
� �

� � � �∑

� � � � �


 � � � 
 �
�

� � � � � � � � � 
 
 � � � � � � � � 
 �
� � � � � � � � � � � � � � � � � �


 � � � � � � � � 
 �
� � � � � � � � � � � � � � � � � � � � � %� � (8)

where � � denotes the covariance matrix of class � . Unknown
weights 
 � ∈ � � ×� , � � � � � � � � � � � , respectively, indicate the
first and last � rows of CSP projection matrix, corresponding
to the � largest eigenvalues of Λ� and � largest eigenvalues of
Λ� .

The CSP algorithm is formulated as a quadratically con-
strained quadratic programming problem in (8) in order to for-
mulate the SCSP algorithm in the following section. In this way,
the CSP algorithm optimizes � using constraints to keep the
covariance matrices of both classes diagonal.

B. SCSP

The rows of the CSP projection matrix give nonuniform
weights to channels, so that the differences between two classes
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of the EEG signals are maximized. Hence, the CSP spatial filters
can be seen as source distribution vectors.

The use of the CSP algorithm for EEG channel selection was
proposed by Wang et al. [13]. In the proposed method, four
channels corresponding to the maximal CSP vector coefficients
were selected as the optimal channels. However, the weights of
the CSP are dense (not sparse), and only a few number of chan-
nels may have negligible weights compared to the rest. Thus, by
eliminating other channels, the remaining signals can no longer
be projected onto the direction that best discriminates the two
classes of EEG signals. Moreover, since EEG measurements
are generally contaminated by artifacts and noise, the CSP al-
gorithm that is based on the covariance matrices of EEG trials,
can be distorted by these contaminants [16].

These issues motivated the approach to sparsify the CSP spa-
tial filters to emphasize on a limited number of channels with
high variances between the classes, and to discard the rest of
the channels with low or irregular variances that may be due to
noise or artifacts.

Sparsity can be induced in the CSP algorithm by adding an
� � norm regularization term into the optimization problem given
in (8). ‖� ‖� , the � � norm of � , is the measure giving the number
of nonzero elements of � . However, solving a problem with the
� � norm is combinatorial in nature and, thus, computationally
prohibitive. Furthermore, since an infinitesimal value is treated
the same as a large value, the presence of noise in the data may
render the � � norm completely ineffective in inducing sparsity
[27]. Therefore, several alternative measures were proposed as
approximations of � � norm [27].

Among the proposed measures, the � � norm, � � � � � ; and
� � norm of � are commonly used in place of the � � norm. The � 
norm of � , � �  , is defined as

‖� ‖ �

(
�∑

� � �

� � � � 
) � � 

(9)

where � denotes the total number of elements of the vector � .
Although the � � and � � norms are very popular in regularization
algorithms, the � � � � � norm defined in (10) is sometimes used in
place of them

� � � � � �
‖� ‖ �
‖� ‖ �

� (10)

The use of the � � � � � norm in (10) ensures that the sparsest
possible vector whereby only a single element is nonzero has a
sparseness of one, and a vector with all equal nonzero elements
has a sparseness of

√
� . Since the � � � � � norm increases when

the sparsity decreases, it can be considered as a nonsparsity
measure.

Hurely and Rickard [27] compared commonly used nonspar-
sity measures based on intuitive attributes, and revealed that
the � � � � � norm satisfied more desirable attributes of nonsparsity
compared to the � � and lp norms. The � � � � � norm is limited to
the range � � �

√
� � , while the � � and � � norms are affected by the

magnitude of the components. Moreover, according to Dalton’s
first law [27], a representation is sparser if it has one large com-
ponent rather than dividing up the large component into two

TABLE I
OUTCOME OF THE NON-SPARSITY MEASURES FOR THREE EXAMPLE

smaller ones. The � � � � � and � � norms preserve this, whereas the
� � norm gives the same sparseness for both conditions. Further-
more, the � � � � � norm is scale invariant while the two norms are
not.

Table I illustrates the differences between these norms using
a toy example. Although the vector [0 0 3 5] is sparser than the
vector [0 1 3 4] due to Dalton’s first law [27], � � gives the same
sparseness. Since the � � � � � norm is scale invariant, it gives the
same sparseness for [0 0 3 5] and [0 0 6 10], but the � � and � �
norms do not give the same sparseness.

The properties of the � � � � � norm motivated its use as the
nonsparsity measure in the proposed SCSP algorithm:
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)
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� � �
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 � ‖�

‖
 � ‖�
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 �
� � � � � � � � � � � � � � � � �


 � � � � � � � � 
 �
� � � � � � � � � � � � � � � � � � � � %� � (11)

where � � � ≤ � ≤ � � is a regularization parameter that controls
the sparsity (number of removed channels) and the classification
accuracy. When � � � , the solution is essentially the same as
the CSP algorithm. The methodology to find the optimal � is
discussed in Section IV. The proposed SCSP algorithm is a non-
linear optimization problem, and due to the equality constraints
it is a nonconvex optimization problem. It can be solved us-
ing several methods such as sequential quadratic programming
(SQP) and augmented Lagrangian methods. In this study, for
� %� � , spatial filters obtained from the CSP algorithm are used
as the initial point.

In (11), the constraints lead to diagonal covariance matri-
ces in both classes. The projected signals obtained from sparse
spatial filters are, thus, uncorrelated in both classes [25], while
the RCSP algorithm in [17] optimizes the spatial filters of dif-
ferent classes independently without considering the correlation
between them. Our proposed SCSP algorithm considers the cor-
relation between the spatial filters of different classes in order
to achieve a better discrimination. To investigate this, the results
of using the proposed algorithm are compared with the results
of the RCSP algorithm [17] in Section IV.

C. SCSP-Based Channel Selection

To select channels using the proposed method, first two sparse
spatial filters corresponding to two motor imagery tasks are ob-
tained by solving the optimization problem given in (11) with
� � � . Since the value � controls the number of selected chan-
nels and the achieved classification accuracy, it should be care-
fully chosen to fulfill the application needs. The effects of � on
the system performance will be discussed in detail in Section IV.
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After obtaining the sparse filters, channels corresponding to the
zero elements in both of the spatial filters are discarded, and the
rest are defined as the selected channels.

To compare and consider the importance of each selected
channel, a ranking method is proposed as follows: first, the top-
ranked channels for each motor imagery task are determined
from the maximum of the absolute value of the corresponding
sparse spatial filter. Let � � � � 
 � � � � � and � � � � 
 � � � � � , respectively,
denote the ith best channel of the first and second motor im-
agery tasks, with corresponding absolute spatial filter coeffi-
cients � 
 � � � � and � 
 � � � � . Consequently

� 
 � � � � ≥
∣∣
 � � � � � � �

∣∣ � � � ≤ �

� 
 � � � � ≥
∣∣
 � � � � � � �

∣∣ � � � ≤ � (12)

where p and q, respectively, denote the total number of re-
maining channels in the first and second sparse spatial filters.
Thereafter, the overall channel ranks are obtained as






 � � � −� � � � � � � � � � 
 � � � � � � 
 � � � � � � � ≤ � ≤ �

 � � � � � � � � � � � � 
 � � � � � � 
 � � � � � � � ≤ � ≤ �

If � � � then 
  � � � � � � � � � 
 � � � � � � � � � ≤ � ≤ �

If � � � then 
  � � � � � � � � � 
 � � � � � � � � � ≤ � ≤ �
(13)

where � denotes the minimum of � and � . Finally, since some
channels may have been iterated twice in  � , the lower rank
is discarded. As shown in (13), in this method channels are
pairwisely ranked from both motor imagery areas.

III. EXPERIMENTS

A. Data Description

In this study, the EEG data of 14 subjects from two publicly
available datasets, one with a moderate number of channels and
another with a large number of channels, were used. These two
datasets are described as follows.

1) Dataset IIa [23] from BCI competition IV: This dataset
contains EEG data of nine subjects recorded using 22 channels.
During the recording session, the subjects were instructed with
visual cues to perform one of the four motor imagery tasks: left
hand, right hand, feet, or tongue. In this study, only the EEG data
from right and left hand motor imagery tasks were used. The
EEG data for each subject comprised of a training and testing
sets of which each set included 72 trials for each motor imagery
task. The testing set was recorded in another day.

2) Dataset IVa [24] from BCI competition III [28]: This
dataset contains EEG data of five subjects recorded using 118
channels. During the recording session, the subjects were in-
structed to perform one of two motor imagery tasks: right hand
or foot. The EEG data for each subject comprised of a training
and testing sets of which both included 280 single-trials. Since
the purpose of this study is not to investigate the performance
of the proposed algorithm on a small training dataset, the 280
single-trials data were equally distributed so that the training

set included 140 single-trials and the testing set included the
remaining 140 single-trials.

B. Data Processing

For each dataset, the EEG data from 0.5 to 2.5 s after the visual
cue were used whereby the selected time segment was used by
the winner of the BCI competition IV dataset IIa [29]. The EEG
data were band-pass filtered using elliptic filters from 8 to 35 Hz,
since this frequency band included the range of frequencies that
are mainly involved in performing motor imagery. The filtered
EEG data from the training set were then used to select the
optimal channels. The optimal channels were selected using the
first and the last sparse spatial filters obtained in (11) using
� � � . Subsequently, the classification accuracy was evaluated
on the testing set as follows: first, the CSP was retrained over
the selected channels. Subsequently, the signals from selected
channels were spatially filtered using the first and last three
spatial filters of the retrained CSP using � � � . Finally, the
variance of the spatially filtered signals were applied as the
inputs of the SVM classifier [26].

For the purpose of benchmarking, the classification accura-
cies of several EEG channel selection methods based on FC [8],
MI [11], SVM [8], CSP [13], [19], and RCSP [17] were also
evaluated on the two datasets. The FC- and MI-based channel
selection methods are filter approaches that rank the channels
based on maximizing the MI and FC between the channels and
the class labels. The SVM-based channel selection method is
a wrapper approach that recursively eliminates the least con-
tributed channels based on the classification accuracy from the
SVM classifier. The CSP-based channel selection method uses
the CSP coefficients to select the channels. The RCSP channel
selection method selects the channels by inducing the sparsity
in the spatial filters. Compared to the proposed algorithm, the
RCSP algorithm sparsifies the spatial filters without keeping the
covariance matrices of the projected signals diagonal.

The SVM classifier was used in the classification step for all
the mentioned channel selection methods. The radial basis func-
tion was used as the kernel function of the SVM as suggested
in [30], and the hyperparameters were obtained by a grid search
using cross validation on the training data [30].

IV. RESULTS AND DISCUSSION

A. SCSP Optimization Problem and the Regularization Term

The optimization problem in (11) is a nonconvex program-
ming problem because of the quadratic equality constraint. It
can be solved using several methods such as SQP. In this study,
the package fmincon available in MATLAB based on the SQP
method was used to solve this optimization problem [31], [32].
The convergence tolerance was manually set to � � −� . Hence,
the algorithm converges when the maximum constraints viola-
tion is less than � � −� , and the relative change in the objective
function is less than � � −� [32].

Fig. 1 compares the performance of the SCSP algorithm using
the � � � � � norm as the regularization term with the performance
of the SCSP algorithm that uses the � � norm instead. For each
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Fig. 1. Performance comparison of SCSP channel selection algorithm based
on two different regularization terms for (a) dataset IIa, BCI Competition IV
and (b) dataset IVa, BCI Competition III.

TABLE II
COMPARING THE AVERAGE TIME AND NUMBER OF ITERATIONS TO CONVERGE

FOR THE SCSP ALGORITHM BASED ON TWO REGULARIZATION TERMS

algorithm, different numbers of channels, ranged from three to
all the channels, were selected by varying the r value. Thereafter,
the classification accuracy corresponding to each set of selected
channels was calculated on the testing data. Fig. 1 shows that the
use of the � � � � � norm instead of the � � norm in the proposed SCSP
algorithm leads better channel selection accuracies, particularly
when the number of selected channels is relatively small. The
x-axis in Fig. 1(b) has been drawn in log scale to emphasize
on the small number of channels and present them in a more
informative way.

Table II compares the averaged elapsed time and number of
iterations required to converge for the SCSP algorithm with two
different regularization terms using MATLAB 7.5 and an Intel
Quad 2.83 GHz CPU. Table II shows that using the � � norm as
the regularization term resulted in faster convergence with less
number of iterations. Moreover, the increase of the number of
channels from 22 to 118 yielded considerable increases in the
calculation time and number of iterations for both regularization
terms.

Since the computation time is not an important issue for
off-line channel selection in BCI applications, considering the
better accuracy of using the � � � � � norm compared to the � � norm,
the former is, therefore, used in the proposed SCSP algorithm.
However, the proposed SCSP algorithm using either regulariza-
tion terms may not be practical for online BCI applications that
requires a fast response.

B. SCSP-Based Channel Selection With Different Criteria

The regularization parameter r, given in (11), controls the
classification accuracy and the number of selected channels.
Increasing r results in selecting less number of channels, but may
also result in decreasing the classification accuracy due to the
exclusion of some informative channels. Therefore, the optimal
r value should be calibrated according to the requirements of a
specific BCI application.

Fig. 2. Effects of varying r on the accuracy and number of selected channels for
four subjects. The dotted, narrow, and thick lines, respectively, denote number
of selected channels, all the channels accuracy and � � × � � -fold accuracy. � �
and � � indicate the optimal r values for SCSP1 and SCSP2, respectively.

In this study, the optimal subject-specific r was chosen from
a set of values � ∈ � � � � � � � � � � � � � � � � � � � 	 	 � applied on the
training data. First, for each r, a set of selected channels was
determined by solving the optimization problem in (11). Subse-
quently, the classification accuracy corresponding to each set of
the selected channels was computed using � � × � � -fold cross
validation on the training data. Finally, the optimal r was selected
based on the cross-validation accuracy and the given criterion.

Two channel selection criteria were investigated. The first
criterion maximizes the accuracy by removing noisy and irrel-
evant channels. The second criterion minimizes the number of
selected channels while maintaining the classification accuracy
such that it is greater or equal to the classification accuracy
from using all the channels. Based on the cross-validation ac-
curacies obtained from testing different r values on the training
data, the optimal r is selected to meet these criteria. In this pa-
per, the SCSP algorithm using the first and second criteria are,
respectively, abbreviated as SCSP1 and SCSP2.

Fig. 2 illustrates how to select optimal r values satisfying the
mentioned criteria. It also presents the effect of varying r on the
accuracy and the number of selected channels for four subjects:
(a) A1, (b) B1, (c) A9, and (d) B4. The optimal r values for
the two mentioned criteria were also indicated for each subject.
In Fig. 2, the set of selected channels corresponding to each r
was found by solving (11), and subsequently the classification
accuracy was calculated over each set of selected channels using
� � × � � -fold cross validation on the training data.

Fig. 2 shows that the use of small values of r improved the
accuracy by removing some noisy and redundant EEG channels,
while increased values of r reduced the number of channels but
also decreased the classification accuracy. When r is increased
further to approach the value 1, increased variations in the
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT METHODS APPLIED ON FIRST

DATASET WITH OVERALL 22 CHANNELS

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT METHODS APPLIED ON FIRST

DATASET WITH OVERALL 118 CHANNELS

classification accuracy were observed. The floor effect on the
number of selected channels, observed for some r values greater
than � � , showed that further increase in the r value did not yield
further reduction in the number of selected channels. According
to Fig. 2, evaluating a small subset of r values suffices to find
the optimal r to meet the mentioned criteria.

Tables III and IV summarize the performance (classification
accuracy and number of selected channels) of all subjects. The
SCSP results based on two mentioned criteria are compared with
the results of using all the channels, and in particular bench-
marked with three typical motor imagery channels (C3, C4, and
Cz). The last row of the tables presents the p-values obtained
from the paired t-test between the results of three (C3, C4, and
Cz) channels and the other results.

Table III shows the results on the dataset with moderate num-
ber of channels. According to the results, the proposed SCSP1
algorithm yielded an average improvement of 2.4% in the clas-
sification accuracy by decreasing the number of channels to
13.22 from 22. The improvement in the classification accu-
racy for some subjects such as A2 is substantial (around 11%).
This showed that the proposed SCSP1 algorithm is capable
of removing redundant and noisy channels. On average, the
proposed SCSP1 algorithm reduced 40% of the channels and
achieved a marginal improvement in the classification accu-
racy (although the improvement is not statistically significant,

Fig. 3. Spatial filters obtained from CSP and SCSP1 algorithms, for subjects
A4, A6, and A8 (22 electrodes). The dots denote the selected channels.

p-value � 0.08). Likewise, the proposed SCSP2 algorithm re-
duced on average 61.2% of the channels with only 0.16% drop
in the classification accuracy. Although the selected channels
were evaluated on the data recorded from another session in
a different day, the obtained accuracies fulfill both mentioned
criteria. This shows that the selected channels were transfer-
able to another BCI session recorded on a different day. The
results also showed that the proposed SCSP algorithm using
both criteria yielded significantly better classification accura-
cies (average 9.45% more) compared to the use of three typical
channels.

Table IV shows the results on the dataset with large number
of channels. The proposed SCSP1 algorithm yielded an average
improvement of 8.6% in the classification accuracy with the use
of only 22.6 from 118 channels. On average the SCSP1 algo-
rithm reduced 81% of the channels and achieved significantly
better classification accuracies than using all the channels (p-
value � 0.04). Similarly, the proposed SCSP2 algorithm de-
creased on average 93% of channels with interestingly 5.72%
improvement in the classification accuracy. The results also
present that the proposed SCSP algorithm using both criteria
yielded an average improvement of 11.5% in the classification
accuracy compared to the use of the fixed (C3, C4, and Cz)
layout.

Comparison between Table III and Table IV reveals that in
both datasets, the proposed SCSP channel selection significantly
reduced the number of channels with fulfilling the chosen crite-
ria. Moreover, the improvement in accuracy and the reduction in
number of channels were more salient when the SCSP algorithm
applied on the dataset with large number of channels. Compar-
ing Tables III and IV also shows that on average, dataset IVa
required more channels to achieve higher accuracy compared
to dataset IIa. This may be due to the performance of different
motor imagery actions in these two datasets: right hand and foot
in dataset IVa, right and left hand in dataset IIa.

Figs. 3 and 4 present some examples of the spatial filters
obtained from CSP and the proposed SCSP1 algorithm. The
results showed that CSP filters have large weights in several
unexpected locations from a neurophysiological point of view.
On the contrary, the SCSP filters have strong weights over the
motor cortex areas and smooth weights over the other areas.
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Fig. 4. Spatial filters obtained from CSP and SCSP1 algorithms, for subjects
B4, B5 (118 electrodes). The dots denote the selected channels.

Fig. 5. Comparison of different EEG channel selection algorithms applied on
Dataset IIa, BCI Competition IV.

This showed that the proposed SCSP yielded filters that are
neurophysiologically more relevant and interpretable.

C. Comparing with Other Channel Selection Methods

As explained in Section II, in the proposed SCSP optimization
problem given in (11), the regularization parameter r controls
the number of selected channels. Hence, change of r results in
selecting different number of channels. To consider the perfor-
mance of the proposed algorithm in selecting different number
of channels, a set of r values were applied on the training data,
and to select each specific number of channels (from 3 to all
the channels) the optimal r was defined. Finally for comparison
purpose, the classification accuracies of testing data obtained
from optimal r values were compared with the results of other
channel selection methods based on the FC, MI, SVM, CSP, and
the RCSP algorithm in [17]. In the RCSP algorithm, the first and
last obtained spatial filters were used for channel selection.

Figs. 5 and 6 depict averaged accuracy versus different num-
ber of channels selected by six different channel selection al-
gorithms. The x-axis in Fig. 6 has been drawn in log scale to
emphasize on small number of channels and present them in a
more informative way.

Fig. 6. Comparison of different EEG channel selection algorithms applied on
Dataset IVa, BCI Competition III.

The results in Figs. 5 and 6 show that the proposed algorithm
outperformed the other channel selection methods, particularly
when the number of selected channels are relatively small. Fig. 6
also shows that the three selected channels using SCSP algo-
rithm yielded less averaged accuracy compared to using (C3,C4,
and Cz). It may be because that the proposed SCSP needed a
big value of r to select only three channels among 118 channels.
As can be seen in the optimization problem 11, a big value of
r highly increases the weight of the sparsity term versus the
other term that controls the separability of two classes. There-
fore, although the proposed algorithm outperformed the other
introduced methods, it may not achieve the highest accuracy in
selecting a very few number of channels among a large number
of channels.

V. CONCLUSION

This paper focused on subject-dependent channel selection
in motor imagery-based BCI applications. For this purpose, we
investigated the reduction of channels whereby the classification
accuracy is constrained to an acceptable range. This is achieved
by solving an optimization problem that induces sparsity in the
common spatial filters.

For benchmarking purpose, the proposed SCSP algorithm us-
ing two different criteria were applied on two datasets with 22
and 118 channels each. The results showed that the proposed
SCSP algorithm using the first criterion yielded the best classifi-
cation accuracy by removing the most number of channels, and
using the second criterion retained the least number of channels
without compromising the classification accuracy from using
all the channels. The proposed SCSP algorithm using both the
criteria, also yielded an average improvement of 10% in clas-
sification accuracy compared to the use of three channels (C3,
C4, and Cz).

A comparative study of the proposed algorithm with other
channel selection methods using FC, MI, SVM, CSP, and RCSP
showed that our method outperformed the others, especially in
the case where the number of selected channels is relatively
small.

A visualization of the obtained sparse spatial filters showed
that the proposed algorithm improved the results by emphasizing
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on a limited number of channels with high variances between
the classes, and discarding the rest of the channels with low or
irregular variances that may be due to noise or artifacts.

The extension of the proposed SCSP algorithm for channel
selection to multiclass paradigms can be either performed by
computing the SCSP using the one-versus-rest approach [33],
or by using joint approximate diagonalization [34]. The former
approach is conceptually identical to the SCSP for two-class
paradigms. For multiclass paradigms, the proposed SCSP al-
gorithm for channel selection can be performed on each of the
classes versus the rest, and subsequently the selected channels
are consolidated from all the sparse spatial filters. The latter ap-
proach finds sparse spatial filters that approximately diagonalize
multiple covariance matrices from all the classes to maximize
the separation between all the classes.
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