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Abstract— There are generally two approaches to the design
of a neural fuzzy system: 1) design by human experts, and
2) design through a self-organization of the numerical training
data. While the former approach is highly subjective, the latter
is commonly plagued by one or more of the following major
problems: 1) an inconsistent rulebase; 2) the need for prior
knowledge such as the number of clusters to be computed;
3) heuristically designed knowledge acquisition methodologies;
and 4) the stability–plasticity tradeoff of the system. This paper
presents a novel self-organizing neural fuzzy system, named
Self-Adaptive Fuzzy Inference Network (SaFIN), to address the
aforementioned deficiencies. The proposed SaFIN model employs
a new clustering technique referred to as categorical learning-
induced partitioning (CLIP), which draws inspiration from the
behavioral category learning process demonstrated by humans.
By employing the one-pass CLIP, SaFIN is able to incorporate
new clusters in each input–output dimension when the existing
clusters are not able to give a satisfactory representation of the
incoming training data. This not only avoids the need for prior
knowledge regarding the number of clusters needed for each
input–output dimension, but also allows SaFIN the flexibility to
incorporate new knowledge with old knowledge in the system. In
addition, the self-automated rule formation mechanism proposed
within SaFIN ensures that it obtains a consistent resultant
rulebase. Subsequently, the proposed SaFIN model is employed in
a series of benchmark simulations to demonstrate its efficiency as
a self-organizing neural fuzzy system, and excellent performances
have been achieved.

Index Terms— Categorical learning-induced partitioning, fuzzy
neural networks, hybrid intelligent systems, self-organizing.

I. INTRODUCTION

NEURAL fuzzy systems are hybrid systems that capital-
ize on the functionalities of fuzzy systems and neural

networks [1]. The black-box nature of a neural network can
be resolved by injecting the interpretability of a fuzzy system
into the connectionist structure, while marrying the learning
powers of a neural network into a fuzzy system enables the
system to automatically refine its parameters. Despite these
improved advantages over its individual predecessors, there
are two main concerns when designing a neural fuzzy system,
namely, the fuzzy partitioning of the input and output spaces,
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and the rule-generation scheme adopted. Fuzzy partitioning for
a neural fuzzy system determines the numbers, positions, and
spreads of the linguistic labels in each input–output dimension,
while the rule generation scheme determines the set of fuzzy
rulebase/knowledge base governing the neural fuzzy system.

Existing neural fuzzy systems can be broadly classified into
two classes: design by expert knowledge and design from
data. In the former class, the computational structure of a
neural fuzzy system is manually crafted by human experts.
Prior knowledge for the design of fuzzy partitioning in the
input–output spaces and the fuzzy rulebase of the system
are determined by the human experts. Subsequently, only the
parameters of the system are fine-tuned in the learning process.
Since the primary source of knowledge for the design of such
a neural fuzzy system stems from the limited competence of
each user, the result is often highly subjective and speculative.
In addition, the difficulties in verbally formalizing interactions
in a complex application environment may result in an incon-
sistent rulebase, thus leading to a loss of accuracy [2]. Some
examples of neural fuzzy systems in this class include the
ANFIS [3] and the GARIC [4] models.

The second class of neural fuzzy systems, referred to as self-
organizing neural fuzzy systems, is based on a self-reliant and
automated design from numerical data. By integrating self-
organizing numerical methods into the learning mechanisms,
the positions and spreads of the linguistic labels in each input-
output space can be determined from the training dataset. In
addition, no initial rulebase needs to be specified prior to the
training phase of the system due to the self-automated rule
generation mechanism adopted. Fig. 1 shows the shift in the
approaches used in designing neural fuzzy systems over the
past two decades. As seen from the timeline, there has been an
increasing interest in the study of self-organizing neural fuzzy
systems mainly due to their automated and self-reliant designs
which free them from the Achilles’ heel suffered by the former
class of neural fuzzy systems [2]. Nevertheless, existing self-
organizing neural fuzzy systems suffer from one or more of
the following major drawbacks: 1) an inconsistent rulebase;
2) the need for prior knowledge such as the number of clusters
to be computed; 3) heuristically designed knowledge acquisi-
tion methodologies; and 4) the stability–plasticity tradeoff of
the system.

First, a consistent and unique rulebase allows a logical and
intuitive interpretation of the knowledge represented within the
computational structure of the neural fuzzy system [5]. On the
other hand, an inconsistent rulebase occurs when there exist
two rules in the rulebase of the system such that the precedent
conditions are similar but the resultant consequences differ.
Subsequently, totally conflicting outcomes may appear when
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Fig. 1. Timeline reflecting the types of neural fuzzy systems in the literature.
(Ref: NNFS [6], GARIC [4], ANFIS [3], POPFNN [7], FALCON-ART [8],
SONFIN [9], HyFIS [10], EFuNN [11], GenSoFNN [12], DENFIS [13],
eTS [14], SAFIS [15], eFSM [16], SeroFAM [17].)

the system encounters an input that triggers the activations of
the two rules simultaneously. This inconsistent encryption of
knowledge not only causes confusion for the human users, but
also results in a meaningless and obscure description to the
computational structure of the neural fuzzy system.

A second important consideration in the design of a neural
fuzzy system is the choice of the fuzzy partitioning tech-
nique adopted. In order to directly capture and utilize the
knowledge embedded in the raw numerical training data,
numerical methods such as fuzzy Kohonen partitioning [18],
fuzzy C-means [19], and linear vector quantization [20] were
introduced to perform partitioning of the input–output spaces.
In addition, arbitrary initialization of the input–output spaces
was also proposed in [21]. A more comprehensive review on
neural network-based clustering techniques is reported in [22].
Despite minimizing the amount of subjective information
from human experts, these numerical methods still require
prior knowledge regarding the number of clusters necessary
in each input–output dimension. Such information is often
arbitrarily determined at the beginning, and the numbers of
clusters remain fixed throughout the entire learning process.
Consequently, the system might not be able to achieve a
desirable performance for the application problem due to either
an over- or under-generalization restricted by the rigid amount
of resources made available in the system. In addition, the
predefined number of clusters in each input–output dimension
also deprives the neural fuzzy system from subsequently
incorporating new clusters upon the completion of the training
process. This is an intricate situation known as the stability–
plasticity tradeoff [23] where a regulated balance needs to
be maintained for the coexistence of past knowledge and any
future knowledge such that a current and up-to-date system is
achieved for the modeling of the application environment.

This paper presents the Self-Adaptive Fuzzy Inference Net-
work (SaFIN), a novel self-organizing neural fuzzy system,
which addresses the above-stated deficiencies faced by exist-
ing neural fuzzy systems. A fully data-driven approach is
employed for the automated formulation of fuzzy rulebase
in the SaFIN model. This approach ensures that the system
maintains a consistent knowledge encryption. In addition, the
SaFIN model employs a new clustering technique known as
the categorical learning-induced partitioning (CLIP), inspired
from the behavioral category learning process demonstrated by
humans. CLIP is a single-pass fuzzy partitioning technique that
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Fig. 2. Architecture of the SaFIN.

performs clustering of the input–output dimensions based on
knowledge extracted from each training tuple. By considering
the significance of the incoming sample with respect to any
existing clusters in the input–output dimensions, the SaFIN
model is able to automatically learn the presence of a new
cluster. As a result, it frees the human user from predeter-
mining the number of clusters present, while a balance is
struck between the new knowledge from the current incoming
training sample and the existing knowledge in the system such
that old and new knowledge is able to codefine the structure
of the model. Unlike previous heuristic clustering approaches
proposed in the neural fuzzy paradigm [11]– [16], the SaFIN
model employs a top-down approach in its clustering mecha-
nism which draws inspiration from the human-based category
learning process [24]– [29].

The rest of this paper is organized as follows. The computa-
tional structure and the reasoning process of the SaFIN model
are described in Section II. The proposed learning mechanisms
of SaFIN are introduced in Section III. Section IV evaluates
the learning and self-organizing abilities of SaFIN through
a series of benchmark experimental simulations. Lastly, Sec-
tion V concludes this paper.

II. SAFIN

This section describes the computational structure and the
reasoning process of the proposed SaFIN.

A. Architecture of SaFIN

The proposed SaFIN model is a five-layered neural fuzzy
system as shown in Fig. 2. Layer 1 consists of the input
(variable) nodes, layer 2 is the antecedent nodes, layer 3 is
the rule nodes, layer 4 consists of the consequent nodes, and
layer 5 is the output (variable) nodes. In the SaFIN model,
the input vector is denoted as x =

(
x1, . . . , x p, . . . , x P

)
.

The corresponding desired output vector is denoted as d =(
d1, . . . , dq , . . . , dQ

)
, while the computed output is denoted
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as y = (
y1, . . . , yq , . . . , yQ

)
. The notations used in Fig. 2 are

defined as follows:

P number of input dimensions
Q number of output dimensions
Ip pth input node
Oq qth output node
Jp number of fuzzy clusters in Ip
Lq number of fuzzy clusters in Oq
A jp j th antecedent fuzzy cluster in Ip
Clq lth consequent fuzzy cluster in Oq
K number of fuzzy rules
Rk kth fuzzy rule.

Layer 3 of SaFIN encrypts the rulebase of the system where
each rule node encodes an IF-THEN Mamdani-type fuzzy
rule [30] given as in (1)

Rk : IF x1 is A(k)
j1

and . . . and xP is A(k)
jP

THEN y1 is C(k)
l1

and . . . and yQ is C(k)
lQ

(1)

where A(k)
j p

(resp. C(k)
lq ) is the j th antecedent (resp. lth

consequent) node associated with the pth input (resp. qth
output) variable that is connected to the rule node Rk , see
Fig. 2. The tunable parameters of SaFIN are the centers
and widths of the fuzzy labels embedded in the antecedent
and consequent nodes, where each node defines a Gaussian
membership function described as in (2)

µ(c, σ ; x) = e−((x−c)2/σ 2) (2)

such that c and σ are the center and width of the function,
respectively. Adaptation of the parameters is performed using
the neural network-based gradient descent approach [31].

B. Reasoning Process of SaFIN

As seen from Fig. 2, the reasoning process of the SaFIN
model is represented by solid arrows where the input vector
x is presented to the system at layer 1. The proposed system
then performs the inference based on the input vector by prop-
agating the information through layers 2 to 4. Consequently,
the system produces a computed output vector y at layer 5.
The details on the reasoning process of SaFIN are discussed
here.

The generic operations for the proposed SaFIN model are
defined as follows: the activation functions of each layer M ∈
{1 . . . 5} are denoted as a(M), and the corresponding output for
an arbitrary node is denoted as o.

Layer 1: The function of the input nodes is to directly
pass on the input vector to the next layer. Hence, the neural
operation of Ip can be described as in (3)

op = a(1)
(
x p

)
= x p . (3)

Layer 2: The fuzzy labels A jp define the antecedent seg-
ments of the Mamdani-type rules described as in (1) where
each label is defined as a Gaussian function as described in
(2). The function of layer 2 of SaFIN is to perform antecedent
matching of the input training value with the respective input
labels such that the degree of similarity between x p and the

membership function embedded in A jp is computed. Hence,
the neural computation of A jp can be described as in (4)

o jp = a(2) (
op

) = µ j p(c jp, σ j p ; x p) (4)

where µ j p(c jp, σ j p ; x) refers to the Gaussian membership
function embedded in the node A jp .

Layer 3: The set of Mamdani-type rules that is induced from
the training data is defined in the rule layer of the SaFIN
model. Each rule node Rk computes the overall degree of
similarity between the input training vector and the antecedent
part of the kth fuzzy rule. Hence, the firing rate of Rk is
computed as in (5), where

ok = a(3)
(

o(k)
j1

, . . . , o(k)
jP

)
= min

p∈{1...P}
o(k)

j p
. (5)

Layer 4: This layer of SaFIN consists of the fuzzy labels
Clq that define the consequent segments of the Mamdani-type
fuzzy rules in the system. The function of layer 4 of the system
is to perform consequent derivation for the fuzzy rules based
on the information from the input vector x . Since Clq may
serve as output to more than one fuzzy rule, the cumulative
neural computation for Clq can be described as in (6)

olq = a(4)
(

o(lq)
1 , . . . , o(lq)

Klq

)
= max

k∈{1...Klq }
o(lq)

k (6)

where Klq is the total number of fuzzy rules in SaFIN that

shares the same consequent node Clq and o
(lq )
k is the output

of the kth fuzzy rule that shares Clq .
Layer 5: The function of the output nodes is to perform

defuzzification to obtain a crisp output value. This is achieved
using the center of averaging method [32] such that the neural
operation of Oq can be described as in (7)

yq = oq = a(5)
(
o1q , . . . , oLq

)

=
∑

lq∈{1q ...Lq } olq clq σlq∑
lq∈{1q ...Lq } olq σlq

(7)

where clq and σlq are the center and width of the Gaussian
function embedded in Clq , respectively.

III. LEARNING MECHANISMS IN SAFIN

There are two main components to the learning process
of the proposed SaFIN model: the fuzzy partitioning of the
input–output dimensions and the rule generation procedure.
Initially, there are neither fuzzy partitionings in the input–
output spaces nor fuzzy rules in the system, i.e., there are
no nodes in the hidden layers 2–4. A localized learning of the
fuzzy labels is carried out such that the numbers of clusters
in each input–output dimension can differ depending on the
knowledge extracted from the numerical data. The numbers,
positions, and spreads of the fuzzy labels are self-determined
from the training dataset. New clusters are incorporated into
the system when the knowledge extracted from the incom-
ing training tuple is novel as compared to existing clusters
in the system. Refinements are then made to the existing
clusters such that old knowledge in the system and new
knowledge from the incoming training tuple can coexist to
provide a more accurate representation of the training data.
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Fig. 3. Flowchart of the self-organizing clustering technique CLIP adopted
in SaFIN.

This tailored approach addresses the stability–plasticity of
SaFIN. Hence, these advantages over existing techniques serve
as the main motivations to the development of the CLIP
technique employed in the SaFIN model. As observed in [25],
global conceptual categories such as animals and vehicles
are the first level of distinctions made by young infants
during category learning. Subsequently, high-contrast basic-
level distinctions within each domain (for example, dogs
versus fish, or cars versus airplanes) are being observed
in older infants. This is then followed by moderate-contrast
(dogs versus rabbits, or cars versus motorcycles) and low-
contrast (dogs versus horses, or cars versus trucks) basic-level
distinctions demonstrated in older children while performing
category learning. By employing a similar divisive top-down
approach, the CLIP technique draws inspiration from the
behavioral category learning process exhibited by humans.
(This is an efficient method of rapid knowledge acquisition
that helps to expand the initial conceptual system formulated
during infancy [25].) Details on the proposed self-organizing
CLIP clustering technique will be presented in Section III-A.1

The second key component in the design process of SaFIN
is the formulation of the rulebase. By employing a self-
automated rule generation mechanism, no initial rulebase
needs to be prespecified by the human expert. Firstly, a fuzzy
rule is formulated to capture the knowledge from each of the
incoming training tuples. Following that, each of the fuzzy
rules in the rulebase is assigned a weightage depicting its
significance in the modeling of the application environment.
Conflicting rules with low influences are deemed as outliers
and are subsequently deleted from the system. This approach
ensures that the proposed SaFIN model maintains a consis-
tent rulebase that is able to provide an aptly description to

1In this paper, CLIP is employed in a Type-1 neural fuzzy system. An
application of CLIP in a Type-2 system can be found in [33].

the application problem. Details on the self-automated rule
generation mechanism will be presented in Section III-B.

A. Self-Organizing Clustering in SaFIN

Learning in the proposed SaFIN model begins with extract-
ing and utilizing knowledge from each incoming training
tuple to establish an initial fuzzy partitioning. Fig. 3 shows
a flowchart of the self-organizing clustering technique, CLIP,
adopted in SaFIN. With the arrival of each training tuple [x, d],
fuzzy partitioning is performed independently for each input–
output dimension. If there is no existing fuzzy partitioning in
an input dimension, then a new cluster spanning the entire
domain is formed. This conforms to the initial global con-
ceptual categories conceived by humans. For example, young
infants first see a dog (a particular instance of the global
concept animal) and associate the entire domain of animal as
a dog. It is only much later in the process of category learning
that the basic concept dog is established [29]. By translating
this initial knowledge of the global concept, the formation of
the first fuzzy cluster A1p in an input dimension p can be
described using (8)

c1p = x p

σ1p = R

(√
− (minp −x p)2

log α ,

√
− (maxp −x p)2

log α

)
(8)

where c1p and σ1p are the center and width of the Gaussian
membership function embedded in A1p . A newly created
membership function is centered upon the presented value,
while R (σ1, σ2) := 1/2 [σ1 + σ2] defines a regulator function
that ensures a fuzzy cluster has distinct semantic meaning by
maintaining a reasonable amount of buffer on either sides
of its center. Here, the boundary for the domain is given
as

[
minp, maxp

]
. The minimum membership threshold α is

defined such that the membership value of any point in the
domain should be at least α before regulation. The same
initialization procedure is repeated for each output dimension.

Fig. 4(A) shows the formation of an initial cluster in
each input–output dimension. For the special case where the
presented value coincides with the midpoint of the domain, the
corresponding fuzzy partitioning is depicted as Fig. 4(A.a).
Since the center of the newly created cluster is equidistant
from the lower and upper bounds, the membership function
obtained before and after regulation is similar where the
boundary points have the minimum membership value α. On
the other hand, for an initial cluster created in an input–output
dimension where the center is skewed from the midpoint of
the domain, the spreads of the cluster on either sides of the
center depend on the distance of the center to the respective
boundary points. This is illustrated in Fig. 4(A.b). As seen
from the figure, the spread on the side of the cluster nearer to
a boundary point can be significantly smaller than the opposite
side which is further away from the other boundary point.
In the extreme case where the first presented value coincides
with one of the boundary points, there will be no spread on
one side of the cluster while the opposing side has a very
wide spread. Such clusters deter a clear interpretation of the
knowledge encoded in the proposed SaFIN model. Hence,
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the input–output dimension after regulation. (d) Introduction of a novel data point with both left and right neighbors. (e) Creation of a new cluster based on
the novel point before regulation. (f) Final appearance of the fuzzy partitionings in the input–output dimension after regulation.

regulation is performed to ensure that each cluster created
in an input–output dimension maintains its relevance and a
distinct semantic meaning. Fig. 4(A.c) shows the resultant
cluster after performing regulation on the initially created
cluster depicted in Fig. 4(A.b). As clearly seen, an equal and
reasonable amount of spread is maintained on both sides of
the cluster center to ensure that the cluster has clear semantic
meaning.

On the other hand, if there is an existing fuzzy partitioning
in an input–output dimension, then SaFIN proceeds with com-
puting the similarities between the presented value and existing
clusters. As seen from (4), the similarity match between
an input value x p and an existing cluster in the pth input
dimension is given as SM

(
x p, A jp

)
:= µ j p(c jp, σ j p ; x p).

Subsequently, SaFIN identifies the best matched fuzzy cluster
in an input dimension via the computed similarity values,
i.e., the best matched fuzzy cluster is denoted as A j ⋆

p
where

j⋆
p = arg max j p SM

(
x p, A jp

)
. If the similarity match between

the identified best matched cluster and the presented value in
an input dimension exceeds a contrasting threshold β, the best
matched cluster is deemed as being able to give a satisfactory
description of the presented value. However, if the similarity
match falls below β, then a new cluster is created in the input
dimension based on the presented value. Similar approach
is used in the SONFIN model [9] for the discovery of new
information. However, unlike SONFIN, where old knowledge
in the system remains unchanged prior to parameter learn-
ing, adjustments and refinements are subsequently made to
the existing clusters in that dimension of SaFIN to incor-
porate the newly created cluster. This process effectively

addresses the stability–plasticity of SaFIN by allowing the
old knowledge to coexist with the new information derived
from the training data to define the rulebase. Specifically,
the existing concepts (fuzzy sets) in the input dimension
are refined and adapted to enhance their representations of
the training data encountered. As stated in [29], “every time
a new category is learned within the global domains, it is
necessarily learned as a subdivision of this larger division.” By
comparing a new exemplar with existing concepts (fuzzy sets)
in an input dimension via the computed similarity values, a
conceptually distinct category will be formed by SaFIN when
a prominent distinction is observed. This divisive top-down
category learning mechanism observed in humans is emulated
for the creation of a new fuzzy cluster in the proposed SaFIN
model. The formation of a new fuzzy cluster AJp(t)+1 in the
pth input dimension can be described using (9)

cJp(t)+1 = x p

σJp(t)+1 =

⎧
⎨

⎩

σ R if j L
p = NULL

σ L if j R
p = NULL

R
(
σ R, σ L

)
otherwise

(9)

where

σ R = R

⎛

⎜⎝

√√√√−
(
c j R

p
− x p

)2

log α
, σ j R

p
(t)

⎞

⎟⎠

σ L = R

⎛

⎜⎝

√√√√−
(
c j L

p
− x p

)2

log α
, σ j L

p
(t)

⎞

⎟⎠ .
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The immediate left and right neighbors of the newly created
cluster are denoted as A j L

p
and A j R

p
, respectively, where

j L
p =

⎧
⎨

⎩

NULL if c jp ≥ x p
for 1 ≤ jp ≤ Jp(t)

arg minc jp <x p |c jp − x p| otherwise

j R
p =

⎧
⎨

⎩

NULL if c jp ≤ x p
for 1 ≤ jp ≤ Jp(t)

arg minc jp >x p |c jp − x p| otherwise.

For simplicity, only refinements are made to the immediate
left and right neighbors of the newly created cluster. The
refinements made can be classified into three cases.

1) If the newly created cluster has no left neighbor (i.e.,
j L
p = NULL), then only the right neighbor is updated:

σ j R
p
(t + 1) = σJp(t)+1.

2) If the newly created cluster has no right neighbor (i.e.,
j R
p = NULL), then only the left neighbor is updated:

σ j L
p
(t + 1) = σJp(t)+1.

3) If the newly created cluster has both left and right
neighbors, then they both are updated: σ j L

p
(t + 1) =

σ j R
p
(t + 1) = σJp(t)+1.

The same fuzzy clustering process is performed for each
output dimension.

Fig. 4(B) illustrates the fuzzy clustering process in an input–
output dimension of the proposed SaFIN model. After an
initial cluster has been formed, SaFIN continues to perform
clustering when a novel data point is encountered, i.e., the
computed similarity values between the presented point and
the existing clusters fall below β. This is illustrated as
Fig. 4(B.a). A new cluster is then created using the information
derived from this novel data point as seen in Fig. 4(B.b). Since
the distance of the presented value from the lower bound
is significantly smaller than that from the upper bound, the
spreads on either sides of the cluster center are unbalanced.
As explained before, this will decrease the interpretability of
the knowledge encoded in the proposed SaFIN model. Hence,
regulation is performed to preserve a distinct semantic mean-
ing of the newly created cluster as seen from Fig. 4(B.c). The
existing cluster is simultaneously refined to incorporate the
newly created cluster in this figure. Following that, Fig. 4(B.d)
shows the arrival of a novel data point to the input-output
dimension. A new cluster is created where it is centered upon
the presented value in Fig. 4(B.e). The spreads of the cluster
on either sides of the center depend on the distance of the
center to the respective centers of its immediate neighbors.
The centers of the immediate neighbors have the minimum
membership value α. Finally, regulation and refinements are
performed in Fig. 4(B.f).

B. Self-Automated Rule Generation in SaFIN

The proposed SaFIN model proceeds with rule generation
after achieving fuzzy partitionings for the input–output spaces.
Fig. 5 shows the two stages of the proposed self-automated
rule generation mechanism: 1) rule creation, and 2) consis-
tency check. Rule creation formulates an initial rulebase using
information derived from the training dataset. With the arrival

Is the newly created rule
R* ! {Ajp* ,Clq*}

novel?
Yes

Find the best
matched clusters

Is the
created rulebase

consistent?

Enhance weightage

End

No

Delete inconsistent rules

Delete “orphaned” labels

Insert new rule;
Initialize weightage

No

Consistency Check

Incoming training tuple [x, d]

Yes

Start

Rule Creation

Fig. 5. Flowchart of the self-automated rule generation mechanism adopted
in SaFIN.

of each training tuple [x, d], the best matched fuzzy cluster
is found for each input–output dimension (see computations
in Section III-A). The best matched fuzzy cluster in the pth
input dimension is denoted as A j ⋆

p
, while the best matched

fuzzy cluster in the qth output dimension is denoted as Cl⋆q .

Subsequently, a fuzzy rule R⋆ is formulated where
{

A j ⋆
p

}P

p=1

and
{

Cl⋆q

}Q

q=1
are the antecedent and consequent segments

of R⋆, respectively. If R⋆ is novel, then it is inserted into
the rulebase such that the new rule RK (t)+1 = R⋆. By
performing novelty check, SaFIN is ensured a unique rulebase.
The new rule RK (t)+1 is then assigned an initial weightage
of WtK (t)+1 = 1. In the SaFIN model, weightage of a
fuzzy rule depicts its significance in modeling the application
environment. Hence, the higher the weightage of a fuzzy
rule, the greater is its potential in modeling the application
environment. On the other hand, R⋆ is not inserted into the
rulebase if it is not novel. That is, there exists a fuzzy rule
Rk⋆ in SaFIN such that Rk⋆ has the same antecedent and
consequent segments as R⋆. Subsequently, the weightage of
Rk⋆ is enhanced as Wtk⋆ (t + 1) = Wtk⋆ (t) + 1.

Following the formulation of an initial rulebase, the
proposed SaFIN model performs consistency check on the
rulebase. The design process of SaFIN is completed if
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Fig. 6. Fuzzy partitioning for the nonlinear system in (a) SaFIN, (b) SONFIN before alignment, and (c) SONFIN after alignment.

the rulebase formulated is verified to be consistent. On the
other hand, inconsistent rules with lower weightages are
deleted for an inconsistent rulebase, i.e., if Rk1 and Rk2

are two rules in SaFIN with similar precedent conditions
but differing consequences such that Wtk1 < Wtk2 , then
{Rk}K (t+1)

k=1 = {Rk}K (t)
k=1 \Rk1 . This approach of retaining the

fuzzy rule with the strongest weightage not only ensures that
the resultant rulebase is consistent but also ensures that the
proposed system provides a most aptly description of the
application environment. Finally, some of the fuzzy labels
might be “orphaned” when all fuzzy rules associated with them
have been deleted. For an input dimension p, an “orphaned”
fuzzy label is identified by A j o

p
/∈ Rk for all k. Subsequently,

the “orphaned” label A j o
p

is removed to ensure that the
resultant computational structure of SaFIN is compact, i.e.,{

A jp

}Jp(t+1)
j p=1p

=
{

A jp

}Jp(t)
j p=1p

\A j o
p
. The same deletion process

is performed for each output dimension.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section illustrates the learning and self-organizing
abilities of the proposed SaFIN model by employing it in
four application areas: 1) the identification of a nonlinear sys-
tem [9]; 2) the Nakanishi dataset [34], [35]; 3) the modeling of
highway traffic flow density [36]; and 4) the UCI dataset [37].

A. Example 1 – Identification of a Nonlinear System

This experiment studies the sensitivity of the proposed
learning mechanisms of SaFIN. The dataset is generated by a
difference equation as described in (10)

y (t + 1) = y (t)
1 + y2 (t)

+ u3 (t) (10)

where the present output of the system y (t + 1) depends
nonlinearly on its past output y (t) and an input u (t) =
sin (2π t/100). Following the description in [9], 50 000 train-
ing and 200 testing data pairs are generated with initial
conditions (u (0) , y (0)) = (0, 0). Subsequently, the SaFIN
model is applied to this identification problem with α = 0.2
and β = 0.6. Four fuzzy labels are identified by the CLIP
algorithm for each of the input–output spaces respectively,
while eight fuzzy rules are identified by the self-automated
rule generation mechanism in SaFIN. As an illustration, Fig. 6
shows the fuzzy partitioning for the input space y (t) for
the proposed SaFIN model in (a), and that for the original
problem derived by SONFIN in (b) and (c). As seen, the
fuzzy clusters identified in SaFIN are highly ordered with
distinct semantic meanings (i.e., VL–VERY LOW, L–LOW,

H–HIGH, VH–VERY HIGH). Comparatively, Fig. 6(b) shows
the initial identified fuzzy clusters in SONFIN. As seen, the
fuzzy clusters are highly overlapping, making it difficult to
induce any clear semantic meanings to the derived clusters.
To tackle this problem, SONFIN performs an additional step
to compute the similarity of a newly formed cluster with
existing clusters in the input spaces, and subsequently aligns
the new cluster. This improved result is shown in Fig. 6(c).
Although the number of fuzzy clusters identified has reduced,
the resultant fuzzy clusters still have a significant amount of
overlap as seen in the first two clusters. This illustration shows
the effectiveness of SaFIN as a neural fuzzy modeling tool
where intuitive semantic labels can be directly identified from
the raw numerical data for the input-output spaces. Fig. 7(a)
shows the modeling results of the trained SaFIN model on
the test dataset. As seen, there is a perfect match between the
computed outputs of the network and the desired outputs of
the system, with SaFIN achieving a root mean squared error
(RMSE) of 0.011 on the testing dataset.

The proposed learning mechanisms of the SaFIN model are
influenced by the preselected variables α and β. To provide a
clearer understanding of the influences of these two parameters
on the modeling performances of SaFIN, different values of
them are tested. The test results concerning the number of
identified fuzzy labels, fuzzy rules, and the RMSE on the test
dataset are listed in Fig. 7(b). From the table, it is observed
that the RMSE value remains consistent for certain ranges of
the parameters. For a fixed value of α = 0.2, the numbers
of identified fuzzy labels in the two inputs–one output spaces
increase as the contrasting threshold β increases. As a result,
a higher value of β results in a decrease in the RMSE value,
but at the expense of a larger rulebase. The same results hold
for a constant value of β = 0.6 with a decreasing minimum
membership threshold α. In conclusion, the larger the interval
[α, β], the greater the numbers of identified fuzzy labels and
fuzzy rules, and thus the lower the RMSE values. In this paper,
the variables are chosen as follows: α ∈ [0.2, 0.4] and β ∈
[0.5, 0.7] and/or with an average interval size of [0.2, 0.5].

B. Example 2 – Nakanishi Dataset

The self-organizing abilities of the proposed SaFIN model
are evaluated using three modeling experiments in the Nakan-
ishi dataset [34], [35]: modeling of 1) a nonlinear system;
2) the human operation of a chemical plant; and 3) the
daily pricing of a stock in a stock market. Following the
descriptions from these papers, each of the three datasets is
split into three groups A, B, and C, where A and B form the



TUNG et al.: A SELF-ADAPTIVE FUZZY INFERENCE NETWORK 1935

0 50 100 150 200
−2

−1

0

1

2

t

M
ag

ni
tu

de

Desired Computed

# Fuzzy Labels

# Fuzzy Labels

# Rules

# Rules

RMSE 

RMSE 

0.50
0.55
0.60
0.65
0.70

4,4;
4,4;
6,6;
6,7;

4
4
6
6

6
8
8
13
14

0.017
0.011
0.011
0.007
0.007

0.10
0.15
0.20
0.25
0.30

6,6;
4,4;
4,4;
3,4;

6
4
4
3

14
13
8
8
6

0.006
0.007
0.011
0.012
0.023

(a) (b)

RMSE = 0.011 
β

α

Inputs = 3,3; Output = 3

Inputs = 6,7; Output = 6

α = 0.2

β = 0.6

Fig. 7. (a) Modeling results for the nonlinear system when α = 0.2, β = 0.6. (b) Sensitivity test for different values of α and β.

training dataset and C is the testing data. The benchmark for
comparisons is the accuracies on the testing data (calculated
as the mean squared error MSE) and the correspondence
between the computed output with the testing data (calculated
as the Pearson correlation coefficient R). The experimental
results of SaFIN are subsequently benchmarked against the
following models: Mamdani-type models—Hebb-R-R [38],
POPFNN [7], RSPOP [39], and EFuNN [11], Reasoning mod-
els [34]— Sugeno P&P-G, Sugeno P, Sugeno P-G, Mamdani,
and Turksen IVCRI, and Takagi–Sugeno–Kang (TSK)-type
models [40]— ANFIS [3], DENFIS [13], anf FITSK [41].

1) Nonlinear System: The objective of this experiment is
to identify and model the underlying principles of a nonlinear
system. In the original dataset, there were four input (x1–x4)
and one output (y) variables. Adopting the approach suggested
in [34], only input variables x1 and x2 are subsequently used
in the modeling. Correspondingly, a total of 3, 4, and 3 fuzzy
clusters are identified by the proposed CLIP technique for
the input–output dimensions. Fig. 8(a) illustrates the identified
fuzzy clusters in the first input variable x1. Since the fuzzy
clusters are highly ordered, clear semantic meanings can be
attached to the fuzzy clusters. This result demonstrates the
excellent self-organizing clustering abilities of the proposed
SaFIN model. A total of 10 Mamdani-type fuzzy rules are
identified by SaFIN in this experiment. They are listed in
Table I. The derived rulebase is consistent, as no two rules
have similar antecedent conditions and different consequences.
In addition, the knowledge embedded in the set of fuzzy
rulebase is highly systematic and sound. This can be seen
by examining the first four rules. Keeping x1 as HIGH and
varying x2 from VERY HIGH to VERY LOW, the output
y correspondingly varies from LOW to MED. This implies
that y is inversely proportional to x2 when x1 is fixed. This
relationship is repeatedly observed when x1 is fixed at MED
or LOW. Rearranging the rules, similar observations can be
deduced between x1 and y when x2 is kept fixed. This
result demonstrates the effectiveness of the self-automated
rule generation mechanism proposed in SaFIN. Consolidated
experimental results on the benchmarking measures are given
in Table II.

2) Human Operation of a Chemical Plant: The proposed
SaFIN model is employed to model the human operation of a
chemical plant in this experiment. Although there were five
input (x1–x5) and one output (y) variables in the original

TABLE I

MAMDANI-TYPE FUZZY RULES IDENTIFIED FOR THE

NAKANISHI DATASET

Nonlinear system Chemical plant Stock prediction
Rule x1 x2 y x1 x3 y x4 x5 x8 y
1 H VH L H L L PH PH PH NH
2 H H L M L L PH PH PL NH
3 H L L M M M PM PH PH NH
4 H VL M L M H PM PH PL NL
5 M VH L L H H PM PL Z NM
6 M L M PL PH PH NL
7 M VL M PL PL Z PH
8 L VH M NL PH PH NL
9 L L M NL PH PL NL
10 L VL H NL PH Z NL

L–LOW; M–MED; H–HIGH; Z–ZERO; N–NEG; P–POS; V–VERY

dataset, only selected input variables (x1 and x3) are used in
this experiment [34]. Three fuzzy clusters are identified in
each of the input–output dimensions. Fig. 8(b) illustrates the
semantic fuzzy clusters in x1 identified by SaFIN. By attaching
semantic labels to the fuzzy clusters in each input–output
dimension, Mamdani-type fuzzy rules can be subsequently
extracted from the SaFIN model. The five extracted fuzzy
rules are listed in Table I. Consistency of the fuzzy rulebase
can be easily verified. Consolidated experimental results on
the benchmarking measures are given in Table II.

3) Daily Pricing of a Stock in a Stock Market: Using
various statistics concerning a stock collected from a stock
market, the proposed SaFIN model is employed to perform
stock price prediction. Selected input variables (x4, x5, and
x8) are used although there were initially 10 input variables
(x1–x10) [34]. Correspondingly, the number of fuzzy clusters
identified for the three input variables and one output variable
are 6, 4, 5, and 6. Fig. 8(c) illustrates the fuzzy clusters in
x4 identified by SaFIN. Clear and distinct semantic labels
are attached to the fuzzy clusters. A total of 21 fuzzy rules
are extracted from the SaFIN model, of which Table I lists
the first 10 identified rules for this experiment. Consolidated
experimental results on the benchmarking measures are given
in Table II.

4) Discussion: Table II shows the consolidated experimen-
tal results for the Nakanishi dataset for the proposed SaFIN
model and the benchmarking models. SaFIN outperforms all
the benchmarking models in the first two tasks by ranking
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TABLE II

CONSOLIDATED EXPERIMENTAL RESULTS FOR THE NAKANISHI DATASET

Nonlinear system Chemical plant Stock prediction
Model MSE (Rank) R (Rank) MSE (Rank) R (Rank) MSE (Rank) R (Rank) Average Rank
Hebb-R-R 0.185 (2) 0.911 (2) 2.423×104 (2) 0.998 (2) 15.14 (1) 0.947 (1) 1.7
POPFNN 0.270 (3) 0.877 (3) 5.630×105 (8) 0.946 (9) 76.22 (10) 0.733 (10) 7.2
RSPOP 0.383 (7) 0.856 (4) 2.124×105 (5) 0.983 (7) 24.86 (3) 0.922 (2) 4.7
Sugeno P&P-G 0.345 (6) 0.828 (7) 2.897×105 (7) 0.973 (8) 94.58 (12) 0.706 (11) 8.5
Sugeno P 0.776 (12) 0.558 (12) 6.372×105 (9) 0.933 (12) 35.47 (5) 0.883 (4) 9
Sugeno P-G 0.467 (9) 0.845 (6) 1.931×106 (12) 0.990 (6) 168.9 (13) 0.700 (12) 9.7
Mamdani 0.862 (13) 0.490 (13) 6.580×105 (10) 0.937 (11) 40.84 (7) 0.865 (7) 10.2
Turksen IVCRI 0.706 (11) 0.609 (11) 2.581×105 (6) 0.993 (4) 93.02 (11) 0.661 (13) 9.3
ANFIS 0.286 (4) 0.853 (5) 2.968×106 (13) 0.780 (13) 38.06 (6) 0.875 (6) 7.8
EFuNN 0.566 (10) 0.720 (10) 7.247×105 (11) 0.946 (9) 72.54 (9) 0.756 (9) 9.7
DENFIS 0.411 (8) 0.805 (9) 5.240×104 (4) 0.995 (3) 69.82 (8) 0.810 (8) 6.7
FITSK 0.336 (5) 0.828 (7) 3.862×104 (3) 0.993 (4) 33.78 (4) 0.883 (4) 4.5
SaFIN 0.057 (1) 0.972 (1) 1.354×104 (1) 0.999 (1) 23.49 (2) 0.918 (3) 1.5

first in terms of MSE and R. In the task of modeling a
nonlinear system, SaFIN achieves a MSE value of 0.057, a
remarkable 69.2% reduction compared to the second place
Hebb-R-R. In addition, there is a slight improvement of 6.70%
in the R value achieved, from 0.911 to 0.972. For the second
task of modeling a chemical plant, the proposed SaFIN model
delivers an outstanding performance by achieving a reduction
of 44.1% in terms of calculated MSE and a slight improvement
of 0.001 in terms of correlation R compared to the second
position Hebb-R-R model. Although SaFIN loses out to Hebb-
R-R in the final task of stock prediction, it should be noted
that Hebb-R-R uses 8 (out of 10) input variables in this
task [38]. Comparatively, SaFIN uses much less information
by utilizing only three input variables, a significant reduction
of 167%. This explains the slight compromise in the MSE and
R values achieved by SaFIN. On the other hand, RSPOP uses
five input variables [39]. Although it uses more information,
the performances of SaFIN and RSPOP are comparable. On
average, the proposed SaFIN model achieves a ranking of 1.5
for all the three tasks. This makes SaFIN the best performer
in this set of experiment.

C. Example 3 – Highway Traffic Flow Density

The learning and generalization abilities of the proposed
SaFIN model are evaluated by employing it in the modeling
of a real-world application involving highway traffic flow
density [36]. The data was collected from site 29 located at
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Fig. 9. Traffic flow densities of the three straight lanes along PIE at site 29.

exit 15 along the east-bound Pan Island Expressway (PIE) in
Singapore using loop detectors embedded beneath the road
surface. The inductive loop detectors were preinstalled by the
Land Transport Authority of Singapore in 1996 along major
roads to facilitate traffic flow data collection. There are a total
of five lanes: three straight lanes for the main traffic (lanes
1–3), and two exit lanes (lanes 4–5). Only data from the three
straight lanes (denoted as L1, L2, and L3, respectively) are
used in this experiment. The data has four attributes: the time
t at which the traffic flow data was measured, and the traffic
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flow densities for the three straight lanes during t . SaFIN is
used to model the traffic flow trend. After that, the trained
model is used to predict traffic flow density of a lane (L1, L2
or L3) at t + τ for τ = 5, 15, 30, 45, and 60 min.

Fig. 9 shows the traffic flow data for lanes L1–L3 spanning
over a period of 6 days from 5th to 10th September 1996.
The data is divided into three cross-validation groups (denoted
as CV1, CV2, and CV3, respectively). The training data for
each cross-validation group is extracted accordingly from the
period labeled in Fig. 9. The benchmarking measurements are
the Pearson correlation coefficient R and the mean squared
error MSE. The performance of the proposed SaFIN model is
subsequently compared against the following models: Hebb-
R-R [38], RSPOP [39], MLP (with a configuration of 4 input
nodes, 10 hidden nodes, and 1 output node), GenSoFNN [12],
EFuNN [11], DENFIS [13], and eFSM [16].

Fig. 10 illustrates the identified fuzzy clusters in lanes
L1–L3 for the training set of CV1 when τ = 5 min. The
distributions of the raw numerical data are also shown in the
figure. The fuzzy clusters identified by the CLIP technique
in the proposed SaFIN model coincide with the peaks of the
distributions as marked by the dotted circles. Although there
are very low distributions of data closer to the upper bounds of
the three lanes, it is observed that the distributions immediately
before the peaks are closest/at the zero mark. Hence, the
CLIP technique identifies a cluster near the upper bound of
each lane to cater for this peak. This figure demonstrates the
tailored approach adopted by the CLIP technique during fuzzy
partitioning.

The consolidated traffic flow prediction results are shown
in Fig. 11. Only the average R values from the three cross-
validation groups CV1–CV3 for each prediction horizon are
plotted with respect to the lanes L1–L3, since the plots for
the average MSE value are intrinsically the same. As seen,
the general trend among the models is a decreasing R value
as the time lag increases from 5 to 60 min. SaFIN is one
of the top performers in this task of traffic flow prediction
such that it is able to consistently achieve one of the highest
average R under different time horizons. This is particularly
prominent when τ = 60 min where SaFIN is ranked either
the first or second positions for all three lanes L1–L3, while
most of the benchmarking models have greater errors due to a
longer time lag in the prediction horizon. Although an anomaly
is seen in the calculated R value in lane L1 where the R value
achieved is slightly higher in τ = 60 min compared to that
in τ = 45 min, the general trend of a decreasing R with an

TABLE III

AVERAGE PERFORMANCES FOR THE TRAFFIC FLOW PREDICTION

Model Average R (± Std. Dev.) Average MSE (± Std. Dev.)
Hebb-R-R 0.864 (± 0.046) 0.114 (± 0.042)
RSPOP 0.834 (± 0.041) 0.146 (± 0.038)
MLP (4-10-1) 0.847 (± 0.065) 0.130 (± 0.055)
GenSoFNN 0.813 (± 0.028) 0.164 (± 0.037)
EFuNN 0.798 (± 0.050) 0.189 (± 0.041)
DENFIS 0.831 (± 0.051) 0.153 (± 0.054)
eFSM 0.840 (± 0.043) 0.154 (± 0.040)
SaFIN 0.862 (± 0.043) 0.118 (± 0.037)

increasing time lag is still observed. A possible explanation
to this anomaly could be the higher number of fuzzy rules
identified in τ = 60 min compared to that in τ = 45 min, thus
resulting in a marginal (< 0.01) increase in the calculated R.
This result demonstrates the excellent generalization abilities
of the proposed SaFIN model such that it is able to learn
and generalize the traffic trend to subsequently perform good
forecasting on unseen data.

Table III shows the average performances of all the models
for this highway traffic flow density modeling task. As clearly
shown, SaFIN demonstrates superior modeling potential, sec-
ond only to Hebb-R-R, in terms of the average benchmark-
ing measures achieved. Despite employing a time-consuming
and computationally intensive iterative post-training phase to
recursively identify a reduced set of fuzzy rules with the
aim of a good accuracy, Hebb-R-R performs only marginally
better than the proposed SaFIN model. Comparatively, the
performance of SaFIN is much more consistent and stable
as shown by the small standard deviations about the aver-
age benchmarking indexes. Although GenSoFNN achieves a
lower standard deviation in the R value, it should be noted
that the average performance of GenSoFNN is among the
poorest under both the benchmarking measures. This result
demonstrates the excellent modeling potential of the proposed
SaFIN model, while maintaining a highly consistent and stable
performance under varying conditions (i.e., time horizons).

D. Example 4 – UCI Dataset

The classification and regression abilities of the proposed
SaFIN model are evaluated using three real-life datasets from
the UCI dataset, namely: 1) the servo data; 2) the wine data;
and 3) the iris data. Both the wine and the iris data are
classification problems, while the servo data is a regression
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TABLE IV

CONSOLIDATED EXPERIMENTAL RESULTS FOR THE UCI DATASET

Servo Wine Iris Average
Model # Rules RMSE (Rank) Ts (Rank) # Rules CA% (Rank) Ts (Rank) # Rules CA% (Rank) Ts (Rank) Rank
k-NN N.A. 1.022 (6) 0.03 (1) N.A. 81.69 (6) 0.03 (1) N.A. 94.65 (± 1.60) (4) 0.02 (1) 3.2
MLP N.A. 0.712 (2) 0.78 (2) N.A. 82.54 (5) 4.52 (4) N.A. 93.98 (± 3.53) (5) 0.54 (5) 3.8
HyFIS 84 0.742 (4) 2.26 (5) 96 94.37 (4) 12.09 (6) 13.3 95.36 (± 3.17) (3) 0.47 (3) 4.2
DENFIS 8 0.734 (3) 5.90 (6) 15 98.59 (3) 5.70 (5) 12 97.01 (± 0.95) (1) 0.70 (6) 4
EFuNN 75 0.804 (5) 0.90 (3) 100 100 (1) 1.00 (2) 28 92.63 (± 2.98) (6) 0.27 (2) 3.2
FMM⋆ - 100 (−) - 48 97.33 - -
GFMM⋆ - 100 (−) - 29 97.33 - -
SaFIN 12 0.575 (1) 1.09 (4) 93 100 (1) 3.98 (3) 13.7 96.34 (± 0.55) (2) 0.50 (4) 2.5

⋆ For the iris classification, 50% of the data is used for training and testing, respectively.

problem. A detailed description of the datasets is found in [37].
In the tasks of servo regression and wine classification, the
first 60% of the data are used as training set, while the
remaining 40% are used for testing, while a threefold cross
validation, with 34% of the data as training and 66% of the
data as testing sets, is performed in the iris classification.
The benchmarking measures are the accuracies on the testing
data (calculated as the RMSE for the regression problem,
and classification accuracies for the classification tasks) and
the complexity of the networks (indicated by the size of the
rulebase and the training time T ). The proposed SaFIN model
is subsequently benchmarked against the following models:
k-NN [42], MLP; HyFIS [10], DENFIS [13], EFuNN [11],
FMM [43], and GFMM [44]. All the models were running
on the same computer platform, while results for FMM and
GFMM are extracted from [44].

Table IV shows the consolidated experimental results for the
UCI dataset. The testing results are listed for the servo and
wine tasks, while the average performances are given for the
iris classification. The performances of the proposed SaFIN
model and the benchmarking models are subsequently ranked
according to their testing accuracies and training time.2 As
clearly seen, the SaFIN model is one of the top performers
when ranked against the testing accuracies for all three tasks.
This illustrates the excellent modeling and generalization
abilities of SaFIN. In addition, the SaFIN model uses much
lesser rules compared to most of the benchmarking models
in the tasks, second only to DENFIS. Despite that, it should

2The models are not ranked for the size of their rulebase because the
information is either not applicable or not available for most models. In
addition, both FMM and GFMM do not participate in the servo regression
task (and subsequently the ranking) because they are classification models.

also be noted that the training time of DENFIS is among
the slowest for all the three experiments. On the other hand,
SaFIN has a moderate training time when ranked against the
benchmarking models, claiming the third or fourth positions
out of six benchmarking models. Despite being among the
fastest training models, both k-NN and EFuNN do not deliver
comparable testing performances. On average, the proposed
SaFIN model achieves a ranking of 2.5, making it the best
performer in this set of experiment. On a second note, the
testing performances of SaFIN is comparable with the classi-
fication models FMM and GFMM, in both the wine and iris
classification tasks, while it utilizes significantly lesser rules.
This result demonstrates that the proposed SaFIN model is able
to deliver superior modeling performances, while maintaining
a good balance in the complexity of the network.

V. CONCLUSION

This paper proposed a novel self-organizing neural fuzzy
system framework named SaFIN. A key strength of SaFIN
is the proposed knowledge acquisition methodology, which
draws inspiration from the behavioral category learning
process exhibited by humans. This translates to a new single-
pass fuzzy partitioning technique known as CLIP, which is
able to rapidly partition the input–output spaces. Knowledge
is extracted from each arriving training tuple to perform fuzzy
partitioning of the input–output spaces. This approach not
only allows a tailored partitioning of the input–output dimen-
sions but new clusters in each input-output dimension can
also be automatically identified by SaFIN when a prominent
distinction is observed. This frees human users from pre-
defining the number of clusters necessary in the input–output
dimensions. In addition, refinements are made to the existing
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clusters in an input–output space when a new cluster is added.
This effectively addresses the stability–plasticity tradeoff of
the model by maintaining a balance between the coexistence
of past knowledge (in the system) and future knowledge
(from the newly added cluster) in the computational structure.
Finally, SaFIN handles the problem of a conflicting rulebase
by retaining only the most significant rule in the set of incon-
sistent rules. This approach ensures that the proposed SaFIN
model maintains a consistent rulebase that is able to give an
aptly description of the application environment. SaFIN was
subsequently employed in four benchmarking experiments to
demonstrate its superiority as a self-organizing neural fuzzy
system, and excellent performances have been achieved.
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