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Detecting motor imagery activities versus non-control in brain signals is the basis of self-
paced brain-computer interfaces (BCIs), but also poses a considerable challenge to signal
processing due to the complex and non-stationary characteristics of motor imagery as well
as non-control.This paper presents a self-paced BCI based on a robust learning mechanism
that extracts and selects spatio-spectral features for differentiating multiple EEG classes.
It also employs a non-linear regression and post-processing technique for predicting the
time-series of class labels from the spatio-spectral features. The method was validated in
the BCI Competition IV on Dataset I where it produced the lowest prediction error of class
labels continuously. This report also presents and discusses analysis of the method using
the competition data set.
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1. INTRODUCTION
Self-paced brain-computer interfaces (BCIs) have received
increasing attention in recent years in the BCI community (Mason
and Birch, 2000; Blankertz et al., 2002; Millan and Mourino, 2003;
Scherer et al., 2008; Zhang et al., 2008). Conventionally, BCIs
often require the users to follow a specific computer-generated
cue before performing a specific mental control task. By con-
trast, self-paced BCIs allow the users to perform the control at
will at anytime, by detecting specific brain signals associated with
the mental control at each and every time point (Blankertz et al.,
2002, 2007, 2008a). Providing the user with continuous control is
also important for efficient control and user-training applications:
first, it means that the user can perceive the system’s response in a
continuous and real-time manner so as to plan the mental task to
activate desired BCI actions; second, it enables real-time feedback
training in which the users (ALS patients; Kübler et al., 2005), for
example) can learn to regulate brain waves so as to improve the
BCI performance.

Various EEG modalities have been demonstrated for self-paced
BCIs, such as P300 (Zhang et al., 2008), motor imagery (Townsend
et al., 2004), or finger movement related signals (Mason and Birch,
2000). In this work we focus on motor imagery (MI) which is the
mental rehearsal of a motor act without any real motor output.
It provides an important means for the BCIs that directly com-
pensate lost motor functions for physically disabled (Pfurtscheller
et al., 1997). It has also been shown that naïve subjects can operate
a MI-BCI (Blankertz et al., 2006).

Numerous signal processing and pattern recognition tech-
niques have been developed for classification of two or multiple
MI classes (e.g., imaginary movements of left hand, right hand,
tongue, or foot). For example, the common spatial pattern method
(CSP; Pfurtscheller et al., 1997) and its various extensions (Lemm
et al., 2005; Blankertz et al., 2008b; Wu et al., 2008) are widely

used for extracting discriminative spatial (or joint spatio-spectral)
patterns that contrast the power features of spatial patterns in
different MI classes. For tackling multi-class problems, an infor-
mation theoretic feature extraction method (Grosse-Wentrup and
Buss, 2008) and other extensions of CSP (Dornhege et al., 2003,
2004) have been proposed. And various classifiers have also been
studied for MI classification (Müller et al., 2003).

In self-paced MI-BCIs, the system not only needs to differen-
tiate between specific MI activities, but also it has to detect them
against a not-so-well-controlled class called non-control which is
the aggregate of all user states other than the MI activities. For
example in Millan and Mourino (2003), a local neural classifier
was used to reject non MI signals. In Townsend et al. (2004),
CSP features were combined with a linear discriminant analysis
method to produce a scalar feature, which determined the user-
state (e.g., left hand MI or NC) via thresholds. Special processing
of the output incorporating a dwell and refractory period was also
studied. More recently, it was reported in Scherer et al. (2008)
that able-bodied subjects were able to navigate through a virtual
environment using a self-paced MI-BCI with three bi-polar EEG
channels only. It worked by combining two classifiers: one for dis-
crimination between MI tasks and the others for detecting specific
motor activities in the brain. It was also reported that the sec-
ond classifier was sensitive to the non-stationarity of EEG, and
this may indicate how challenging it is to differentiate MMI EEG
against NC.

In this paper we present and study a MI detection method
that won the first place in the BCI Competition IV, Dataset I.
In particular, we develop a robust machine learning technique
for spatio-spectral feature extraction and selection to differentiate
multi-class MI and NC. We also employ a non-linear regres-
sion machine to predict the class labels at each time from the
EEG features. And we propose a non-linear regression method
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to post-process the time-series of predicted class labels so as to
improve prediction accuracy. We conduct an offline analysis using
5-fold cross-validation on the calibration data. The method yields
a mean-square-error (MSE) for class label prediction in the range
from 0.20 to 0.29 for the subjects. The method then produces an
average MSE of 0.38 on the evaluation data.

The rest of the paper is organized as follows. Section 2 briefly
describes the EEG data. Section 3 overviews the system and
presents detailed descriptions of the essential components. We
study the system using the EEG data in Section 4, and present the
conclusion in Section 5.

2. MATERIALS AND METHODS
2.1. THE EEG DATA
The proposed method was evaluated using the BCI Competition
IV Dataset I (Blankertz et al., 2007), which was recorded from 4
human subjects performing motor imagery tasks. A few computer-
generated artificial data were also present in the dataset, though
they are not considered both in this study and in the competition.
The EEG recordings included a total of fifth-nine channels that
mostly were distributed over or around sensorimotor areas. Each
subject contributed in two sessions: a calibration session and an
evaluation session (Scherer et al., 2008).

In the calibration session, each subject chose to perform two
classes of motor imagery tasks from left hand, right hand, or foot
imaginary movements. At the beginning of each task, a visual cue
was displayed in a computer screen to the subject who then started
to perform a motor imagery task accordingly for 4 s. Each subject
performed a total of 200 motor imagery tasks that were balanced
between the two classes. The motor imagery tasks were interleaved
with breaks of 4-s long. The evaluation session followed a different
protocol. The subjects followed the soft voice commands from an
instructor to perform motor imagery tasks of varying time length
between 1.5 and 8 s. Consecutive tasks were also interleaved with
a varying time length interval also between 1.5 and 8 s.

The four human subjects are referred to as “a,”“b,”“f,” and “g.”
For the sake of computational efficiency, we use the 100-Hz version
of the data in this work.

2.2. THE SELF-PACED BCI
2.2.1. Overview
As illustrated in Figure 1, the system consists of three process-
ing components, namely, m-class feature extraction based on
the filter-bank common spatial pattern (FBCSP) technique (Ang
et al., 2008), information theoretic feature selection and non-linear
regression for sample-based prediction, and post-processing. The
input is a stream of multi-channel EEG waveforms, while the out-
put is a sequence of scalar values in the range of [−1 1]. And the
output is expected to approximate the ordinal class labels at each

time point: −1 for the first motor imagery class (MI-1), 0 for NC,
and 1 for the second motor imagery class (MI-2). Please note that
the accuracy of the system is measured by the mean-square-error
between the outputs and the true class labels.

The first two processing components work on individual win-
dowed EEG data that we refer to as EEG epochs. Basically, the
epochs are created by a shifting short-time window of a spe-
cific length (we will discuss the window length later) running
through the data stream. The ending point of the window is the
current sample whose class label is to be predicted. The third
component, i.e., post-processing, looks into not only the cur-
rent short-time window, but also the history of EEG data so as
to improve the prediction. The following subsections will describe
the three components successively.

2.2.2. m-class FBCSP for feature selection
The primary phenomenon of MI EEG is event-related desyn-
chronization (ERD) or event-related synchronization(ERS;
Pfurtscheller et al., 1997; Müller-Gerking et al., 1999), the attenu-
ation, or increase of the rhythmic activity over the sensorimotor
cortex generally in the µ (8–14 Hz) and β (14–30 Hz) rhythms.
The ERD/ERS can be induced by both imagined movements
in healthy people or intended movements in paralyzed patients
(Dornhege et al., 2004; Kübler et al., 2005; Grosse-Wentrup and
Buss, 2008).It is noteworthy that another neurological phenome-
non called Bereitschafts potential is also associated with MI EEG
but non-oscillatory (Blankertz et al., 2003). In this works we
consider ERD/ERS features only.

Feature extraction of ERD/ERS is, however, a challenging task
due to its poor, low signal to noise ratio. Therefore, spatial fil-
tering in conjunction with frequency selection (via processing in
either temporal domain or spectral domain) in multi-channel EEG
has been highly successful for increasing the signal to noise ratio
(Ramoser et al., 2000; Lemm et al., 2005; Dornhege et al., 2006;
Blankertz et al., 2008b; Zhang et al., 2011). This technique of m-
class FBCSP is developed from Ang et al. (2008), but account for
the NC class.

Suppose there is an EEG epoch given in form of a matrix

X =




x11 · · · x1nt

...
. . .

...
xnc 1 · · · xnc nt



 (1)

where nc is the number of channels, and nt is the number of time
samples.

The precise frequency band which is responsive to MI activ-
ities can vary from one subject to another. From the viewpoint
of learning, multiple possible frequency bands have to be exam-
ined. Therefore, we process the EEG epoch using an array of

FIGURE 1 | Online processing system. It consists of three processing steps
to map continuous EEG data into a final output in the range of [−1 1]. Here

FBCSP stands for filter-bank common spatial pattern (see Section 2), and
TDNN for time-delay neural network (see Section 4).
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filter-banks, each of them is a particular band-pass filter and all
together they cover a continuous frequency range, e.g., from 4
to 32 Hz. In this work, a total of 8 zero-phase filters based on
Chebyshev Type II filters are built with central frequencies from 8
to 32 Hz at a constant interval in the logarithm domain. Conse-
quently, the center frequencies are respectively 8, 9.75, 11.89, 14.49,
17.67, 21.53, 26.25, and 32 Hz. The filters have a uniform Q factor
(bandwidth-to-center frequency) of 0.33 as well as an order of 4.

Let us use X̂n to denote a processed EEG epoch by an arbitrary
filter-bank, say the n-th one. A set of spatial filters then apply to the
matrix to extract the spatio-spectral characteristics of MI activi-
ties in that frequency band. Each spatial filter transforms X̂n into
a time-series of the same length by

ynm(t ) = wT
nm x̂n(t ) (2)

where nm is the index of the spatial filter, t :1 ≤ t ≤ nt is the index
of time sample, and x̂n(t ) is the column vector of matrix Xn at
time t.

The principle of the spatial filtering is to maximize the contrast
between two classes in y in terms of Rayleigh coefficient

γ = wT R1w
wT R2w

, (3)

where R1 and R2 are the covariance matrices of all epochs of x̂n in
the two classes respectively.

The maximization of the Rayleigh coefficient is achieved by
solving the following generalized eigenvalue problem (Ramoser
et al., 2000)

R1w = γ R2w. (4)

The system selects the maximal 2 and the minimal 2 eigenvalues
and the corresponding eigenvectors for w.

It should be noted that the feature used for BCI are the
short-time power of the filtered signal y

z(t ) =
∫ t

t−l
y2(τ )dτ (5)

where l defines the length of the short-time window.
Different from the conventional 2-class BCIs, the present sys-

tem has to account for MI classes in addition to NC. And it takes
a pair-wise approach. The first pair compares MI-1 vs. MI-2. The
second and the third pairs compare MI-1 vs NC and MI-2 vs NC
respectively. The construction of the spatial filters for MI-1 vs.
MI-2 is performed with the original CSP method, while the spa-
tial filters for the other two pairs are obtained in a different way as
below.

To contrast MI-1 vs NC or MI-2 vs NC, we need to account for
large within-class variations in NC, where the brain activity is not
as well controlled as in motor imagery. Therefore, we consider that
NC epochs can be further categorized into sub-states or modes.
And each sub-state may exhibit different spatio-spectral character-
istics, and form a particular cluster in EEG observations. Therefore,
we employ a clustering approach to identify the sub-states of NC

EEG epochs. First, we reduce the dimensionality of EEG by prin-
cipal component analysis (PCA), and we use the energy vector u
from the top few PCA components to represent each NC epoch:
(the filter-bank index n is dropped for simplicity)

u = diag

{(
QT X − QT x̄

) (
QT X − QT x̄

)T
}

(6)

where x̄ denotes the mean value vector of x in an epoch, and Q is
the matrix of top eigenvectors for the maximal eigenvalues. Then
we cluster the feature vectors of u from all the training data using
the standard k-means algorithm into nk clusters, by minimizing
the total intra-cluster variance.

d =
nk∑

k=1

∑

j∈Sk

∥∥uj − ūk
∥∥2

(7)

where k denotes the index of the k-th cluster of NC epochs, and Sk
denotes the set of all feature vector indices belonging to the clus-
ter and ūk is their mean feature vector. We will examine different
sub-state number nk in the experiment later.

To contrast a motor imagery class, say MI-1, against NC, we
have to compare each and every sub-state in NC against MI-1.
Again, we use the same CSP method that now maximizes the
Rayleigh coefficient between a NC sub-state and MI-1.

With all the CSP filters constructed for the three class-pairs in
every filter-bank, we will run them and aggregate the outcomes to
form a joint, raw feature vector for each input EEG epoch. It can be
seen that the size of the raw feature vector is partially determined
by the number of clusters for learning NC. Then we consider how
to further select a robust feature vector from the raw feature vector
and map it to the desired output in the next subsection.

2.2.3. Information theoretic feature selection and regression
We denote the raw feature vector variable by A, and the selected
feature vector variable by Aη. And consider that generally the class
label as a discrete random variable C with value from 1 to Nc. We
will use aη and c to represent a particular selected feature vector
and its class label.

For modeling the dependency between Aη and C, the mutual
information is an important quantity that measures the mutual
dependence of the two variables according to information theory
(Papoulis, 1984). Mathematically, it is given by

I
(
Aη, C

)
= H

(
Aη

)
− H

(
Aη|C

)
(8)

where H (Aη) denotes the entropy of the random feature vector,
and H (Aη | C) is the conditional entropy

H
(
Aη|C

)
= −

Nc∑

c=1

∫

a
p

(
aη, c

)
log

(
p

(
aη|c

))
daη

= −
Nc∑

c=1

H
(
Aη|c

)
P(c) (9)

From the viewpoint of information theory, the optimum feature
set is the one that carries the most mutual information about the
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class label. This is exactly the idea of the maximum mutual infor-
mation (MMI) criterion, which has been established as the basis
for discriminative learning procedures in various machine learn-
ing techniques. Therefore, our system seeks the optimal feature
vector Aη which maximizes the mutual information.

max
Aη

I
(
Aη|C

)
(10)

The objective above involves joint probability density functions
(PDFs) that need to be estimated from a given training data set.
Please note that, to simplify the descriptions, we will omit the
symbol η in the expressions unless otherwise specified.

Using kernel density estimation, the PDF of a is given by

p(a) = 1

N

N∑

i=1

ϕ (a − ai) (11)

where ai is a training sample of the feature vector, and ϕ is a
smoothing kernel that takes a Gaussian form here.

ϕ(t) = (2π)−
n
2 |ψ |−

1
2 exp

(
−1

2
tT ψ−1t

)
(12)

where ψ is the covariance matrix that is assumed diagonal and
estimated from training data according to the normal optimal
smoothing strategy (Bowman and Azzalini, 1997).

We can then adopt a method proposed inViola and Wells (1997)
to approximate the entropy H (A) with a given set of samples.

H (A) = −
∫

a
p(a)log

(
p(a)

)
da

= −E
[
log

(
p(a)

)]

∼= − 1

N

N∑

i=1

log
(
p(ai)

)
(13)

Combining the above equations, the entropy of the random vector
A can be approximated by

H (A) = − 1

N

N∑

i=1

log





1

N

N∑

j=1

ϕ
[
ai − aj

]



 (14)

The within-class entropy H (A | c) can be similarly estimated with
the training samples from the class c only.

With the above developments, we can compute the mutual
information estimate for any subset of features. And we will select
the subset which yields the largest mutual information estimate.

Now we consider the mapping from the features to the desired
outputs of class labels as a regression problem. The features are lin-
early normalized to the range [−1 1] using their empirical upper
and lower bounds. To account for possibly non-linearity in the
mapping, we employ a generalized regression neural network with
non-linear hidden neurons. Briefly, the network consists of three
layers of neurons: the second (hidden) layer contains radial basis
function neurons, while the third layer has linear neurons with

normalized inputs (Wasserman, 1993). This mapping can be cast
as a general regression neural network (GRNN). Here in this work
we use the SD of all the training set features for the spread para-
meter that basically defines the kernel width for the radial basis
functions.

2.2.4. Post-processing and optimization
The above procedure addresses the problem of predicting class
labels from individual EEG segments. On the other hand, post-
processing of the predicted label series allows us to explore infor-
mation in the dynamics of brain activities and corresponding EEG
observations. Particularly, we introduce a time-delay neural net-
work (TDNN; Clouse et al., 1997). Here the network has three
layers: the input layer acts as a 4-s buffer of epoch-based label pre-
dictions from training data; the output is the sequence of desired
true label sequence in the same time frame; and the hidden lay-
ers consists of a few neurons with radial basis transfer functions.
Again, this network can be cast as a GRNN.

There are two parameters to be optimized during system cal-
ibration, including the time interval for motor imagery segment
extraction for training; the number of sub-states for NC segments
clustering (hereafter nNC). It is worthwhile to note that the training
data usually are still trial-based for calibration, and we may take
advantage of the timing information to extract most effective time
intervals related to motor imagery EEG. Particularly, the system
will examine the following time intervals: four 2-s-long intervals
starting at 0.5, 1, 1.5, and 2 s from the trial-start cue, and three
2.5-s-long intervals starting at 0.5, 1, 1.5 s from the cue. For the
submission to competition, we used a 5-fold cross-validation to
optimize the two parameters in a subject-dependent manner.

Since the true class labels are from the limited number set {−1,
0, 1}, the output of the system is finally cut to the range of [−1
1]. This, however, did not produce any significant effects in the
performance measure in our tests below.

3. RESULTS
First we would like to present the results of cross-validation before
post-processing. For the sake of computational efficiency, the
prediction of class label is performed every 0.1 s.

Figure 2 plots the mean-square-error (MSE) of regression with
respect to the selection of time interval Titv for training the fea-
ture extractor (see Section 1). Note that for each subject and each
time interval, the MSE presented in the graph is the lowest MSE
with the optimal Titv. Interestingly, it can be seen that all of the
lower MSEs were achieved by 2.5-s-long intervals instead of 2-s-
long ones. Overall, the interval of 1.5–4.0 s gave rise to the smallest
regression error. Nonetheless, it seems that the regression error is
not very sensitive to the selection of time interval, as the variation
of the error on each subject’s data is small across different time
intervals.

Figure 3 plots MSE with respect to nk: the number of NC sub-
states (modes, or clusters) in calibration. Note that for each subject
and each nk, the MSE presented in the graph comes from the time
interval with the lowest MSE. And, there is a slightly decrease in
the error on two subjects (“a” and “f”) by 2-mode NC learning.

Now let us assess the post-processing technique. With the best
time interval and NC sub-state number obtained from the study
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FIGURE 2 | Mean-square-error of class label prediction with respect to the time interval of a motor imagery trial extracted for training data.

FIGURE 3 | MSE with respect to number of NC sub-states (modes) in learning.

above, the MSEs before and after the post-processing are compared
in Table 1. It can be seen that on every subject, the technique effec-
tively reduced MSE by 0.02 or 0.03, which is approximately 10%
of the original MSE.

Finally, we would like to give the evaluation results,
which we submitted to the competition, on the indepen-
dent data sets (i.e., the evaluation sets in the competition) in
Table 2.

www.frontiersin.org February 2012 | Volume 6 | Article 7 | 5

http://www.frontiersin.org/Neuroprosthetics/archive
http://www.frontiersin.org


Zhang et al. Self-paced motor imagery BCI

Table 1 | MSE before and after post-processing. Mean and STD of MSE
over 5-fold cross-validation are shown here for each subject.

Subjects Before After Reduction

a 0.262 ± 0.02 0.228 ± 0.03 0.03
b 0.315 ± 0.02 0.292 ± 0.02 0.02
c 0.260 ± 0.03 0.232 ± 0.03 0.03
d 0.224 ± 0.01 0.200 ± 0.03 0.03

Table 2 | MSE on the evaluation data sets.

Subjects a b c d Avg

MSE 0.40 0.42 0.42 0.29 0.38

4. DISCUSSION
In summary,we have presented a computational method for motor
imagery detection. It can extract and learn effective spatio-spectral

features to discriminate between three EEG classes including non-
control and 2 motor imagery classes. It is expected that the
use of dwell and refractory periods (c.f. Townsend et al., 2004)
may further improve the performance. Furthermore, compar-
ing the performance on the calibration data and that on the
evaluation data, it seems that the performance degrades signifi-
cantly. And this is due to the effect of session-to-session trans-
fer that often cause considerable changes in the EEG charac-
teristics, especially in the competition data where the calibra-
tion and the evaluation sessions employed different protocols.
Finally, since this method uses an autonomous learning frame-
work such that it does not rely on ad hoc tuning, it can serve
as a favorable baseline for future research in motor imagery
detection.
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