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a b s t r a c t

The common spatial pattern (CSP) algorithm is effective in decoding the spatial patterns of the
corresponding neuronal activities from electroencephalogram (EEG) signal patterns in brain–computer
interfaces (BCIs). However, its effectiveness depends on the subject-specific time segment relative to
the visual cue and on the temporal frequency band that is often selected manually or heuristically. This
paper presents a novel statistical method to automatically select the optimal subject-specific time
segment and temporal frequency band based on the mutual information between the spatial–temporal
patterns from the EEG signals and the corresponding neuronal activities. The proposed method
comprises four progressive stages: multi-time segment and temporal frequency band-pass filtering,
CSP spatial filtering, mutual information-based feature selection and naı̈ve Bayesian classification. The
proposed mutual information-based selection of optimal spatial–temporal patterns and its one-versus-
rest multi-class extension were evaluated on single-trial EEG from the BCI Competition IV Datasets IIb
and IIa respectively. The results showed that the proposed method yielded relatively better session-
to-session classification results compared against the best submission.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Electroencephalography (EEG) studies have shown that motor
imagery results in an amplitude suppression called event-related
desynchronization (ERD) or in an amplitude enhancement called
event-related synchronization (ERS) of brain oscillations over
sensorimotor areas [1]. Hence, EEG-based brain–computer inter-
faces (BCIs) are capable of discriminating different types of neural
activities consequent to the performance of motor imagery, such
as the imagination of left-hand, right-hand, foot or tongue from
the EEG signals. Methods in the literature used for discriminating
different classes of motor imagery include, but not limited to,
common spatial pattern (CSP) algorithm [2,3], methodologies
based on ERD/ERS [4–7], power spectral density models
[1,8–12], autoregressive models [1,8,13–16], independent com-
ponent analysis [17,9,18], two-equivalent-dipole source model
[19,18], neural time series prediction [20,21], phase synchroniza-
tion [22], time-frequency distribution [10] and time-frequency-
spatial pattern [23].

The CSP algorithm [3] is a commonly used statistical method
for discriminating the spatial patterns for two classes of motor

imagery in EEG-based BCIs [2,24–27,1]. The effectiveness of the
CSP algorithm depends on the temporal frequency band-pass
filtering of the EEG signals, the time segment of the EEG taken
relative to the visual cue, and the subset of CSP filters used [2].
Typically, general settings such as a broad frequency band of
7–30 Hz, time segment of 1 s after cue, and 2 or 3 subsets of CSP
filters are used [2]. Although the performance of CSP can be
enhanced by subject-specific parameters [28], these settings are
often selected manually or heuristically [2,26].

To address the issue of selecting optimal temporal frequency
band for the CSP algorithm, several approaches were proposed.
The common spatio-spectral pattern (CSSP) optimized a simple
filter that employed a one time-delayed sample with the CSP
algorithm [27]. However, the flexibility of this simple filter was
very limited, hence the common sparse spectral-spatial pattern
(CSSSP) was proposed to perform simultaneous optimization of
an arbitrary finite impulse response (FIR) filter within the CSP
algorithm [26]. This simultaneous optimization was computa-
tionally expensive [25,24], which motivated the SPECtrally-
weighted common spatial pattern (SPEC-CSP) algorithm [25] to
alternately optimize the temporal filter in the frequency domain
and then the spatial filter in an iterative procedure. The iterative
spatio-spectral pattern learning (ISSPL) [24] algorithm was then
proposed to improve upon SPEC-CSP without relying on statistical
assumptions by optimizing all the temporal filters simultaneously
under a common optimization framework instead of individually
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in SPEC-CSP. However, its convergence has yet to be proven
theoretically.

In this paper, a novel statistical method is proposed to
automatically select the optimal subject-specific time segment
and temporal frequency band based on the mutual information
between the spatial–temporal patterns from the EEG signals and
corresponding neuronal activities. A preliminary version of this
work known as the filter bank common spatial pattern (FBCSP)
algorithm was presented in a conference proceeding [29] to select
temporal frequency band-pass filtering parameters for CSP using
a filter bank. However, the FBCSP algorithm has the following
limitations: Firstly, it was proposed for two-class motor imagery.
Secondly, the subject-specific time segment was selected manu-
ally. Last but not least, it did not address the details on the
estimation of the mutual information that was employed as the
criteria in feature selection. Subsequently, the discriminative
common spatial pattern (DCSP) was proposed in [30] to select
the subject-specific filter bank based on a simpler approach of
using the Fisher ratio of the spectral power from a single specific
channel of EEG data.

Section 2 describes the proposed method and the details on
multi-time segment and temporal frequency filtering, mutual
information-based feature selection, naı̈ve Bayesian classification
for two-class motor imagery, and a one-versus-rest approach for
multi-class motor imagery. The proposed method extends our
preliminary work in [29] to automatically select the optimal
subject-specific time segment for multi-class motor imagery,
and addresses the details on the estimation of the mutual
information. Section 3 presents the experimental results of the
proposed method and its multi-class extension on the BCI
Competition IV Datasets IIb and IIa respectively. The previous
version of this work was submitted to the BCI Competition IV for
these two datasets and yielded relatively the best session-to-
session classification results on the unseen evaluation data. The
results of using the proposed method are compared to FBCSP and
DCSP. Finally, Section 4 concludes this paper.

2. Mutual informational-based selection of optimal spatial–
temporal patterns

The proposed mutual information-based selection of optimal
spatial–temporal patterns is illustrated in Fig. 1. The proposed
methodology comprises four progressive stages of statistical
signal processing and pattern recognition on the EEG data:
multi-time segment and temporal band-pass filtering using a
filter bank, CSP spatial filtering, CSP feature selection and classi-
fication of selected CSP features. The CSP projection matrix for

each temporal filter band, the discriminative CSP features, and the
classifier model are computed from training data labeled with the
respective motor imagery action. These parameters computed
from the training phase are then used to compute the single-trial
motor imagery action during the evaluation phase.

2.1. Multi-time segment and temporal frequency band-pass filtering

The first stage employs a filter bank that decomposes the
multi-time segments of EEG using causal digital band-pass filters
such as Butterworth or Chebyshev Type II. In this work, a total of
time segments and a total of nine temporal band-pass filters are
used in this work. The time segments are: 0.5–2.5, 1.0–3.0, and
1.5–3.5 s from the onset of the visual cue given to the subject to
perform motor imagery. The temporal band-pass filters are: 4–8,
8–12,y, 36–40 Hz. Various configurations of time segments and
filter bank are as effective, but these time segments and band-
pass frequency ranges are used because they cover most of the
manual or heuristically selected settings used in the literature.

2.2. Optimal spatial filtering using CSP

The second stage performs CSP spatial filtering. Spatial filter-
ing is performed using the CSP algorithm by linearly transforming
the EEG using

Z¼WTE, ð1Þ

where EARc$t denotes the ith single-trial band-pass filtered EEG;
ZARc$t denotes E after spatial filtering, WARc$c denotes the CSP
projection matrix; c is the number of channels; t is the number of
EEG samples per channel; and T denotes the transpose operator.

The CSP algorithm computes the transformation matrix W by
solving the eigenvalue decomposition problem

S1W¼ ðS1þS2ÞWD, ð2Þ

where S1 and S2 are estimates of the covariance matrices
of the band-pass filtered EEG of the respective motor imagery
action, D is the diagonal matrix that contains the eigenvalues
of S1.

The spatial filtered signal Z in Eq. (1) using Wb,d from Eq. (2)
thus maximizes the differences in the variance of the two classes
of band-pass filtered EEG. Since only the first and last m columns
of W are used to perform spatial filtering,

~Z ¼ ~W
T
E, ð3Þ

where ~W represents the first and last m columns of W. The choice
for m depends on the data and is discussed further in Section 3.

Fig. 1. Methodology of mutual information-based selection of optimal spatial–temporal patterns for the training and evaluation phases.
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In the proposed mutual information-based selection of optimal
spatial–temporal patterns, each pair of band-pass and spatial filters
for a specific time segment computes the CSP features that are
specific to the time segment and band-pass frequency range. Since
the spatial filters from different band-pass filtered EEG and different
time segments are not the same, let Eb,d,iARc$t denotes the single-
trial EEG from the bth band-pass filter of the dth time segment,
Zb,d,iARc$t denotes Eb,d,i after spatial filtering, and Wb,dARc$c

denotes the CSP projection matrix. Then the CSP features of the ith
trial for the EEG from the bth band-pass filter of the dth time
segment are then given by

vb,d,i ¼ logðdiagð ~Zb,d,i
~Z
T
b,d,iÞ=tr½ ~Zb,d,i

~Z
T
b,d,i'Þ, ð4Þ

where vb,d,iAR1$2 m; diagð(Þ returns the diagonal elements of the
square matrix; tr½(' returns the sum of the diagonal elements in the
square matrix.

Eq. (4) can also be written in the form [3]

vb,d,i,k ¼ log varð ~Zb,d,i,kÞ
X2m

l ¼ 1

varð ~Zb,d,i,lÞ

, ! 
, ð5Þ

where vb,d,i,k is the kth feature in vb,d,i, and ~Zb,d,i,k is the kth row of
~Zb,d,i.

Instead of using Eq. (5), the features can be simplified to

vb,d,i,k ¼ ð ~Z
2
b,d,i,kÞ

,
X2m

l ¼ 1

ð ~Z
2
b,d,i,lÞ

 !
: ð6Þ

The feature vector for the ith trial from the dth time segment is
formed using

vd,i ¼ ½v1,d,i,v2,d,i, . . . ,v9,d,i', ð7Þ

where vd,iAR1$ð9)2mÞ.
Denoting the training data and the true class labels as Vd

and y respectively to make a distinction from the evaluation
data,

Vd ¼ ½vT
d,1,v

T
d,2, . . . ,v

T
d,nt

'T , ð8Þ

y ¼ ½y1,y2, . . . ,ynt
'T , ð9Þ

where VdARnt$ð9)2mÞ; yARnt$1; vd,i and yi denote the feature
vector and true class label from the ith training trial, i¼1,2,y,nt;
and nt denotes the total number of trials in the training data.

2.3. Optimal mutual information-based feature selection

The third stage selects discriminative CSP features from the
training data Vd for the subject’s task. Various feature selection
algorithms can be used in this stage. Based on the study performed
on the BCI Competition III Dataset IVa [29], the 10$10-fold cross-
validation results of using the mutual information-based best indivi-
dual feature (MIBIF) yielded better results than other feature selection
algorithms and hence is used in this work.

2.3.1. MIBIF algorithm
The MIBIF algorithm is described as follows:

* Step 1: For each dth time segment, initialize set of features Fd
and set of selected features Sd.

Initialize Fd ¼ ½fTd,1,f
T
d,2, . . . ,f

T
d,9)2 m' ¼Vd from the training data

whereby fTd,jARnt$1 is the jth column vector of Vd. Initialize

Sd ¼ |.
* Step 2: Compute the mutual information of each feature fd,j with

the class label o¼ f1,2g.

Compute Iðfd,j;oÞ 8j¼ 1,2, . . . ð9)2 mÞ using [31]

Iðfd,j;oÞ ¼HðoÞ+Hðojfd,jÞ, ð10Þ

where HðoÞ ¼ +
P2

o ¼ 1 PðoÞlog2PðoÞ; and the conditional
entropy is

Hðojfd,jÞ ¼+
X2

o ¼ 1

pðojfd,jÞlog2pðojfd,jÞ

¼+
X2

o ¼ 1

Xnt

i ¼ 1

pðojfd,j,iÞlog2pðojfd,j,iÞ, ð11Þ

where fd,j,i is the jth feature value of the ith trial from fd,j; and nt
denotes the total number of trials in the training data.
The probability pðojfd,j,iÞ can be computed using Bayes rule given
in Eqs. (12) and (13).

pðojfd,j,iÞ ¼
pðfd,j,ijoÞPðoÞ

pðfd,j,iÞ
, ð12Þ

where pðojfd,j,iÞ is the conditional probability of class o given
fd,j,i; pðfd,j,ijoÞ is the conditional probability of fd,j,i given class o;
PðoÞ is the prior probability of class o; and

pðfd,j,iÞ ¼
X2

o ¼ 1

pðfd,j,ijoÞPðoÞ: ð13Þ

The conditional probability pðfj,ijoÞ can be estimated using a
Parzen Window [32] given by

p̂ðfd,j,ijoÞ ¼
1
no

X

rA Io

fðfd,j,i+fd,j,r ,hÞ, ð14Þ

where no is the number of trials in the training data belonging to
class o; Io is the set of indices of the training data trials
belonging to class o; fd,j,r is the feature value of the rth trial
from fd,j and f is a smoothing kernel function with a smoothing
parameter h given in Eqs. (23) and (24) respectively.

* Step 3: Sort all the features in descending order of mutual
information computed in Step 2 and select the first k features.
Mathematically, this step is performed as follows till jSdj¼ k

Fd ¼ Fd\fd,j,Sd ¼ Sd [ fd,jjIðfd,j;oÞ ¼ max
j ¼ 1: :ð9)2mÞ,

fd,j A Fd

Iðfd,j;oÞ, ð15Þ

where \ denotes set theoretic difference; [ denotes set union;
and j denotes given the condition.

The parameter k in the MIBIF algorithm denotes the number of
best individual features to select. Based on the study performed
on the BCI Competition III Dataset IVa in [29], the 10$10-fold
cross-validation results of using the MIBIF algorithm with k¼1–4
yielded the averaged accuracies of 88.3670.70, 89.1670.77,
89.9370.73 and 90.3170.67 respectively. Since the study
showed that k¼4 yielded a higher averaged accuracy, this
setting is used in this work.

2.3.2. MISFS algorithm
Instead of setting k number of features to select, the mutual

information-based sequential forward selection (MISFS)
algorithm [33] can be used to select features till there are no
further increase in the mutual information.

The MISFS algorithm is described as follows:

* Steps 1 & 2: Initialize and compute the mutual information of
each feature.
These are the same as Steps 1 and 2 of the MIBIF algorithm.

* Step 3: Select the first feature.
Select the first feature that maximizes Iðfd,j;oÞ using (16) from
Step 3 of the MIBIF algorithm.
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* Step 4: Perform sequential feature selection
Repeat

(a) Compute Iðfd,j [ Sd;oÞ8fd,jAFd [33]
(b) Select next feature using

Fd ¼ Fd\fd,j,Sd ¼ Sd [ fd,jj

Iðfd,j [ Sd;oÞ ¼ max
j ¼ 1: :ð9)2mÞ

fd,j A Fd

Iðfd,j [ Sd;oÞ, ð16Þ

Until DIðSd;oÞ , 0, where the increase in mutual information
is close to zero.

2.4. Optimal time segment

After the features are selected in Sd for all the time segments, the
average mutual information of the selected features of the dth time
segment is computed using

IðSd;oÞ ¼
X

fd,j ASd

Iðfd,j;oÞ

0

@

1

A
,

jSdj ð17Þ

and the optimal time segment is selected using

dopt ¼ arg max
d ¼ 1...nd

IðSd;oÞ, ð18Þ

where nd denotes the total number of time segments used.
It is possible to perform feature selection on all the frequency

bands and all the time segments. However, the selection of an
optimal time segment has the advantage in computing the results
using a shorter time segment. To illustrate this point, if the features
computed from the time segments 0.5–2.5, 1.0–3.0 and 1.5–3.5 s
and all the frequency bands are grouped together to perform feature
selection, then a 3 s EEG evaluation data is needed to compute the
result. This is because all the time segments included a length of 3 s
of EEG starting from 0.5 to 3.5 s. On the other hand, if only one of the
time segments is selected, then 2 s of EEG evaluation data is needed
to compute the result since the length of each time segment is 2 s.

2.5. Classification of optimal spatial–temporal features

The fourth stage employs a classification algorithm to model and
classify the selected CSP features. Note that since the CSP features
come in pairs, the corresponding pair of features is also included if it
is not selected. After performing feature selection and optimal time
segment selection, the feature selected training data is denoted as
XARnt$nf where nt denotes the number of trials in the training data
and nf ranges from 4 to 8. nf¼4 if all four features selected are from
two pairs of CSP features. nf¼8 if all four features selected are from
four pairs of CSP features, since their corresponding pair is included.

Various classification algorithms can be used at this stage. Based
on the study performed on the BCI Competition III dataset IVa [29],
the 10$10-fold cross-validation of using the naı̈ve Bayesian Parzen
window (NBPW) classifier [34], Fisher linear discriminant [35],
support vector machine [36], classification and regression tree
[37], k-nearest neighbor [38], rough set-based neuro-fuzzy system
[39] and dynamic evolving neural-fuzzy inference system [40]
yielded the averaged accuracies of 90.3170.67, 89.8870.85,
90.0170.82, 85.8471.40, 88.6770.85, 87.4671.38 and 88.597
0.96 respectively. Since the study showed the NBPW classifier
yielded better results, and the FLD classifier is often used in BCI
research, these two classifiers are used in this work.

2.5.1. NBPW classifier
The classification rule of the NBPW classifier is described

as follows:
Given that X ¼ ½xT

1 ,x
T
2 , . . . ,x

T
nt
'T denotes the entire training data

of nt trials, x i ¼ ½xi,1,xi,2, . . . ,xi,nf
' denotes the training data with the

nf selected features from the ith trial, X¼ ½xT1 ,x
T
2 , . . . ,x

T
ne
'T denotes

the entire evaluation data of ne trials, xl ¼ ½xl,1,xl,2, . . . ,xl,nf ' denotes
the evaluation data with nf selected features from the lth trial; the
NBPW classifier estimates pðxljoÞ and PðoÞ from training data
samples X and predicts the class o with the highest posterior
probability pðojxlÞ using Bayes rule

pðojxlÞ ¼
pðxljoÞPðoÞ

pðxlÞ
, ð19Þ

where pðojxlÞ is the conditional probability of class o given
evaluation trial xl; pðxljoÞ is the conditional probability of xl given
class o; PðoÞ is the prior probability of class o; and pðxlÞ is

pðxlÞ ¼
X2

o ¼ 1

pðxljoÞPðoÞ: ð20Þ

The computation of pðojxlÞ is rendered feasible by a naı̈ve
assumption that all the features xl,1,xl,2, . . . ,xl,d are conditionally
independent given class o in

pðxljoÞ ¼
Yd

j ¼ 1

pðxl,jjoÞ: ð21Þ

The NBPW classifier employs a Parzen window [32] to esti-
mate the conditional probability pðxl,jjoÞ in

p̂ðxl,jjoÞ ¼
1
no

X

iA Io

fðxl,j+xi,j,hÞ, ð22Þ

where xi,j denotes the jth feature of the ith trial from the training
data; no is the number of data samples belonging to class o; Io is
the set of indices of the trials of the training data belonging to
class o; and f is a smoothing kernel function with a smoothing
parameter h. The NBPW classifier employs the univariate Gaus-
sian kernel given by

fðy,hÞ ¼ 1ffiffiffiffiffiffi
2p

p e+ y2=2h2ð Þ, ð23Þ

and normal optimal smoothing strategy [41] given by

hopt ¼
4

3no

" #1=5

s, ð24Þ

where s denotes the standard deviation of y from (23).
The classification rule of the NBPW classifier is given by

ŷl ¼ arg max
o ¼ 1,2

pðojxlÞ, ð25Þ

where ŷl denotes the predicted label of the lth evaluation trial.

2.5.2. FLD classifier
The classification rule of the FLD classifier is given by

o¼
Ao0, ~wTxZ~w0,

=2o0, ~wTxo~w0,
:

(
ð26Þ

where class o0 is discriminated against the rest; ~w is an
adjustable weight vector for class o0; and ~w0 is a bias.

The FLD classifier maximizes the ratio of between-class scatter
to within-class scatter given by

Jð~wÞ ¼
~wTSb~w

~wTSw~w,
ð27Þ

where Sb is the between-class scatter matrix; and Sw is the
within-class scatter matrix.

2.6. One-versus-rest (OVR) multi-class extension

Given that o,o0Af1,2,3,4g represents the left, right, foot and
tongue motor imagery in the BCI Competition IV Dataset IIa, the
OVR approach computes the CSP features that discriminates each
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class from the rest of the classes [42]. For the four classes of motor
imagery in the BCI Competition IV Dataset IIa, 4 OVR classifiers
are required. The classification rule of the NBPW classifier is thus
extended from Eq. (25) to

ŷl ¼ arg max
o ¼ 1,2,3,4

pOVRðojxlÞ, ð28Þ

where pOVRðojxlÞ is the probability of classifying the lth evalua-
tion trial between-class o and class o0 ¼ f1,2,3,4g\o; and \
denotes the set theoretic difference operation.

3. Experimental study

The experiment is performed using the BCI Competition IV
Datasets IIa and IIb, which comprises training and evaluation data
from 9 subjects each. For Dataset IIa, the training and evaluation
data from one subject each consisted one session of single-trial
EEG for four-class motor imagery of left-hand, right-hand, foot
and tongue. The data in each session comprised 288 single-trials
from 22 channels. For Dataset IIb, the training data of one subject
consisted of three sessions of single-trial EEG for two-class hand
motor imagery whereas the evaluation data consisted of two
sessions. The data in each session comprised 120 single-trials
from three bipolar channels. Details of the protocols of Datasets
IIa and IIb are available in [17,43] respectively. The choice of m
pairs of CSP features is set to 2 for Dataset IIa and 1 for IIb. The
former is selected because a greater choice of m did not sig-
nificantly improve classification accuracy [3,44]. The latter is
selected because there are only three channels of EEG available,
thus Wb,dAR3$3 in Eq. (1) limited the maximum selection of
m¼1 for Wb.

3.1. Cross-validation on training data

The experiment is performed in two parts. In the first part,
10$10-fold cross-validations are performed using the proposed
method on the training data from Datasets IIa and IIb to select the
parameter k. In each fold of this procedure, the selection of
optimal time segment (0.5–2.5, 1.0–3.0, and 1.5–3.5 s from the
onset of the visual cue) and temporal frequency and the training
of the spatial filters and classifier are performed on nine parts of
the training data. The classification accuracy of the proposed
mutual information-based selection of optimal spatial–temporal
patterns (denoted OSTP) is evaluated on the remaining part for
the time segment of 0–4 s of EEG after the onset of the visual. The
experiment is performed for a range of k¼1–4 to select the
optimal setting for the second part of the experiment.

Tables 1 and 2 show the results of 10$10-fold cross-valida-
tion performed on Datasets IIa and IIb respectively of OSTP using
the MIBIF algorithm whereby k¼1–4 and the NBPW classifier. The
results in Table 1 showed that k¼4 yielded higher averaged
accuracy of 71.73%. The results in Table 2 showed that k¼3
yielded higher averaged accuracy of 78.25%, and k¼4 yielded the
same result as k¼3. Based on these two sets of results, the value
of k¼4 is selected for the next part of the experiment.

3.2. Session-to-session transfer

In the second part of the experiment, session-to-session
transfers are performed using the proposed method on the
training data of Datasets IIa and IIb to the evaluation data.
For this procedure, the selection of the optimal time segment
(0.5–2.5, 1.0–3.0, and 1.5–3.5 s from the onset of the visual cue),
temporal frequency band, the training of the spatial filters and the
classifier are performed using the entire training data. The
session-to-session performance of the proposed OSTP is

computed on the evaluation data that is recorded on another
day. The session-to-session transfer is more challenging since
brain signals of the subjects can change substantially from the
training data to the evaluation data that was recorded on a
separate day [45].

Since the kappa coefficient was used as a performance mea-
sure in the BCI Competition IV, it is used in this part of the
experiment to measure the maximum kappa value evaluated on
the entire single-trial EEG from the onset of the fixation cross. The
kappa coefficient considers the distribution of wrong classifica-
tions and the frequency of occurrence is normalized [46]. The
kappa coefficient k [47] is given by

k¼
Pa+Pc
1+Pc

, ð29Þ

where Pa is the proportion of agreement, which is equal to the
classification accuracy; and Pc is the proportion of chance agree-
ment, which is equal to the accuracy of a trivial or random
classifier.

For example, an accuracy of 50% in a two-class problem is
equivalent to an accuracy of 25% in a four-class problem, making
it difficult to do a fair comparison of multi-class problems using
classification accuracies; but the kappa value is zero in both cases
indicating random performance. The kappa values and the stan-
dard error are calculated using the bci4eval function from the
BioSig Toolbox [48]. The kappa value is computed from the onset
of the fixation cross to the end of the cue for every point in time
across all the trials of the evaluation data.

The performance of the proposed OSTP using the MIBIF
algorithm with k¼4 and the NBPW classifier is compared with

Table 1
Experimental results on the classification accuracies and standard deviations of
10$10-fold cross-validation on BCI Competition IV Dataset IIa from the proposed
OSTP using the MIBIF feature selection whereby k¼1–4 and the NBPW classifier.

Subject Dataset IIa

k¼1 k¼2 k¼3 k¼4

1 71.9171.68 78.0971.78 80.5270.79 82.9571.13
2 56.4971.55 60.4271.67 62.3371.24 62.8571.36
3 80.4271.05 82.8571.65 83.5170.93 82.6471.51
4 56.8871.60 58.1671.36 59.2471.40 60.4271.51
5 66.9871.47 66.8471.69 68.3372.63 68.5871.99
6 46.7071.59 46.7771.95 47.7873.15 48.4072.95
7 82.6071.87 88.4771.30 91.2271.06 90.7370.91
8 82.1271.45 83.0971.33 84.6970.93 86.2270.71
9 58.5171.40 61.4671.21 63.7571.47 62.7871.32

Average 66.9671.52 69.5771.55 71.2671.51 71.7371.49

Table 2
Experimental results on the classification accuracies and standard deviations of
10$10-fold cross-validation on BCI Competition IV Dataset IIb from the proposed
OSTP using the MIBIF feature selection whereby k¼1–4 and the NBPW classifier.

Subject Dataset IIa

k¼1 k¼2 k¼3 k¼4

1 72.5072.30 72.5072.30 77.1971.19 77.1971.19
2 49.4473.08 49.4473.08 50.3872.27 50.3872.27
3 50.9671.14 50.9671.14 52.2172.16 52.2172.16
4 95.4470.78 95.4470.78 97.5070.42 97.5070.42
5 84.1970.72 84.1970.72 84.8170.30 84.8170.30
6 82.0071.05 82.0071.05 81.0071.39 81.0071.39
7 87.5070.29 87.5070.29 89.3171.33 89.3171.33
8 84.7570.89 84.7570.89 88.8870.65 88.8870.65
9 81.1370.26 81.1370.26 82.9470.42 82.9470.42

Average 76.4371.17 76.4371.17 78.2571.12 78.2571.12
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OSTP using the FLD classifier (denoted FLD), OSTP using the MISFS
algorithm (denoted SFS), manual selection of time segment and
frequency on the training data (denoted Manual), our previous
works DCSP [30] and FBCSP [29], and results of the 2nd, 3rd and
4th placed submissions for the competition. Note that the results
from the 2nd, 3rd and 4th placed submissions are only available
in two significant figures from [49]. The following paragraphs
provide a brief description on the methods employed by the other
competitors (refer to [49] for more details).

For Dataset IIa, the 2nd placed submission performed CSP on
band-pass filtered EEG between 8 and 30 Hz, then classified the
CSP features using linear discriminant analysis (LDA) and Baye-
sian classifier. The 3rd placed submission performed CSP on band-
pass filtered EEG between 8 and 25 Hz with channel selection
based on a recursive elimination scheme and EOG removal with
linear regression, then classified the CSP features using ensemble
multi-class classifiers with three SVM classifiers. The 4th placed
submission performed CSP on spectrally filtered neural time
series prediction preprocessing employing a 1 s time window,
then classified the CSP features using LDA and SVM [21,50].

For Dataset IIb, the 2nd placed submission performed CSP on
various band-pass filtered EEG with various time window seg-
ment from 1 to 3 s and EOG removal, then classified the CSP
features using LDA. The 3rd placed submission performed CSP on
spectrally filtered neural time series prediction preprocessing
employing a 1 s time window, then classified the CSP features
using LDA and SVM [21,50]. The 4th placed submission performed
a wavelet packet transform using channels C3 and C4, performed
frequency band selection, then classified the extracted feature
vector using LDA.

Tables 3 and 4 showed the results of the session-to-session
transfer from the training data to the evaluation data of BCI

Competition Datasets IIa and IIb respectively. The kappa values
and the standard errors of OSTP showed that all the classification
results are significantly above a chance classification. The results
also showed that the OSTP using the MIBIF algorithm with k¼4
and the NBPW yielded a higher averaged kappa across all the
subjects (0.595 and 0.596) compared to the OSTP using the FLD
classifier (0.494 and 0.591) and the OSTP using the MISFS
algorithm (0.550 and 0.585) for Datasets IIa and IIb respectively.
This showed the results of using the MIBIF algorithm with k
selected based on the cross-validation on the training data are
better than the MISFS algorithm that automatically select the
optimal number of features on the training data.

The results also showed that the OSTP yielded better averaged
kappa across all the subjects compared to a manual selection of
time segment and frequency on the training data (0.483 and
0.554), and the results are significant using paired sample t-test
(p¼0.014 and 0.043) on Datasets IIa and IIb respectively. The
results of our previous work FBCSP [29] on the evaluation data of
Datasets IIa and IIb achieved the best mean kappa value among all
submissions of the BCI Competition IV on these datasets [49]. The
proposed OSTP yielded further improvement to the FBCSP [29]
(0.569 and 0.585) and the DCSP [30] (0.551 and 0.591) in both
Datasets IIa and IIb, but the improvements of OSTP over FBCSP
(p¼0.078 and 0.523) and DCSP (p¼0.277 and 0.597) are not
significant.

4. Conclusion

This paper presents a novel statistical method to automatically
select the optimal subject-specific time segment and temporal
frequency band based on the mutual information between the

Table 3
Experimental results on the kappa value of session-to-session transfer from the training data to the evaluation data on BCI Competition IV Dataset IIa performed using the
proposed OSTP with MIBIF and NBPW (denoted OSTP), OSTP with MIBIF and FLD (denoted FLD), OSTP with MISFS and NBPW (SFS), manual selection of time segment and
frequency on training data (denoted Manual), DCSP, FBCSP and 2nd to 4th submissions. The kappa and standard error for OSTP are listed as k7seðkÞ.

Subject OSTP FLD SFS Manual DCSP FBCSP 2nd 3rd 4th

1 0.73170.067 0.634 0.583 0.528 0.736 0.676 0.69 0.38 0.46
2 0.39870.055 0.324 0.306 0.319 0.375 0.417 0.34 0.18 0.25
3 0.78770.069 0.653 0.718 0.662 0.718 0.745 0.71 0.48 0.65
4 0.57470.062 0.560 0.491 0.435 0.329 0.481 0.44 0.33 0.31
5 0.41270.054 0.306 0.440 0.190 0.245 0.398 0.16 0.07 0.12
6 0.25570.046 0.153 0.259 0.282 0.366 0.273 0.21 0.14 0.07
7 0.82970.071 0.769 0.769 0.560 0.727 0.773 0.66 0.29 0.00
8 0.75070.068 0.532 0.718 0.708 0.778 0.755 0.73 0.49 0.46
9 0.62070.063 0.514 0.671 0.657 0.685 0.606 0.69 0.44 0.42

Average 0.59570.062 0.494 0.550 0.483 0.551 0.569 0.52 0.31 0.30

Table 4
Experimental results on the kappa value of session-to-session transfer from the training data to the evaluation data on BCI Competition IV Dataset IIb performed using the
proposed OSTP with MIBIF and NBPW (denoted OSTP), OSTP with MIBIF and FLD (denoted FLD), OSTP with MISFS and NBPW (SFS), manual selection of time segment and
frequency on training data (denoted Manual), DCSP, FBCSP and 2nd to 4th submissions. The kappa and standard error for OSTP are listed as k7seðkÞ.

Subject OSTP FLD SFS Manual DCSP FBCSP 2nd 3rd 4th

1 0.43170.073 0.450 0.463 0.300 0.419 0.356 0.42 0.19 0.23
2 0.20770.067 0.236 0.186 0.150 0.236 0.171 0.21 0.12 0.31
3 0.23870.068 0.244 0.219 0.150 0.194 0.169 0.14 0.12 0.07
4 0.94470.095 0.906 0.950 0.944 0.938 0.963 0.94 0.77 0.91
5 0.84470.092 0.825 0.869 0.813 0.850 0.850 0.71 0.57 0.24
6 0.59470.082 0.613 0.519 0.506 0.613 0.594 0.62 0.49 0.42
7 0.58170.082 0.538 0.563 0.600 0.556 0.556 0.61 0.38 0.41
8 0.86370.092 0.844 0.856 0.875 0.838 0.856 0.84 0.85 0.74
9 0.66370.085 0.663 0.638 0.650 0.681 0.750 0.78 0.61 0.53

Average 0.59670.082 0.591 0.585 0.554 0.591 0.585 0.58 0.46 0.43
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spatial–temporal patterns from the EEG signals and correspond-
ing neuronal activities. The proposed method automatically select
the time segment and operational frequency band for CSP spatial
filtering by employing mutual information-based feature selec-
tion. The results from the BCI Competition IV revealed that among
submissions for Datasets IIa and IIb, the proposed method and its
OVR multi-class extension using the MIBIF feature selection
algorithm and the NBPW classifier yielded the highest session-
to-session mean kappa value on the unseen evaluation data. The
results also yielded significantly better results than manually
selected time segment and operational frequency band for CSP.
However, we would like to point out that the manually selected
time segment and operational frequency band in this work may
not be the optimal setting.

Although the proposed method yielded better session-to-
session transfer results than our previous works FBCSP [29] and
DCSP [30], it did not yield significantly better results because the
optimal time segment is selected manually for these two meth-
ods. Nevertheless, the results demonstrated an advantage of using
the proposed automatic method over the manual and heuristic
selection of subject-specific time segment and operational fre-
quency band. Hence the proposed method demonstrates the
potential of using statistical pattern recognition methods for
effective brain decoding and provides a framework for developing
other combinations of feature selection and classification algo-
rithms that could yield better results for BCI applications.
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