
!"#$%"&'()'"*+,$-+./0"$-*123*1.#"2$*+.0"4.," "#$5,3/"-617$"0$*$8*1.#

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 J. Neural Eng. 9 046017

(http://iopscience.iop.org/1741-2552/9/4/046017)

Download details:
IP Address: 192.122.131.20
The article was downloaded on 03/08/2012 at 09:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1741-2552/9/4
http://iopscience.iop.org/1741-2552
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact


IOP PUBLISHING JOURNAL OF NEURAL ENGINEERING

J. Neural Eng. 9 (2012) 046017 (16pp) doi:10.1088/1741-2560/9/4/046017

A new EC–PC threshold estimation
method for in vivo neural spike detection
Zhi Yang1,5, Wentai Liu2, Mohammad Reza Keshtkaran1, Yin Zhou1,
Jian Xu1, Victor Pikov3, Cuntai Guan4 and Yong Lian1

1 Department of Electrical and Computer Engineering, National University of Singapore,
Singapore 119077, Singapore
2 Department of Bioengineering and California Nanosystems Institute, UCLA, Los Angeles,
CA 900095-1600, USA
3 Huntington Medical Research Institutes, Pasadena, CA 91105, USA
4 Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore 138632,
Singapore

E-mail: eleyangz@nus.edu.sg

Received 14 December 2011
Accepted for publication 8 June 2012
Published 13 July 2012
Online at stacks.iop.org/JNE/9/046017

Abstract
This paper models in vivo neural signals and noise for extracellular spike detection. Although
the recorded data approximately follow Gaussian distribution, they clearly deviate from white
Gaussian noise due to neuronal synchronization and sparse distribution of spike energy. Our
study predicts the coexistence of two components embedded in neural data dynamics, one in
the exponential form (noise) and the other in the power form (neural spikes). The prediction of
the two components has been confirmed in experiments of in vivo sequences recorded from the
hippocampus, cortex surface, and spinal cord; both acute and long-term recordings; and sleep
and awake states. These two components are further used as references for threshold
estimation. Different from the conventional wisdom of setting a threshold at 3×RMS, the
estimated threshold exhibits a significant variation. When our algorithm was tested on
synthesized sequences with a different signal to noise ratio and on/off firing dynamics, inferred
threshold statistics track the benchmarks well. We envision that this work may be applied to a
wide range of experiments as a front-end data analysis tool.

(Some figures may appear in colour only in the online journal)

1. Introduction

Understanding a neural code responsible for information
representation, generation and transmission is one of the
important problems in neuroscience toward demystifying
the neuronal substrate of intelligence, cognitive function
and memory [1–4]. Intensive neurophysiological experiments
[5–7], neuroprothetic studies [8, 9] and computational
modeling effort [10, 11] have been reported to infer a
potential neural code, and code candidates include ‘firing-
rate’, ‘synchrony propagation’, or a combination of the two
[8, 12–15]. For all the candidates, they take spiking activities

5 Author to whom any correspondence should be addressed.

from neural ensembles as input. In this sense, reliably detecting
spikes from neurophysiological recordings is a prerequisite for
information decoding. In general, the detected spike rate is
very sensitive to detection threshold, implying a great deal of
uncertainty in harvested information regardless of the choice
of neural code [16]. After a few decades of electrophysiology
experiments and algorithm development [11, 17–20, 20–29],
experimentalists and theoreticians still raise the question in
various occasions: how do you set the detection threshold?
A trade-off is that if one lowers the detection threshold
too much, a large portion of threshold crossing activities
become attributed to noise; raising the threshold, on the
other hand, gets rid of these false detections at a cost of
nonlinearly reducing information content. This is further
complicated by several imposed constraints. For example,
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Figure 1. Noise illustration for in vivo neural interface: I2
Neu is the

lumped neuron noise by background neurons and I2
e.b is lumped

tissue/saline thermal noise. Both are modeled as a current source
with the seal resistance Rb added in parallel. Ie.e is the electrode
interface noise produced in a proximity region of the electrode
surface [35]. γ 4kT

gm
is the input referred electronics thermal noise by

transistors, switches and resistors. K
CoxWL

1
f is the input referred

electronics flicker noise produced by transistors [36].

detection errors are not accessible in most experiments, making
the topic unsupervised and lacking a benchmark for objective
evaluation; neurons and neural networks exhibit nonlinearity
and non-stationarity; some spike detection methods rely on
waveform shapes [22, 28, 29] and require fine-tuned templates
that are difficult to obtain especially in the presence of
waveform variation, spike overlapping, recording artifact and
interference, and microglia cells that may severely degenerate
the signal to noise ratio (SNR).

In this work, we propose a new approach to choose
detection threshold. The framework is compatible with many
detection algorithms, e.g., spike magnitude, nonlinear energy
operator [18, 30], instantaneous energy and waveform slope
(derivative). Our focus is to make the algorithm of practical
use in different experiment setups and robust to recording
imperfections such as waveform variation, spike overlapping,
artifact and interference, and low SNR. The rest of this paper
is organized as follows. Section 2 focuses on neural interface
noise characterization. Section 3 presents algorithms for spike
detection. Section 4 presents experimental results. Section 5
gives concluding remarks.

2. In vivo neural interface noise characterization

Recorded neural spikes are superimposed with neural interface
noise that exhibits non-stationary and non-white-Gaussian
characteristics. It can be approximately fitted as 1/ f x

noise, where f is frequency and x is a positive number
less than 3. The frequency dependence is contributed by
multiple sources including neuron noise [31–34], electrode–
electrolyte interface noise [35], tissue thermal noise and
electronic noise [36], which are illustrated in figure 1 using a
lumped circuit model. Except the tissue thermal noise (4kT Rb

in figure 1) that has a flattened spectrum, the rest decrease with
frequency [37].

To verify the neural interface noise contribution from
different sources, an in vivo experiment is performed that
uses two sharp tungsten electrodes separated by 125 µm
to record the hippocampus neuronal activities of a rat. One
of the electrodes is coated with carbon nanotube (CNT),
while the other is uncoated. After the electrodes have been
placed, a euthanizing drug is injected. After 5 s of drug

injection, the recording of the two electrodes start and last
until to the time of death. The noise analysis results are
summarized and presented in figure 2. In figure 2(a), a 5 min
segment that captures the decaying of background activities
is plotted. In figure 2(b), the estimated neural interface noise
from 600 Hz to 6 KHz for both recording sites are plotted,
where noise dramatically reduces (>80%) after the drug takes
effect. Initially, the CNT electrode records a comparatively
larger noise (697 µV2) compared with the uncoated electrode
(610 µV2). After a few minutes, the background noise recorded
by the CNT electrode quickly reduces eventually reaching
37 µV2 that is about 1/3 of noise recorded by its counterpart
(112 µV2), suggesting that the noise floor of using the uncoated
tungsten electrode (112 µV2) is set by the electrode. From
these two plots, we can estimate that the neuron noise is
around 500–600 µV2, electrode interface noise is ∼80 µV,
while the sum of electronic noise and electrolyte bulk noise
is less than 37 µV2 (only ∼5% of the neural interface noise).
Figure 2(c) displays the 1/ f x noise spectrum recorded from the
uncoated tungsten electrode (x = 1.8, 1.4, 1.0, 0.9, estimated
at 0, 15, 30, 45 min after drug injection). Figure 2(d) displays
1/ f x noise spectrum recorded from the CNT-coated electrode
(x = 2.1, 1.3, 0.9, 0.8, estimated at 0, 15, 30, 45 min after
drug injection).

Similar experiments have been repeated several times and
the results are consistent. Summarized from the experiments,
the dominant noise source (>80% reduction) is neuron noise
followed by electrode noise. As a follow up to our previous
work to characterize contributions from different noise sources
[37], in the next session, we study the in vivo neural interface
noise (the total noise) and its deviation from Gaussian. Since
both electrode noise (regardless of the thermal noise model
or shot noise model [35]) and circuit noise [36] are Gaussian
and they are not the dominant noise sources, without loss of
generosity, we sometimes use neuron noise to replace neural
interface noise (the summation of neuron noise, electrode noise
and circuit noise) in the rest of the paper.

2.1. Neuron noise and central limit theorem

In a generic form, recorded data V (t) are superimposed from
spikes, field potentials and neuron noise:

V (t) =
∑

i=1,2,...,I

V1,i(t) +
∑

j=1,2,...,J

V2, j(t) + Vsyn(t) + Nn(t),

(1)

where V1,i(t) are the activities of a neuron within the recording
radius r1 (spike power is much larger than noise power),V2, j(t)
are the activities of a neuron in an extended radius r2 (spike
power is smaller than or comparable to noise power), Vsyn(t)
is the field potential and Nn(t) is the neural interface noise.

To study neural interface noise and its deviation from
Gaussian, histograms of recorded data are shown in figure 3.
For broadband data of 1 Hz–8 kHz, the histograms exhibit
significant fluctuations as plotted in figure 3(a). The histogram
cannot be smoothed by increasing the data length, suggesting
data non-stationarity. After applying a high-pass filter at
300 Hz to remove low-frequency activities, data histograms
become smoothed and can be approximately fitted by a

2
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Figure 2. In vivo recording for identifying noise sources. (a) Recording segment of 5 min capturing the decay of background activities.
(b) Traces of the estimated neural interface noise versus time are plotted. Black ! curve represents the noise recorded from a custom
tungsten electrode; red " curve represents the noise recorded from a CNT-coated electrodes with the same size. (c), (d) Noise power
spectrums estimated at the 0, 15, 30, 45 min after the drug injection. In (c), a conventional tungsten electrode is used. A CNT-coated
tungsten electrode of equal size is used for comparison (reproduced from [37]) in (d).

 

 

(a)
 

 

(b)
 

 

(c)

Figure 3. (a) A histogram of broadband neural data at 1 Hz–8 kHz.
(b) A histogram of bandpass filtered neural data at 300 Hz–8 kHz.
(c) Re-plot of (b) in the log scale.

Gaussian distribution as shown in figure 3(b). The fitting curve
excellently matches the histogram at its central region and
deviates at regions beyond the data standard deviation (SD) as
re-plotted in figure 3(c) in the log scale.

To quantitatively study high-frequency neuron noise, its
Gaussian signature and deviations from Gaussian, we refer
to the central limit theorem (CLT) [38], which states that the

sum of a sufficiently large number of independent random
variables, each with identical distribution, finite mean and
variance, follows a Gaussian distribution. The conditions of
‘independent variables’ and ‘identical distribution’ are strong
and more relaxed conditions have been worked out in the
literature, e.g., Lyapunov’s condition [39] that allows variables
of ‘different distributions’.
Definition. Let Xi, i = 1, 2, 3, . . . , K, be a sequence of
independent random variables. Suppose that each Xi has
a finite expected value E[Xi] = µi and a finite variance
E[(Xi − µi)

2] = σ 2
i . If for some δ > 0, the expected values

E[|Xi|2+2δ] are finite and for every 1 # i # K,

lim
K→∞

1
( ∑K

i=1 σ 2
i

)1+δ

K∑

i=1

E[|Xi − µi|2+2δ] = 0 (2)

is satisfied, then the convergence to Gaussian holds:
∑K

i=1 Xi

follows a Gaussian distribution with the mean
∑K

i=1 µi and
variance

∑K
i=1 σ 2

i .

3
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Figure 4. Typical autocorrelation curves of neuron noise (dotted curve) and white Gaussian noise (solid curve). For the sequences that we
have tested, the autocorrelation curve has a first zero crossing point around 150–450 µs and stabilized variance in the range from 10−6 to
10−4.

If the voltage fluctuation induced by each neuron is treated
as a random variable (Xi), then the recorded voltage V is
the sum of random variables V =

∑
Xi under a framework

similar to the CLT. However, there are two issues regarding the
application of Lyapunov’s condition here. First, mesoscopic-
level synchronization positively correlates with the cortical
volume enclosed [3], producing long-lasting firing rhythms
against the CLT, which explain the deviations from Gaussian
in figure 3(a). The synchronized activities appear at less than
200 Hz and can be removed by high-pass filtering. In other
words, only a moderate number of neurons located in a
proximity region (e.g. a few hundred µm) of the recording
site could be treated as the pool for Lyapunov’s condition,
making the large number hypothesis questionable; it is further
added that the convergence to Gaussian is slow: assuming N
the number of neurons and a homogeneous neuron density
function, we derive that equation (2) converges at a rate of
O(N1/3). Second, the strength of pairwise synchronization is
inversely proportional to the distance between the neurons [1],
implying that the random variables to be summed over are
not completely independent. A relaxation on the requirement
of independence is possible for the CLT [40, 41]; however, it
still lacks a sufficient and necessary condition. Alternatively,
we have analyzed sequences collected from different animal
preparations to investigate the validity of CLT. As an example
shown in figure 4, after being high-pass filtered at 300 Hz,
typical autocorrelation curves of neural interface noise have
their first zero-crossing point around a few hundred µs. The
waveform ripples decay very fast initially and approach a
slowly decaying state with the variance 10−6–10−4, suggesting
a weak but a long-lasting correlation among samples. The data
histograms, on the other hand, exhibit small deviations from
Gaussian. In section 3, we reason that the small deviations
are caused by sparse distribution of spike energy: neuronal
synchronization breaks the hypothesis of independence (field
potentials, figure 3(a)), while a number of nearby, high firing-
rate neurons (neural spikes, figures 3(b) and (c)) violate
Lyapunov’s conditions.

3. Unsupervised near-optimal neural spike detection

In this section, we propose a framework for estimating the
spike detection threshold. As shown in sections 3.1 and 3.2,

a transformation of neural data to its analytic form reveals
two statistical components: an exponential term caused by the
regulation of CLT (neuron noise) and a power term caused by
the violation of Lyapunov’s condition (spikes). In sections 3.3
and 3.4, a threshold estimation method is proposed based on
these two components.

3.1. Neural interface noise—exponential component

Definition. A real sequence V (t) (neural data) and its Hilbert
transform HV (t) are related to each other that they together
form a strong analytic signal Vst(t) [42–44]:

Vst(t) = V (t) + iHV (t) = V (t) + i
1
π

P
∫ ∞

−∞

V (τ )

t − τ
dτ, (3)

where P in front of the integral denotes the Cauchy principal
value and H denotes the Hilbert transform.

We choose to detect neural spikes based on the analytic
signal |Vst(t)| =

√
V (t)2 + HV (t)2 rather than V (t) (although

they are approximately equivalent) for two reasons. First,
extracellular spike could have significant variation in shape;
sometimes they may require multiple detection windows of
different thresholds. As a comparison, the corresponding
analytic signal (square root of instantaneous energy) has less
variation in shape and only require a single threshold for
different shaped spikes, as illustrated in figure 5. Second,
as to be derived here, background noise has a simple
representation in Hilbert space. Denote the discrete versions
of V (t) and HV (t) as V (m&T ) and HV (m&T ), where
m = . . . , −1, 0, 1, 2, . . . and &T is the sampling interval.
By definition, HV (m&T ) is a weighted sum of a series
of correlated Gaussian random variables that approximately
converges to Gaussian. The dependence between V (m&T )

and HV (m&T ) can be quantified through a modified cosine
similarity YV (from completely independent to dependent, YV

increases from 0 to 1):

YV =
∣∣∣∣∣1 −

∫ ∞
−∞ fV (x1) fHV (x2) fV,HV (x1, x2) dx1 dx2∫ ∞

−∞ f 2
V,HV (x1, x2) dx1 dx2

∣∣∣∣∣ , (4)

where fV and fHV are the density functions of V (m&T ) and
HV (m&T ), respectively; fV,HV is the joint density function.
Measured results based on in vivo data show that YV is in
a range from 0.0007 (associated with inactive states, e.g.,

4
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Figure 5. Neural spike data (black) and their analytic waveforms (brown). (a) A burst of spikes with 1–2 ms width and 100 µV magnitude.
(b) A burst of spikes with 2–4 ms width and 1 mV magnitude. Waveforms in both (a) and (b) are picked from a same recorded sequence with
3 s of separation.

figure 6(a)) to 0.035 (associated with active states, e.g.,
figure 6(b)), suggesting that {HV (m&T )} and {V (m&T )}
are nearly independent Gaussian variables. Added that the
Hilbert transform does not change the signal power, it gives the
following property of neuron noise: define Z(m&T ) the power
of analytic signal Vst(m&T ), and the cumulative probability
function of Z is

F(Z0) = Pr[Z < Z0] =
∫ √

Z0

−
√

Z0

∫ √
Z0−y2

−
√

Z0−y2
fV,HV (x, y) dx dy,

≈
∫ √

Z0

−
√

Z0

∫ √
Z0−y2

−
√

Z0−y2
fV (x) fHV (y) dx dy = 1 − e

− Z0
2σ2

n ,

(5)

where F(Z0) is the cumulative probability function with
respect to the instantaneous signal power Z0 and σn is the
SD of background noise.

Equation (5) gives a clear description of high-pass filtered
(>300 Hz) noise generated by background neurons: in the
linear-log scale, the probability density function (pdf) f (Z0) =
dPr(Z<Z0)

dZ0
is a straight line with a slope equal to − 1

2σ 2 (the
square of a Rayleigh distribution in [16]). In other words,
there exist detectable neural spikes that invalidate equation (2)
(detailed in section 3.2), if f (Z0) deviates from a straight line
or with a different slope (detectable neural spikes increase the
slope); and this deviation positively correlates with the spikes
frequency.

3.2. Neural spikes—power-law component

As discussed in section 3.1, neuron noise gives the signal
instantaneous power Z an exponential density function f (Z),
while the presence of ‘neural spikes’ makes f (Z) to deviate
from the exponential form. In this section, emphasis is made to
reason that large magnitude, fast rate spikes violate Lyapunov’s
condition and make the deviation a power-law component.

We first examine the validity of Lyapunov’s condition
(equation (2)) in the context of neural recording:

' = lim
N→∞

1
(∑N

i=1 σ 2
i

)1+δ

N∑

i=1

E[|Xi − µi|2+2δ]

>
(σL

σ

)2+δ TLrL

fs
∀L, (6)

where ' is a parameter to quantify the validity of Lyapunov’s
condition (a smaller ' suggests Lyapunov’s condition holds
better); L is used to identify the variable of the largest variance
(large spikes), TL is the spike width, rL is the firing rate,
fs is the sampling frequency, σ 2 is neural data variance
and σ 2

L represents the spike variance within the waveform
window. If we assume a homogeneous neuron density and
independent firings, ' converges to 0 as N increases. However,
the convergence rate is slower than linear (∼N1/3). The slow
convergence makes the validity of Lyapunov’s condition to rely
on a hypothesis of small variance of each individual variable,
which is proportional to its firing rate and induced spike
power. As an example shown in figure 6(a), spikes are large in
magnitude and low in frequency, making ' in equation (6)
small. Consequently, Z follows an exponential distribution
f (Z) = 10−1.7 e−0.503Z . As a comparison shown in figure 6(c),
spikes have a large magnitude and high firing rates, which
degenerate Lyapunov’s condition; as a result, f (Z) deviates
from an exponential distribution as plotted in figure 6(d). In
the following, we quantitatively investigate this deviation.

Following equation (1), the analytic signal of recorded
neural data Va(m&T ) is

Va(m&T ) =
[

A∑

i=1

Vs,i(m&T ) + N(m&T )

]

,

+ i

[

H
A∑

i=1

Vs,i(m&T ) + HN(m&T )

]

, (7)

where Vs,i(m&T ) and N(m&T ) are neural spikes and neuron
noise, respectively, and A is used to note a set of neurons that
induce detectable spikes.

Denote as M the magnitude of a spike (M > σn, σn is the
neuron noise SD calculated from N(m&T )), by Coulomb’s

5
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Figure 6. (a) Neural data with a small amount of visually detectable spikes (differentiable from background activates). (b) Measured pdf of
data in (a) is fitted by an exponential function over four orders. The x-axis: Z normalized to data variance (scaled by 1/σ 2). The vertical axis:
pdf in the log scale. f (Z) = 10−1.7e−0.503Z compared with the theoretical prediction f (Z) = 10−1.7e−0.5Z . (c) Neural data with more visually
detectable spikes. (d) Measured pdf in (c), which deviates from an exponential distribution as Z increases. For Z < 3, f (Z) = 10−1.4e−1.09Z .
For all the experiments shown in this paper, f (Z) is quantized as 10−6. This causes scattering at the tail as shown in (b) and (d).

law; M is inversely proportional to the distance between the
source (neuron) and the measuring point (electrode). Based on
this property, the pdf of the number of neurons with respect to
M, ρ(M), is

ρ(M) = cr(M)2

∣∣∣∣
dr(M)

dM

∣∣∣∣ ∝ M−4, (8)

where c is a constant relating to neuron density (number of
neurons per mm3), and r(M) is the distance from a targeted
neuron to the recording site.

Assume that an analytic spike of magnitude M introduces
W equally spaced samples on average

(
W ≈ TL

&T

)
, based on

equation (8), the density function of spike power fd(Z) is

fd(Z) ≈
[∫ +∞

s
ρ(M)

W
M

dM
]

ds
dZ

|s=Z0.5,Z*σn
∝ 1

Z2.5
, (9)

where fd(Z) is the added component by neural spikes, causing
f (Z) to deviate from Gaussian.

Combine equations (5) and (9); f (Z) is a combination
of an exponential component (e−λ1Z , EC) and a power-law

component (Z−λ2 , PC): e−λ1Z is caused by background noise
regulated by the CLT, and Z−λ2 is caused by detectable
spikes that violate Lyapunov’s condition of small variance of
individual variables. Typical results derived from in vivo data
are shown in figure 7, which clearly confirm the existence of
both e−λ1Z and Z−λ2 .

3.3. Threshold estimation

Assume f̃n(Z) and f̃d(Z) the exponential component and
the power-law component trained in real-time, and f (Z) =
f̃n(Z) + f̃d(Z),

∫ ∞
0 f (Z) dZ = 1. Given a sample Z(m&T ) =

Z0, the probability of the presence of a spike ps(m&T ) can be
quantitatively accessed, e.g., using the maximum-likelihood
estimation:

ps(m&T ) = f̃d(Z0)

f̃d(Z0) + f̃n(Z0)
|Z0=V (m&T )2+HV (m&T )2 . (10)

As discussed in section 1, a quantitative evaluation of
threshold requires the benchmark as a priori that is not

6
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Figure 7. (a) Analytic waveforms of recorded data with thresholds labeled for comparison. (b) Pdf of analytic signal power f (Z). For this
sequence, the crossing point of e−λ1Z and Z−λ2 (EC/PC) suggests over 30 times increased spike events compared with using 3×RMS
threshold. (c) When Z/σ 2 < 1, e−λ1Z dominates Z−λ2 ; therefore, f (Z) is fitted by an exponential trace in the log scale. (d) As Z increases,
Z−λ2 dominates e−λ1Z , and f (Z) is fitted by a power component in the log–log scale.

available. ps(m&T ) in equation (10) can be used as a
replacement of the benchmark. The optimal threshold is the
one that generates spike firing patterns matching ps(m&T )
most: given a segmentation scheme of neural data wk, k =
1, 2, 3, . . ., and a threshold, the detected spike patterns are
noted as Pth(k). An integration procedure over ps(m&T ) is
applied over the same segmentation scheme; in this work, we
use a simple winner-take-all strategy that captures the peak
instantaneous energy regardless of the waveform width

Ps(k) = Max
m∈[wk,wk+1]

{ps(m&T )}, (11)

where Ps(k) is the probability that a spike appears in the kth
segment and an optimal detection threshold is the one that
maximizes the similarity between Ps(k) and Pth(k).

3.4. Step-by-step algorithm recipe

A step-by-step algorithm explanation correlated with
algorithm flow shown in figure 8 are given as follows.

Data preparation: high pass filtering raw data at 300 Hz
to remove low frequency activities. Filtered data are noted as

V (t), which are contributed by a large number of background
neurons.

Step 1. Applying the Hilbert transform to the high pass
filtered neural dataV (t) as shown in equation (3). According to
equations (3)–(5), neuron noise has an exponential distribution
e
− Z

2σ2
n , where σ 2

n is the noise variance and Z is the instantaneous
energy in Hilbert space. Because noise variance is always
smaller than the data variance σ 2, thus the exponential
distribution takes a general form e−λ1Z with λ1 $ 1

2σ 2 .
According to equations (6) to (9), detectable neural spikes

generate a power-law distribution Z−λ2 . It can be attributed to
violations of Lyapunov’s conditions: some neurons are more
close to the electrode and induce large spikes that invalidate
the hypothesis of small variance of individual variables.
The induced spike magnitude is inversely proportional to
the distance between the neuron and the electrode, and
consequently, detectable neural spikes give a power-law
distribution. In the ideal case that neurons are homogenously
distributed and each with equal transmembrane current density,
the distribution follows Z−2.5.
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Figure 8. Step-by-step flow of the proposed spike detection algorithm.

Figure 9. (left) EC/PC decomposition. The x-axis is signal power normalized data variance; the y-axis is the probability in log10. Red
(circle) line is an inferred EC (noise) and blue (square) line is an inferred PC (signal). (right) Superimposed EC+PC in comparison with
neural data energy distribution ( f (Z)).

Step 2. Applying a linear decomposition algorithm to
separate f (Z) into two components, f̃n(Z) ∼ e−λ1Z (noise)
and f̃d(Z) ∼ 1

a+Zλ2
≈ Z−λ2 (signal). For f̃d(Z), the regulation

at small Z is because the noise variance σ 2
n implicitly sets a

lower boundary for s in equation (9). In other words, if the
magnitude of induced spikes is too small, spikes contribute to
background noise and cannot be reliably detected. A snapshot
of typical components decomposition results is shown in
figure 9.

Step 3. Generating a ‘spiking probability map’ Ps based
on equations (10) and (11). The estimated f̃n and f̃d(Z) are
the input. The ‘spiking probability’ refers to the chance of the
presence of a spike at a given time, as shown in figure 10.

Step 4. Choosing a spike detection threshold based on
the generated ‘spiking probability map’. The user can choose
detection threshold based on the spiking probability, e.g.,
80%. (On average, 80 out 100 detected spikes are true spikes.
The rest 20 are from noise.) Or alternatively, the user can
calculate an optimal threshold that gives the maximal temporal

similarity between the detection results (1/0 pattern) and the
spiking probability map.

4. Data analysis results

In section 4.1, we use animal data to argue that the estimated
detection threshold correlates with the background spiking
activities. Furthermore, we report that there are substantial
variations in estimated detection threshold for (1) data
recorded from the same channel but at different time slots
and (2) data recorded from different channels at the same
time.

In section 4.2, we use synthesized data to quantitatively
evaluate the algorithm performance. We report that
the proposed algorithm can predict receiver operator
characteristics (ROC) curves that are almost identical to
benchmarks. The results confirm that the proposed spiking
probability map can be used for choosing detection threshold.
Finally, quantitative comparisons between the predicted

8
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Figure 10. Spiking probability map in comparison with neural data. The x-axis time in second. First trace: spiking probability map in 10 s
window. Second trace: neural data high pass filtered at 300 Hz. Third trace: spiking probability map in 50 ms window (9.4–9.45 s). Fourth
trace: the corresponding spike data in the 50 ms window.

spiking probabilities and measured probabilities are included
to validate the algorithm prediction accuracy.

4.1. Validation using experimental in vivo animal data

4.1.1. Validation of two statistical components. Testing
results on 109 in vivo sequences are summarized in figure 11.
The data are independently recorded from hippocampus,
cortex surface and spinal cord; both acute and long-term
recordings; and sleep and awake states. Typical in vivo neural
data illustrating different firing rates, on/off duties and SNR
(defined as spike amplitude divided by noise RMS) are
shown in figure 12 along with the corresponding EC/PC
decomposition results. Over ∼30% sequences tested (an
example is shown in figure 7), a threshold near the crossing
point of e−λ1Z and Z−λ2 (EC/PC) gives >10 times more spikes
than 3×RMS does, suggesting a large headroom for increasing
information capacity.

On all 109 sequences tested, λ1/σ
2 is averaged to be

0.7719 ± 0.5082, as shown in figure 11(a). The histogram
of λ1/σ

2 clearly peaks at ‘0.5’, which is consistent with the
prediction by equation (5). A power component Z−λ2 has been
observed in all the sequences. As summarized in figure 11(b),
λ2 = 2.516 ± 0.564 astonishingly matches the predicted ‘2.5’
by equation (9). The model fitting of f (Z) using e−λ1Z and
Z−λ2 in the log scale have passed statistical validations: the
repeatability measured by R2 score [45] is 99.56 ± 0.14%; the
accuracy measured by the root mean square deviation (RMSD)
is 0.056 ± 0.014. As summarized in figures 11(c) and (d),

the estimated optimal threshold exhibits significant variations
from 23 to 155 µV.

4.1.2. EC/PC crossing point variation over time. As
illustrated in figure 13(a)–(c), Z0.5

EC/PC (the predicted threshold
that corresponds to 50% correct detections and 50% false
detections) versus time traces are plotted, where data are
recorded from hippocampus, cortex and cortex superficial
layer. We find out in some cases Z0.5

EC/PC does not change
much (<30%) over time, e.g., figures 13(a) and (b); while
in some other cases, Z0.5

EC/PC may change suddenly, e.g.,
figure 13(c). Our experiments confirm that Z0.5

EC/PC well tracks
spiking activities: when spiking activities are frequent and
differentiable from noise (a high SNR), Z0.5

EC/PC tends to be
lower than 2.5 (Figure 13(a)). When spiking activities are
infrequent, Z0.5

EC/PC tends to be higher (Figure 13(c) and (f)).
The results here are consistent with the prediction that when
individual neural spikes with variances comparable to the
background data RMS, ' in equation (10) is a small number
(, 1) and neural spikes merge to background noise according
to Lyapunov’s condition. In this case, an optimal detection
threshold will be biased to reduce the false alarm according
to the maximum-likelihood criterion, and thus a larger Z0.5

EC/PC.
When neurons induce frequent and large magnitude spikes, '
in equation (10) becomes larger and neural activities form a
new distribution (PC in Hilbert space). In this case, the neural
data RMS should be notably larger than the background noise
RMS, and thus Z0.5

EC/PC is smaller.
As shown in figures 13(c) and (f), Z0.5

EC/PC may change over
time. If Z0.5

EC/PC is indeed coupled with the optimal detection

9
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Figure 11. (a) Measured histogram of λ1/σ
2. As predicted by equation (5), it peaks at 0.5. (b) Measured histogram of λ2, astonishingly

matching the predicted 2.5 by equation (9). (c) Histogram of EC/PC crossing point (Z0.5) in µV. (d) Estimated threshold; x-axis: data SD in
µV, and y-axis: estimated optimal threshold referred to as σ (Z/σ 2). Data statistics are derived from 109/109 in vivo recordings contributed
from independent experiments: λ1/σ

2 = 0.7719 ± 0.5082, λ2 = 2.516 ± 0.564, R2 = 99.56 ± 0.14% (repeatability), RMSD = 0.056 ±
0.014 (accuracy). f (Z) is quantized at a resolution of 10−5.

threshold, it requires algorithms to constantly update the
detection threshold. A sequence that has a sudden change
in Z0.5

EC/PC is shown in figure 14(a), where Z0.5
EC/PC initially

fluctuates around 3.5 and suddenly drops to around 2 at 330 s
time marker. For a clear comparison, recorded data segments
at 0–50, 320–350 and 400–450 s are plotted in figures 14(b)–
(d) respectively. When spikes are less visually differentiable
from the background activities as shown in figure 14(b),
Z0.5

EC/PC scores higher, which suggests a smaller number of
detectable spikes. From the transition of less differentiable to
more differentiable spiking activities as shown in figure 14(c),
Z0.5

EC/PC drops from 3.5 to 2, which confirms an increased
number of detectable spikes. When there are sustained spiking
activities (400–700 s) as shown in figure 14(d), Z0.5

EC/PC remains
a lower score around 2.5. Results presented in figure 14 shows
that Z0.5

EC/PC is a good indicator of the background activities and
coupled with the spike detection threshold.

To investigate Z0.5
EC/PC statistics over different recording

channels, multi-channel recording experiments are performed
using the Plexon system with 1–8000 Hz bandwidth on the
amplifiers. Adjacent electrodes are separated by 150 µm to
allow studying the spatial sensitivity of Z0.5

EC/PC. Figure 15
summarizes derived Z0.5

EC/PC at different channels and different
trails: each row is one trail that consists of five channels.
Experiment data suggest that there exists substantial variation
in Z0.5

EC/PC among different recording channels (even two
adjacent channels), and thus independent threshold estimation
should be performed for different channels.

4.2. Validation using synthesized data

4.2.1. Prediction 50%–50% threshold. To quantitatively
evaluate the proposed detection algorithm, we have prepared a
synthesized data base to mimic real recordings. As illustrated
in figure 16, recorded in vivo data that contain a small number
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Figure 12. Sampled in vivo data segment (upper figures) and their corresponding EC/PC decomposition (bottom figures).

(a) (b) (c)

(d) (e) (f)

Figure 13. (a)–(c) EC/PC crossing point (Z0.5
EC/PC) versus time. The x-axis is time, and the y-axis is the EC/PC crossing point normalized to

data rms. A bandpass filter of 300 Hz–8 kHz has been applied to calculate the data rms. (d)–(f) Sampled data segments, where (a)–(c) have
one-to-one correspondence to (d)–(f). For a segment that includes more visually detectable spikes, Z0.5

EC/PC is smaller (<2.5).

of visually detectable spikes are used as the background noise;
recorded spike waveforms with a large magnitude (>500 µV)
are used to model the shapes of neural spikes. Independent
neurons of varied transmembrane current magnitudes (to
model variations in axonal radius and ion channel density)
are randomly added within a few hundred µm radius of a
point electrode. The induced spikes attenuate according to the

distance to the electrode. The amplitudes of added neurons
are in a wide range from 5 µV (small and distant neurons,
more likely to appear) to 1.3 mV (large and close neurons, less
likely to appear). The maximal number of neurons added in
this simulation is 50, allowing overlapping spikes. Neurons’
firings are assumed to follow the inhomogeneous Poisson
process with varied on/off firing states; the averaged firing
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Figure 14. (a) Z0.5
EC/PC versus time, where there is a sudden step-down during 300–350 s time marker. (b) Bandpass filtered neural data at

300 Hz–8 kHz during 0–50 s time marker, where there are less visually detectable spikes. (c) Bandpass filtered neural data during 300–350 s
time marker, where there is a sudden increase in spiking activities starting at 335 s time marker. The change in spiking rate is coupled with
Z0.5

EC/PC as shown in (a). (d) Bandpass filtered neural data in 400–500 s, which have shown sustained high-rate spiking activities.

rates are randomly picked from 0.1 to 10 Hz. The rest of
neurons are assumed to fire a train of spikes each time with
the 2 mS refractory period.

Figure 17 displays the predicted EC/PC crossing point
Z0.5

EC/PC (x-axis) compared with the measured threshold VT.50%

(y-axis) that incurs 50% correct detections and 50% false
detections: Z0.5

EC/PC is predicted by equation (10); VT.50% is
obtained by sweeping the detection threshold and comparing
results with the benchmark. According to equation (10),
VT.50% should be very close to Z0.5

EC/PC due to an exponential
sensitivity of equation (10) around 0.5. The fitting results
summarized from different sequences are plotted in figure 17,
where the x-axis is Z0.5

EC/PC and the y-axis is measured VT.50%

(both normalized to data RMS), each dot is one synthesized
sequence, and the solid line is fitted to minimize the RMS
deviation. The best fitting is VT.50% = 0.987 Z0.5

EC/PC − 0.080,
which astonishingly matches the predicted one VT.50% ≈
Z0.5

EC/PC.
To allow a quantitative evaluation of the prediction

statistics (given a threshold, we predict the numbers of correct
detections and false detections) and its comparison with the

benchmarks (given a threshold, we count the number of
correct detections and false detections using ‘ground truth’
data), we have built ROC-typed detection curves as shown
in figure 18. The procedures to predict detection statistics
have been described as a step-by-step algorithm recipe in
section 3.4, where the output is a ‘spiking probability
map’ that tells the chance of the presence of a spike at a
given time slot. Given a threshold, the predicted ‘spiking
probability map’ can output detected spike patterns, which
have been further compared with the ‘ground truth’ data to get
quantitative feedbacks of positive detections/false detections.
If the proposed theory works, ROC curves derived from the
‘spiking probability map’ should be consistent with ROC
curves derived from other detection methods, especially the
amplitude-based approach as detections from an analytic
signal and from an original signal are more or less equivalent.
To be more objective on building the benchmark ROCs,
we have tried three types of detection methods: amplitude,
nonlinear energy operator and matched filter. As shown in
figure 18, the ROC curves derived from predicted ‘spiking
probability maps’ (labeled as EC–PC) are indeed the consistent
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Figure 15. Z0.5
EC/PC in multi-channel recording experiment. Each row of figures gives results derived from different channels of one

preparation. Five rows are derived from five preparations.
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Figure 16. Protocols to synthesize neural data. Neuron noise and a large number of spike templates (spikes over 200 µV) are first extracted
from in vivo recordings. Background neurons are randomly added around the recording electrode. Each neuron produce spikes from a given
template following a randomized inhomogeneous Poisson process. The amplitude of a spike is re-scaled according to the distance between
the neuron and the recording electrode with added variation to mimic ion-channel density fluctuations.
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Figure 17. Predicted EC/PC crossing point (x-axis) versus measured
threshold (y-axis) that incurs 50% correct detections and 50% false
detections (VT.50%). Synthesized sequences are filtered at 300 Hz–
5 kHz; Each dot represents one sequence. Neurons are randomly
added within a few hundred µm radius of a point electrode. The
induced spike amplitude are in a wide range from 5 µV to 1.3 mV;
while the RMS noise is 20–30 µV. Best fitting: y = 0.987x −
0.080 (R2 = 0.935) compared with the prediction by equations (5),
(9) and (10): y = x.

benchmarks (labeled as Abs, NEO, MF-Abs) at different
SNRs, i.e. 1.5 dB and above, which indirectly validates the
spiking probability map.

Figure 19 shows the predicted spiking probability (given
data segments of a few ms, the predicted probability that
it contains a spike by equation (11)) and its comparison
with the measured spiking probability. In this experiment,
data segments that have similar predicted spiking probability
(±2.5%) are grouped together and compared with the ‘ground
truth’ data to measure the actual spiking probability. The
experiment has shown that the predicted spiking probability is
consistent with the measured probability over a wide range of
SNRs and firing rates. Results in figures 18 and 19 together
confirm that ‘spiking probability maps’ can be used as a priori
to estimate an appropriate detection threshold.

5. Summary

A novel theory for modeling in vivo neural signals and noise
has been presented with rigid experimental verifications. Our
study have exposed two statistical components embedded
in neural data and shown that they can be used for spike
detection. When tested with in vivo data, the derived
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Figure 18. Predicted detection statistics compared with benchmarks. Data are synthesized according to the protocols described in figure 16.
The added neurons are grouped according to the SNR (defined as spike amplitude divided by neuron noise RMS), from 1.5 dB SNR in (a) to
8.3 dB in (p) in an increasing order. The x-axis is the probability of false alarm (a detected spike is actually noise); the y-axis is the
probability of the correct detections (a detected spike is an added spike). Benchmarks derived from three algorithms, i.e. waveform
amplitude (circled green trace, Abs), nonlinear energy operator [18] (triangled blue trace, NEO) and matched filter (crossed magenta trace,
MF-Abs) are plotted in comparison with the predicted statistics (squared brown trace, EC–PC) using the derived spiking map (figure 10) by
equations (10) and (11).
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Figure 19. Spiking probability prediction and verification. The x-axis is the predicted spiking probability: given a data segment of a few ms,
the predicted probability of the presence of a spike; the y-axis is the measured spiking probability: data segments that have similar predicted
spiking probabilities (±2.5%) are grouped together and compared with the ‘ground truth’ data to measure the actual spiking probability.
(a) 40 neurons with an averaged firing rate of 1.8 Hz and (b) 30 neurons with an averaged firing rate of 2.1 Hz are included. The data
preparation protocol follows figure 16. The summed spiking rate in the experiment is set to below 100 Hz to avoid bias to detection.

threshold exhibits significant variations from 23 to 155 µV
(1–6 RMS), suggesting that the conventional approach of
fixing the threshold at a constant rms level is not reliable
and may cause significant losses in information. In addition,
Z0.5

EC/PC (the threshold corresponds to 50% positive detection
and 50% false alarm) may change over time and vary from one
channel to a different channel, which requires the training
algorithms to be independent over different channels and
adaptive over time. When tested with synthesized data, the
predicted ROC curves match the benchmarks at a varied SNR
and the predicted spiking probability is consistent with the
measurement. We envision that this work may be applied to a
wide range of experiments as a front-end data analysis tool.

6. Protocol

Rat data are provided by Dr Edward Keefer at Plexon Inc.
The protocols can be found in [46]. Cat data are provided by
Dr Victor Pikov at Huntington Medical Research Institute.
The neural recordings were collected from the cerebral
cortex in several cats, as previously described [47]. Briefly,
the 16-channel (4 × 4) electrode arrays with a nominal
geometric area of exposed electrode tips of 2000 µm2

were purchased from Blackrock Microsystems. To decrease
the electrode impedance, the electrodes were coated with
the sputtered iridium oxide (SIROF) at the EIC Labs
using the previously established procedure [48]. The array
was chronically implanted in the sensorimotor cortex and
connected to a percutaneous connector mounted in the animal’s
head, in accordance with the HMRI Institutional Animal Care
and Use Committee-approved protocol and in compliance
with the USDA Animal Welfare Act. At 10–100 days after
the array implantation, the animal was lightly anesthetized

by an intramuscular injection of ketamine (11 mg kg−1) and
acepromazine (0.1 mg kg−1), allowing the animal to breathe
on its own and to limit the suppression of spontaneous cortical
neuronal activity. Neural data were recorded at 16 bit and
25 ksps using a custom amplifier and a data acquisition board
(USB-6259, National Instruments).
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