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Abstract— Spatial filtering for EEG feature extraction and
classification is an important tool in brain–computer interface.
However, there is generally no established theory that links
spatial filtering directly to Bayes classification error. To address
this issue, this paper proposes and studies a Bayesian analysis
theory for spatial filtering in relation to Bayes error. Following the
maximum entropy principle, we introduce a gamma probability
model for describing single-trial EEG power features. We then
formulate and analyze the theoretical relationship between Bayes
classification error and the so-called Rayleigh quotient, which
is a function of spatial filters and basically measures the ratio
in power features between two classes. This paper also reports
our extensive study that examines the theory and its use in
classification, using three publicly available EEG data sets and
state-of-the-art spatial filtering techniques and various classifiers.
Specifically, we validate the positive relationship between Bayes
error and Rayleigh quotient in real EEG power features. Finally,
we demonstrate that the Bayes error can be practically reduced
by applying a new spatial filter with lower Rayleigh quotient.

Index Terms— Bayes error, brain–computer interface, Rayleigh
quotient, spatial filtering.

I. INTRODUCTION

S INGLE-TRIAL electroencephalogram (EEG) feature
extraction and classification [1] play a vital role in

the emerging technology of brain–computer interface (BCI)
[2]–[4]. BCI enables a user to interact with computers or
machines just by means of brain activities. Thus, it is promis-
ing for restoration of lost communication and control functions
in severely disabled people [5], [6], as well as in other potential
applications [7], [8]. From the viewpoint of signal processing,
BCI performs real-time detection of the EEG signals associ-
ated with special mental activities. This is often referred to
as single-trial EEG classification [9] that makes decision on
each trial (a single execution of a mental task). Recently there
has been rapidly growing interest in related pattern recognition
research (see comprehensive reviews in [1], [10]).

Computing discriminative features in single-trial EEG can
be very challenging due to EEGs’ poor specificity caused by
volume conduction effects, brain nonstationarity, and various
background noises [11]–[13]. In addition, the characteristics
of EEG signals may vary significantly from person to person
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[14] and among different conditions [15]. In order to solve
these problems, spatial filtering has been introduced to explore
discriminative spatial characteristics of multichannel EEG
signals [9], [16], [17], as long as the mental activities of
interest show different spatial patterns. The basic principle is
to transform EEG signals acquired from a large and equivocal
array of sensors into a small set of components containing
discriminative information about task-related brain activities.
To present, one of the most popular and effective techniques
is the common spatial pattern (CSP) method [9], [18], [19].
As a supervised method, it can produce better features than
independent component analysis (ICA) which is unsupervised.
This has been demonstrated in [20] using various ICA algo-
rithms, including Infomax, FastICA, and SOBI.

CSP consists of a real-valued linear projection that trans-
forms each EEG time sample into one or multiple specific
vectors representing particular spatial patterns. Subsequently
it calculates the average powers of each resultant signal in
the trial, and the power values will represent the EEG trial
in classification. The linear transformation of CSP is usually
optimized for each individual subject to account for cross-
subject variations, by minimizing the Rayleigh quotient [19]
[see (21) and related descriptions]. The quotient can be viewed
as the ratio of the average power feature of one class to that of
the other, while its minimization can be casted as a generalized
eigenvalue problem. It is recognized that CSP is especially
useful in sensorimotor rhythm (SMR)-BCI [21] with motor-
related mental tasks [19], [22]. Various extensions of CSP
have also been proposed in recent years [23]–[28], with the
Rayleigh quotient continuing to play an important role.

More recently, two interesting developments of CSP were
reported in [28] and [29]. The former proposed a multiclass
Bayes error bound estimate with a closed-form expression and
then developed a learning algorithm for minimizing the bound
estimate in multiclass data. The latter introduced a Bayesian
generative model for representing SMR EEG, and devised a
variational Bayesian method for learning. It has proved that
CSP is a maximum-likelihood estimation of the generative
model under certain conditions.

From Bayesian viewpoint, however, the direct relationship
between power features and Bayes error of single-trial EEG
classification has not yet been addressed rigorously. Existing
works (e.g., [28]) often relate CSP to the solution for mini-
mizing an upper bound of Bayes error, i.e., the Bhattacharyya
bound [30], in classification of individual EEG time samples.
However, that error bound may not be appropriate for repre-
senting the Bayes error because of the following reasons. The
Bhattacharyya bound would match a tighter bound called the
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Chernoff bound only if the two classes have equal-covariance
matrices but unequal means (see [30]), whereas rhythmic EEG
samples in sensorimotor BCI have zero mean and different
covariance matrices between classes [18]. More importantly,
the actual problem of concern is not classification of an
individual time sample but that of a whole trial comprising
a number of time samples.

The objective of this paper is to build a theory that links
Bayes learning and spatial filtering for EEG classification.
We introduce the maximum entropy principle to probabilistic
modeling of EEG power features. We show that the features
can be described by gamma distributions. Then we study
the Bayes error for gamma random variables and prove that
the error is monotonic over the Rayleigh quotient [19] under
simple conditions. To validate the theory in practical EEG clas-
sification, our experimental study involves three independent
EEG data sets consisting of 18 human subjects performing
motor imagery BCI tasks. With the analysis of the EEG power
features, we validate that the Bayes error is closely correlated
with the Rayleigh quotient. We also investigate the possibility
to further reduce Rayleigh quotient over CSP and the effect
on classification accuracy. Various classifiers, including linear
discriminant analysis, linear and nonlinear support vector
machines are used in evaluating the classification accuracy.

The rest of this paper is organized as follows. Section II
analyzes the Bayes error for EEG power features, and for-
mulates the direct theoretic link between the Bayes error and
the Rayleigh quotient. Section III describes the experimen-
tal results, followed by discussions in Section IV. Finally,
Section V concludes this paper.

II. BAYESIAN ANALYSIS OF EEG FEATURES

AND SPATIAL FILTERING

A. Gamma Probability Models of Power Features

In this section, we aim to connect EEG power features to
gamma probability distributions. To this end, let us consider
the primary phenomena of SMR EEG, namely, event-related
de-synchronization (ERD) and event-related synchronization
(ERS) [9]. They are the attenuation or increase of the rhyth-
mic activity over the sensorimotor cortex generally in the
µ (8–13 Hz) (highly overlapping with the alpha band) and
β (14–30 Hz) bands. ERD is relatively much more prominent,
which has been demonstrated to be inducible by both imag-
ined movements in healthy people or intended movements in
paralyzed patients [31].

To address the low signal-to-noise ratio of EEG, spatial
filtering can be employed to enhance the ERD power feature
especially in multichannel EEG [18], [27], as long as the
mental activities of interest show different spatial patterns.
The power feature y of a spatially-filtered EEG segment is
given by

y = 1
t2 − t1

∫ t2

t1
∥wT x(t)∥2dt = wT"(t1,t2)

x w (1)

where x is a vector function of time representing the mul-
tichannel time series of EEG. Note that the EEG signal is
band-pass filtered beforehand to pick up the ERD/ERS related

rhythmic information. The two time variables t1 and t2 are the
time points defining the time segment, and the vector w is the
spatial filter. Each element in w is associated with a particular
EEG channel. The operator ∥·∥ denotes the magnitude of a
value. The term "(t1,t2)

x represents the correlation (equivalent
to covariance if x is zero-meaned) matrix in the time frame.

Bayesian analysis of the ERD feature requires investigation
of its probability distribution in real EEG data. Thus, we
compute the feature from EEG samples in the data sets used
in our experiment (see Section III-A), using the following
method. We apply the widely used CSP algorithm [18] to
spatially filter the EEG and then compute the energy feature
according to (1). It is known that the principle of CSP is
to find directions that maximize variance for one class and
simultaneously minimize variance for the other class (we will
come back to the principle of CSP at the end of this section).

Fig. 1 plots the histograms of the feature values. Here, we
consider the first motor imagery class as the positive class. In
each subject, we select the CSP filter for the smallest Rayleigh
quotient (see [18] or [21]), and use it to generate the EEG
power features. It can be seen that these features are valid
for representing the ERD phenomenon, as they have smaller
values (attenuated powers) in the positive class than in the
negative class.

For probability modeling of these features, Gaussian distri-
butions obviously are out of the question, because the actual
distributions are skewed and left-bounded. So the important
question is: what probabilistic models may accurately describe
the underlying probability functions? It is worthwhile to note
that this can be a difficult question because EEG is rather
complex, nonstationary, and exhibits large variations across
subjects. Hence, it is hard to appropriately build a priori
knowledge into probabilistic modeling.

To address this issue, we introduce the principle of maxi-
mum entropy, which states that one should choose the proba-
bility distribution with the largest entropy by default. In other
words, this principle aims to minimize the amount of prior
information built into the distribution. Importantly, it also
agrees with the fact that many physical systems tend to move
toward maximal entropy configuration over time.

As shown in [32], under certain conditions, the principle of
maximum entropy will lead to a solution described by gamma
distributions [see Fig. 2(a) for examples]. In this paper, we
generalize the solution by relieving the related condition (see
Appendix A), and have the following theorem.

Theorem 1: For a probability distribution of nonnegative
random variable that satisfies either of the following two
constraints:

I. the expectation of the distributions is known to be m;
II. in addition to I, the expectation of the logarithm of the

variable is known to be s.

The probability density fx (x), which has the maximum
entropy is a gamma distribution. Particularly, in case of
constraint I, the distribution takes a simple exponential form.

fx (x) = 1
m

exp
(
− x

m

)
. (2)
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Fig. 1. Empirical histogram and gamma approximations of EEG power feature distributions for each subject in BCI Competition IV Set I and IIa. Each
sub-figure plots the histogram of EEG power features [see (1)] together with the gamma approximations. !1 or !2 denotes the positive or the negative class.
The horizontal axis indicates the EEG power value, while the vertical axis is related to the estimated probability density. Here, we consider equal shape
parameter k between two classes and show the estimated k value as well as the class-specific rate parameter estimate θ1 and θ2 (respectively, for !1 and !2).
See Section II-A for detailed descriptions. Note that the shape of the distribution is of interest but not the scale of the distributions, so the axis ticks are
omitted to improve the clarity of the graphs.
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Fig. 2. Bayes error for gamma distributions and its relation to Rayleigh quotient. See Section II for related descriptions.

In case of constraint II, it takes a general gamma form
completely determined by both m and s

f (x) = mα

$(α)
exp(−mx)xα−1 (3)

where α is the solution to the equation ψ(α) − logα = s +
log m. Here, ψ() is the digamma function, and $() the gamma
function (see details of the two functions in Appendix A or in
text later).

Let us now discuss the two constraints or conditions. The
first constraint basically indicates that all the prior knowl-
edge about the distribution is the mean value (expectation).
According to the theorem and its details in Appendix A, if
the expectation is given, the best probability distribution for
maximum entropy will be an exponential distribution, which is

a special case of the gamma distribution family. If additional
simple prior knowledge about the expectation of logarithm is
added as stated in constraint II, the best probability distribution
for maximum entropy will be a general gamma distribution,
where the parameters are determined by the expectations (see
Appendix A for details).

Briefly, this theorem implies that one may consider gamma
probability models for describing the nonnegative-valued EEG
power features. To validate this, we examine the estimated
gamma distributions in comparison with histograms of real
data samples in Fig. 1. It can be seen that there is a good match
between the gamma curves and the histograms. Generally,
the probability density function of a gamma distribution is
determined by two parameters: the scale parameter θ , or its
inverse, the rate parameter λ = 1/θ and the shape parameter k.
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That is

p(y; k, θ) = 1
θ k

1
"(k)

yk−1e− y
θ ; y ≥ 0 and k, θ > 0 (4)

where "() is a gamma function given by

"(k) =
∫ ∞

0
tk−1e−t dt . (5)

B. Bayes Error for Classification of Gamma Random Variables

Let us consider the EEG classification problem using the
Bayes rule [30], on the input data of EEG trials from either
of two EEG classes. Without loss of generality, we denote the
positive class by #1 and the negative class by #2, and say that
the feature (a random variable) is associated with the ERD
signal in #1 only. According to the maximum a posteriori
probability (MAP) rule in Bayes decision, a sample will be
classified into the class for which the a posteriori probability
of the feature value is larger. We would like to stress that
all the theoretical analysis can be applied to the ERS signal
as well just by considering that the positive class generates a
higher EEG power instead of a lower one. Another reason that
we consider ERD instead of ERS is that ERD is generally a
stronger and more important signal for BCI.

For the ERD feature in EEG, we expect that a stronger
ERD (i.e., a smaller power) should indicate a more likely
positive class EEG trial than a weaker ERD. Correspondingly
in Bayesian classification, the posterior probability functions
of the two classes should have only one cross point. Otherwise,
if there are two or multiple cross points, the Bayes decision
regions will be fragmented and there would be a paradox:
a relatively smaller feature value (stronger ERD) may be
classified as negative while a relatively weaker ERD signal
may be classified as positive.

As will be shown below, a sufficient condition for single
cross point between two distributions is that they have the
same skewness, i.e., sharing the same shape parameter k.

The two classes of EEG features having equal-k gamma
distributions are defined by three Parameters, including k,
θ1, and θ2 according to (4). Denote the a priori probability
by P(#1) or P(#2). Let p#1(α) or p#2(α) be the class-
conditional probability density at α. Setting the cross point
condition P(#1)p#1(α) = P(#2)p#2(α) leads to

α =
(

1
θ1

− 1
θ2

)−1 {
log

(
P(#1)

P(#2)

)
− k log

(
θ1

θ2

)}
. (6)

Therefore, there is one and only one cross point α, which can
be easily determined by k, θ1, and θ2 together.

Therefore, we assume equal k in the two classes #1 and #2.
This assumption is also supported by empirical results illus-
trated in Fig. 1, where the estimated gamma distribution with
equal k provides a close approximation to the histogram of
the real EEG data.

Furthermore, assuming equal prior probability and equal
shape parameter in the two classes, we can show that the Bayes
error is a function of the ratio of class means.

Theorem 2: Let y be a gamma distributed random variable
in either EEG class #1 or #2, where the two classes have

equal a priori probability and the same shape parameter k in
probability distribution. The MAP Bayes error ϵ of classifying
y will be

ϵ = 1
2

(

1 + 1
"(k)

∫ k"
"−1 log"

0
tk−1e−t dt

− 1
"(k)

∫ k
"−1 log"

0
tk−1e−t dt

)

(7)

for " ≤ 1 where " is the ratio given by: " = θ1
θ2

.
Proof: An illustration of the Bayes error is given in

Fig. 2(a). With equal prior probability for the two classes,
the cross point in (6) becomes

α = kθ1θ2

θ2 − θ1
log

(
θ2

θ1

)
(8)

It is straightforward to show that because of the condition
1 ≥ "(= θ1

θ2
) and

log
(

p#1(y)

p#2(y)

)
= k log

(
θ2

θ1

)
−

(
1
θ1

− 1
θ2

)
y (9)

there is always p#1(y) ≥ p#2(y) when y ≤ α, and the class-
conditional probability density p#1(y) < p#2(y) when y > α.
So we can develop the Bayes error function below

ϵ = P(#2)

∫ α

0
p#2(y)dy + P(#1)

∫ +∞

α
p#1(y)dy (10)

= 1
2

(
1 + 1

"(k)
φ

(
k,
α

θ2

)
− 1
"(k)

φ

(
k,
α

θ1

))

where φ is the lower gamma function

φ(k, x) =
∫ x

0
tk−1e−t dt . (11)

Since the Rayleigh quotient " = θ1
θ2

, we have

α

θ2
= k"
" − 1

log" (12)

α

θ1
= k
" − 1

log" (13)

and then it is straightforward to write the Bayes error as (7).

The quotient " is the ratio in scale parameter between the
two class distributions. Since the two classes share equal k,
the quotient is equivalent to the ratio between the intra-class
expectations µ1 = kθ1 and µ2 = kθ2. Therefore, the condition
" ≤ 1 is essentially meant for the variable to be a valid
ERD feature, since it implies that the expected power value is
smaller in the positive class #1: µ1 ≤ µ2.

We plot some examples of the Bayes functions (7) in
Fig. 2(b). All the Bayes error function curves meet at two
points: {" = 0, ϵ = 0} and {" = 1, ϵ = 0.5} (again,
we consider the effective range 0 ≤ " ≤ 1 only). The
former point represents perfect feature variable for zero Bayes
error, the latter point represents completely invalid feature
variable and thus chance-level classification. Interestingly, the
curves also appear to be smooth and monotonic. To prove the
monotonicity of the Bayes error over ", we have the following
theorem, and will discuss its important implications thereafter.
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Theorem 3: Let y be a gamma random variable in either
EEG class !1 or !2, where the two classes have equal a
priori probability and a given shape parameter k in probability
distribution. The Bayes error ϵ of classifying y into !1 or !2
is a monotonically increasing function of the coefficient # for
# ≤ 1, where # is the ratio of the shape parameters between
the two classes: # = θ1/θ2.

Proof: From the expression in (7) and Proof of
Theorem 2.2, we can write the derivative of the Bayes error
ϵ with respect to the ratio # = θ2/θ1 as

∂ϵ

∂#
= 1

2#(k)

[
∂φ(k, k#

#−1 log#)

∂#
−
∂φ(k, k

#−1 log#)

∂#

]

= 1
2#(k)

[

tk−1e−t

∣∣∣∣∣t= k#
#−1 log#

∂ #
#−1 log (#)

∂#

−tk−1e−t

∣∣∣∣∣t= k
#−1 log#

∂ 1
#−1 log (#)

∂#

]

(14)

with
∂ #
#−1 log (#)

∂#
=

(
− log (#)

(# − 1)2 + 1
# − 1

)
(15)

and

∂ 1
#−1 log (#)

∂#
=

(
− log (#)

(# − 1)2 + 1
#(# − 1)

)
. (16)

For simplicity of description, we write

b = tk−1e−t
∣∣∣
t= k

#−1 log#
. (17)

It is straightforward to further develop the derivative of
Bayes error into

∂ϵ

∂#
= b

2#(k)

log (#)

#(# − 1)
. (18)

We can show that

log (#)

#(# − 1)
> 0, 0 < # < +∞ (19)

since
1) if # > 1, then #(# − 1) > 0, log (#) > 0,

so log (#)
#(#−1) > 0;

2) if 0 < # < 1, then #(# − 1) < 0, log (#) < 0, so
log (#)
#(#−1) > 0;

3) if # = 1, then

log (#)

#(# − 1)

∣∣∣∣
#=1

= lim#→1
d log (#)

d#

lim#→1
d#(#−1)

d#

= 1 > 0. (20)

Therefore, the derivative of the Bayes error function
(although it is meant for # ≤ 1 only) is always positive for
every # in # > 0. The theorem is thus proved.

The theorem indicates that minimum Bayes error can be
obtained by minimizing the # coefficient, provided that the
shape parameter is fixed. Interestingly, this coefficient is
equivalent to the Rayleigh quotient [19], which is determined

by the covariance matrices of the two EEG classes together
with the spatial filter

wT E[R|!1]w
wT E[R|!2]w

= E[wT Rw|!1]
E[wT Rw|!2]

= E[y|!1]
E[y|!2]

= µ1

µ2
= #.

(21)
Thus, we have established the theoretical relationship

between the Bayes error and the Rayleigh quotient. The
Rayleigh quotient is the basis of the CSP technique that
we have introduced earlier. The minimization of the quotient
can be casted as a generalized eigenvalue problem, which
can be readily solved by standard linear analysis algorithms.
Therefore, our theorem gives a theoretical account of the
success of the CSP technique for spatial filtering in EEG
classification.

III. EXPERIMENTAL RESULTS

A. Materials: EEG Datasets from Sensorimotor BCI

Our numerical study consists of a ten-fold cross-validation
based investigation of the proposed method using human EEG
data. Particularly, we aim to answer two important questions.
First, is the Rayleigh quotient an effective indicator of the
Bayes error for a uni-variate feature in real EEG data? Second,
can the proposed method generate more separable multivariate
features for real applications that often use two or multiple
features?

To this end, we use the following three publicly available
datasets in our numerical experiment. Since the signal of
interest (i.e., ERD) is primarily associated with the µ rhythm
[8–13]Hz [9], this paper considers the µ rhythm only.

1) BCI Competition IV Dataset I: The dataset [33] consists
of both human and artificially generated EEG data, while
we consider human EEG data in calibration sessions
only. The data were collected from four healthy sub-
jects using a 59-channel EEG device with a sampling
rate of 1000 Hz. During data collection, each trial
started by displaying a visual cue on a computer screen
that prompted the subject to perform the mental task
according to the cue. The mean tasks included motor
imagination of left hand, right hand, or foot, while each
subject pre-selected only two classes and performed a
total of 200 trials, equally in the two classes. There
was also a 4-s short break after each trial. Here, the
numerical study uses the 100-Hz version of the data,
and considers only the time interval of [0.5 4]s in
each trial.

2) BCI Competition IV Dataset IIa: The dataset [34]
involves nine subjects performing four-class motor
imaginations related to left-hand, right-hand, foot, or
tongue, in a cue-based protocol similar to that for the
previous dataset. The data consist of 288 trials of EEG
collected from 22 channels, with a sampling rate of
250 Hz and a band-pass filter between 0.5 and 100 Hz.
The time interval of [0.5 3]s after cue in each trial is
considered.

3) BCI Competition III Dataset IVa: The data set
[35] was recorded from five healthy subjects from
nonfeedback BCI sessions. Visual cues of 3.5s duration
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indicated the subject to perform which of the following
three motor imagery tasks: left hand (L), right hand (R),
and right foot (F). Note that each subject chose only
two particular tasks. A total of 118 EEG channels
were measured at positions of the extended international
10/20-system. Signals were band-pass filtered between
0.05 and 200 Hz and then digitized at 1000 Hz with
16-bit (0.1 uV) accuracy. In this paper, we use the
100-Hz down-sampled data, and chose only the 15 EEG
channels in or around the sensorimotor areas.

In the frequency-domain processing, we use N =
2nextpow2(ns ) points in FFT computation, where nextpow2() is
the next higher power of 2, and ns is the length of the signal. It
turns out that there are 21 frequency points in mu band for BCI
Competition IV Dataset IIa, 26 points for BCI Competition IV
Dataset I, and 13 points for BCI Competition III Dataset IVa.

B. Toward Lower Rayleigh Quotient

For validating the proposed theory, we need to demonstrate
that if the Rayleigh quotient can be reduced for each EEG
dataset, so is the Bayes error. To this end, we devise a simple
extension to the conventional CSP by using a complex-valued
solution to reduce the Rayleigh quotient. Unlike in [36] that
explores analytic representation of real signals by Hilbert
transformation in the time domain, we account for rich phase
information in the frequency domain and also put in place
a linear-phase spatial filter across different frequency points.
We refer to this new filtering technique as ComplexCSP. For
details, please see Appendix B.

We would like to emphasize that this paper is not meant for
developing a new spatial filtering technique. Rather, this new
technique only serves the purpose of validating the developed
Bayesian spatial filtering theory in practical use. Nevertheless,
our experimental results in the following sections demonstrate
that the new technique can effectively improve classification
accuracy and outperform the method proposed in [36] and
other state-of-the-art methods.

C. Rayleigh Quotient Versus Bayes Error

The relationship between the Bayes error and the Rayleigh
quotient in real EEG features is fundamental for the Bayesian
learning theory. Only if the Rayleigh quotient is closely
correlated with Bayes error, it can serve as an alternative
metric for designing Bayesian discriminative learning.

We consider two-class data sets only, as the theory is based
on two-class Bayes classification while multiclass Bayes error
is difficult to compute or estimate. Without loss of generality,
let us name one class !1 and the other class !2. We run
traditional CSP to extract the ERD feature for !1. The Bayes
error is then estimated by finding the minimal empirical error
rate: for the given set of uni-variate feature samples, we try
each samples’ value as a threshold and then select the one,
which generates the minimal error rate.

Fig. 3 plots the Rayleigh quotient and the Bayes error
computed in each cross-validation fold for each subject, for
BCI Competition III Dataset IVa. Statistical analysis gives
coefficient of determination R2 = 0.95, correlation coefficient
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linear regression function for the data points.

of 0.97 with p-value = 0. The result indicates that there is a
statistically significant positive correlation between the two
measures. We have also computed the mutual information
estimate (using the technique reported in [37]). The mutual
information [in mean (std) format] is 0.03(0.01) in CSP
features and 0.15(0.14) in ComplexCSP features. Statistical
analysis shows that the mean of mutual information is larger
in ComplexCSP, with p-value of 2.5e-07.

Now we would like to examine the dual questions: is
it possible to further reduce the Rayleigh quotient? Will
the reduction in the Rayleigh quotient improve classification
accuracy? To this end, we run the ComplexCSP algorithm
described above and compare the result against that produced
by the conventional CSP. Particularly, we compute the differ-
ential Bayes error rate and the differential Rayleigh quotient
between the two algorithms, in each of the cross-validation
folds and for each subject. Fig. 4 plots the correlation between
the two differentials. Statistical analysis yields R2 = 0.33,
correlation coefficient of 0.57, p-value of 1.5e-5, indicating a
correlation with statistical significance.
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TABLE I

COMPARISONS OF CLASSIFICATION ACCURACY RATES (%) ON TRAINING DATA

Subject LDA (two-class) or L_SVM (multiclass) G_SVM
CSP mCSP [42] ACSP [36] ComplexCSP CSP mCSP [42] ACSP [36] ComplexCSP

Tw
o-

cl
as

s

Sub_a 91.6(1.7) 82.0(0.8) 92.6(4.4) 93.0(0.8) 91.3(1.8) 83.5(0.7) 92.4(4.4) 92.6(0.7)
Sub_b 85.2(2.5) 67.9(4.1) 74.1(3.6) 92.0(1.1) 85.2(1.8) 67.7(4.0) 75.3(3.6) 91.9(0.9)
Sub_f 92.6(1.6) 72.1(1.6) 79.4(3.1) 94.9(0.9) 93.0(1.2) 72.1(1.2) 78.8(3.8) 95.0(0.9)
Sub_g 92.8(3.1) 76.0(11.9) 81.0(1.5) 92.9(3.1) 92.2(3.3) 76.0(12.0) 80.9(1.2) 92.7(2.9)

Sub_aa 80.2(2.5) 77.8(0.7) 80.3(1.9) 84.5(1.4) 80.1(2.6) 78.2(0.8) 81.3(1.2) 84.5(1.5)
Sub_al 96.3(0.4) 95.8(0.5) 95.4(0.4) 96.3(0.4) 96.2(0.5) 96.4(0.5) 95.4(0.4) 96.6(0.3)
Sub_av 75.0(1.5) 69.8(1.6) 70.0(2.2) 77.0(1.9) 73.9(1.5) 68.7(2.0) 68.4(1.9) 76.5(2.0)
Sub_aw 90.8(0.9) 84.5(0.7) 84.0(1.4) 92.5(0.9) 90.4(1.0) 84.9(0.9) 83.7(1.2) 92.1(1.0)
Sub_ay 93.1(0.5) 89.9(0.9) 91.8(0.7) 94.4(0.7) 94.2(0.5) 89.9(0.7) 93.7(0.7) 94.4(0.7)

m
ul

tic
la

ss

Sub_1 71.0(1.1) 57.9(2.5) 54.7(3.1) 74.3(2.0) 70.6(0.6) 53.7(2.2) 50.7(2.9) 74.1(1.3)
Sub_2 52.4(1.7) 46.9(7.2) 58.7(2.8) 62.3(2.6) 50.4(3.2) 40.3(7.8) 58.1(1.7) 61.8(1.9)
Sub_3 75.0(1.2) 76.3(1.6) 57.3(1.7) 81.3(1.3) 73.5(1.1) 75.7(1.7) 55.9(2.4) 80.0(1.1)
Sub_4 53.0(3.2) 41.2(4.5) 42.5(1.7) 63.5(2.0) 53.3(2.8) 35.3(5.2) 38.0(2.8) 62.3(2.3)
Sub_5 49.4(1.9) 38.9(2.6) 39.7(1.6) 57.5(2.2) 46.6(2.0) 34.8(3.3) 36.6(2.5) 54.4(2.4)
Sub_6 50.9(2.3) 37.3(1.9) 39.7(2.2) 59.0(2.1) 47.4(3.3) 34.3(2.9) 37.4(2.4) 55.3(2.6)
Sub_7 65.7(2.8) 56.7(2.9) 57.5(2.0) 72.2(1.9) 62.9(5.1) 51.7(3.2) 54.9(1.8) 71.2(2.5)
Sub_8 68.1(3.1) 68.2(1.3) 58.2(2.4) 77.0(1.7) 67.2(2.0) 67.0(1.4) 52.4(3.9) 76.4(1.9)
Sub_9 59.7(3.5) 50.9(3.4) 56.0(1.9) 69.8(2.8) 58.7(3.0) 48.3(2.9) 53.0(1.4) 69.3(3.1)

Notes: See Section III-D for details. The numbers are in mean (std) format. Maximum classification accuracy rates are shown in
bold style for each classifier and each subject. L_SVM and G_SVM denote linear and nonlinear (using Gaussian kernel) support
vector machines, respectively. LDA uses the conventional linear discriminant analysis.

Clearly the ComplexCSP algorithm can effectively reduce
Rayleigh quotient over CSP in every data fold. Importantly,
the Bayes error is also reduced in 40 out of 50 cases.

D. Classification Accuracy Using Multiple Features

One usually takes advantage of multiple features for dis-
criminative information in practice (e.g., using information
captured from different viewing angles leads to high classi-
fication performance in recognition of human actions [38]).
There are a variety of classifiers that can be used for eval-
uation of discriminative power of features, such as support
vector machines, linear discriminant analysis, and dynamic
Bayesian networks [39]. In this paper, we employ support
vector machines using the LibSVM toolbox [40] with either
linear (hereafter referred to as L_SVM) or Gaussian kernels
(hereafter referred to as G_SVM). We also employ the widely
used linear discriminant analysis using the Statistical Pattern
Recognition Toolbox [41].

Besides the conventional CSP and the ComplexCSP algo-
rithm, we also examined two other state-of-the-art algorithms,
namely, the analytic representation-based complex-valued fil-
ter [36] (referred to as ACSP hereafter) mentioned earlier,
and the information theoretic algorithm (referred to as mCSP
hereafter) that has been demonstrated effective for multiclass
EEG classification [42]. We are also thankful to the authors
for sharing their MATLAB code of the algorithms.

Particularly for BCI Competition IV Dataset IIa, we need
to address multiclass classification if the feature extraction is
designed for binary classification only. Here, we employ the
so-called one-versus-rest technique. For each mental task class,
we create a super negative class by combining all the other
classes. The binary-class feature extraction algorithms, here,
are each applied to learn a single spatial filter. Accordingly,

there are a total of four power features generated from each
EEG trial.

Tables I and II summarize the classification accuracy rates
in the training data and the test data, respectively. Note that
our test shows that LDA and L_SVM perform equally well
for two-class data but LDA does not perform as well in the
multiclass data (BCI Competition IV Dataset IIa). Therefore,
we use L_SVM in multiclass linear classification.

As mentioned earlier, the ComplexCSP algorithm serves
as a tool for testing the hypothesis that the Bayes error
can be reduced by minimizing the Rayleigh quotient. During
training, the ComplexCSP algorithm minimizes the Rayleigh
quotient for the training data. It can be seen that the reduced
Rayleigh quotient translated to the best classification accuracy,
as ComplexCSP outperformed all the other algorithms in
every case. This indicates that the dual optimum for Rayleigh
quotient and Bayes error can be generalized to multivariate
feature vectors as well as multiclass problems.

The comparison in classification accuracy is more complex
in the test data. In two-class classification, the ComplexCSP
algorithm, by producing the minimum Rayleigh quotient,
achieved top accuracy in six out of nine subjects using a linear
classifier, and seven out of nine subjects using a nonlinear clas-
sifier. In multiclass classification, the ComplexCSP achieved
top accuracy in five out of nine subjects using either a linear
classifier or a nonlinear classifier.

IV. DISCUSSIONS

In Section II, we have shown both theoretically and prac-
tically that the Bayes error is closely correlated with the
Rayleigh quotient. This proves the Rayleigh quotient, which
is a simple analytical function of the spatial filter vector to
learn, as a simple and effective learning objective for Bayesian
learning. We would like to stress that the theoretical analysis
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TABLE II

COMPARISONS OF CLASSIFICATION ACCURACY RATES ON TEST DATA

Subject LDA (two-class) or L_SVM (multiclass) G_SVM
CSP mCSP ACSP ComplexCSP CSP mCSP ACSP ComplexCSP

Tw
o-

cl
as

s

Sub_a 85.0(5.4) 79.7(6.9) 90.5(5.7) 87.8(4.6) 84.1(6.2) 79.5(6.4) 87.1(7.9) 88.1(5.9)
Sub_b 67.8(11.5) 53.4(8.7) 53.6(8.3) 69.1(10.4) 66.5(12.2) 54.3(8.8) 51.5(13.2) 67.7(11.2)
Sub_f 84.1(7.9) 56.7(6.5) 58.6(12.1) 88.1(6.7) 85.3(7.9) 57.7(6.9) 59.2(11.9) 87.9(6.6)
Sub_g 92.4(4.2) 74.1(16.2) 80.3(10.2) 92.6(4.1) 92.7(4.0) 72.3(19.6) 79.8(10.2) 91.6(5.7)

Sub_aa 78.3(5.3) 76.1(8.8) 79.7(6.1) 81.4(5.7) 77.6(6.0) 77.6(7.3) 80.5(7.2) 80.6(5.7)
Sub_al 96.5(4.4) 95.5(4.5) 95.5(4.1) 96.4(3.3) 96.2(4.2) 96.2(4.5) 95.5(4.1) 96.3(2.7)
Sub_av 73.4(7.9) 66.4(11.9) 66.0(8.4) 74.6(5.9) 72.7(7.9) 65.9(13.0) 64.8(10.3) 71.7(6.1)
Sub_aw 89.2(5.8) 83.8(5.4) 83.1(7.7) 90.6(4.4) 89.5(3.8) 84.0(5.2) 83.3(7.2) 91.3(3.3)
Sub_ay 93.5(4.4) 90.5(5.4) 92.5(5.6) 93.3(4.9) 94.0(3.5) 90.7(4.9) 94.2(5.7) 94.4(5.1)

m
ul

tic
la

ss

Sub_1 62.0(9.7) 48.1(13.7) 48.8(9.8) 62.8(10.2) 59.9(7.4) 47.5(11.5) 41.7(10.8) 61.5(11.6)
Sub_2 29.8(3.8) 27.3(9.6) 53.0(8.1) 31.9(8.1) 26.8(5.9) 24.4(8.3) 50.8(6.3) 32.1(9.2)
Sub_3 68.8(9.1) 70.6(11.7) 51.1(9.1) 70.6(9.3) 68.4(8.0) 72.0(10.3) 47.1(7.6) 68.6(10.6)
Sub_4 28.5(8.5) 21.4(6.8) 22.9(7.8) 26.4(8.8) 28.3(8.9) 19.0(6.9) 18.5(9.9) 27.1(8.6)
Sub_5 32.4(9.5) 22.7(8.3) 24.9(8.7) 33.7(8.2) 31.7(7.6) 22.4(7.5) 25.3(7.9) 34.3(7.0)
Sub_6 34.1(12.0) 32.4(10.4) 30.9(11.9) 33.1(9.9) 31.8(10.6) 25.6(9.8) 30.8(13.4) 35.3(9.6)
Sub_7 50.9(11.4) 52.3(5.4) 50.9(10.6) 49.4(8.6) 51.7(10.6) 46.4(7.4) 47.7(9.6) 48.0(7.4)
Sub_8 59.6(9.3) 65.8(8.4) 51.8(9.7) 66.9(7.8) 60.0(9.5) 63.4(8.3) 48.0(4.9) 65.6(8.4)
Sub_9 37.8(10.8) 34.2(8.7) 40.6(5.7) 43.8(10.5) 35.3(8.6) 35.3(9.6) 37.1(5.1) 41.6(10.0)

Notes: Refer to the notes of Table I for descriptions.

is based on gamma models for the features. Future study may
examine the Bayes error under other probability distribution
families.

Nonetheless, we suggest that gamma models are preferable
to normal models or their variants for describing the skewed
nonnegative data distributions (see Fig. 1 for examples) of
EEG power features. The normal models would not fit into
nonnegative data. Log-normal models might be useful, as it is
well known [43] that both log-normal and gamma distributions
may be used quite effectively in analyzing skewed positive
data sets. However, with log-normal distributions, the rationale
for using the Rayleigh quotient as an indicator of the Bayes
error can be difficult to establish. Despite their resemblance
in shape, log-normal model and the gamma model may give
significantly different results [44].

We would like to stress again that the ComplexCSP algo-
rithm just serves as a tool to test the hypothesis that the
Bayes error can be reduced if one can further lower the
Rayleigh quotient. It needs further improvements for better
robustness and better optimization before it may be well
developed. Nonetheless, in the current work, it favorably
helped to prove the hypothesis. Especially for the training data,
the ComplexCSP algorithm yielded the top accuracy rates in
all the subjects with all the classifiers. On average, it increased
the accuracy rate by as much as 10% (in “Sub_4” of BCI
Competition IV Dataset IIa).

For the test data, the ComplexCSP still produced more
top accuracy rates than any other competitive algorithms.
However, the margin was much smaller as compared to that
for the training data. For example, the maximum increase
in accuracy from CSP to ComplexCSP is now only 6% (in
“Sub_9” of BCi Competition IV Dataset IIa). This may be
due to the nonstationarity nature of brain signals [45], [46].
Therefore, it is important to design a spatial filtering technique
that can be robust against the nonstationarity. One possible

way may be to introduce plausible optimization constraints
that correspond to certain neuro-physiological principles in the
neuronal activities of interest. For example, recent advances
in neuro-imaging studies, such as [47] and [48] may provide
guides into exploring inter-connections (and thus phase infor-
mation) between brain areas.

V. CONCLUSION

In this paper, we presented a Bayesian learning theory for
spatial filtering in EEG feature extraction and classification.
Particularly, we showed that the Bayes error can be formulated
as a monotonic function over the Rayleigh quotient, where the
quotient is a function determined by the spatial filter and the
class covariance matrices. Through analysis using real-world
EEG data, we verified the positive correlation between the
Bayes error and the quotient. Furthermore, we investigated if
classification accuracy can be further improved by reducing
Rayleigh quotient for a particular filter. To that end, we tested
a complex-valued extension to CSP and demonstrated that
if the quotient is reduced, so is the classification error (by
up to 10% for training data and up to 6% for test data).
Therefore, we provided both theoretical and practical accounts
for the Rayleigh quotient to be an effective objective measure
in Bayes spatial filter learning.

APPENDIX A

PROOF OF THEOREM 2.1

The maximum entropy density is obtained by maximizing
Shannon’s entropy measure

H ( fx) = −
∫

fx (x) log fx (x)dx (22)
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subject to l constraints on generalized moment functions
g j (x)’s ∫

g j (x) fx (x)dx = µ j , j = 0, . . . , l (23)

where µ j ’s are known values. Usually the normalization
constraint for a probability density function is set by j = 0
with g0(x) = 1 and µ0 = 1.

The Lagrangian for the maximum entropy density is given
by

L = −
∫

fx (x) log fx (x)dx+
∑

j

λ j

[∫
g j (x) fx (x)dx − µ j

]

(24)
where λ j are Lagrangian multipliers. By using the calculus
of variations, the necessary condition for a stationary point is
known as [49]

log fx (x) +
∑

j

λ j g j (x) = 0. (25)

Now let us consider a simple constraint that the mean m is
known

g1(x) = x and
∫

x fx (x)dx = m. (26)

Then the necessary condition (25) leads to

fx (x) = e−λ0−λ1x . (27)

From the constraints, it follows that λ0 = logm and
λ1 = 1/m. So the probability density function that maximizes
the entropy is then given by an exponential function

fx (x) = 1
m

e− x
m (28)

which is essentially a gamma function with shape parameter
k = 1.

Now let us introduce an additional constraint such that the
mean of logarithm is

g2(x) = logx and
∫ +∞

0
log x fx(x)dx = ψ(m) (29)

where ψ is the digamma distribution: ψ(a) = d/da log#(m).
Later we will show that this constraint can be effectively
relieved.

Then the necessary condition (25) together with the con-
straints can be satisfied by

⎧
⎨

⎩

λ0 = log(#(m))
λ1 = 1
λ2 = m

. (30)

Therefore, the probability density is a gamma function with
parameters k = 2 and θ = m.

While the above example appears to imposes a strong
condition (29) where the mean of logarithm is a specific
function of the mean value m, we will show in below that any
random variable can be transformed to meet such condition
without altering the optimality of the solution.

Let the expectation of g2(x) (29) be s, and the expectation
of x be m again. Now we introduce a positive scaling factor α

y = αx . (31)

The entropy after the scaling is given by

H ( f y) =
∫ +∞

0
log ( fy(y)) fy(y)dy

=
∫ +∞

0
log (

1
α

fx (x))
1
α

fx (x)d(αx)

= s − logα. (32)

Importantly, this shows that the entropy of a distribution
function after scaling is changed by the amount − logα, which
is completely determined by α alone. Hence, the function
which maximizes the entropy for H ( fx) will still be the one
which, after scaling by α, maximizes H ( f y). As a result,
even if the expectation of log ( fx ) does not equal ψ(m) as
in (29), the maximum entropy solution will still be a gamma
distribution, as long as there is a factor α that makes the
integral of log ( fy) satisfy the constraint in (29).

Now it is necessary to prove that such a factor α does
exist. For simplicity and according to the above discussions,
we can assume that the variable x is pre-scaled such that the
expectation of x is 1 (m = 1). Then the expectation of log (y)
will be

∫ +∞

0
log yp(y)dy =

∫ +∞

0
log (αx)

1
α

fx (x)d(αx)

= logα + s. (33)

So the constraint (refer to (29) but now on variable y instead
of x) can be written as logα+ s = ψ(α). To show that there
exists a solution to α, we first note that because

log (x) ≤ x − 1 for x > 0 (34)

there is

s =
∫ +∞

0
log (x) fx (x)dx (35)

≤
∫ +∞

0
(x − 1) fx(x)dx = m − 1 = 0. (36)

It is well known that ψ(α) can be written as

ψ(α) = logα − 1
2α

−
∞∑

n=1

B(2n)

2n(α2n)
(37)

where B(2n) is the Bernoulli number. It is easy to see that

lim
α→∞ψ(α) − logα = 0. (38)

For α approaching 0, we consider a sequence of inverse
integer αn = 1/n : n = 1, . . . ,∞. Due to the continuity of
the digamma function, there is

lim
α→0

ψ(α) = lim
n→∞ψ

(
1
n

)
. (39)

According to Gauss’s digamma theorem, there is

ψ

(
1
n

)
= log

(
1
n

)
− ξ − log (2) − π

2
cot (π/n) (40)

+ 2
[(n−1)/2]∑

n′=1

cos
(

2πn′

n

)
log

(
sin

(
n′π
n

))
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where ξ is the Euler–Mascheroni constant (≈ 0.577). As the
(negative) cotangent −cot() and the log (sin()) terms both go
negative infinity when n approaches ∞, there is

lim
α→0

ψ(α) − log (α) = −∞. (41)

Since continuous function ψ(α) − logα takes value from
−∞ to 0, there must exist a α, which satisfies ψ(α)− logα =
s ≤ 0.

The implication of the above development is that for any
positive-value random variable, we can scale the data such
that the mean and the mean of logarithm is connected by the
digamma function, and then a maximum entropy estimate of
the underlying distribution is a gamma function.

In summary, we suggest that, according to the maximum
entropy principle, a positive random variable can be described
by either a gamma distribution with k = 0 and θ = m (thus
an exponential distribution) if the constraint on mean value
is given, or a gamma distribution if the constraint on the
expectation of logarithm value is added. For the latter case, it
is straightforward from the above development that the gamma
density function for maximum entropy can be written as

fx (x) = β

&(α)
e− x

β

(
x
β

)α−1

= β−α

&(α)
e− x

β (x)α−1 (42)

where α is the solution to ψ(α) − logα = s and β = 1/m
is the scaling coefficient that makes the mean. Since after the
scaling the expectation of the logarithm becomes s − logβ,
the above equation becomes the equation in Theorem 1. It is
easy to see that α is now the shape parameter k of the gamma
distribution, and β becomes the rate parameter θ .

APPENDIX B: COMPLEX-VALUED COMMON SPATIAL

PATTERN (COMPLEXCSP)

Here, we attempt to design a spatial filter that can produce
smaller Rayleigh quotient than CSP. This filter is used as a tool
in the study of the proposed theory (see Section III-B). As we
know, CSP is the optimum real-valued solution to Rayleigh
quotient minimization. However, it is straightforward to show
that the quadratic form of the power feature [see (1)] with
any real-valued spatial filter is independent on the imaginary
part of the covariance matrix 'x , because the covariance
matrix must be Hermitian (i.e., it equals to its own conjugate
transpose). In other words, real-valued approach effectively
disregards the imaginary part of the covariance matrix, though
the imaginary part may contain discriminative information.

It is, therefore, interesting to explore the imaginary part
of the covariance matrix by using complex-valued spatial
filters. The imaginary part may be directly derived from
the real-valued EEG signal through Hilbert transform like in
[36]. Here, we propose an alternative solution, which proves
more effective for Bayes learning in our experimental study
(Section III-D).

Specifically, we believe that it is important to explore phase
information in multichannel EEG signals using frequency-
domain representation. Because phase is dependent on the

frequency point, the imaginary part of the covariance matrix
can vary from one frequency point to another. Therefore, the
complex-valued spatial filter must also adapt to this variation.

Let the frequency-domain representation of an EEG segment
be a matrix X ∈ Rnc×n f , with nc the number of channels

X =

⎡

⎢⎣
x11 · · · x1n f
...

. . .
...

xnc1 · · · xncn f

⎤

⎥⎦ (43)

where xi j denotes the n f -point discrete Fourier transform of
the i -th channel at frequency ( j = j − 1/2n f Fs , with Fs
being the sampling frequency. We would like to stress that the
representation X is complex-valued, and every element xi j can
be broken into the real part and the imaginary part.

In other words, the phase of the signal varies on the
frequency ( j . To explore the phase information, we consider
a spatial filter whose phase also varies according to a specific
function θ j for channel j . Thus, the spatial filter for a
particular frequency f can be written as

w f = [w1( f ), . . . , wnc ( f )]T with w j ( f ) = ŵ j eiθ j ( f ).
(44)

Here, ŵ j and θ j represent the magnitude and the phase of
a spatial coefficient w j ( f ), respectively.

In this paper, we use a linear function for θ j . The linearity
ensures that all frequency components at any frequency point
have equal time-delay

θ j ( f ) = ϑ j f. (45)

By constraining the phases across different channels, we
reduce the number of free parameters by a factor of n f . This
reduction can be critical in practical optimization computation.

Therefore, the spatial filter w f at a frequency point f
is defined as a vector-function of three real-valued para-
meters, namely, the frequency f , the array of coefficients
ϑ j ’s (45), and the array of the amplitude coefficients ŵ j ’s
[Equation (44)]. For the convenience of description, we denote
this function as u: w f = u( f, ϑ⃗, ⃗̂w), where ϑ⃗ and ⃗̂w are the
array of ϑ j ’s and ŵ j ’s, respectively. The final EEG feature is
the combination of powers over all the frequency components
in a selected window fsel

y =
∑

f ∈fsel

wT
f R f w f (46)

where R f is the covariance matrix of EEG at frequency f .
Given a set of training samples, the Rayleigh quotient can

be expressed as below, which is still the ratio between two
class means

&̂ =
∑n0

j=1
∑

f ∈fsel
(u( f, ϑ⃗, ⃗̂w))T R f, j,1u( f, ϑ⃗, ⃗̂w)

∑n1
j=1

∑
f ∈fsel

(u( f, ϑ⃗, ⃗̂w))T R f, j,2u( f, ϑ⃗, ⃗̂w)
(47)

where R f, j,1 and R f, j,2 are the complex-valued covariance
matrices of the j -th EEG trial at frequency f in (1 and (2,
respectively.

The objective of learning is essentially to minimize the
empirical Rayleigh quotient

{θ⃗ , ⃗̂w}opt = argmin
θ⃗, ⃗̂w

&̂. (48)
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In this paper, we tentatively use the MATLAB optimization
toolbox to search for a resolution to (48), and the initialization
is done by the conventional CSP solution. Specifically, we
run the fminunc function with (48) as the objective function,
and for the function we have options, including TolFun set
to 1e-4 and MaxIter set to 200. In this paper, we do not
perform deliberate engineering or tuning of the optimization
tool. Future work may look into more advanced techniques,
such as swarm particle [50] that may not be prone to premature
convergence [51].
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