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Abstract— A major challenge in electroencephalogram (EEG)-
based brain–computer interfaces (BCIs) is the inherent nonsta-
tionarities in the EEG data. Variations of the signal properties
from intra and inter sessions often lead to deteriorated BCI
performances, as features extracted by methods such as common
spatial patterns (CSP) are not invariant against the changes. To
extract features that are robust and invariant, this paper proposes
a novel spatial filtering algorithm called Kullback–Leibler (KL)
CSP. The CSP algorithm only considers the discrimination
between the means of the classes, but does not consider within-
class scatters information. In contrast, the proposed KLCSP
algorithm simultaneously maximizes the discrimination between
the class means, and minimizes the within-class dissimilarities
measured by a loss function based on the KL divergence. The per-
formance of the proposed KLCSP algorithm is compared against
two existing algorithms, CSP and stationary CSP (sCSP), using
the publicly available BCI competition III dataset IVa and a large
dataset from stroke patients performing neuro-rehabilitation. The
results show that the proposed KLCSP algorithm significantly
outperforms both the CSP and the sCSP algorithms, in terms of
classification accuracy, by reducing within-class variations. This
results in more compact and separable features.

Index Terms— Brain–computer interface, common spatial
patterns, EEG, nonstationary.

I. INTRODUCTION

ABRAIN–COMPUTER interface (BCI) provides a direct
communication pathway between the brain and an exter-

nal device that is independent from any muscular signals
[1]–[5]. Through motor imagery or movement intentions,
brain activities can be voluntarily decoded to control signals.
Thus, BCIs enable users with severe motor disabilities to use
their brain signals for communication and control [3], [4].
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Furthermore, BCI has been used as a rehabilitation tool in
restoring motor functions of patients with moderate to severe
stroke impairments [6], [7]. In such a system, BCI could guide
brain plasticity by demanding close attention to a motor task
or by requiring the activation or deactivation of specific brain
signals.

In the majority of current BCI systems, the brain signals
are measured by electroencephalogram (EEG), due to its low
cost and high time resolution compared to other modalities,
such as functional magnetic resonance imaging (fMRI), func-
tional near-infrared spectroscopy (fNIRS), etc., [4]. However,
a major challenge in EEG-based BCI research is the inherent
nonstationarity in the recorded signals. Variations of the signal
properties from intra and inter sessions can be caused by
changes of task involvement and attention, fatigue, changes in
placement or impedance of the electrodes, or by artifacts, such
as swallowing or blinking, among other reasons [8]. Variations
in the EEG signal can lead to deteriorated BCI performances as
most machine learning algorithms implicitly assume stationary
data [9], [10].

Recently, several algorithms have been proposed to ame-
liorate the nonstationary effects in BCI applications. These
approaches can be divided into two main groups, namely, the
approaches adapting the model to the changes [10]–[19], and
the approaches making the model robust and invariant against
the changes [20]–[27].

The research studies on the former group showed that the
BCI performance can be improved even by using simple
adaptive methods, such as bias adaptation [10], [11]. Some
studies chose adapting the classifier [12], [13], while some
focused on the feature extraction [14]–[16], or the operational
frequency bands [17]. One promising approach is covariate
shift adaptation providing unsupervised adaptation to shifts in
the feature distributions [15], [16]. Another work proposed
adaptive classifiers based on the expectation-maximization
method [12]. In addition, some recent studies successfully
used techniques for co-adaptive learning of user and machine
[18], [19].

Most of the algorithms in the latter group focused on
extracting invariant features by regularizing the common spa-
tial patterns (CSP) algorithm [22]–[24]. For example, the
invariant common spatial patterns (iCSP) algorithm used
extra measurements, such as electrooculogram (EOG) or
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electromyogram (EMG) to improve the CSP features to be
invariant against muscular or ocular artifacts [23]. Stationary
CSP (sCSP) is another algorithm, which regularized CSP by
penalizing the variations between covariance matrices [24].
There are also some works that improved the model by extract-
ing the stationary part of the EEG signal before applying the
CSP algorithm [25]–[27].

Despite various studies and recent advances, dealing with
nonstationary changes in EEG-based BCIs has remained a
challenging issue. This paper belongs to the latter group
aiming to extract BCI features that are robust and invariant
against the nonstationarities. For this purpose, we optimize
the CSP spatial filters by minimizing the dissimilarities and
variations in the train data. The CSP algorithm is a feature
extraction method that computes spatial filters maximizing
the discrimination of the two classes [28], [29]. Despite the
widespread use and the efficiency of CSP, its performance
may be distorted by intrinsic variations in the signal prop-
erties. CSP only considers the separation of the means of
the two classes, while the within-class scatter information is
completely ignored. Since the EEG signals are nonstationary,
there may be high trial-to-trial variations within a class that
result in large scatters around the means in the feature space.

Motivated by this issue, this paper proposes a novel spatial
filtering algorithm by defining a new criterion that simul-
taneously maximizes the discrimination between the class
means, and minimizes the within-class dissimilarities. Since
a Kullback–Leibler (KL) [30], [31] based term is defined to
measure the within-class dissimilarities, the proposed algo-
rithm is called KLCSP. In order to evaluate the performance
of the proposed KLCSP algorithm, two datasets are used: the
publicly available dataset IVa from BCI competition III [33]
and a large dataset, including 132 sessions collected from
stroke patients [6]. The KLCSP results are compared with
the results obtained using the CSP and the sCSP algorithms,
and some quantitative analysis and visualization techniques are
provided to better understand the efficiency of the proposed
algorithm.

The remainder of this paper is organized as follows.
Section II describes the CSP algorithm and its extension, the
proposed KLCSP algorithm, in detail. The applied datasets
and the performed experiments are explained in Section III.
Section IV presents the experimental results, followed by
discussions in Section V. Finally, Section VI concludes this
paper.

II. METHODOLOGY

A. Common Spatial Patterns

For classification of motor imagery tasks, spatial filters are
widely used to find meaningful patterns from the noisy EEG
data. Among different spatial filtering algorithms, CSP is so far
the most commonly used algorithm in EEG-based BCI [28],
[29]. It linearly transforms the band-pass filtered EEG data to
a spatially filtered space, such that the variance of one class is
maximized while the variance of the other class is minimized.

Since band-passed EEG measurements have approximately
zero means, the normalized covariance matrix can be

estimated as

! = XXT

trace(XXT)
(1)

where X ∈ RC×S denotes a single-trial EEG with C and S
being the number of the channels and the measurement
samples, respectively, T denotes the transpose operator, and
trace (X) gives the sum of the diagonal elements of X.

The CSP algorithm projects X to spatially filtered Z as

Z = WX (2)

where the rows of the projection matrix W are the spatial fil-
ters. W is generally computed by simultaneous diagonalization
of the average covariance matrices from the both classes. This
is equivalent to solving the eigenvalue decomposition problem

!1WT = !2WT" (3)

where !1 and !2 are, respectively, the average covariance
matrices of each class; and " is the diagonal matrix that
contains the eigenvalues of !−1

2 !1. Since the eigenvalues in
" indicate the ratio of the variances under the two conditions,
the first and the last m rows of W, corresponding to the m
largest and the m smallest eigenvalues, are generally used as
the most discriminative filters. Subsequently, the variances of
the spatially filtered EEG data (possibly after a normalization
and a log-transformation) are used as the features [29].

The CSP algorithm, in computing the projection matrix W,
can be formulated as an optimization problem [35] given by

min
wi

i=m∑

i=1

wi!2wT
i +

i=2m∑

i=m+1

wi!1wT
i

Subject to: wi (!1 + !2)wT
i =1 i ={1, 2, . . . , 2m}

wi (!1 + !2)wT
j = 0 i, j = {1, 2, . . . , 2m} i ̸= j

(4)

where the unknown weights wi ∈ R1×C , i = {1, . . . , 2m},
respectively, indicate the first and the last m rows of the CSP
projection matrix. Formulating the CSP algorithm as a quadrat-
ically constrained quadratic programming (QCQP) problem in
(4) enables us to penalize the within-class dissimilarities in
CSP by adding a penalty term (see Section II-B).

B. Minimizing Within-Class Dissimilarities in CSP Filters

The CSP filters are learned using the average covariance
matrices. Hence, they actually model the discrimination of the
average powers (means) of the two classes. However, the large
discrimination between the class means does not guarantee to
have compact features with small scatters around the means.
Since the EEG signals are nonstationary, there may be high
trial-to-trial variations within a class resulting in deteriorated
BCI performances.

This issue motivates to modify the CSP algorithm such that
simultaneously the discrimination between the class means
is maximized, and the within-class dissimilarities are mini-
mized. For this purpose, first, the variations and dissimilarities
between the trials of each class require to be measured.
A natural choice for a dissimilarity metric is one that compares
the probability distribution functions. A common possible
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choice, used in this paper, is the KL divergence or relative
entropy [30], [31].

Given two probability distributions, P1(i) and P2(i) (taken
as reference), the KL divergence is defined as

D(P1(i)|P2(i)) =
∑

i

P1(i) ln
(

P1(i)
P2(i)

)
. (5)

The KL divergence provides a nonnegative measure, which is
zero if and only if P1 = P2. As shown in (5), the KL diver-
gence evaluates the dissimilarity between two distributions
via the logarithm of their ratio weighted by the occurrence
probability. This means that KL is not a sort of punctual
difference between two distributions but rather a probability
divergence.

In this paper, it is assumed that the nonstationarities exist
only in the first two moments of the single-trial EEG (i.e.,
mean and covariance) [25]. Following this assumption, to
measure the within-class dissimilarities of the EEG data,
we split the training trials of each class into a number of
consecutive epochs, and then we measure the dissimilarities
between the distributions of each epoch and the average trials
from the same class using the first two moments. The average
distribution of a group of band-pass filtered EEG trials can
be defined by a zero mean and a covariance matrix computed
from averaging the covariance matrices over the multiple EEG
trials. Based on the maximum entropy principle, the most
prudent model for modeling the distribution of the EEG trials
that is consistent with zero mean and a covariance matrix is
Gaussian [32].

The KL divergence between multivariate Gaussian dis-
tributions, N0(µ0,!0) and N1(µ1,!1), has a closed-form
expression

D(N0|N1) = 0.5
[
(µ1 − µ0)

T!−1
1 (µ1 − µ0)

+ trace(!−1
1 !0) − ln

(
det(!0)

det(!1)

)
− d

]
(6)

where det and d denote the determinant function
and the dimensionality of the data, respectively. So
D(N(0,!t

ω)|N(0,!ω)) measures the dissimilarity of
the distribution of the t th epoch in class ω from the average
distribution in class ω, where !t

ω and !ω, respectively, denote
the average covariance matrices of the t th epoch and the
whole data belonging to class ω. Subsequently, minimizing
the average within-class dissimilarities of the spatially filtered
data is equivalent to minimizing the loss function

L
([ w1

w2
...

w2m

])
= L(w) = 1

2

2∑

ω=1

1
Nω

Nω∑

t=1

φ(w,!t
ω,!ω)

= 1
2

2∑

ω=1

1
Nω

Nω∑

t=1

D(N(0, w!t
ωwT )|N(0, w!ωwT )) (7)

where w=
[ w1

w2
...

w2m

]
is a matrix containing the first and the last m

spatial filters, and Nω denotes the number of epochs belonging
to class ω (i.e., similar to the loss function proposed in [27]).

Adding the proposed loss function (7) to the CSP opti-
mization function (4) results in spatial filters that simultane-
ously maximize the between-classes distance of the powers
(i.e., variances), and minimize the within-class dissimilarities
of the powers. Hence, the following optimization problem is
proposed to obtain the optimized spatial filters:

min
wi

(1−r)

(
i=m∑

i=1

wi C2wT
i +

i=2m∑

i=m+1

wi C1wT
i

)

+ r L
([ w1

w2
...

w2m

])

Subject to: wi (C1 + C2)wT
i =1 i ={1, 2, . . . , 2m}

wi (C1 + C2)wT
j = 0 i, j = {1, 2, . . . , 2m} i ̸= j

(8)
where r(0 ≤ r ≤ 1) is a regularization parameter to control the
discrimination between and the similarity within the training
classes. Each epoch contains ν consecutive trials from the
same class. In this paper, the best subject-specific r and ν
values are selected from small predefined sets by cross-
validation. Since the new KL divergence-based term is used,
we abbreviate the proposed algorithm as KLCSP.

The proposed KLCSP algorithm is a nonlinear optimization
problem, and due to the equality constraints it is a nonconvex
optimization problem. There are several numerical optimiza-
tion methods, such as augmented Lagrangian or sequential
quadratic programming (SQP) that can be applied to find local
minima of this problem. In this paper, the fmincon solver avail-
able in MATLAB based on SQP method was used [36], [37].
It is noted that all the 2m KLCSP filters are computed
simultaneously. In addition, the spatial filters obtained from the
CSP algorithm were used as the initial point. The motivation
behind using the CSP filters for initialization is that when the
regularization part is removed from the proposed cost function,
the CSP filters are the global solution. Thus, starting from the
CSP filters, the solver searches for filters improving the cost
function compared to the CSP filters. Our experimental results
on two datasets (see Section IV) also confirmed that although
the KLCSP filters obtained from this initialization may not be
the global solution, they significantly outperformed the CSP
filters in terms of the classification accuracy.

C. KLCSP Versus sCSP

The sCSP algorithm [24] is another extension of the CSP
algorithm proposed to make the CSP filters robust against
the within-class variations and nonstationarities. In the sCSP
algorithm, the dissimilarities between the average EEG trials
and each epoch are measured by subtracting their covariance
matrices. Then, to make the resultant difference matrix positive
and subsequently usable in the Rayleigh quotation, the signs
of its negative eigenvalues are flipped. As mentioned in [24],
the proposed approximation is an upper bound for the initial
nonflipped difference matrix, making the sCSP optimization
directly solvable as a generalized eigenvalue problem. How-
ever, since the flipped difference matrices are different from
the nonflipped ones, the sCSP algorithm may not lead to the
optimal filters.

In contrast, the proposed KLCSP algorithm measures the
nonstationarities based on the KL divergence that has a known
interpretation for measuring the dissimilarities between two
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Fig. 1. Timing of each repeat in the neuro-rehabilitation sessions.

distributions [31]. It does not impose any approximations in
measuring the dissimilarities ignoring the manifold structure
of the covariance matrices. In addition, the constraints in
the proposed KLCSP optimization function lead to diagonal
covariance matrices in both the classes. Therefore, unlike
sCSP, the projected signals by the obtained KLCSP filters
are uncorrelated in both the classes. The proposed KLCSP
algorithm considers the correlation between the projected sig-
nals to achieve a better discrimination. However, the KLCSP
algorithm requires solving a nonconvex optimization problem
yielding solutions that may be sub-optimal.

In Section III, these algorithms are compared in terms of the
classification accuracy, and the advantages and disadvantages
of them will be further discussed in Section V.

III. EXPERIMENTS

A. Data Description

In this paper, the EEG data from two datasets were used.
These two datasets are described as follows.

1) Dataset IVa from BCI Competition III [33]: This pub-
licly available dataset comprised EEG data from five healthy
subjects recorded using 118 channels. During the recording
sessions, the subjects were instructed to perform one of two
motor imagery tasks: right hand or foot. 280 trials were
available for each subject, whereby 168, 224, 84, 56, and 28
trials formed the training sets for subjects aa, al, av, aw, and
ay, respectively. Subsequently, the remaining trials formed the
test sets. Using this dataset, the performance of the proposed
KLCSP algorithm can be evaluated against different sizes of
training data recorded from a large number of channels.

2) Neuro-Rehabilitation Dataset [6]: This large dataset
comprised a total of 132 sessions EEG data recorded from 11
hemiparetic stroke patients. Each patient underwent 12 motor
imagery-based BCI with robotic feedback neuro-rehabilitation
sessions recorded over one month (refer NCT00955838 in
ClinicalTrials.gov) [6]. The EEG data were acquired using
25 channels. The experimental paradigm is shown in Fig. 1.
In each repeat, the patient was first prepared with a visual
cue for 2 s, then a “go” cue would instruct the patient to
perform motor imagery of the impaired hand. If the voluntary
motor intent was detected within the 4 s action period, the
strapped MIT-Manus robot would assist the patient in moving
the impaired limb toward the goal. Finally, the patient was
asked to rest for 6 s. There was a total of 160 repeats in each
session (1 repeat means a complete run from preparation cue
to the rest stage). There was a dedicated calibration phase
before the rehabilitation phase to train the online classifier.

In this paper, the classification problem involved distin-
guishing between the motor imagery stage and the rest stage.
Therefore, each session comprised 160 motor imagery actions

of the affected hand and 160 rest conditions. In this paper, the
first 160 single-trials of each session were considered as the
training set, and the second 160 single-trials were considered
as the test set. Since variability and diversity in the rest class
are more pronounced than motor imagery classes, this dataset
is a proper choice to investigate the efficiency of the proposed
algorithm.

B. Data Processing

The performance of the proposed KLCSP algorithm was
evaluated on the abovementioned datasets, and compared with
the CSP and the sCSP algorithms. For each dataset, the EEG
data from 0.5 to 2.5 s after the visual cue were used whereby
the selected time segment was used by the winner of the BCI
competition IV dataset IIa [34]. In this paper, a single band-
pass filter from 8 to 30 Hz was used for filtering the EEG data,
since this single frequency band includes the range of frequen-
cies that are mainly involved in performing motor imagery.
The filtering was performed using a fifth-order Butterworth
filter. Thereafter, the spatially filtered signals were obtained
using the first and the last two spatial filters of (s/KL)CSP,
m = 2. Finally, the variances of the spatially filtered signals
were applied as the inputs of the LDA classifier. Note that, in
this paper, we did not reject any trials or electrodes.

IV. EVALUATION

A. Selecting the Parameters in KLCSP

In the proposed KLCSP algorithm, two parameters are
required to be optimally selected, namely, the regularization
parameter r and the number of trials in each epoch ν. In this
paper, the best subject-specific r and ν were selected from the
sets of r ∈ {0.1, 0.2, . . . , 0.9} and ν ∈ {1, 5, 10}, respectively,
where the five-fold cross-validation was performed for the
different values of r and ν on the train data and the ones
resulting in the minimum error were chosen. After choosing
the best subject-specific r and ν, the KLCSP filters were
trained using the whole train data, and then evaluated on the
test data.

To consider the changes over the time, in all the experi-
ments, each epoch was constructed by a set of consecutive
trials from the same class. In addition, there was no overlap
between the epochs. Following this issue, during the five-
fold cross-validation, after randomly selecting the evaluation
trials, the remaining trials were ordered based on the time
that they were recorded, and then each epoch was constructed
using the ν consecutive trials from the same class. It is noted
that by selecting different numbers of trials in each epoch,
nonstationarities and variations in different time-scales are
taken into account. Considering a small number of trials in
each epoch results in focusing on trial-by-trial changes, such
as muscular artifacts, while increasing the number of trials
shifts the focus into slower changes, such as variations of task
involvement or fatigue.

To have a fair comparison, the same procedure as described
above was applied to find the best subject-specific parameters
of the sCSP algorithm (i.e., the regularization parameter and
the number of trials in each epoch).
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TABLE I

TEST CLASSIFICATION ACCURACIES OF DATASET IVA, BCI

COMPETITION III, OBTAINED BY CSP, SCSP, AND THE PROPOSED

KLCSP FILTERS

aa al av aw ay Mean ± Std

CSP 68.75 98.21 66.83 90.17 84.92 81.78 ± 13.6
sCSP 76.78 98.21 71.93 91.51 87.3 85.15 ± 10.7

KLCSP 79.46 98.21 69.89 91.96 90.07 85.92 ± 11.2

B. Performance Comparison

In the first experiment, we compared the proposed KLCSP
algorithm with the standard CSP and the sCSP algorithms
using the dataset IVa from BCI competition III. Table I
presents the classification accuracies on the test data obtained
by CSP, sCSP, and KLCSP. The results showed that the pro-
posed KLCSP algorithm outperformed the CSP and the sCSP
algorithms by an average of 4.14% and 0.77%, respectively.

In the second experiment, we evaluated the proposed
KLCSP algorithm using the neuro-rehabilitation dataset. This
large dataset was recorded over 132 sessions from 11 stroke
patients. The first half of each session was considered as the
training set, and the second half was considered as the test
set. Table II reports the average classification accuracies of the
test sets from the neuro-rehabilitation dataset obtained by CSP,
sCSP, and the proposed KLCSP algorithm. The results showed
that the proposed KLCSP algorithm yielded the mean (median)
accuracy of 73.43% (72.50%), whereas the CSP and the sCSP
algorithms yielded the mean (median) accuracies of 68.69%
(67.81%), and 69.86% (68.75%), respectively. Interestingly,
for some patients, the average improvements achieved by the
KLCSP algorithm are substantial (e.g., P034 by 8.9 and 7.4%
average improvement against the corresponding CSP and sCSP
results, respectively).

Fig. 2 depicts scatter plots of the classification accura-
cies obtained from the neuro-rehabilitation dataset. The first
two sub-figures from the left side, respectively, compare the
classification results of the sCSP and the proposed KLCSP
algorithms against the CSP results. The classification results
obtained using the proposed KLCSP algorithm and the sCSP
algorithm are then compared in the last sub-figure. Each
plotted point on the sub-figures indicates the classification
accuracy obtained from one of the 132 sessions. The classifi-
cation accuracies of the sessions belonging to a same patient
were plotted with a same color and mark. As the classification
accuracies were plotted, the points above the diagonal line
mean the algorithm of the y-axis performed better than the
one of the x-axis.

The results in Fig. 2 showed that the sCSP and the pro-
posed KLCSP algorithms, respectively, outperformed the CSP
algorithm in 95 and 112 sessions over the total 132 sessions,
and for the rest of the sessions, the CSP results were only
slightly better than the results obtained by sCSP and KLCSP.
Interestingly, the last sub-figure showed that in 103 over 132
sessions, the proposed KLCSP algorithm outperformed the
sCSP algorithm. With a closer look at the KLCSP results,
it is realized that the biggest improvements were achieved by
those subjects with CSP performances less than 75%.
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Fig. 2. Comparison of the classification accuracies using scatter plots for the
neuro-rehabilitation dataset. Each plotted point on the sub-figures indicates the
classification accuracy obtained from one of the 132 sessions. The accuracies
of the sessions belonging to a same patient were plotted with a same color
and mark.

Collecting all the results of the two aforementioned datasets
and dividing them to three groups based on their CSP error
rates, Table III investigates the performance of KLCSP and
sCSP on the different BCI users. The first three rows of this
table compare the average(median) classification accuracies of
the different groups obtained by CSP, sCSP, and the proposed
KLCSP filters, respectively. Finally, the last three rows show
the statistical wilcoxon signed-rank test results between CSP,
sCSP, and KLCSP in the different groups. The results showed
that the sCSP algorithm improved the classification accuracy
of the subjects with moderate and poor CSP performances,
although the improvements were not statistically significant.
In contrast, the proposed KLCSP algorithm improved the
results of all the groups of the subjects, including those with
poor, moderate, and high CSP performances, and interestingly
the improvements for the subjects with moderate or poor
CSP performances were statistically significant. Comparing
the sCSP and KLCSP results also revealed that for the subjects
with poor CSP performances the proposed KLCSP algorithm
significantly outperformed the sCSP algorithm.

C. Impact of KLCSP on Subjects With Different Qualities

To better understand the impact of the KLCSP algorithm
on different subjects, each part of the KLCSP cost function,
given in (8), was quantified for the dataset IVa from BCI
competition III. The proposed KLCSP cost function comprises
two parts. The first part,

∑i=m
i=1 wi C2wT

i +∑i=2m
i=m+1wi C1wT

i , is
inversely related to the discrimination between the mean pow-
ers of the two classes. Thus, in this paper, (

∑i=m
i=1 wi C2wT

i +∑i=2m
i=m+1wi C1wT

i )−1 is referred to as the between-classes
distance. The second part, L([ w1

...
w2m

]) defined in (7), is directly
related to the variations within the classes, and referred to
as the within-class dissimilarities. In discrimination of the
samples around the decision boundary, the amount of the
within-class dissimilarities as well as the separation of the
mean powers of the two classes is crucial.

Table IV presents the percentage changes of the between-
classes distances and the within-class dissimilarities when the
CSP filters were replaced by KLCSP filters, for the train sets
of the dataset IVa. In this table, the qualities of the subjects
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TABLE II

AVERAGE CLASSIFICATION ACCURACIES OF NEURO-REHABILITATION DATASET OBTAINED BY CSP, SCSP, AND THE PROPOSED KLCSP FILTERS

Patient’s Code P003 P005 P007 P010 P012 P029 P034 P037 P044 P047 P050 Mean ± Std

CSP 57.5 71.32 89.80 65.44 57.02 60.07 56.81 74.17 73.54 74.89 75.00 68.69±11.94
sCSP 60.57 71.67 90.21 65.85 58.02 61.69 58.30 74.53 74.74 77.08 75.78 69.86±11.55

KLCSP 62.5 75.03 93.58 72.28 61.13 67.83 65.74 79.17 75.26 76.77 78.69 73.45±10.38

TABLE III

PERCENTAGE CHANGES OF BETWEEN-CLASSES DISTANCES AND

WITHIN-CLASS DISSIMILARITIES, WHEN CSP FILTERS ARE REPLACED

BY KLCSP FILTERS, FOR THE TRAIN SET OF DATASET IVA

aa al av aw ay

Quality of subject Poor Good Poor Good Moderate
Changes of between-classes dist. (%) –7 –5.5 –7.1 –3.1 –7.9

Changes of within-class diss.(%) -50 –6 –80 –21 –31

The p-value denotes the wilcoxon signed-rank test, and the bold values
denote the significance with 1% level.

TABLE IV

OVERVIEW OF ALL THE RESULTS. GROUPING WAS PERFORMED BASED

ON THE CSP ERROR RATE

Error Rate 0–15 15–30 >30 All

CSP mean (Median) 90.2(89.4) 75.7(75) 59.7(60.6) 69.2(68.3)
sCSP mean (Median) 90.3(89.4) 77.1(75.6) 61.3(61.2) 70.4(69.4)

KLCSP mean (Median) 91.8(90.6) 78.2(78.1) 66.4(66.2) 73.9(72.5)
p-value (sCSP versus CSP) 0.965 0.208 0.156 0.378

p-value (KLCSP versus CSP) 0.260 0.008 <0.001 <0.001
p-value (KLCSP versus sCSP) 0.292 0.177 <0.001 0.008

The qualities of the subjects were defined based on the CSP error rates. Dist.
and diss. denote distance and dissimilarities, respectively.

were defined based on their CSP error rates (see Table I). To
compute the aforementioned variables, the number of trials in
each epoch was set to 1.

Table IV showed that the KLCSP algorithms were more
valuable for subjects with poor initial CSP performances
(e.g., aa, av), since compared to the CSP filters the KLCSP
filters substantially reduced the within-class dissimilarities of
these subjects, while the between-class distances were slightly
decreased. The reason could be the fact that users with poor
CSP performances often have noisy and nonstationary signals;
thus CSP may fail to produce stable and discriminative signals.
In contrast, KLCSP can alleviate the destructive effects of
nonstationary and artifact-corrupted trials resulting in a better
discrimination of the two classes. On the other hand, the
subjects who performed well with CSP filters benefited less
from applying the KLCSP filters, as the KLCSP filters only
slightly reduced their within-class dissimilarities (e.g., aa).
This makes sense, since these subjects have already well-
separated and stable signals using the standard CSP filters.
So there is no room to improve by KLCSP.

Comparing the results in Tables I and IV may raise a ques-
tion regarding the subject av. Table IV showed that the KLCSP
filters reduced the within-class dissimilarities of the train data

TABLE V

DETAILS OF THE TWO SELECTED SESSIONS FOR FURTHER ANALYSIS.

THE PARAMETERS WERE SELECTED USING FIVE-FOLD

CROSS-VALIDATION ON THE TRAIN DATA

(ACC: ACCURACY)

Patient’s Session Impaired Classification Acc. Selected Parameters
Code No. Hand CSP KLCSP α ν

P007 7 Right 81.25 91.25 0.5 5
P037 4 Right 66.25 85.625 0.3 1

for the subject av to one fifth of the CSP’s amount, while
the between-class distance was slightly decreased. Thus, one
may expect to see a big improvement in the test classification
accuracy of this subject using the KLCSP filters. However,
KLCSP yielded only an improvement of 3.06%. Although 3%
improvement is still remarkable in BCI applications, there is a
need to investigate why KLCSP could not get more than 69.9%
test accuracy for this subject despite substantial improvement
of the discrimination in the train data. One possible reason
may be some nonstationarities in the test data that could not
be captured from the train data (e.g., changing the strategy of
performing the mental tasks in the test session, among others).
As a result, since KLCSP only uses the train data, it would
not be able to truly deal with such nonstationarities. This issue
will be investigated more in the future.

D. Toward Understanding the Merits of KLCSP

In the previous sections, we showed quantitative evidences
indicating the proposed KLCSP can significantly improve the
classification accuracy in EEG-based BCIs. In this section, we
provide more analysis and visualizations to better understand
the nature and the impact of our proposed algorithm on
nonstationary changes in the EEG signals and the feature
space.

The analysis was conducted with two sessions selected
from the neuro-rehabilitation dataset, since they achieved two
of the largest improvements in terms of the classification
accuracy. Table V provides more details about the selected
sessions, including the patient’s code, the session number (as
12 sessions were recorded from each patient, it can be from
1 to 12), the test classification accuracies obtained by CSP
and the proposed KLCSP algorithm, the regularization value
r and the number of trials in each epoch ν selected by five-fold
cross-validation on the train data.

Fig. 3 shows the distance between the power of each trial
and the average power of the corresponding class in the train
sets after filtering by the best CSP and KLCSP filters. Since the
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Fig. 3. Distance between the power of each trial and the average power of the corresponding class after filtering by the best CSP and the proposed KLCSP
filters. (a) Patient P007, session 7. (b) Patient P037, session 4. In band-passed EEG trials, the power of a trial is equivalent to the variance of that trial. For
better visualization, the y-axis were plotted in log scale.

(a) (b)

Fig. 4. Distributions of two best features obtained by CSP and the proposed KLCSP filters. (a) Patient P007, session 7. (b) Patient P037, session 4. The first
row shows the features obtained by CSP filters and the second row shows the features obtained by the proposed KLCSP filters. The best features obtained
using the fisher score on the train data. The blue crosses and red squares denote the features of the hand motor imagery and the rest class, respectively. The
black line represents the LDA hyperplane obtained by the train data. The features were plotted after normalization.

EEG signals are centered, the power of each trial is equivalent
to the variance of that trial. So in this part, the EEG data
were filtered using the best CSP and KLCSP filters (the best
filters were defined by the fisher score of the corresponding
features in the train set), and the powers of the filtered signals
were calculated. High trial-to-trial variations can yield high
variations between the powers. On the other side, decreasing
the dissimilarities can be interpreted by decreasing the distance
between the powers. Therefore, this figure gives us an insight
about the variabilities within each class after CSP and KLCSP
filtering. Based on Fig. 3, shorter distances between the powers
of the trials and the average power of the corresponding class
indicate more similarities.

From Fig. 3, specifically the y-axes, one can easily recog-
nize higher dissimilarities and variations within the rest class

as compared with the motor imagery class. In the neuro-
rehabilitation dataset, since the rest class was a “no-command”
state that the patients were allowed to do almost any other
mental tasks than the impaired hand motor imagery, this class
has high variations. Apart from this issue, as can be seen, the
distances between the powers of the trials and the average
power in the KLCSP filtered trials are mostly smaller than the
CSP ones. With a closer look, we can see that the proposed
KLCSP algorithm was able to efficiently damp most of the
big variations (those trials with large deviation from the mean
power), such as trials 3, 62, and 63 in the hand motor imagery
class of Patient P007, or trials 3, 11, and 34 in the rest class
of Patient P037.

Fig. 4 shows the train and the test features obtained by CSP
and the proposed KLCSP filters. It is noted that for the ease
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in visualization only two features which had the highest fisher
scores in the train data were plotted. Moreover, the features
were plotted after the normalization. The blue crosses and
red squares denote the features of the hand motor imagery
and the rest class, respectively. The black line represents
the LDA hyperplane obtained by the train data. Comparing
the distributions of the train features extracted from CSP
and the proposed KLCSP algorithm clearly reveals that the
KLCSP features were more compact and thus more separable.
Furthermore, transferring from the train to the test in CSP
caused big shifts as well as big changes in the shape of the
feature distributions. In contrast, the differences between the
feature distributions of the train and the test sessions in KLCSP
were almost limited to small shifts. This shows that most of
the nonstationary changes in the test data of this patient could
be successfully captured by the proposed KLCSP filters, that
may be due to a constant topography between the train and
the test nonstationarities.

To better explain the performance differences between the
CSP and the KLCSP algorithms, Fig. 5 compares some exam-
ples of the spatial filters. In general, this figure showed that
the CSP filters presented large weights in several unexpected
locations from the neurophysiological point of view. For P007
and P037, although the CSP filters captured the relevant
patterns, i.e., dipole-like activations over the left motor cortex,
they were still affected by some nonstationarities and artifacts
in some irrelevant channels. For aa, the CSP filter failed to
capture the foot motor imagery pattern, as it was adversely
affected by artifacts in the electrodes F3, F8, and FT8.
On the contrary, the proposed KLCSP algorithm penalized
the nonstationarities and the artifact-corrupted channels, and
extracted filters that are neurophysiologically more relevant,
with strong weights over the relevant motor cortex areas and
smooth weights over the other areas.

Artifacts, such blinking and other muscle movements,
produce voltage changes with much higher amplitude than
the endogenous brain activity. Thus, artifact-corrupted trials
usually have excessive dominant powers in some channels,
resulting in CSP filters with big spatial weights for those
channels [28] (see the aas CSP filter in Fig. 5 as an example).
However, in the KLCSP algorithm, the distribution of an
artifact-corrupted trial is compared with the distribution of the
average EEG trials from the same class using the proposed
loss function (7). Since there are big differences between the
powers of the affected channels in these two distributions,
the KLCSP algorithm attenuates the spatial weights of those
channels to minimize the loss function.

V. DISCUSSION

The experimental results demonstrated the effectiveness
of the proposed KLCSP algorithm. The experimental results
showed that the proposed KLCSP optimization with the CSP
filters as the initial point yielded spatial filters outperforming
the sCSP algorithm, although the obtained KLCSP filters were
not guaranteed to be the global solution. In particular, the
KLCSP results of the subjects who had poor CSP perfor-
mances (i.e., CSP error rate more than 30%) were significantly
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Fig. 5. Electrode weights for the corresponding filters obtained by CSP
and KLCSP, for subjects P007 (performing right hand motor imagery), P037
(performing right hand motor imagery), and aa (performing foot motor
imagery).

better than the corresponding sCSP results. Moreover, com-
pared to the dataset IVa, the performance difference between
KLCSP and sCSP in the neuro-rehabilitation dataset was more
salient. This can be due to the fact that the neuro-rehabilitation
dataset was more contaminated by noise, nonstationarities,
and artifact-corrupted trials. All these results suggest that
the proposed penalty term in the KLCSP algorithm could
be more successful in capturing the nonstationarities and
variations. However, it must be noted that the sCSP algorithm
is computationally more efficient than the proposed KLCSP
algorithm.

Regarding the computational complexity, the most time
consuming part of the proposed KLCSP algorithm is related
to finding the optimization parameters, r and ν, by cross-
validation. However, this time can be substantially reduced
using parallel computing. Moreover, in the lack of time, one
can suffice to use a fixed value for the parameter r (i.e.,
number of trials in each epoch). In our experiments, in 47%
of the cases, 5 was selected as the r value, while in 28%
and 25% of the cases 10 and 1 were selected, respectively.
Averagely, fixing the r value to 5 yielded the classification
results around 0.8% less accurate than the classification
results of using cross-validation in selecting r . So if it is
required to reduce the computation time, using five trials in
each epoch are recommended. The other fact is that when
the number of channels is increased, the KLCSP algorithm
requires more time to find the optimal filters. Nevertheless,
using less than 30 channels and fixing the number of trials
in each epoch to five, our experiments showed that it is truly
possible to compute the KLCSP filters in a few minutes break
between the calibration and feedback phases.

The KLCSP algorithm requires estimating the single-trial
covariance matrices as well as the average covariance matrices.
One question can be about the estimation of the single-trial
covariance matrices. Since the EEG signals are contaminated
by noise and artifacts, the sample-based covariance estimation
can be adversely affected. Some algorithms, such as smoothing
algorithms [38], may help to get a better estimation of the
single-trial covariance matrix in some cases. However, they
increase the computation time and may need some other
recordings. Furthermore, the KLCSP algorithm inherently
aims to detect such changes in the data by comparing the
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covariance matrices of each trial/epoch with the average
covariance matrix of the corresponding class, and learn spatial
filters that are robust against the existing variations in the
train data. Nevertheless, some preprocessing algorithms, such
as selecting subject-specific frequency bands or time segments
can increase the quality of the trials resulting in a better general
performance for KLCSP.

The other issue is that the average covariance matrix for
each class can also be distorted by noisy and artifact-corrupted
trials. As a result, in the CSP algorithm, the distorted estima-
tion of the covariance matrices may lead to poor spatial filters.
As our experimental results showed, the proposed KLCSP
algorithm automatically tries to reduce the destructive effects
by enforcing the spatial filters to be less sensitive to artifacts
and within-class variations, although the average covariance
matrices may not be properly estimated. By the way, it is
possible to combine KLCSP with the regularized covariance
estimations to take the advantages of both the algorithms. We
evaluated some of such algorithms on some randomly selected
subjects, i.e., a KLCSP with diagonal loading [22] or a KLCSP
with minimum covariance determinant estimate [39], among
others. Unfortunately, none of them yielded classification
accuracies noticeably higher than the corresponding KLCSP
results. Thus, the KLCSP algorithm with a single regulariza-
tion can be preferable. It is simpler and computationally more
efficient.

VI. CONCLUSION

This paper proposed a novel spatial filtering algorithm for
the EEG-based BCIs, called KLCSP, to extract features that are
robust and invariant against the nonstationarities inherent in the
EEG signals. This was achieved by defining a new criterion,
that maximizes the discrimination between the classes while
minimizes the within-class dissimilarities. Thus, a loss func-
tion was defined to measure the within-class dissimilarities
based on the KL divergence, and it was imposed in the CSP
optimization function.

The experimental results on five healthy subjects from the
publicly available BCI competition III dataset IVa as well as
11 stroke patients performing neuro-rehabilitation in a total of
132 sessions demonstrated that the proposed KLCSP algorithm
significantly outperformed the CSP and the sCSP algorithms
by an average of 4.7% and 3.5%, respectively (p < 0.01).
The results also showed that the KLCSP improvements were
particularly more significant for the subjects with poor CSP
performances.

The quantitative visualization showed that the KLCSP fil-
tered signals had less within-class variations compared to the
CSP ones. Moreover, plotting the feature distributions con-
firmed that the KLCSP features were more compact and more
separable, and the trained model using the proposed KLCSP
algorithm was able to effectively capture the nonstationarities
learned from the train data. In addition, comparing the spatial
filters showed that the KLCSP filters were neurophysiolog-
ically more relevant, with strong weights over the relevant
motor cortex areas and smooth weights over the other areas.

We would like to emphasize that the proposed algorithm
does not require any additional recordings, and it is completely

data-driven. The proposed algorithm only uses the train data
to make the features robust and invariant against nonstation-
arities and variations rather than adapting to nonstationarities
happening over the test sessions. Nevertheless, online adapta-
tion algorithms may further enhance the proposed algorithm
against unseen changes happening in the test data.

ACKNOWLEDGMENT

The authors would like to thank the participants and the
entire research team at the Tan Tock Seng Hospital Reha-
bilitation Center, as well as everyone involved in the data
collection from the stroke patients. They would also like to
thank Berlin BCI Group for providing the data set IVa from
BCI competition III, as well as H. Ahmadi and T. Ward for
their constructive comments.

REFERENCES

[1] N. Birbaumer, “Brain-computer-interface research: Coming of age,”
Clin. Neurophysiol., vol. 117, no. 3, pp. 479–483, 2006.

[2] J. R. Wolpaw, D. J. McFarland, and T. M. Vaughan, “Brain-computer
interface research at the Wadsworth Center,” IEEE Trans. Rehabil. Eng.,
vol. 8, no. 2, pp. 222–226, Jun. 2000.

[3] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and
T. M. Vaughan, “Brain-computer interfaces for communication and
control,” Clin. Neurophysiol., vol. 113, no. 6, pp. 767–791, Jun. 2002.

[4] E. A. Curran and M. J. Stokes, “Learning to control brain activity:
A review of the production and control of EEG components for driving
brain-computer interface (BCI) systems,” Brain Cognit., vol. 51, no. 3,
pp. 326–336, Apr. 2003.

[5] J. del R. Millan, J. Mourino, M. Franze, F. Cincotti, M. Varsta, J. Heikko-
nen, and F. Babiloni, “A local neural classifier for the recognition of EEG
patterns associated to mental tasks,” IEEE Trans. Neural Netw., vol. 13,
no. 3, pp. 678–686, May 2002.

[6] K. K. Ang, C. Guan, K. S. G Chua, T. B. Ang, C. W. K. Kuah,
C. Wang, K. S. Phua, Z. Y. Chin, and H. Zhang, “A large clinical study
on the ability of stroke patients to use EEG-based motor imagery brain-
computer interface,” Clin. EEG Neurosci., vol. 42, no. 4, pp. 245–252,
Oct. 2011.

[7] G. Pfurtscheller, G. R. Muller-Putz, R. Scherer, and C. Neuper, “Reha-
bilitation with brain-computer interface systems,” Computer, vol. 41,
no. 10, pp. 58–65, Oct. 2008.

[8] T. M. Vaughan, “Guest editorial brain-computer interface technology:
A review of the second international meeting,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 11, no. 2, pp. 94–109, Jun. 2003.

[9] M. Krauledat, G. Dornhege, B. Blankertz, and K.-R. Müller, “Robusti-
fying EEG data analysis by removing outliers,” Chaos Complex. Lett.,
vol. 2, nos. 2–3, pp. 259–274, 2007.

[10] P. Shenoy, M. Krauledat, B. Blankertz, R. P. N. Rao, and K.-R. Müller,
“Towards adaptive classification for BCI,” J. Neural Eng., vol. 3, no. 1,
pp. R13-–R23, Mar. 2006.

[11] C. Vidaurre, M. Kawanabe, P. von Bünau, B. Blankertz, and K.-R.
Müller, “Toward unsupervised adaptation of lda for brain-computer
interfaces,” IEEE Trans. Biomed. Eng., vol. 58, no. 3, pp. 587–597,
Mar. 2011.

[12] Y. Li and C. Guan, “An extended em algorithm for joint feature extrac-
tion and classifcation in brain-computer interfaces,” Neural Comput.,
vol. 18, no. 11, pp. 2730–2761, 2006.

[13] C. Vidaurre, A. Schlogl, R. Cabeza, R. Scherer, and G. Pfurtscheller,
“Study of on-line adaptive discriminant analysis for EEG-based brain
computer interfaces,” IEEE Trans. Biomed. Eng., vol. 54, no. 3,
pp. 550–556, Mar. 2007.

[14] S. Sun and C. Zhang, “Adaptive feature extraction for EEG signal
classification,” Med. Bio. Eng. Comput., vol. 44, no. 10, pp. 931–935,
Sep. 2006.

[15] Y. Li, H. Kambara, Y. Koike, and M. Sugiyama, “Application of
covariate shift adaptation techniques in brain-computer interfaces,” IEEE
Trans. Biomed. Eng., vol. 57, no. 6, pp. 1318–1324, Jun. 2010.

[16] M. Sugiyama, M. Krauledat, and K.-R. Müller, “Covariate shift adap-
tation by importance weighted cross validation,” J. Mach. Learn. Res.,
vol. 8, pp. 985–1005, Dec. 2007.



ARVANEH et al.: OPTIMIZING SPATIAL FILTERS BY MINIMIZING WITHIN-CLASS DISSIMILARITIES 619

[17] K. P. Thomas, C. Guan, C. T. Lau, V. A. Prasad, and K. K. Ang,
“Adaptive tracking of discriminative frequency components in EEG for a
robust brain-computer interface,” J. Neural Eng., vol. 8, no. 3, pp. 1–15,
Apr. 2011.

[18] S. Lu, C. Guan, and H. Zhang, “Unsupervised brain computer interface
based on intersubject information and online adaptation,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 17, no. 2, pp. 135–145, Apr. 2009.

[19] C. Vidaurre, C. Sannelli, K.-R. Müller, and B. Blankertz, “Machine-
learning-based coadaptive calibration for brain-computer interfaces,”
Neural Comput., vol. 23, no. 3, pp. 791–816, 2011.

[20] C. Gouy-Pailler, M. Congedo, C. Brunner, C. Jutten, and
G. Pfurtscheller, “Nonstationary Brain source separation for multiclass
motor imagery,” IEEE Trans. Biomed. Eng., vol. 57, no. 2,
pp. 469–478, Mar. 2010.

[21] M. Zhong and M. Girolami, “A Bayesian approach to approximate
joint diagonalization of square matrices,” in Proc. 29th Int. Conf. Mach.
Learn., Jun. 2012, pp. 1–8.

[22] F. Lotte and C. Guan, “Regularizing common spatial patterns to improve
BCI designs: Unified theory and new algorithms,” IEEE Trans. Biomed.
Eng., vol. 58, no. 2, pp. 355–362, Feb. 2010.

[23] B. Blankertz, M. Kawanabe, R. Tomioka, F. Hohlefeld, V. Nikulin, and
K.-R. Müller, “Invariant common spatial patterns: Alleviating nonsta-
tionarities in brain-computer interfacing,” Adv. Neural Inf. Process. Syst.,
vol. 20, pp. 1–8, Feb. 2008.

[24] W. Samek, C. Vidaurre, K.-R. Müller, and M. Kawanabe, “Stationary
common spatial patterns for brain-computer interfacing,” J. Neural Eng.,
vol. 9, no. 2, p. 0260134, Feb. 2012.

[25] P. von Bünau, F. C. Meinecke, F. Király, and K.-R. Müller, “Finding
stationary subspaces in multivariate time series,” Phys. Rev. Lett.,
vol. 103, no. 21, pp. 1–4, Nov. 2009.

[26] P. von Bünau, F. C. Meinecke, S. Scholler, and K.-R. Müller, “Finding
stationary brain sources in EEG data,” in Proc. 27th Annu. Int. Conf.
Eng. Med. Biol. Soc., 2010, pp. 2810–2813.

[27] W. Samek, M. Kawanabe, and C. Vidaurre, “Group-wise stationary
subspace analysis—A novel method for studying non-stationarities,” in
Proc. 5th Int. Brain-Comput. Inter. Conf., 2011, pp. 16–20.

[28] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. R. Müller,
“Optimizing spatial filters for robust EEG single-trial analysis,” IEEE
Signal Process. Mag., vol. 25, no. 1, pp. 41–56, Jan. 2008.

[29] H. Ramoser, J. Müller-Gerking, and G. Pfurtscheller, “Optimal spatial
filtering of single trial EEG during imagined hand movement,” IEEE
Trans. Rehabil. Eng., vol. 8, no. 4, pp. 441–6, Dec. 2000.

[30] Q. V. Vincent, Y. Bin, and E. K. Robert, “Information in the nonstation-
ary case,” Neural Comput., vol. 21, no. 3, pp. 688–703, Mar. 2009.

[31] S. Kullback, Information Theory and Statistics, London, U.K.: Peter
Smith, 1978.

[32] E. T. Jaynes, “Information theory and statistical mechanics,” Phys. Rev.,
vol. 160, no. 4, pp. 620–630, May 1957.

[33] G. Dornhege, B. Blankertz, G. Curio, and K. R. Müller, “Boosting bit
rates in noninvasive EEG single-trial classifications by feature combi-
nation and multiclass paradigms,” IEEE Trans. Biomed. Eng., vol. 51,
no. 6, pp. 993–1002, Jun. 2004.

[34] K. K. Ang, Z. Y. Chin, C. Wang, C. Guan, and H. Zhang, “Filter bank
common spatial pattern algorithm on BCI competition IV datasets 2a
and 2b,” Frontiers Neurosci., vol. 6, pp. 1–9, Mar. 2012.

[35] M. Arvaneh, C. Guan, K. K. Ang, and C. Quek, “Optimizing the channel
selection and classification accuracy in EEG-based BCI,” IEEE Trans.
Biomed. Eng., vol. 58, no. 6, pp. 1865–1873, Jun. 2011.

[36] M. Powell, “A fast algorithm for nonlinearly constrained optimization
calculations,” in Numerical Analysis, vol. 630, G. Watson, Ed. Berlin,
Germany: Springer-Verlag, 1978, pp. 144–157.

[37] M. Powell, “Variable metric methods for constrained optimization,” in
Computing Methods in Applied Sciences and Engineering, vol. 704,
R. Glowinski, J. L. Lions, and I. Laboria, Eds. Berlin, Germany:
Springer-Verlag, 1979, pp. 62–72.

[38] S. H. Hass, M. G. Frei, I. Osorio, B. Pasik-Duncan, and J. Radel, “EEG
ocular artifact removal through ARMAX model system identification
using extended least squares,” Commun. Format. Syst., vol. 3, no. 1,
pp. 19–40, Jun. 2003.

[39] C. Croux and G. Haesbroeck, “Influence Function and Efficiency
of the Minimum Covariance Determinant Scatter Matrix Estimator,”
J. Multivariate Anal., vol. 71, pp. 161–190, Nov. 1999.

Mahnaz Arvaneh (S’11) received the B.Sc. degree
in electrical engineering from K. N. Toosi University
of Technology, Tehran, Iran, and the M.Sc. degree
in control engineering from the Ferdowsi University
of Mashhad, Mashhad, Iran, in 2005 and 2007,
respectively. She is currently pursuing the Ph.D.
degree with Singapore Nanyang Technological Uni-
versity.

She was with the R&D Department, Mega-motor
Co., Tehran, from 2008 to 2009. In 2012, she was
a Visiting Student with the Electrical Engineering

Department, National University of Ireland, Maynooth, Ireland. Her cur-
rent research interests include brain–computer interfaces, signal processing,
machine learning, and pattern recognition.

Cuntai Guan (S’91–M’92–SM’03) received the
Ph.D. degree in electrical and electronic engineering
from Southeast University, Nanjing, China, in 1993.

He is currently a Principal Scientist with the Insti-
tute for Infocomm Research, Agency for Science,
Technology and Research, Singapore. He is the
Department Head of Neural and Biomedical Tech-
nology, Institute for Infocomm Research, Agency
for Science, Technology and Research, Singapore.
He has authored or co-authored over 150 papers
in refereed journals and conferences, and holds

13 patents and pending patents. His current research interests include neural
and biomedical signal processing, neural and cognitive process and its
clinical applications, and brain–computer interface algorithms, systems, and
applications.

Dr. Guan is an Associate Editor of the IEEE TRANSACTIONS ON
BIOMEDICAL ENGINEERING, and Frontiers in Neuroprosthetics.

Kai Keng Ang (S’05–M’07) received the B.A.Sc.
(First Class Hons.) and the Ph.D. degrees in com-
puter engineering from Nanyang Technological Uni-
versity, Singapore.

He is currently the Brain-Computer Interface Lab-
oratory Head and a Scientist with the Institute for
Infocomm Research, Agency for Science, Technol-
ogy and Research, Singapore. He was a Senior
Software Engineer with Delphi Automotive Systems
Singapore Pte. Ltd., from 1999 to 2003, where he
was involved in research on embedded software

for automotive engine controllers. He has authored or co-authored several
papers. His current research interests include brain–computer interfaces,
computational intelligence, machine learning, pattern recognition, and signal
processing.

Chai Quek (M’96–SM’10) received the B.Sc.
degree in electrical and electronics engineering and
the Ph.D. degree in intelligent control from Heriot-
Watt University, Edinburgh, U.K.

He is currently an Associate Professor, a mem-
ber of the Centre for Computational Intelligence
(formerly the Intelligent Systems Laboratory), and
the Assistant Chair with the School of Computer
Engineering, Nanyang Technological University,
Singapore. His current research interests include
intelligent control, intelligent architectures, artificial

intelligence in education, neural networks, fuzzy neural systems, neurocogni-
tive informatics, and genetic algorithms.

Dr. Quek is a member of the IEEE Technical Committee on Computational
Finance and Economics.


