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A major challenge in EEG-based brain-computer interfaces (BCIs) is the
intersession nonstationarity in the EEG data that often leads to deterio-
rated BCI performances. To address this issue, this letter proposes a novel
data space adaptation technique, EEG data space adaptation (EEG-DSA),
to linearly transform the EEG data from the target space (evaluation ses-
sion), such that the distribution difference to the source space (training
session) is minimized. Using the Kullback-Leibler (KL) divergence crite-
rion, we propose two versions of the EEG-DSA algorithm: the supervised
version, when labeled data are available in the evaluation session, and
the unsupervised version, when labeled data are not available. The per-
formance of the proposed EEG-DSA algorithm is evaluated on the pub-
licly available BCI Competition IV data set IIa and a data set recorded
from 16 subjects performing motor imagery tasks on different days. The
results show that the proposed EEG-DSA algorithm in both the super-
vised and unsupervised versions significantly outperforms the results
without adaptation in terms of classification accuracy. The results also
show that for subjects with poor BCI performances when no adaptation
is applied, the proposed EEG-DSA algorithm in both the supervised and
unsupervised versions significantly outperforms the unsupervised bias
adaptation algorithm (PMean).
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1 Introduction

A brain-computer interface (BCI) provides a direct communication path-
way between the brain and an external device that is independent of any
muscular signals (Birbaumer, 2006; Wolpaw, McFarland, & Vaughan, 2000;
Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan, 2002; Curran &
Stokes, 2003). Throughmotor imagery ormovement intentions, brain activi-
ties can be voluntarily decoded into control signals. Thus, BCIs enable users
with severe motor disabilities to use their brain signals for communication
and control (Wolpaw et al., 2002; Curran & Stokes, 2003).

In amajority of BCI systems, the brain signals aremeasured by electroen-
cephalogram (EEG) due to its low cost and high time resolution compared
to other modalities, such as functional magnetic resonance imaging (fMRI)
and functional near-infrared spectroscopy (fNIRS) (Curran & Stokes, 2003).
However, a major challenge in EEG-based BCI is the inherent nonstationar-
ity in the recorded signal. Variations of the signal properties from intra- and
intersessions can be caused by changes in task involvement and attention,
fatigue, changes in placement or impedance of the electrodes, and artifacts
such as swallowing or blinking, among other reasons (Vaughan, 2003).
Nonstationarity in the EEG signal can result in deteriorated BCI perfor-
mance as most machine learning algorithms implicitly assume stationary
data (Krauledat, Dornhege, Blankertz, & Müller, 2007), (Shenoy, Kraule-
dat, Blankertz, Rao, & Müller, 2006). The deterioration in the performance
is particularly pronounced when these algorithms are evaluated on data
recorded on a different day from the training session (Krauledat, 2008).

Recently several algorithms have been proposed to ameliorate the
nonstationary effects in BCI applications. These algorithms can be grouped
into two main approaches: the algorithms that improve the model to be
robust and invariant against the changes (Blankertz, Kawanabe et al., 2008;
Lotte&Guan, 2010;Gouy-Pailler, Congedo, Brunner, Jutten,&Pfurtscheller,
2010; von Bünau, Meinecke, Király, & Müller, 2009; von Bünau, Mei-
necke, Scholler, & Müller, 2010; Samek, Kawanabe, & Vidaurre, 2011;
Samek, Vidaurre, Müller, & Kawanabe, 2012; Arvaneh, Guan, Ang, &
Quek, 2011) and the algorithms that adapt the model to the changes (Li &
Guan, 2006; Tomioka, Hill, Blankertz, & Aihara, 2006; Sun & Zhang, 2006;
Vidaurre, Schlogl, Cabeza, Scherer, & Pfurtscheller, 2007; Sugiyama et al.,
2007; Lu, Guan, & Zhang, 2009; Li, Kambara, Koike, & Sugiyama, 2010;
Thomas, Guan, Lau, Prasad, &Ang, 2011; Vidaurre, Kawanabe, von Bünau,
Blankertz, & Müller, 2011; Vidaurre, Sannelli, Müller, & Blankertz, 2011).

Most of the algorithms in the former approach focused on extracting
invariant features by regularizing the common spatial patterns (CSP) algo-
rithm (Blankertz, Kawanabe et al., 2008; Lotte & Guan, 2010; Samek et al.,
2012; Arvaneh et al., 2011). For example, the invariant common spatial pat-
terns (iCSP) algorithm used extra measurements such as EOG or EMG to
improve theCSP features to be invariant againstmuscular or ocular artifacts
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(Blankertz, Kawanabe et al., 2008). Also, somework improved themodel by
extracting the stationary part of the EEG before applying the CSP algorithm
(von Bünau et al., 2009, 2010; Samek et al., 2011).

In contrast, the algorithms in the latter approach are mostly focused on
changes in the subsequent sessions. Studies showed that BCI performance
can be improved even by using simple adaptive procedures such as bias
adaptation (Shenoy et al., 2006; Vidaurre, Kawanabe et al., 2011). Some
existing work has proposed techniques to adapt the classifier space (Li &
Guan, 2006; Vidaurre et al., 2007), and some has focused on adapting the
feature space (Tomioka et al., 2006; Sun & Zhang, 2006) or the operational
frequency space (Thomas et al., 2011). One example is the covariate shift
adaptation that performed unsupervised adaptation to shifts in the distri-
butions of the feature space (Sugiyama, Krauledat, & Müller, 2007; Li et al.,
2010). This method adapted the training data to minimize the mismatch
between the training and evaluation sessions. Another example adapted
the classifier using the expectation-maximization procedure (Li & Guan,
2006). In addition, some recent work has applied coadaptive learning of
both the user and the machine (Lu et al., 2009; Vidaurre, Sannelli et al.,
2011).

This letter belongs to the second approach of aiming to adapt the EEG
data space to reduce session-to-session nonstationarities. To address the
considerable changes in the EEG data space across different sessions, we
propose a novel data space adaptation (DSA) technique, referred to as EEG
data space adaptation (EEG-DSA). The key idea is to compute a linear
transformation that maps the EEG data from the evaluation session to the
training session, such that the distribution difference between these ses-
sions is minimized. Using the Kullback-Leibler (KL) divergence criterion,
we propose two versions of the EEG-DSA algorithm: supervised and unsu-
pervised. The supervised version is used when some labeled trials from the
evaluation session are available, and the unsupervised version is usedwhen
the labeled trials from the evaluation session are not available. Adapting
the EEG data space directly, means that the proposed EEG-DSA algorithm
is not restricted to any specific BCI models. In addition, other adaptations
in the feature or classifier spaces can be applied along with the EEG-DSA
algorithm.

The performance of the proposed EEG-DSA algorithm is evaluated on
two data sets: the publicly available data set IIa (Tangermann et al., 2012)
from BCI competition IV, and a recorded data set from 16 subjects perform-
ing motor imagery tasks on different days. The results are presented us-
ing the supervised and unsupervised versions of EEG-DSA and compared
with the results without data space adaptation as well as the results of the
unsupervised LDA bias adaptation algorithm (called PMean) (Vidaurre,
Kawanabe et al., 2011). In addition, quantitative analysis and visualiza-
tions are provided to better understand the effectiveness of the proposed
algorithm.
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The remainder of this letter is organized as follows. Section 2 describes
the two versions of the proposed EEG-DSA algorithm. The two applied
data sets and the experiments are explained in section 3. Section 4 presents
the experimental results, and section 5 concludes the letter.

2 Methodology

In this work, the training session where the labeled data are available is
referred to as the source space, and the evaluation sessionwhere the labeled
data are not available or only a few labeled data are available is referred
to as the target space. The set of labeled EEG data in the source space is
denoted as D̄ = {(x̄i, ȳi)}N̄i=1, where x̄i ∈ X̄ ⊂ R

n×t denotes the ith single-trial
EEG recorded from n channels over t time samples, and ȳi ∈ Ȳ ⊂ R is the
class label of the ith single-trial EEG. In the target space, it is assumed
that a few labeled single-trial EEG dataDl = {(xi,yi)}

Nl
i=1 or a few unlabeled

single-trial EEG data Du = {xi}
Nu
i=1 are available, where xi ∈ X ⊂ R

n×t and
yi ∈ Y ⊂ R. In the case that yi is available, the method is referred to as
supervised data space adaptation, and when yi is not available the method
is referred to as unsupervised data space adaptation.

Nonstationarity in session-to-session transfer occurs when the joint dis-
tribution in the target space P(X,Y) differs from that in the source space
P(X̄, Ȳ). Changing the representation of X while the representation of Y is
fixed can change the joint distributions of the target. Following this concept,
assume g : X −→ Z as a function that transforms a single-trial EEG, x, in the
target space into another space, z = g(x) ∈ Z. Thus, if a transformation func-
tion g can be computed to yield the same joint distributions for both spaces
P(Z,Y) = P(X̄, Ȳ), the optimal model that approximates P(Ȳ|X̄)will be still
optimal for approximating P(Y|Z). Hence, a linear transformation function
is proposed as

z = VTx, (2.1)

where V ⊂ R
n×n denotes the transformation matrix, n denotes the number

of EEG channels, and T denotes the transpose operator. The transformation
V should be computed such that the distribution difference between the
target space and the source space is minimized.

In this work, it is assumed that the nonstationarities exist only in the first
twomoments of the single-trial EEG (i.e., mean and covariance) (von Bünau
et al., 2009). Following this assumption, to simplify the problem, we com-
pare only the average distributions of EEG trials between the source space
and the target space to compute a transformationmatrix that minimizes the
difference between their first two moments.
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Since bandpassed EEG measurements have approximately zero mean
values, the normalized covariance matrix of a single-trial EEG can be esti-
mated as

� = xxT

tr(xxT)
, (2.2)

where x ⊂ R
n×t denotes a single-trial EEG recorded from n channels over t

samples and tr(x) is the trace of x giving the sum of the diagonal elements
of x. Consequently, the average distribution of a group of EEG trials can be
defined by a zero mean and a covariance matrix computed from averaging
the covariance matrices over the multiple EEG trials.

Based on the maximum entropy principle, the most prudent model for
modeling the distribution of the single-trial EEG that is consistent with
zero mean and a covariance matrix is gaussian (Jaynes, 1957). Thus, the
Kullback-Leibler (KL) divergence (Kullback, 1978) can be used to measure
the difference between two guassian distributions.

The KL divergence between two gaussian distributions, presented as
N0(μ,�) and N1(μ, �) (taken as reference), has a closed-form expression,

KL[N0||N1]=
1
2

[
(μ − μ)T�

−1
(μ − μ)

+ tr(�−1
�) − ln

(
det(�)

det(�)

)
− k

]
, (2.3)

where det and k denote the determinant function and the dimensionality
of the data, respectively. Therefore, in this letter, the difference between
the average distributions of the source and target space of the EEG data is
measured using the KL divergence given in equation 2.3.

2.1 Supervised EEG Data Space Adaptation. Let N(0,� j) be the av-
erage distribution of the EEG trials belonging to the class j in the source
space, where � j denotes the average covariance matrix of the class j in
the source space. Using the available labeled trials from the target space
Dl = {(xi,yi)}

Nl
i=1, the average distribution of the transformed EEG trials be-

longing to the class j in the target space is estimated asN(0,VT� jV), where
V denotes the linear transformation matrix and � j denotes the average co-
variance matrix of class j in the target space estimated using Dl. When the
class probabilities are balanced and we use the KL criterion, the optimal V
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can be computed as the solution of the minimization problem:

L1(V) =min
V

2∑
j=1

KL[N(0,VT� jV)||N(0, � j)]

=min
V

2∑
j=1

1
2

[
tr(� j

−1VT� jV) − ln
(
det(VT� jV)

det(� j)

)
− k

]
. (2.4)

Tominimize equation 2.4, it is sufficient to compute thefirst-orderderiva-
tive of the loss function L1(V) with respect to V and set it to zero;

dL1
dV

=
2∑
j=1

1
2
d
dV

[tr(� j
−1VT� jV) − ln(det(VT� jV))]. (2.5)

Setting equation 2.5 to zero results in (see appendix A for details)

V∗
sup =

√
2(�1

−1
�1 + �2

−1
�2)

−0.5, (2.6)

where V∗
sup is the optimal linear transformation computed for the super-

vised EEG-DSA. Therefore, in the proposed supervised EEG-DSA algo-
rithm, the bandpass-filtered EEG trials from the target space are optimally
transformed using equation 2.6, and subsequently the transformed trials
are directly applied on any classification models trained using the source
space. As expected, in the case that the source and the domain have simi-
lar distributions (i.e., the average covariance matrices of the corresponding
classes are equal), the optimal V∗

sup is the identity matrix.

2.2 Unsupervised EEG Data Space Adaptation. When labeled EEG
trials from the target space are not available, we can only infer the global
distribution of the target space. In otherwords, the discrepancy between the
source and target spaces has to be approximated by comparing the average
distributions of the EEG data obtained regardless of the class labels.

LetN(0, �) be the average distribution of the whole source space, where
� is obtained by averaging the covariance matrices over all the available
EEG trials in the source space. Using the unlabeled trials from the tar-
get space Du = {xi}

Nu
i=1, we estimate the average distribution of the target

space after transformation as N(0,VT�V), where V and � denote the lin-
ear transformation matrix and the average covariance matrix of the target
space, respectively. Using the KL criterion, we can compute the optimal V
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as a solution to the problem

L2(V) =min
V

KL[N(0,VT�V)||N(0, �)]

=min
V

1
2

[
tr(�−1VT�V) − ln

(
det(VT�V)

det(�)

)
− k

]
. (2.7)

To find the optimalV, the first-order derivative of the loss function L2(V)

is calculated as

dL2
dV

= 1
2
d
dV

[tr(�−1VT�V) − ln(det(VT�V))]. (2.8)

Setting equation 2.8 to zero results in (see appendix B for details)

V∗
unsup = (�

−1
�)−0.5 = �−0.5� 0.5, (2.9)

where V∗
unsup is the optimal linear transformation for the unsupervised

EEG-DSA. Importantly, it is computed without using any predicted labels.
Interestingly, the proposed transformationV∗

unsup is similar towhat Tomioka
et al. (2006) proposed as the normalizing approach. The normalizing ap-
proach adapts the CSP filters based on the assumption that the whitened
EEG data are identical in both spaces. This assumption was justified empir-
ically in Tomioka et al. (2006).

3 Experiments

3.1 Data Description. In this study, the EEG data from two data sets
were used:

� Data set 1: This publicly available data set, IIa (Tangermann et al.,
2012) from BCI competition IV, contains the EEG data of nine sub-
jects recorded using 22 channels. During the recording sessions, the
subjects were instructed with visual cues to perform one of the four
motor imagery tasks: left hand, right hand, feet, or tongue. In this
study, only the EEG data from the right- and left-hand motor im-
agery tasks were used. The EEG data for each subject came from a
training and an evaluation session in which each session had 72 trials
for each motor imagery task. The evaluation session was recorded on
another day.

� Data set 2: This data set contains the EEG data of 18 subjects recorded
from 25 channels using the Nuamps EEG acquisition hardware
(http://www.neuroscan.com). EEG recordings from all the channels
were bandpass-filtered from 0.05 to 40 Hz by the acquisition hard-
ware. For each subject, the EEG data were collected without feedback
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in two sessions on separate days. Each session had two tasks: the
handmotor imagery and the background rest condition. The subjects
were instructed by a visual cue to perform either kinesthetic motor
imagery of the chosen hand or mental counting during the back-
ground rest condition. There were 160 trials in the first session and
240 in the second session, equally distributed between the two tasks.
In this study, the first and second sessions were used as the training
and evaluation sessions, respectively.
Before applying the proposed EEG-DSA algorithm on this data set,
10× 10-fold cross-validation accuracies were performed on the train-
ing data to identify those subjects performing motor imagery at
chance level. Using the inverse of binomial cumulative distribution
function with 95% confidence, we found that the accuracy on the re-
spective action at chance level is approximately 0.43 to 0.57. Hence,
the training session of a subject whose 10× 10-fold cross-validation
accuracy falls between 43% and 57% can be deemed as inadequate.
The results showed that two subjects from the 18 subjects performed
motor imagery at chance level. Hence, these two subjects were
removed from data set 2, and the EEG-DSA was evaluated on the
remaining 16 subjects.

3.2 Data Processing. For both data sets, EEG data from 0.5 to 2.5 s after
the onset of the visual cue were used as the training data. The selected time
segment was used by the winner of the BCI competition IV data set IIa
(Ang, Chin, Wang, & Guan, 2012). The EEG data were bandpass-filtered
using elliptic filters from 8 to 35 Hz, since this frequency band included the
range of frequencies mainly involved in performing motor imagery. There-
after, the bandpassed EEG data were spatially filtered using the common
spatial patterns (CSP) algorithm (Blankertz, Tomioka, Lemm, Kawanabe, &
Müller, 2008). The CSP algorithm simultaneously diagonalizes the covari-
ance matrices of the two classes in order to find subspaces that maximize
the variance of one class while minimizing the variance of the other class.
The first and the last three rows of CSP were used in this study as the most
discriminative spatial filters. Finally, the variances of the spatially filtered
signals were applied as the inputs of the LDA classifier.

During the proposed adaptation, the bandpass-filtered EEG trials from
the evaluation set were adaptively transformed using the proposed EEG-
DSA transformation matrices. Thereafter, the previously trained CSP filters
and LDA classifier were used, respectively.

4 Results

The performance of the proposed EEG-DSA algorithm was compared with
two other algorithms: the static model trained by the CSP filters and the
LDAclassifierwhere no adaptationwas applied to update themodel. In this
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work, this algorithm is referred to as no adaptation. The other algorithm
was the unsupervised bias adaptation method, called PMean (Vidaurre,
Kawanabe et al., 2011). This algorithm adapts the bias of the LDA classifier
by updating the global mean of the features.

In this work, the proposed supervised and unsupervised EEG-DSA al-
gorithms and the PMean algorithm were evaluated in two modes:

� Single adaptation: The first 20 trials (10 trials per class) from the
beginning of the evaluation session were used for computing V in
either equation 2.6 or 2.9.

� Continuous adaptation: To classify eachnew trial,V in either equation
2.6 or 2.9 was recomputed using the immediate past 20 trials.

The first 20 trials of the evaluation sessionwere used only for adaptation;
no classification was performed on these trials. The results were therefore
obtained using the reminder of the evaluation session.

4.1 Classification Results. Figures 1 and 2 depicted the scatter plots of
the classification accuracies obtained from data sets 1 and 2 respectively.
Each scatter plot compared the classification accuracies of two algorithms.
Each subject was represented by a cross. As the classification accuracies
were plotted, the crosses above the diagonal line mean the algorithm of
the y-axis performed better than the one of the x-axis. In addition, Figure 3
compared the average accuracies obtained by the algorithms on data sets 1
and 2.

Figures 1, 2, and 3 showed that the proposed single and continuous
EEG-DSA algorithms in both the unsupervised and supervised versions
outperformed the nonadaptive algorithm. A statistical paired t-test on all
the results showed that the proposed EEG-DSA algorithm in all the con-
sidered versions and modes significantly outperformed the nonadaptive
algorithm (p = 0.018, 0.004, 0.006, and 0.002when the results without adap-
tation were compared with the single unsupervised EEG-DSA, single su-
pervised EEG-DSA, continuous unsupervised EEG-DSA, and continuous
supervised EEG-DSA results, respectively). The results also showed that the
continuous EEG-DSA algorithmperformed better than the single EEG-DSA
algorithm but not statistically significant (p = 0.067 and 0.227 in the unsu-
pervised and supervised versions, respectively). Outperforming the contin-
uous EEG-DSA algorithm against the single EEG-DSA algorithm indicated
that there were dynamic changes in the evaluation data that updating the
transformation matrix V over the time could effectively reduce them. The
results also showed that the proposed supervisedEEG-DSAalgorithmsper-
formed on average better than the corresponding unsupervised algorithms;
however, no significant differences were observed between them (p = 0.10
and 0.189 in the single and continuous modes, respectively).

In addition, the results depicted in Figures 1, 2, and 3 revealed that in
both data sets, the supervised EEG-DSA algorithms in either the single or
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Figure 3: Comparison of the average accuracies between the nonadaptive al-
gorithm, PMean, and the proposed EEG-DSA algorithms in the single and
continuous modes for (a) data set 1 and (b) data set 2. Sup and Unsup denote
the supervised and unsupervised versions, respectively.

Table 1: Comparing All the Results Obtained Using the Proposed EEG-DSA
Algorithms and the PMean Algorithm.

Single Adaptation
Continuous
Adaptation

No adaptation error rate (%) >30 0–30 All >30 0–30 All
Supervised EEG-DSA average accuracy 65.7 85.6 72.9 66.9 85.3 73.6
Unsupervised EEG-DSA average accuracy 65.8 83.1 72.1 66.7 84.6 73.1
PMean average accuracy 63.9 85.7 71.7 64.2 86.5 72.2
p-value(PMean vs. supervised EEG-DSA) 0.02 0.90 0.06 0.02 0.31 0.17
p-value(PMean vs. unsupervised EEG-DSA) 0.03 0.04 0.65 0.03 0.17 0.34

Notes: Grouping was performed based the error rates when no adaptation was applied
on the evaluation sessions. The p-value denotes the paired t-test, and the bold values
denote significance at the 5% level.

the continuous modes on average outperformed the corresponding PMean
algorithms. Interestingly, in data set 1, the PMean algorithm on average
outperformed the unsupervised EEG-DSA algorithm, while in data set 2,
the unsupervised EEG-DSA algorithm on average was superior. For better
insight into the performance of the EEG-DSA and the PMean algorithms,
Table 1 collected all the results of the two data sets and divided them into
two groups based on their error rates when no adaptation algorithm was
applied. Thefirst three rowsof this table compared the average classification
accuracies of the different groups obtained by the supervised EEG-DSA, the
unsupervised EEG-DSA, and the PMean algorithms, respectively. Finally,
the last two rows showed the statistical t-test results between the EEG-DSA
algorithms and PMean in the different groups.
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The results in Table 1 showed that for the subjects who had poor BCI per-
formancewith no adaptation algorithm (i.e., error ratesmore than 30%), the
proposed EEG-DSA algorithms in all the versions and modes significantly
outperformed the PMean algorithms. In contrast, for the subjectswithmod-
erate to good performance without adaptation, the PMean algorithm was
more successful in improving the results. However, only the difference be-
tween the unsupervised EEG-DSA algorithm and the PMean algorithm in
the single mode was statistically significant. These results suggest that for
good BCI subjects who could produce separable signals, the intersession
nonstationarities would be mainly limited to shifts in the feature space. In
contrast, for subjects with strong intersession nonstationarities, the eval-
uation features would not be discriminative. Thus, for these subjects, the
EEG-DSA algorithm would be more beneficial because it is not limited to
compensate shifts in the feature space.

4.2 Number of Trials for Computing the EEG-DSA Transformation
Matrix. In this section, we examine the influence of the number of trials
used for computing the EEG-DSA transformation matrices on the classi-
fication results. Figure 4 shows the average gained classification accuracy
across all the subjects for the proposed EEG-DSA algorithms as a function
of the number of trials used for computing V in either equation 2.6 or 2.9.

Figure 4 shows that in the single and continuous EEG-DSA algorithms,
increasing the number of trials up to around 20 to 30 improved the average
gained accuracy. This improvement in the results would be due to better
estimations of the covariance matrices in equations 2.6 and 2.9 using more
trials. In contrast, in the single EEG-DSA algorithm, further increases in the
number of trials did not yield remarkable improvements in the classification
accuracies, meaning that the quality of the estimated covariance matrices
was not considerably enhanced. Importantly, in the continuous EEG-DSA
algorithm, further increases in the number of trials even caused drops in the
average accuracies, as increasing the number of trials reduced the influence
of the recent trials. Another interesting issue in this figure is that when
very few trials were used, the single unsupervised EEG-DSA algorithm
outperformed the single supervised EEG-DSA algorithm. Indeed, since the
number of trials to estimate the covariance matrix of each class would be
too small (i.e., around half of the few available trials), the estimations of the
covariance matrices would be dramatically distorted by artifacts.

Overall, our results suggest that using around 20 trials for computing the
EEG-DSA transformation matrices would be a proper choice: it achieved
good average improvements and took only around 4 minutes to collect this
number of trials.

4.3 Understanding the Merits of the EEG-DSA Algorithm. To better
understand the impact of the proposed EEG-DSA algorithm, the changes
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Figure 4: Influence of the number of trials on the EEG-DSA classification re-
sults. This figure shows the average gained classification accuracy across all the
subjects as a function of the number of trials (from both the classes) used for
computing the EEG-DSA transformation matrices. Sup and Unsup denote the
supervised and unsupervised versions, respectively.

and differences between the training and evaluation sessions before and
after applying the EEG-DSA algorithm were visually analyzed.

In the first analysis, we studied the intersession nonstationarities and
visually investigated whether the proposed EEG-DSA algorithm mainly
reduced these changes. For this purpose, first the EEG trials of each subject
were bandpass-filtered to the frequency band of 8 Hz to 35 Hz. Thereafter,
the averagepower of each channelwas separately calculated for the training
trials, the evaluation trials, and the projected evaluation trials using the
proposed continuous supervised EEG-DSA algorithm. Finally, the relative
changes in the average powers of the EEG channels across the sessionswere
calculated to gain insight into the intersession nonstationarities.

Figure 5 topographically showed the relative changes of the average
powers between the training and evaluation sessions for four subjects who
achieved more than 10% improvement in the classification accuracy using
the proposed algorithm. In each panel, the first row presents the relative
changes in the average powers when no adaptation was applied. The sec-
ond row presents the relative changes in the average powers when the
evaluation session was projected using the continuous supervised EEG-
DSA algorithm.
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(a) The 1st subject from dataset1 (b) The 4th subject from dataset2

(c) The 5th subject from dataset2 (d) The 7th subject from dataset2

Figure 5: Topographical display of relative changes in the average powers of
the EEG channels when transferring from the training session to the evaluation
session, plotted for four subjects. The EEG signals were bandpass-filtered from
8 Hz to 35 Hz. In each panel, the first row presents the relative changes in
the average powers when no adaptation is applied. The second row shows
the relative changes in the average powers when the proposed continuous
supervised EEG-DSA adaptation is applied.

As Figure 5 shows, transferring from the training to the evaluation ses-
sion caused large changes in the average powers of some channels. For the
first subject from data set 1, we see a remarkable decrease in the activi-
ties of the parieto-occipital region, while the activities of the frontal region
were increased (see Figure 5a). In the fourth subject from data set 2, strong
nonstationarities can be seen in channel CP3 (see Figure 5b). Our trial-
by-trial investigation revealed that after a few trials were recorded in the
evaluation session, this channel became loose. This problem resulted in a
very poor classification accuracy when no adaptation was applied (only
50%). Subsequently, in the fifth subject from data set 2, the intersession
nonstationarities mainly focused on the occipital region (see Figure 5c),
while in the seventh subject from data set 2, more regions of the brain were
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affected by strong nonstationarities (see Figure 5d). As this figure shows,
the intersession nonstationarities could be different from subject to sub-
ject. Interestingly, as the second rows of the subfigures show, the proposed
EEG-DSA algorithm substantially reduced the changes between the aver-
age powers of the training and evaluation sessions for all subjects. Another
interesting point is that most of themain intersession nonstationarities seen
in this figure are non-class-related. As can be seen in the first rows of the
panels, most of the strong relative changes in the powers of the channels
occurred in both classes of each subject. This observation suggests that a
major part of the EEG variations in BCI experiments can be tackled in an
unsupervised manner, an issue investigated in section 4.4.

In the performed experiments, the evaluation sessions were recorded
without giving any feedback to the subjects. As Shenoy et al. (2006) and
Vidaurre, Kawanabe et al. (2011) showed, during a feedback session, a
strong decrease in the parietal region usually happens due to the increased
demand for visual processing.

The next analyses were conducted using the first subject from data set
1, since this subject yielded one of the largest improvements in terms of
classification accuracy. For this subject, the classification accuracy without
applying any adaptation algorithms was 80.64%; the single unsupervised
and supervised EEG-DSA algorithms yielded improvements of 8.06% and
11.3%, respectively.

Figure 6 studies thedistributiondifferences between each evaluation trial
and the average training trials and investigates whether the proposed EEG-
DSA algorithm reduced the differences. For this purpose, first the training
and evaluation trials were bandpass-filtered to the frequency band of 8 Hz
to 35 Hz. Thereafter, the distribution difference between each evaluation
trial (before and after the EEG-DSA adaptation) and the average training
trials from the same class was measured using the KL divergence, given in
equation 2.3. In Figure 6, the circles indicate the KL divergences between
the evaluation trials (before the data space adaptation) and the average
training trials from the corresponding class. The stars and crosses indicate
theKLdivergences between the two groupswhen the evaluation trialswere
projectedusing the single and continuous supervisedEEG-DSAalgorithms,
respectively.

Figure 6 shows that in both classes, the proposed EEG-DSA algorithm in
either the single or the continuous modes clearly reduced the distribution
differences between the evaluation trials and the average trials from the
training session. In other words, the EEG-DSA algorithm in both modes
compensated for some of the differences in the activity occurring in the
evaluation session observed as shifts between the circles and the stars, as
well as the crosses. Interestingly, Figure 6 illustrates that after a number
of trials, the continuous EEG-DSA algorithm performed considerably bet-
ter than the single EEG-DSA algorithm and yielded reduced distribution
differences. This confirms that there were dynamic nonstationarities over
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the evaluation trials, and updating the adaptation parameters helped to
capture them. Since this figure alone does not provide information about
the discriminabilty of the two classes of the data, the feature distributions
are also plotted in Figure 7.

Figure 7 compares the distributions of the features extracted from the
training session, the evaluation session before adaptation, and the evalua-
tion session after the proposed single supervised EEG-DSA algorithm. We
note that the features were extracted using the CSP filters trained from the
training session. For ease in visualization, only the two features that had
the highest Fisher scores on the training session are plotted. Figure 7 shows
large changes between the distributions of the training features and the
evaluation features (before applying EEG-DSA), resulting in a deteriorated
classification accuracy. In contrast, the differences between the training and
the evaluation distributions after the proposed EEG-DSA algorithm were
considerably reduced, and thus the classification performance improved.

We further note that the EEG-DSA algorithm uses only a few previous
evaluation trials to compute the linear transformation.As a result, if the new
upcoming trial in the evaluation session is very different from the average of
the past evaluation trials used to compute the EEG-DSA transformation, the
computed EEG-DSA transformation would not be optimal for it. Therefore,
using algorithms that reduce the within-class variations, such as Samek
et al. (2012), along with the proposed EEG-DSA algorithm, may help to
improve performance further.

4.4 Supervised and Unsupervised EEG-DSA Transformation Matri-
ces. The supervised EEG-DSA algorithm compares the estimated distribu-
tions of the training and evaluation trials from the same class and computes
a linear transformationmatrix thatminimizes thedifferences between them.
The unsupervised EEG-DSA algorithm compares only the global distribu-
tions of the training and evaluation trials and computes a linear transforma-
tion matrix that minimizes the differences between them regardless of their
class labels. Interestingly, the classification results in section 4.1 showed that
in some subjects, the supervised and unsupervised EEG-DSA algorithms
yielded similar classification accuracies. In addition, the visualization of
the intersession nonstationarities for four subjects in Figure 5 showed that
most of the changes in the powers of the EEG channels similarly occurred
in both classes.

These results motivated us to investigate how similar the proposed su-
pervised and unsupervised EEG-DSA transformation matrices are. This
investigation would help us understand if the main intersession nonsta-
tionarities in the motor imagery–based BCI are nonclass related. For this
purpose, the relative difference between the supervised and unsupervised
transformationmatrices of each subject was calculated as ‖V∗

sup −V∗
unsup‖F/

‖V∗
sup‖F , where ‖.‖F denotes the Frobenius norm of the matrix. Figure 8



2164 M. Arvaneh, C. Guan, K. Ang, and C. Quek

−3
−2

−1
0

1
2

−4−3−2−1012

Fi
rs

t b
es

t f
ea

tu
re

Second best feature

Tr
ai

n 
(N

o−
ad

ap
ta

tio
n)

(a
)

−5
−4

−3
−2

−1
0

1
2

−4−3−2−1012

Fi
rs

t b
es

t f
ea

tu
re

Second best feature

Ev
al

ua
tio

n 
(N

o−
ad

ap
ta

tio
n)

(b
)

−2
−1

0
1

2
−5−4−3−2−1012

Fi
rs

t b
es

t f
ea

tu
re

Second best feature

Ev
al

ua
tio

n 
(S

in
gl

e 
ba

se
d 

su
pe

rv
ise

d 
EE

G
−D

SA
)

(c
)

Fi
gu
re

7:
C
om

pa
rin

g
th
e
fe
at
ur
e
di
st
rib

ut
io
ns

of
th
e
fir
st
su
bj
ec
t
of

da
ta
se
t
1,
ex
tr
ac
te
d
fr
om

(a
)
th
e
tr
ai
ni
ng

se
ss
io
n,
(b
)
th
e

ev
al
ua
tio
n
se
ss
io
n
be
fo
re
ad
ap
ta
tio
n,
an
d
(c
)t
he

ev
al
ua
tio
n
se
ss
io
n
af
te
r
th
e
pr
op
os
ed

si
ng
le
su
pe
rv
is
ed

EE
G
-D
SA

ad
ap
ta
tio
n.

Th
e
tw
o
be
st
fe
at
ur
es

w
er
e
ob
ta
in
ed

us
in
g
th
e
Fi
sh
er
sc
or
e
on

th
e
tr
ai
ni
ng

da
ta
.T
he

bl
ac
k
lin
e
re
pr
es
en
ts
th
e
LD

A
hy
pe
rp
la
ne

ob
ta
in
ed

by
th
e
tr
ai
ni
ng

da
ta
.T
he

fe
at
ur
es
w
er
e
pl
ot
te
d
af
te
rn

or
m
al
iz
at
io
n.



EEG Data Space Adaptation in BCI 2165

Figure 8: Relative difference between the supervised and unsupervised EEG-
DSA transformation matrices, calculated using the Frobenius norm. The box
plot of the obtained results is depicted at the left side of the figure for ease of
comparison.

depicts the obtained relative differences between the supervised and unsu-
pervised transformation matrices of all the subjects, ordered based on their
classification accuracies without adaptation. As Figure 8 shows, for 76% of
the studied subjects, the obtained supervised and unsupervised EEG-DSA
transformation matrices were less than 5% different. Subsequently, for the
remaining 24% of the subjects, the differences between their corresponding
supervised and unsupervised transformation matrices varied from 5% to
15%. Importantly, we did not observe a clear relationship between the qual-
ity of the subjects in performing BCIwithout adaptation and the differences
between their supervised and unsupervised transformation matrices.

To get better insight into the captured nonstationarities by the EEG-
DSA algorithm, Figures 9a and 9b visualize the EEG-DSA transformation
matrices for two subjects, the twelth and the sixteenth subjects from data
set 2, with the relative differences between the supervised and unsuper-
vised transformation matrices of 0.11 and 0.05, respectively. As can be seen
in equation 2.1, the ith column of the transformation matrix identifies the
weights of the different channels in computing the projected signal of the
ith channel. Thus, if the diagonal element of a columnwas almost onewhile
all the off-diagonal elements of that columnwere close to zero, it can be con-
cluded that the EEG signal of the corresponding channel was almost stable
over the sessions. In contrast, large nonzero values on some off-diagonal
elements of a column illustrate nonstationarities in the corresponding
channel.
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Figure 9: (a, b) The supervised and unsupervised EEG-DSA transformation
matrices and their difference for two subjects. (c, d) Topographical display of
the relative changes in the average powers of the EEG channels between the
training and evaluation sessions for the two subjects.

The EEG-DSA transformation matrices of the twelth subject plotted in
Figure 9a show that transferring from the training to the test session caused
large nonstationarities in most parts of the brain. Interestingly, the plotted
EEG-DSA transformationmatrices in the supervised and unsupervised ver-
sions look very similar. Thus, to better observe the small changes, we also
plotted their difference matrix. The difference matrix reveals that the main
dissimilarities between the supervised and unsupervised EEG-DSA matri-
ces are related to channels CP3 and C3. To justify our findings, Figure 9c
topographically displays the relative changes in the average powers of the
EEG channels between the training and evaluation sessions for this subject.
As expected, Figure 9c confirms that whereas there were some intersession
changes in the activities of channels CP3 and C3 during the right-hand mo-
tor imagery, these changeswere not observed in the rest class. TheEEG-DSA
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transformationmatrices plotted in Figure 9b show that in the sixteenth sub-
ject, the main nonstationarities occurred on the central and parietal parts of
the brain. Compared to the twelth subject, the difference matrix obtained
by subtracting the supervised and unsupervised transformation matrices
shows that this subject had considerably smaller class-related nonstation-
arities. Displaying the relative changes in the average powers of the EEG
channels between the training and evaluation sessions for this subject in
Figure 9d confirmed our findings and showed that the main nonstation-
arities in this subject were not class related and the captured class-related
nonstationarities were insignificant. We note that for this subject, the rel-
ative difference between the supervised and unsupervised transformation
matrices obtained by the Frobenius norm was only 0.05. Based on the re-
sults presented in Figure 8, it can be concluded that for around 76% of the
studied subjects, themain captured nonstationarities were not class related,
and the class-related nonstationarities were almost negligible.

5 Conclusion

To ameliorate session-to-session nonstationary effects in EEG-based BCI ap-
plications, this letter has proposed a novel adaptation algorithm: EEG data
space adaptation (EEG-DSA). This proposed algorithm linearly transforms
the evaluation data to minimize the distribution difference between the
training and evaluation data. Using the Kullback-Leibler (KL) divergence
criterion, we proposed two versions of the EEG-DSA algorithm: a super-
vised version when labeled data are available in the evaluation session and
the unsupervised version when labeled data are not available.

The proposed EEG-DSA algorithmwas evaluated in twomodes of adap-
tation: single (i.e., a fixed transformation obtained using the first 20 trials of
the evaluation session) and continuous (i.e., a continuing updated transfor-
mation obtained using the new coming trials). The experimental results on 9
subjects from the publicly available BCI competition IV data set IIa, as well
as 16 subjects from a recorded data set, demonstrated that the proposed
EEG-DSA algorithm in both modes and both supervised and unsuper-
vised versions significantly outperformed the results without adaptation.
The results also showed that although the supervised EEG-DSA algorithm
performed better than the unsupervised EEG-DSA algorithm, the differ-
ences were not statistically significant. Furthermore, for subjects who had
poor BCI performances without adaptation (error rates more than 30%),
the proposed EEG-DSA algorithms in all the versions and modes signif-
icantly outperformed the unsupervised LDA bias adaptation algorithm
(PMean) (Vidaurre, Kawanabe et al., 2011). In addition, the quantitative
visualizations showed that the proposed algorithm can effectively reduce
intersession differences.

By adapting the EEG data space directly, we find that the proposed
EEG-DSA algorithm is not limited to any specific BCI models. It can be
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applied with other techniques that adapt the feature or classifier spaces. In
addition, the proposed data space adaptation can be potentially applied on
other spaces, such as ECoG and MEG.

Appendix A: Proof of Supervised EEG Data Space Adaptation

Toprove the proposed supervised EEG-DSA equation given in equation 2.6,
we need to calculate the first-order derivative of the loss function equation
2.4, with respect to V and set it to zero. For this purpose, the properties
below (Petersen & Pedersen, 2008) are used:

tr(ABX)= tr(XAB) = tr(BXA), (A.1)
d
dX

tr(A) = tr
(
dA
dX

)
, (A.2)

d
dX

det(A) =det(A)tr
(
A−1 dA

dX

)
, (A.3)

where A,B, and X are real matrices.
Following these properties and the fact that EEG covariancematrices are

symmetric and positive, we can conclude

d
dV

(tr(� j
−1VT� jV)= d

dV
(tr(� jV� j

−1VT)

= 2 tr(� jV� j
−1

) = 2 tr(� j
−1

� jV), (A.4)

d
dV

ln(det(VT� jV)) =
det(VT� jV)

det(VT� jV)
2tr(� jV(VT� jV)−1)

= 2 tr((VT)−1) = 2 tr(V−1). (A.5)

Finally, substituting equations A.4 and A.5 into equation 2.5 results in

dL1
dV

=
2∑
j=1

tr(� j
−1

� jV−V−1) = 0. (A.6)

Thus, one solution for equation A.6 is when

�1
−1

�1V+ �2
−1

�2V− 2V−1 = 0. (A.7)

Consequently, the solution can be easily computed as equation 2.6.
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Appendix B: Proof of Unsupervised EEG Data Space Adaptation

The proof of the unsupervised EEG-DSA equation given in equation 2.9 is
very similar to the supervised EEG-DSA proof described in appendix A.
Using the properties of equations A.1 to A.3, the derivative of the loss
function, equation 2.7 with respect to V can be computed as

dL2
dV

= 1
2
d
dV

[tr(�−1VT�V) − ln(det(VT�V))]

= 1
2
(2tr(�−1

�V) − 2tr(V−1)) = 0. (B.1)

Subsequently a solution for equation B.1 can be given by solving

�
−1

�V−V−1 = 0. (B.2)

Therefore, the optimal transformation matrix can be computed as equa-
tion 2.9.
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