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Abstract—A brain–computer interface (BCI) acquires brain sig-
nals, extracts informative features, and translates these features to
commands to control an external device. This paper investigates
the application of a noninvasive electroencephalography (EEG)-
based BCI to identify brain signal features in regard to actual
hand movement speed. This provides a more refined control for
a BCI system in terms of movement parameters. An experiment
was performed to collect EEG data from subjects while they per-
formed right-hand movement at two different speeds, namely fast
and slow, in four different directions. The informative features
from the data were obtained using the Wavelet-Common Spatial
Pattern (W-CSP) algorithm that provided high-temporal-spatial-
spectral resolution. The applicability of these features to classify
the two speeds and to reconstruct the speed profile was studied. The
results for classifying speed across seven subjects yielded a mean
accuracy of 83.71% using a Fisher Linear Discriminant (FLD)
classifier. The speed components were reconstructed using multi-
ple linear regression and significant correlation of 0.52 (Pearson’s
linear correlation coefficient) was obtained between recorded and
reconstructed velocities on an average. The spatial patterns of the
W-CSP features obtained showed activations in parietal and motor
areas of the brain. The results achieved promises to provide a more
refined control in BCI by including control of movement speed.

Index Terms—Brain–computer interfaces (BCIs), common spa-
tial patterns (CSPs), discrete wavelet transform (DWT), electroen-
cephalography (EEG), movement-related parameters, multiple lin-
ear regression.

I. INTRODUCTION

THE brain–computer interface (BCI) provides an additional
output channel from brain, and uses the neuronal activity of

brain to control effectors such as robotic arm or wheel chair; or
to restore motor abilities of paralyzed or stroke patients [1], [2].
The core components of a BCI system [2], [3] are brain sig-
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nal acquisition, preprocessing, feature extraction, classification,
translation, and feedback control of external devices. Based on
the type of sensors used for the data acquisition, BCI systems
can be invasive or noninvasive.

Electroencephalography (EEG) [4] is a widely used noninva-
sive BCI due to its low expense and high-temporal resolution.
The EEG data acquisition is followed by a preprocessing stage,
which attenuates the artifacts and noises present in the brain sig-
nal, to enhance the relevant information. The subsequent feature
extraction stage is responsible for forming discriminative set
of features in the form of frequency patterns [5], temporal pat-
terns [6], time-frequency patterns [7], autoregressive models [8],
or spatial patterns [9], [10] for each task performed. The fea-
tures extracted are used to train a classifier to decode the users’
intent and subsequently translate the features into a set of output
commands for operating an external device. The challenges in
developing an efficient feature extraction and machine learning
technique in an EEG-based BCI are the high temporal-spectral
and spatial resolution, high robustness, and online adaptation ca-
pability to compensate for nonstationarity [1]. Hence, advanced
signal processing, pattern recognition techniques, and efficient
classifiers play a key role in this field of neuroscience research.

One of the major applications of BCI is in the rehabilitation
of patients with neuromuscular disorders, who are incapable of
limb movement. However, the limited number of control com-
mands available is currently a much addressed issue in this
area of EEG-based BCI research. Most of the BCIs that studied
movement-related features use brain signals during movement
of different body parts such as right hand, left hand, foot, and
tongue [11]. The identification of brain signal components re-
sponsible for movement parameters such as speed, direction
or extent of hand movement is a challenging area of research.
It has been assumed that the movement-related parameters are
encoded in the neuronal firing of motor cortex but cannot be
decoded by noninvasive signal recordings [12], [14]. Recently
several studies [15]–[22] showed the presence of sufficient in-
formation in surface Magnetoencephalography (MEG) and EEG
to yield information regarding movement kinematics. The study
in [16] reported the presence of movement information in the
very low-frequency (LF) bands of the EEG data. It also reported
that despite the strong movement-related power suppressions
observed in the beta band (13–30 Hz) and power increase in the
gamma band (>30 Hz), signals in these frequency ranges were
less efficient than the LF band (<5 Hz) for movement param-
eter decoding. Electrocorticography (ECoG) was used in [13]
to analyze differential representation of an arm movement and
the authors showed that the spectral amplitude modulation in
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very LF band and the high gamma band in premotor, prefrontal,
and parietal regions revealed direction-related information. The
study reported in [17] used signals from the Posterior Parietal
Cortex (PPC) region to decode intended movement direction
during a delayed saccade or reach task using Independent Com-
ponent Analysis (ICA).

In a study using MEG and EEG [14], [15], signals in the LF
band (2–5 Hz) were found to contain movement-speed-related
information. Another study [19] used event-related spectral per-
turbation and event-related potential of sensory motor rhythm to
analyze speed-related features. The study in [18] reported a pos-
sibility of identifying different types of movements and speed
using an EEG-based system and the authors performed single
trial classification using the rebound rate of Movement-Related
Cortical Potentials (MRCP) and power in mu and beta band as
features. The reconstruction of hand movement velocities using
EEG was discussed in [20] and [21] for 2-D and 3-D move-
ment, respectively. The reported correlations between recorded
and reconstructed velocities are highly motivating. A study re-
ported in [22] investigated the relationship between kinematics
of imagined and actual hand movement and reported possibility
of continuous decoding.

Motivated from these studies, in our current study, an exper-
iment was performed to investigate the presence of movement-
related parameters from EEG signals in the LF band. The focus
of this study is to classify and reconstruct the speed of move-
ment using LF components of EEG and to study how these
are affected if the movement is performed in four different di-
rections. The aim of this research is to develop a BCI with a
more refined control or increased number of control commands
for movement by including information regarding movement
speed.

The challenges in developing an efficient feature extraction
algorithm in EEG-based BCI research are to address the is-
sues of low signal-to-noise ratio, nonstationarity, and spatial
localization of the discriminative features [1]. To tackle these
problems, a Wavelet-Common Spatial Pattern (Wavelet-CSP)
algorithm was used. A Wavelet-CSP algorithm using a single
decomposition level was used in [23] to reconstruct and de-
noise the signal before applying common spatial pattern (CSP)
for applying in BCI Competition III Dataset I [33]. In [24], a
Wavelet-CSP approach was used combined with fuzzy logic in
an asynchronous offline BCI system. In this study, the proposed
Wavelet-CSP algorithm creates time-frequency-space localized
signal by multiple levels of decomposition of signal. A prelim-
inary version of this study was reported in [25] by the authors,
to classify directional information from EEG. In this study, the
Wavelet-CSP algorithm is used to extract the speed-related fea-
tures from EEG, and the algorithm has been enhanced to extract
the optimal levels of wavelets. The proposed approach in this
study decomposes the preprocessed EEG using wavelets and
subsequently reconstructs it at different levels to yield subband
signals that are further spatially filtered using CSP algorithm.
To the best of our knowledge, this approach of Wavelet-CSP
algorithm using LF features has not been used to analyze or
classify movement-related parameters till date. An experiment
was designed based on these requirements and EEG data col-

lected during right-hand movement was used to validate the
algorithm. The W-CSP filtered signal was used to: 1) classify
the movement parameters; and 2) reconstruct the 2-D speed
profile.

The rest of the paper is organized as follows: Section II
presents the proposed Wavelet-CSP algorithm. Section III de-
scribes the experiment performed and the data analysis steps.
Section IV presents the results and discussions, followed by
conclusions in Section V.

II. PROPOSED FEATURE EXTRACTION ALGORITHM

In order to extract the features corresponding to speed from
LF region of EEG, a feature extraction algorithm that can
provide high-resolution decomposition of very LF signals is
required. This property is assumed to provide higher perfor-
mance for classification or reconstruction of movement param-
eter speed. An orthogonal filter bank-based Wavelet transform
(WT) suits this requirement with the added advantage of high-
temporal localization. Wavelet analysis [26], [27] is widely used
in BCI systems to extract the discriminative features from time-
frequency plots. The proposed Wavelet-CSP algorithm incor-
porates spatial filtering using the CSP algorithm, which is an
efficient method to extract the discriminative EEG features. The
CSP algorithm has been enhanced with various frequency band
optimization techniques such as Filter Bank CSP (FBCSP) [28].
Although FBCSP yielded superior accuracy in classification of
right- and left-hand motor imagery (MI) on the BCI Competition
IV Dataset II a [33], its fixed frequency resolution and inferior
performance in LF bands hinder its use to identify movement-
related parameters. Hence, the adopted Wavelet-CSP algorithm
uses wavelet-based subband technique instead of filter bank-
based subband.

A. Discrete Wavelet Transform (DWT) and Filter Banks

The DWT effectively addresses the tradeoff between time and
frequency resolution in nonstationary signal analysis. Wavelets
are single prototype functions, similar to a bandpass filter,
whose contracted version (high frequency) performs fine tem-
poral analysis and dilated version (LF) performs fine frequency
analysis [30]. The WT of a continuous time signal x(t) can be
defined as

Xw (a; b) =
1√
a

∫ ∞

−∞
h∗

(
t − b

a

)
x (t) dt (1)

where a ∈ R+ , b ∈ R, and h ∗ (¢ ) represent the conjugate of
basis function obtained by the translation and dilation of single
prototype wavelet [29].

To remove the redundancy caused by the continuous pa-
rameters (a, b), discretization is carried out as a = a0

m and
b = na0

m b0 ; a0 > 1, b0 ̸= 0, m, n ∈ Z. Thus, on the discrete
grid, WT is obtained as DWT given by

Xw (m; n) = a−m = 2
0

∫ ∞

−∞
h

(
a−m

0 t − nb0
)
x (t) dt: (2)

We use the discretization on dyadic grid, a0 = 2 and b0 =
1 so that the set of functions h(¢ ) is orthonormal. The dyadic



ROBINSON et al.: EEG-BASED CLASSIFICATION OF FAST AND SLOW HAND MOVEMENTS USING WAVELET-CSP ALGORITHM 2125

Fig. 1. Ideal spectrum division using DWT.

case of DWT forms an octave band filter, and hence, it can be
interpreted as a constant Q-filtering using a set of octave band
filters followed by sampling at their respective Nyquist fre-
quencies. Each higher octave band introduces details or higher
resolution to the signal. This is the basic concept of multires-
olution analysis and is used to construct orthonormal bases of
wavelets.

The concepts of multiresolution and successive approxima-
tion can be explained as follows. Let Vi for I ∈ Z, be defined
as the space of band limited functions with frequencies in the
interval (−2−i π, 2−iπ) and Ui is the orthogonal complement
of Vi in Vi−1 ; which spans the frequencies (−2−i+1 π, −2−i π)
U (2−i π, 2−+1 π). These spaces are related as in the following
equation [23]:

Vi ⊂ Vi−1 ; Vi−1 = Vi ⊕ Ui : (3)

The decomposition of space Vi−1 into Ui and Vi is essentially
a WT on discrete sequences. The orthonormal wavelet bases are
constructed such that they span Vi and Ui ; respectively. For
instance, at i = 0, the functions that approximate signals of
space V−1 in V0 represent a perfect half-band low-pass filter and
in U0 represents a perfect half-band high-pass filter. The ideal
division of spectrum discussed previously can be pictorially
represented as in Fig. 1. This type of multiresolution analysis
using wavelets is used to analyze the signal in our method,
so that signal features in different subbands can be separately
analyzed.

B. Common Spatial Pattern

The CSP algorithm is often used to optimally discriminate
between two classes of EEG data based on simultaneous diago-
nalization of two covariance matrices [10]. A brief description
of CSP is given in this section. Given that, the preprocessed
EEG data in a single trial are represented as matrix X of size

N × T, where N is the number of channels used and T is the
number of samples recorded in each trial from each channel.
The CSP projection matrix W is used to obtain the spatially
filtered EEG signal as in

Z = WX: (4)

The rows of W are the stationary spatial filters and columns
of W−1 represent the common spatial patterns.

The normalized spatial covariance matrix of the EEG data
is computed as C = X X ′

tr(X X ) , where X ′ denotes the transpose
of matrix X , and tr (¢ ) represents its sum of diagonal elements
of two classes 1 and 2. CSP analysis aims to simultaneously
diagonalize these matrices by designing W such that it satisfies

WT C1W = λ1 ; W T C2W = λ2 (5)

where λ1 and λ 2 are diagonal matrices and satisfies

λ1 + λ2 = 1: (6)

The CSP projection matrix is determined by eigenvalue de-
composition approach. Only a small number of signals j can
efficiently discriminate the classes when used to train a classi-
fier. The signals Zp (p = 1 to 2j) that maximize discrimination
are the ones associated with the largest λ1 and λ2 , which are the
first and last j rows of Z. The feature vectors are obtained as in
the following equation [10]:

fp = log

(
var (Zp)∑2j
i=1 var(Zi)

)
: (7)

The log transformation approximates the normal distribution
of data.

C. Wavelet-CSP Algorithm

In this section, we describe the proposed Wavelet-CSP
algorithm. The first step is to construct an orthogonal filter bank
using wavelets. From a signal processing approach, we can de-
fine DWT as applying filters and samplers on square summable
discrete time sequences, to perform a coarse half-resolution ap-
proximation of the original time sequence [29]. As mentioned in
Section II-A, we use orthonormal wavelet bases, which spans Vi

and Ui to perform filtering. The wavelet decomposition involves
filtering with a half-band low-pass filter and half-band high-pass
filter followed by subsampling by 2. The signals can be recon-
structed from these subspaces using the reverse process, i.e., up
sampling by 2 and filtering using time reversed filter sequences.
Fig. 2(a) demonstrates the process where the impulse response
of decomposition and reconstruction filters are represented by
h0 = 1(n) and ĥ0 = 1(n), where h0 provides the lower half-band
and h1 gives higher half-band filters, and ĥ denotes the time
reversed h.

The preprocessed EEG in a single trial is represented as X
= [x1 , x2 ,: : : , xN ]T , where each xc are T -length sequences
given by xc = [xc (0) ; xc (1) ; : : : ; xc (T − 1)]. The impulse re-
sponse of filter is in the form of ho = [ho(0); ho(1); : : : ; ho(k −
1)]. The assumption is that the even shifted versions of the im-
pulse response, i.e., the rows of H0 given in (8), as shown at the
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Fig. 2. (a) Signal decomposition and reconstruction using filters and up/down
sampling, (b) signal decomposition into subspaces to produce similar results as
in DWT at each level.

bottom of the next page, forms an orthonormal set, which spans
the subspace Vo

We derive a filter with impulse response as in (9) and its even
shifted version such that it spans the subspace U0 to form H1

h1 (n) = (−1)n h0 (L − 1 − n) : (9)

H1 and H0 are structurally similar and the orthonormal sets
formed by the filter responses and the nonoverlap of the sub-
spaces spanned by them can be notated as

H0H
∗
0 = I ; H1H

∗
1 = I ; H0H

∗
1 = 0: (10)

The signal is, thus, projected to subspaces V0 and U0 followed
by subsampling as P0 and P1 by

P0 = H0xc ; P1 = H1xc : (11)

Here, P0 consists of the detailed coefficients and P1 consists
of approximation coefficients. This is one level of wavelet de-
composition. The reconstruction of signal is achieved using the
complex conjugates of H0 and H1 as in

x̂c = H∗
0H0xc + H∗

1H1xc : (12)

The reconstruction in the lower and higher subband is carried
out by zero padding the coefficients, P0 and P1 and multiplying
it with complex conjugates of H0 and H1 ; respectively. Fig. 2(b)
shows the multilevel structure, wherein the aforementioned pro-
cess repeats at each level.

We use Daubechies wavelets for the creating filter banks.
In order to decompose very LF with high resolution, we have
adopted a scaled to zero decomposition [31] in which the decom-
position up to maximum number of levels, given by L = log2 T,
where T is the number of samples in the signal. The detailed co-
efficients, P0 at each level is obtained as DL , DL−1 ,: : : ,D1 and

the approximation coefficient, P1 for highest level as AL . The
signals in each subband are obtained by wavelet reconstruction
of these wavelet coefficients as Xl

W . The subband signals are
spatially filtered using CSP. The W-CSP filtered signal in each
of the subbands l (l = 1 to L + 1) is obtained as in

Zl
W = WlX

l
W : (13)

The most discriminative features are calculated using (7) in
each l and these are used to train a Fisher Linear Discriminant
(FLD) classifier which is explained in Section II-D. In a paral-
lel study aiming at reconstructing the movement speed profile,
the W-CSP filtered signals are used to train a Multiple Linear
Regressor (MLR) model. This is explained in Section II-E. The
block diagram illustrating the proposed Wavelet-CSP algorithm
along with the analysis performed is shown in Fig. 3 and the
steps involved are described as follows.
Step 1: The EEG data are acquired and preprocessed with low

pass and notch filtering.
Step 2: The preprocessed signal is projected into subbands by

wavelet decomposition.
Step 3: The signals at different subbands are reconstructed using

wavelet reconstruction.
Step 4: The subband signals are spatially filtered using CSP.
Step 5: The discriminative features are extracted from W-CSP

filtered signal. A FLD classifier is trained using these
features and performance of algorithm in terms of clas-
sification accuracy is determined.

Step 6: The W-CSP filtered signal is used to reconstruct the
speed profile and the decoding accuracy in terms of
correlation coefficient is calculated.

D. FLD Classifier

The FLD [28] is a linear discriminant that maximizes the ratio
of between class scatter to within class scatter given by

J (F ) =
F ′SB F

F ′SW F
(14)

where SB is the between class scatter matrix and Sw is the
within class scatter matrix obtained from the feature space.

E. Multiple Linear Regressor

The speed profile is reconstructed using a MLR model, which
is a linear fitting strategy over multiple regressor variables. We
define two types of reconstruction models using the subband
signals obtained from the proposed W-CSP algorithm. Here, sv

represents the recorded speed, where vε f x; y; absolutespeed g :
The weights a1

v ; a2
v ; bcτ v ; and bclv are estimated using through

multiple linear regression.

H0 =

⎡

⎢⎢⎢⎢⎣

. . .
...

...
...

...
...

. . .
h0 (k − 1) h0 (k − 2) : : : h0 (1) h0 (0) 0 0

0 0 h0 (k − 1) : : : : : : h0 (1) h0 (0)
. . .

...
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎦
: (8)
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Fig. 3. Proposed wavelet-CSP algorithm.

Model 1: The W-CSP filtered signal in the lowest subband
(L + 1) and its time shifted versions are used to construct this
model. The number of time-lagged components Tl is set to 5
and each of the components are 10 ms shifted from the previous
one

s1
v (n) = a1

v +
N∑

c=1

Tl∑

τ =0

bcτ vZL+1
W (n − 5 ¢ τ) : (15)

Model 2: The W-CSP filtered signal in various subbands l are
the constituents of this model.

s2
v (n) = a2

v +
N∑

c=1

L+1∑

l=1

bclvZl
W (n) : (16)

Equations (15) and (16) are defined for the x and y compo-
nents of speed and its absolute value.

III. EXPERIMENT

An experiment was performed to collect EEG data while the
subjects performed right-hand movement at two different speeds
in four different directions. Visual cues were provided to instruct
the subjects to perform the task.

A. Subjects and Equipments

The experiment was performed in the Brain Computer Inter-
face Laboratory of Institute for Infocomm Research, Agency for
Science, Technology and Research, Singapore. EEG data were
recorded from seven subjects while executing the instructed
movement. All the subjects are healthy males. The data were
recorded at lower cutoff frequency of 0.05 Hz, using Neuroscan
SynAmps 128 channel EEG Amplifier with a sampling rate
of 250 Hz. The subjects were strapped to the MIT MANUS
robot [34] while performing the task to record the exact hand
position and speed at every sample time. Data were recorded
from 118 channels along the scalp and 35 channels spanning
the sensory motor area were used for analysis.

B. Experiment Protocol

The types of hand movements studied were fast and slow
movements in four directions: North, South, East, and West.

Fig. 4. (i) and (ii) Directions and speeds studied. (iii) Experiment Timeline.

The movements were performed in the horizontal plane. North
refers to hand movement outwards and away from the body,
South refers to movement inwards and toward the body. East
and West refer to movement toward the right and left side,
respectively. The slow movement refers to movement that takes
more than 1200 ms and fast refers to movement that takes less
than 400 ms to perform a movement covering 15 cm in this
plane in the specified direction. These details of the experiment
protocol are shown in Fig. 4.

The experiment timeline along with the visual display pro-
vided is shown in Fig. 4(iii). The subject was seated on a chair
with arm resting on a table and facing a computer monitor that
provided visual feedback. The subjects were requested to refrain
from the eye movements to prevent electrooculographic (EOG)
artifacts. The home screen showed an encircled cross as given
in part (a) of Fig. 4(iii) and this was shown during the entire
rest period. At the end of 4 s of rest, cue was given as shown
in part (b) of Fig. 4(iii), which corresponds to North direction.
The target location, presented as an empty circle, could be any-
where in the four directions mentioned. This was followed by a
preparation time for 2 s, at the end of which the circle around
the cross disappeared as in part (c) of Fig. 4(iii). This denoted
the onset of movement in which subject was given up to 3 s to
complete a movement, at the end of which the cross appeared at
the target position part (d) of Fig. 4(iii). If subject fails to reach
the correct target within the given time, the trial was flagged and
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later rejected. The subject was notified this during the follow-
ing 2 s. A successful trial was indicated by the reappearance of
circle as in part (e) of Fig. 4(iii). The display is returned to home
screen and this cycle was repeated.

The experiment was conducted in two sessions of 50 cycles
each. In each cycle, eight trials were performed by the subject.
Each cycle was divided into slow and fast movement sets of
four trials each. The task-slow was cued by 11.25-mm diameter
target circle and the task-fast was cued by a target circle with
a diameter 1.5 times that of target circle for task-slow. Each of
these sets comprised of trials in four directions in a randomized
order. Each trial took around 13 s to perform and the total
recording time for a single subject was approximately 2 h and
45 min.

C. Data Analysis

The preprocessing step of the recorded EEG data included
low-pass filtering at 100 Hz and a notch filter at 50 Hz. EOG
artifacts were removed using ICA [35] approach, which nulli-
fied the signal components that are highly correlated with the
recorded EOG. The time segments for analysis were chosen, as
the last 1 s of movement preparation and the first 1 s of move-
ment execution. The data preprocessing was followed by the
feature extraction, where the proposed Wavelet-CSP algorithm
was used to extract the features. The cross-validation analysis
splits the dataset into nonoverlapping training and test data. The
W-CSP filter was constructed using the training dataset, which
is later used to filter the test data. The features obtained from
the training dataset was used to train a FLD classifier and the
classification performance on the test dataset was measured in
terms of mean classification accuracy and standard deviation.
The MLR model was also generated using the training data and
this is applied to the test data during each fold of cross validation.
The following analyses were then performed:

Analysis 1: Much of the researches in this area concentrate
on identifying the informative features for speed and direction
decoding [15]–[22]. As mentioned in Section I, the work in [17]
has analyzed PPC for intended movement using ICA and the
method in [18] used rebound rate of MRCP for classifying
speed for different experiment paradigms. To the best of our
knowledge, no methods available in the literature explored the
low frequencies (<7 Hz) of EEG using wavelets. Hence, for a
comparative study, we use a CSP algorithm for EEG low pass
filtered at 7 Hz and calculate the performance. Next, we rebuilt
a FBCSP for very LF EEG data analysis. The performance in
three frequency regions, namely low frequency, LF (<7 Hz),
high frequency, HF (7–100 Hz), and the entire Band (0–100 Hz)
were studied. The resolution of FBCSP in LF and HF bands were
2 and 4 Hz, respectively. The performance of WCSP algorithm
at LF, HF, and the entire frequency range were also calculated.
For this, the levels corresponding to each of the frequencies
were reconstructed. Also the performance of WCSP algorithm
using different wavelets and its higher orders were studied. The
higher order Symlets and Daubechies were considered.

Analysis 2: As our study dealt with actual hand movement,
the data could possibly be affected by electromyography (EMG)

due to muscular activation. EMG signals reflect activation of
multiple muscles and, hence, activate multiple motor units of
brain thereby producing a diffused activity in scalp. Hence,
we used a Laplacian spatial filter that accentuates localized
activity whereby the diffused activity of EMG is suppressed.
Here, a finite difference method reported in [32] is used to the
derive Laplacian filter. The filtered signal is obtained using the
following equations:

XLAP
i = Xi −

∑

j∈Si

gijXj ; gij =
1= dij∑

j∈Si
1= dij

(17)

where Si is the set of electrodes surrounding the ith electrode
and dij is the distance between electrodes i and j (where j is a
member of Si).

Analysis 3: The aim of this study is to analyze features related
to speed from EEG data. Hence, in this analysis all trials from
a subject were used irrespective of the direction in which they
performed hand movement. For illustrating the influence of LF
bands and to validate the level selection process, the proposed
Wavelet-CSP algorithm was performed using different number
of reconstructed subbands. We start with using coefficients from
all levels (L), that gives (L + 1) subband signals and then
by eliminating contents of one lower level at each time for
reconstruction. The objective is to determine the number of
levels that can be eliminated without degrading the performance
of classifier. In our analysis, if the number of subbands used is
LV , then the coefficients considered for reconstruction are as
given in

f AL ; DL; DL−1 ; : : : ; DL−Lv +2 g ; for LV ̸= 1
f AL g ; for LV = 1:

(18)

The performance of algorithm in terms of cross-validation
results were calculated for Lv = 1 to L + 1.

Analysis 4: The applicability of the proposed approach to
reconstruct the speed profile is studied in this section. The MLR
models proposed were used to reconstruct the absolute, x and y
components of speed. The decoding accuracy was measured in
terms of Pearson’s linear correlation coefficient. The results are
compared with the study reported in [21].

Analysis 5: In order to find the physiological significance of
the algorithm and the source of the informative features in the
brain, we studied the spatial patterns obtained from CSP for
movement at each speed.

IV. RESULTS AND DISCUSSION

The results followed by inferences of Analysis 1–5 are given
in Sections 1V-A–E.

A. Comparisons

The results of the comparison of various approaches are given
in Table I. Various conclusions are drawn from the results. The
results using a simple low-pass filtering at 10 Hz followed by
CSP [10] is considered as the baseline result (mean accuracy
of 62.83%). Further comparing FBCSP [28] and Wavelet-CSP,
we can see that Wavelet-CSP outperforms FBCSP in all the
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TABLE I
PERFORMANCE OF SPEED CLASSIFICATION FOR VARIOUS METHODS

TABLE II
PERFORMANCE OF SPEED CLASSIFICATION USING 3 × 3 CROSS VALIDATION

(MEAN CLASSIFICATION ACCURACY IN PERCENTAGE)

frequency bands. The results provide two important conclusions.
First, in both algorithms, the lower frequencies seem to perform
better than others. This agrees with the results reported in various
studies [13], [15], [16] and in the review articles [12], [14], that
the LF band contains movement parameter information. Second,
the poor performance of FBCSP can be accounted by its lack of
time localization which is provided by Wavelet-CSP. Also the
filter bank design at low frequencies is hard to achieve.

The performance of algorithm using various wavelets is also
shown. It is found to increase at higher orders and Symlets
wavelet of order 5 (sym5) performed the best in our algorithm
giving an accuracy of 83.71%. However, on increasing the or-
der further, the performance in terms of accuracy is found to
decrease. For the further analyses, we have used the best per-
forming “sym5” wavelet.

B. Effect of Muscular Activation

The results of the approach adopted to remove EMG contam-
ination is given in Table II. Column 1 indicates the performance
using the proposed W-CSP algorithm and mean accuracy for
classifying speed is obtained as 83.71%. Column 2 shows the
performance using Laplacian filtering for EMG removal gives
almost similar performance of accuracy 85.04%. Also, the re-
sults from these two approaches showed no statistical signifi-
cance (p = 0: 5843). The identical performance points out that
the EMG, if present, does not provide any discriminative in-
formation about movement kinematics. The results in column
3 of Table II uses the W-CSP approach including additional
electrodes from the temporal and occipital electrodes. The re-
sults obtained prove that inclusion of more electrodes does not
change the performance significantly (p = 0: 3491).

Fig. 5. Effect of using different number of subbands for classification. The
results are for speed classification (fast versus slow movement).

TABLE III
CORRELATION COEFFICIENT BETWEEN RECONSTRUCTED

AND RECORDED SPEEDS

Fig. 6. MLR coefficients for eight subbands used, and the recorded and re-
constructed speed profiles.
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Fig. 7. (i)–(v) Spatial patterns obtained at five lower frequency subbands by W-CSP method for subject 1, (vi) confusion matrix for subject 1, and (vii) average
confusion matrix for seven subjects.

C. Classifying Speed of Movement

The mean classification accuracy and variance were calcu-
lated for each of the seven subjects by 3× 3 fold cross validation.
In order to study the levels of wavelet decomposition containing
optimal information, the classification was performed for LV =
1 to L + 1. The results obtained are shown in Fig. 5. From the
graph, it is seen that for LV = 5, the maximum accuracy of
(83.71 ß 8.98)% is obtained. The accuracy decreases for lev-
els, LV > 5. Hence, we have used only five informative levels
for our further analysis. The literature [11]–[14] which clearly
mentions the presence of kinematic information in the very LF
band (<7 Hz). For LV = 5, the chosen subbands represent this
LF subband of EEG signal. According to (3) and (18), LV = 5 is
found to correspond the frequency range 0.05–6.25 Hz. Hence,
the results obtained affirm the findings of various works.

D. Reconstructing Speed of Movement

Table III shows the Pearson’s linear correlation coefficient
values obtained between recorded speed and reconstructed
speed as mentioned in methods 1 and 2 of Section II-E. [21] re-
ported reconstruction of 3-D movement kinematics using MLR
approach. This method is applied on our 2-D data and the results
obtained are summarized in the table. Comparing the two pro-
posed approaches, the x and y components of speed are better
reconstructed by the proposed method 2, whereas the absolute
speed profile is better decoded by the proposed method 1. The
significant correlation values obtained in the proposed meth-
ods prove that W-CSP filtered signals can efficiently be applied
for the reconstruction of movement speed. Fig. 6 shows the re-
constructed and recorded speed profile for subject 1 and these
display high correlation with each other. This profile consists
of both slow and fast movements from the test data of cross
validation. Fig. 6 also shows the spatial distribution of MLR co-
efficients from Model 2, given by (16) in each of the subbands
and it demonstrates the involvement of parietal and contra lat-
eral motor areas in almost all subbands. It should also be noted
that the coefficient values are higher in the LF subbands (l = 6
to 8) compared to the rest.

E. Discriminating Features as Shown by CSP

The analysis results of spatial pattern is provided in this sec-
tion. Fig. 7(i)–(v) shows the W-CSP plots obtained for speed
classification. In the plot, the channels taken for analysis are
shown as black dots. The spatial patterns for subject 1 obtained
from the (Lv = 5) levels used are shown. The confusion matrix
averaged over all cross-validation folds for subject 1 is given
in Fig 7(vi). The mean confusion matrix over all subjects is
given in Fig. 7(vii). The high and nonbiased performance of
the technique is indicated by the leading diagonal bars in the
plot. From the spatial plots, it is evident that the discriminative
brain activity is seen mostly in the parietal and left motor cortex
region. The planning and estimation of movement kinematics
is performed by PPC of the brain as mentioned in [17]. Also
the right-hand movement results in an activation in the contra
lateral hemisphere that in this case is the left side of the cortex.

This study utilizes the features extracted from LF EEG using
the Wavelet-CSP technique proposed to classify and reconstruct
hand movement speed. The LF (<6.25 Hz) EEG performs better
in classifying movement speed information and the spatial dis-
tributions obtained shows involvement of contra lateral motor
as well as parietal cortex. Our findings is in line with various
results in literature [12]–[22] using EEG, ECoG, and MEG. The
results obtained justify the application of W-CSP technique for
finer movement control in terms of speed, in an EEG-based BCI
system by efficiently identifying the underlying neural activity.

Furthermore, any movement is associated with a change in
more than one of its parameters. In this study, the movement task
involves variation in movement force along with speed. Being
a coexisting factor of movement speed, the EEG data collected
are likely to be influenced also by changes in movement force.
However, identifying the contributions of force and speed to
EEG separately is beyond the scope of this study. In our future
work, we intend to design experiments that can provide resolved
information on various movement parameters such as force,
direction, extent, etc.

V. CONCLUSION

The objective of this study was to design an algorithm that can
extract the information regarding movement-related parameter:
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speed. The LF bands of movement-related potentials recorded
by EEG were exploited using a highly time-frequency-space lo-
calized algorithm in order to extract features relevant to speed.
A Wavelet-CSP algorithm has been proposed, which effectively
localizes signal in time, frequency, and space and provides dis-
criminative features for classifying speed. To the best of our
knowledge, such an approach using LF features to classify
speed of movement was not adopted in literature to date. The
filtered signals are also applied to reconstruct the speed profile.
The algorithm was validated using EEG data collected during
an experiment, where the subject executed right-hand move-
ment in two different speeds in four different directions. It was
confirmed that the performance of the algorithm was not influ-
enced by EMG by using Laplacian filtering. The results obtained
showed that the parameter, speed, can indeed be classified and
reconstructed from EEG signal during an actual movement. The
algorithm was further analyzed and the conclusions obtained
were discussed in the previous section. A mean classification
accuracy of 83.71% was obtained for the speed of movement
at an optimal chosen number of subbands. The performance for
speed classification in different directions was also studied. A
linear correlation of 0.52 was obtained between the recorded and
reconstructed speed. The spatial patterns showed the activation
in contra lateral motor area and parietal regions.

The motivation behind BCI research is its applicability in
MI. This study also hopes to be further extended to analyze MI
signals. The features related to movement parameters must have
a major overlap in both actual movement and MI. The future
work also includes exploring the MI signals to analyze other
movement parameters such as extent of movement. The results
of our proposed algorithm showed the possibility of introducing
a refined control command set to BCI system by identifying the
features related to movement parameters. The high performance
of our algorithm and the relevance of this approach can be further
explored to build an efficient BCI system.
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