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Abstract
Objective. Studies have shown that low frequency components of brain recordings provide
information on voluntary hand movement directions. However, non-invasive techniques face
more challenges compared to invasive techniques. Approach. This study presents a novel
signal processing technique to extract features from non-invasive electroencephalography
(EEG) recordings for classifying voluntary hand movement directions. The proposed
technique comprises the regularized wavelet-common spatial pattern algorithm to extract the
features, mutual information-based feature selection, and multi-class classification using the
Fisher linear discriminant. EEG data from seven healthy human subjects were collected while
they performed voluntary right hand center-out movement in four orthogonal directions. In this
study, the movement direction dependent signal-to-noise ratio is used as a parameter to denote
the effectiveness of each temporal frequency bin in the classification of movement directions.
Main results. Significant (p < 0.005) movement direction dependent modulation in the EEG
data was identified largely towards the end of movement at low frequencies (�6 Hz) from the
midline parietal and contralateral motor areas. Experimental results on single trial
classification of the EEG data collected yielded an average accuracy of (80.24 ± 9.41)% in
discriminating the four different directions using the proposed technique on features extracted
from low frequency components. Significance. The proposed feature extraction strategy
provides very high multi-class classification accuracies, and the results are proven to be more
statistically significant than existing methods. The results obtained suggest the possibility of
multi-directional movement classification from single-trial EEG recordings using the proposed
technique in low frequency components.

(Some figures may appear in colour only in the online journal)

1. Introduction

Brain–computer interfaces (BCIs) establish a communication
system that bypasses the conventional neural pathways
between the brain and muscles [1]. It translates the neural
activity of the brain to control commands for driving external
effectors. A major application of BCI is the rehabilitation of
paralyzed patients with a cognitively intact brain but a non-
functional spinal cord [1, 2]. BCI has the prospect to restore
the movement capabilities of such patients, by interfacing

neural activity with prosthetic devices. A major challenge
in providing such movement control is the lack of finer
information regarding movement related neural signals [3].
This information can be utilized in a BCI to provide a higher
dimensional control command to drive an external device. The
challenge is how well such information can be extracted from
non-invasive electroencephalography (EEG) recordings [1, 3].

Neural oscillations over the sensorimotor area of the brain
play an important role in voluntary movement execution and
regulation of movement parameters [3, 4]. Many researchers

1741-2560/13/056018+11$33.00 1 © 2013 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/1741-2560/10/5/056018
mailto:neethu1@e.ntu.edu.sg
http://stacks.iop.org/JNE/10/056018


J. Neural Eng. 10 (2013) 056018 N Robinson et al

have used center-out movement studies to identify neural
activity behind movement directions. Various studies have
used invasive recording techniques, single-unit activity (SUA)
[5], multi-unit activity (MUA) [6], localized field potential
(LFP) [7], etc, to demonstrate direction dependent neural
activities. Studies on primates using SUA and MUA have
found cosine tuning of neural firing rates with movement
direction, and have used this for direction decoding on a single
trial basis [5, 6, 8]. A study [7] in monkeys using LFP, has
reported that LFP in the frequency ranges �4 Hz, 6–13 Hz
and 63–200 Hz provides movement direction information
and the LFP spectra can thus be used for single trial
movement direction decoding. Electrocorticography (ECoG),
a partially invasive technique, was used in [9] to demonstrate
the close correlation between cortical anatomy and multi-
direction arm movement. The study reported significant
spectral modulations in low (34–48 Hz) and high gamma
(52–128 Hz) bands from the frontal and parietal
lobe which were used for single trial decoding of
hand movement direction. A non-invasive study using
magnetoencephalography (MEG) in [10] reported power
modulations in low pass filtered MEG activity (�3 Hz) and
reported an average of 67% decoding accuracy across subjects.
They also performed similar analysis with EEG and reported
55% decoding accuracy.

EEG recording electrical activity from the scalp during
a neuronal activation has identified several movement related
features [10–13]. The modulation of power in mu and beta
bands causing movement event related synchronization and
desynchronization [11] are well established features for single
trial bilateral movement execution and imagery classification.
Gamma band (�40 Hz) oscillations were studied by various
researchers and showed enhanced spectral power before
movement onset and hence were assumed to contribute to
movement preparation [12]. Various studies [12, 13] reported
that low gamma (30–50 Hz) and high gamma (50–150 Hz)
bands show movement related power modulations prior to,
during and toward the end of movement execution. However
the study [13] reported movement direction dependent
activation to be absent in the gamma activity, whereas the beta
band (12.5–25 Hz) at the movement end provided movement
direction information.

Most of these studies [3, 4, 7, 10, 14] reported that
movement kinematics information is present in low frequency
components of the neural signals. Notably [7] reported
direction dependent tuning in LFPs <4 Hz and utilized the
LFP amplitude spectra to decode hand movement direction
in primates. The study in [10] that employed MEG and
EEG made use of frequency components <3 Hz to extract
information for movement parameter decoding and for single
trial classifications. In this study, we present a novel signal
processing technique to extract features from non-invasive
EEG recordings for classifying voluntary hand movement
directions. To the best of our knowledge, a similar investigation
on low frequency EEG or applying similar signal processing
techniques to effectively extract low frequency EEG direction
related features has not been attempted in the literature to
date. In our preliminary work [14], a regularized wavelet-
common spatial algorithm (Reg. W-CSP) for the classification

of two movement directions was introduced. In this work,
the proposed technique employs the Reg. W-CSP algorithm
to extract low frequency components, a mutual information
(MI)-based feature selection to select relevant features,
and performs multi-class classification of four different
directions. In this study, EEG data from healthy subjects were
collected while they performed voluntary right hand center-out
movement in four orthogonal directions, and the movement
direction dependent signal-to-noise ratio (SNR) is used to
investigate temporal, frequency and spatial components in the
classification of movement directions. The effectiveness of the
proposed technique is then investigated on the data collected
and compared to existing methods.

2. Methods

2.1. Data recording

Brain electrical activity was recorded using a Neuroscan
SynAmps 128 channel EEG amplifier during the experiment
conducted at the Brain Computer Interface Lab at Institute
for Infocomm Research. The data is sampled at 250 Hz,
filtered at a lower cut-off frequency of 0.05 Hz and the signal
bandwidth (highest frequency) is limited at 125 Hz by the
acquisition system. EEG is recorded from seven healthy human
male subjects. Electrooculography (EOG) is also recorded to
remove ocular artifacts from the recorded EEG data.

2.1.1. Experimental task. The tasks involved two
dimensional center-out horizontal movements in four
orthogonal directions, indicated by figure 1(a), using the right
hand while holding the MIT MANUS robot [15]. The robot
recorded the position, velocity and force applied by the hand in
two dimensional space for every sample time. A display screen
placed in front of the subject provided the preparation, rest and
movement cues. The experiment setup is shown in figure 1(d).
The subjects were instructed to minimize eye movements to
reduce EOG artifacts.

The experiment details, timeline and cue display screens
are shown in figure 1(b). During recording, the home/rest
period was indicated by an encircled cross at the center of
the display. Each trial started with a rest period of about 4 s.
The direction cue was presented by an empty circle in one of
the four target positions, as shown in figure 1(b) for ‘NORTH’.
The task involved preparation for 2 s followed by movement,
cued by the disappearance of the center circle. The maximum
distance to be covered by the movement was 15cm, and the
subjects were asked to complete the task within 0.5 s. The trial
end was denoted by the appearance of a cross at the target. The
trials in which subject failed to perform the correct movement,
or complete the task within the required time, were flagged
and the subject was notified of the error, denoted by feedback,
shown in figure 1(b). The range of parameter measurements
obtained from the robot is as follows: position (0 ± 0.15 m),
velocity (0 ± 0.4 m s−1) and force (0 to 10 N). The movement
trajectory followed by each of the subjects is shown in figure 2.
The dotted lines indicate the movement path for single trials
and the trial-averages are indicated by the red curve.
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(b)

(a) (c) (d)

Figure 1. Experiment timeline and protocol. (a) The four orthogonal directions used for center-out movements in the experiment are shown.
The dark circle at the center and four blank circles indicate the start point and target points, respectively. (b) Single trial experiment timeline
for cue NORTH. The upper panel indicates the various cues presented on the display screen during the experiment. The bottom panel
explains the cues along with the time periods. The time segment used for analysis is indicated by the ‘analysis’ bar. (c) The EEG sensor
locations over sensorimotor cortex utilized in this study. (d) Experimental setup.

Figure 2. The hand movement trajectory for the subjects recorded by the MIT MANUS robot. The x and y coordinates are indicated in
meters. It can be noted that in all cases the subjects follow the required trajectory for hand movements and for a maximum distance of 0.15 m.

2.1.2. Data pre-processing. The EEG data recorded from
35 sensors spanning the sensorimotor cortex, as shown
in figure 1(c) are used for further analysis. The recorded
data are low pass filtered at 96 Hz and notch filtered at
50 Hz to remove the line frequency. The ocular artifacts are
removed from this data ( f low: 0.05 Hz to f high: 96 Hz), using
independent component analysis (ICA) [16]. The ICA
components showing maximum correlation with actual
recorded EOG are nullified. To remove muscular artifacts,
we use a Laplacian spatial filter that accentuates localized
activity whereby the diffused activity of EMG is suppressed.

The finite difference method reported in [25] is used to the
derive Laplacian filter. The number of trials obtained is 160
for the first six subjects and 140 for the last subject, with an
equal number of trial/movement direction for all subjects. As
indicated in figure 1(b), the time segment extracted for analysis
is 1 s before (−1 to 0 s) and after (0 to 1 s) the movement
cue, to include the movement preparation, execution and
post-movement periods. The extracted data are further used
to extract informative direction-dependent features. Figure 3
shows the signal processing steps involved in the analysis of
the data. The entire dataset is divided into training and testing
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Figure 3. The block diagram for the signal processing algorithm
used for the multi-class classification of hand movement directions
in this study. The splitting of the data set into training and test folds
during each cross-validation fold is indicated. The training data
creates the Reg. W-CSP pattern, selects k features and models the
FLD classifier. These are applied to the test set to calculate system
performance.

sets in each of the cross validation folds. The calculation of
spatial filters, feature selection and classifier modeling is done
using the training dataset and the results are applied to the test
data. Sections 2.2 and 2.3 explain the algorithm in detail.

2.2. Feature extraction using Reg. W-CSP

2.2.1. Wavelet decomposition of signal. The time-frequency
analysis of non-stationary EEG signals using Wavelet
transform is a widely used feature analysis technique in BCI
systems [17–19]. A common practice is to create a time-
frequency distribution (TFD) of the recorded EEG using
wavelet transforms and to define features using TFDs for
various tasks. This approach has been applied in movement

and motor imagery studies [17, 18]. Another technique is to use
wavelet decomposition for de-noising data and improving its
SNR. In [19], W-CSP that used wavelet packets to decompose
EEG data, followed by CSP filtering to analyze asynchronous
BCI signals, was reported. In our analysis of multi-class data,
we require decomposition of the signal into various subbands
so as to localize the signal in the spectral domain and to
reduce its non-stationarity before applying CSP for spatial
localization. As literature reports the presence of direction
dependent activity in low frequency regions, we require a
feature extraction technique to focus on decomposing low
frequency signals with high resolution. Hence, we use discrete
wavelet transforms (DWT) for multi-resolution analysis of the
pre-processed EEG data.

The orthogonal filter banks that span non-overlapping
frequency subbands are constructed by DWT using
orthonormal wavelet bases [20]. At each level of wavelet
decomposition, the signal is half band low pass filtered and half
band high pass filtered followed by sub sampling by a factor
of 2, to obtain approximate and detailed wavelet coefficients.
The approximate coefficient is further decomposed using
orthogonal filters at the next level. This continues until
maximum levels of decomposition given by Lw = log2 (T )

are achieved. Thus we obtain Lw detailed coefficients and
1 approximate coefficient at the last level. The coefficients
obtained at each level are separately reconstructed to obtain
filtered subband signals. The frequency spanned by Lw + 1
subbands is given by,

(
2−i fhigh, 2−i+1 fhigh

)
, i = 1 to Lw(

flow, 2−i+1 fhigh
)
, i = Lw + 1. (1)

The details of the steps following wavelet decomposition are
explained in the following sections. As we have four classes
of data, to perform multi-class data analysis and classification
we use a one-versus-rest (OVR) approach in the following
three stages, namely: feature extraction using Reg. W-CSP,
feature selection using MI and classification using the Fisher
linear discriminant (FLD) classifier. All these techniques use
the binary class of data to generate their own functional
models. The OVR approach creates four binary class problems,
grouping one class against the remaining three classes. In the
final stage, the classifier generates scores corresponding to
the four OVR-FLD models and the class corresponding to the
highest score is chosen as the estimated class.

2.2.2. Spatial filtering of subband signals. The next step in
our algorithm is to spatially filter the subband signals using
the Reg. CSP approach. The subband signals in each trial are
denoted by Zl ∈ R

C×T , where l = 1 to L, where L is the
number of subbands used for further analysis, T is the number
of samples in each trial and C is the number of channels. For
the binary class of data, class ∈ a, b, the CSP technique designs
spatial filters that construct time series whose variances contain
maximum discriminative information between classes [21].

By supervised decomposition of the signal, CSP creates
a spatial filter, W ∈ R

C×C which maximizes the variance for
one particular class while minimizing it for the other class. An
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optimization criterion is defined to determine the CSP filter
[22]. For a particular subband l, spatial filter Wl is the matrix
that extremizes the following objective function:

J(W l ) = W lT
Cl

aW
l

W lT Cl
bW

l
(2)

where Cl
a = 1

na

∑
Zl

aZlT

a and Cl
b = 1

nb

∑
Zl

bZlT

b are the
estimated covariance matrices of class a and b. Here na, nb

denote the number of trials in classes a, b and Zl
a and Zl

b
denote trials belonging to their respective classes.

In the literature, several variants have been proposed to
CSP, as it is prone to over-fit to the noise in the training data. An
effective solution for this is regularizing CSP by introducing
a penalty term in (2), so as to obtain a sparse spatial filter. In
our work, we use spatial regularization that uses the spatial
location of electrodes to define the penalty term and create
spatially smooth filters [22]. In this work, by incorporating
spatial regularization, the objective function in (2) takes the
form,

Ja(W
l ) = W lT

Cl
aW

l

W lT Cl
bW

l + α.P(W l )
. (3)

In (3), α is a positive constant that defines the level of spatial
smoothness and P(W l ) is the penalty function that measures
the spatial smoothness of the filter. The function is defined as,

P(W l ) = W lT
(D − G)W l . (4)

In (4), G is a Gaussian kernel defined as, =
exp(−‖vi−v j‖2

2r2 ), where vi and vj are the spatial coordinates
of electrodes i and j and r is the hyperparameter that defines
the maximum distance between two electrodes so that they
can be considered close. The matrix D is a diagonal matrix,
whose diagonal element in each row corresponds to the sum of
the respective row elements in G. Similar to (3), the objective
function, Jb(W l ) is also defined. Equation (3) can be defined as
a constrained optimization problem in which the objective is to
maximize W lT

Cl
aW

l , while keeping W lT
Cl

bW
l +α.P(W l ) = 1.

This optimization problem is solved using the Lagrange
multiplier method as,

V l
a = (

Cl
b + α(D − G)

)−1
.Cl

a and

V l
b = (

Cl
a + α(D − G)

)−1
.Cl

b. (5)

The objective functions are maximized if the eigenvectors
corresponding to the largest m ( = 3 in this study) eigenvalues
of V l

a and V l
b are chosen as the solution, Wl ∈ R

2m×C.
We obtain the Reg. W-CSP filtered signal for subband l by
scaling single trial data with the spatial filter, W l . The single
trial feature (Fl ∈ R

2m) is obtained from the logarithm of
normalized variances of Reg. W-CSP filtered data. In each of
the four OVR class problems, the process is repeated for all
the subbands to obtain a single trial feature set, F ∈ R

2mL.

2.2.3. Selection of the most discriminative features. The
MI-based best individual feature (BIF) selection technique
has been successfully used, along with the filter bank CSP
approach, in BCI studies to select the features that maximize

the MI between classes and feature sets [23]. The selected
feature set is proved to minimize the classification errors. We
have F = { f1, f2, f3, . . . , f2 mL} from which k (<2 mL) best
features are required to be selected for each of the four OVR
classes. The MI between F and class (ω ∈ a, b) is calculated
as,

I(F;ω) = H(ω) − H(ω|F ). (6)

H(ω) and H(ω|F ) denote the class entropy and conditional
entropy functions respectively. Initially, the selected features
are set as ∅. MI is calculated for the entire F and the feature
with maximum MI is selected at each step. F is updated by
eliminating the previously selected feature. The process is
repeated until k features are selected.

2.3. Multi-class classification of Reg. W-CSP features

Similar to feature extraction, in this step we also use the
OVR approach to perform multi-class classification. The FLD
method [24] is used to classify the data. This technique
determines a matrix, F, that maximizes the between class
scatter, SB, to within class scatter, SW, of the features
provided. It optimizes the objective function, as given by the
mathematical expression in (7),

JFLD(D) = DT SBD

DT SW D
. (7)

The average cross validation accuracies obtained are reported
as the performance measures.

2.4. Movement direction dependent SNR

In this section we attempt to determine the extent to which
the wavelet domain analysis of EEG signals contributes to
movement direction information. Here the parameter SNR of
movement direction is used to identify the informative time-
frequency regions of the signal. This type of analysis has been
widely used in LFP studies [7, 8] to measure the direction
tuning strength of neuron populations. In this study, the SNR
is calculated for every sample point in all the levels of wavelet
decomposition, using the reconstructed subband signals in
each level. We calculated the direction tuning curves as the
trial-averages of the signal corresponding to each direction:

SNR = σ 2
s − σ 2

b

σ 2
n

. (8)

The value of the SNR for each time-frequency point is obtained
as per (8), where the variance of the tuning curve is σ 2

s ,
the variance of trial-by-trial fluctuations is σ 2

n and σ 2
b is a

bias correction term introduced to compensate for the low
number of trials per direction. If the variance of trial-by-trial
fluctuations for a given direction is σd , then σb is quantified as(∑

d=1 to 4 σ 2
d

)/
(4 ∗ T ), where T is the number of trials in each

target direction. The significant values of SNR are calculated
by a randomization test which calculates the significance levels
by random shuffling and mislabeling the data and repeating the
process 200 times. The significant SNR is thus determined for
all the 35 sensors in all seven subjects and the median over all
the subjects is reported.
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(a)
(b)

(c)

Figure 4. Results of the movement direction dependent SNR study. (a) 35 sensor time-frequency contour plots obtained using wavelet
decomposition displaying significant (p < 0.005) movement dependent SNR normalized over 35 sensors. The SNR shown is the median
over all the subjects. The y-axis represents wavelet decomposition levels from 1 to 9 and the x-axis provides the time information. These are
indicated with gridlines in (b). The labels of sensors with higher significant SNR recorded are shown, Pz, C1. (b) The plot for Pz in (a) is
enlarged and the details are shown. It clearly explains the low frequency and movement end activity. (c) The trial-averaged temporal activity
for electrode Pz low pass filtered at 1 Hz is shown. The color code for directions is also indicated.

3. Results

This study presents a multi-class feature extraction and classi-
fication strategy aiming to analyze EEG data recorded during
hand movement in four orthogonal directions. Movement di-
rection dependent amplitude modulation is demonstrated with
the aid of time-frequency SNR plots and trial-averaged low
frequency EEG time series plots for various hand movement
directions. The spatial patterns used in feature extraction and
the sensorimotor areas involved in movement activity are also
demonstrated with the help of W-CSP patterns and SNR plots.
The classification results obtained along with the results of
various supporting analyses are provided in this section.

3.1. Significant movement direction dependent SNR

The results of analysis using movement direction dependent
SNR, explained in section 2.4 are given in this section. It
is essential to identify the temporal frequency regions with
high movement direction dependent SNR in order to select
the informative levels of wavelet decomposition. The contour
plots in figure 4 show the normalized and significant time and
frequency bins (p < 0.005) in each of the 35 sensors. The
figure plots the normalized values of median SNR across all
the seven subjects for each sensor. As seen, the electrode C1
in the contralateral motor area and Pz in the midline parietal
region provide the highest SNR values compared to others. The
SNR information from Pz is plotted separately in figure 4(b).
This figure distinctly shows the higher SNR activity towards
the movement end at 0.5s and in the decomposition levels less

than 5. As per (1), the frequency regions spanned by the lower
five levels are 0.05–0.375, 0.375–0.75, 0.75–1.5, 1.5–3 and
3–6 Hz respectively. In figure 4(c), the trial-averaged 1 Hz
low pass filtered signal for each direction recorded from Pz
in subject 1 is shown. This shows the amplitude modulation
associated with different directions. The results demonstrated
in figure 4 justify the selection of the lower five levels of
wavelet decomposition in our feature extraction technique.
Thus this analysis assists the wavelet approach for extracting
features with optimum SNR information.

3.2. Low frequency temporal activity

Many studies [7, 10] have reported the amplitude modulations
of neural signals in various frequency bands as being
responsible for directional movement. In this section, the
sensors that recorded high SNR for movement direction are
used to demonstrate the temporal amplitude modulations for
each movement direction. The trial-averages of 1 Hz filtered
EEG signal in sensors Pz and C1 are shown in figure 5 for
each of the seven subjects. The difference in amplitude can
be seen in almost all the cases towards the movement end,
i.e. after 0.5s and during the early planning period. Also, it
can be noted that the temporal trend for direction dependent
amplitude modulation is different for different subjects.

3.3. Multi-class classification performance

Figures 6 and 7 summarize the results of cross-validation
analysis using various classification algorithms applied on
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Figure 5. The time series plots of trial-averaged low pass filtered at 1 Hz activity from sensors Pz and C1 are shown. The columns indicate
the results for each of the subjects. The color code for directions is also indicated. The distinct amplitude modulations depending on
direction can be noticed.
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Figure 6. 10 × 10 cross validation accuracies for multi-class classification of hand movement directions. The results for subjects S1 to S7
are given. A comparative performance study using normal [14] and Reg. W-CSP for feature extraction along with and without feature
selection are provided. The results conclude that higher performance is obtained in most subjects using Reg. W-CSP followed by FLD
classification of selected features.

the data. Regarding feature extraction, the Reg. W-CSP
used in this study is compared against normal W-CSP
reported in [14] for binary data classification. The figures
also shows the results of using the algorithm with and
without feature selection. Assuming k to be the number of
features used for the classification, the maximum number of
features available, i.e. if no feature selection is performed, is
k = 2 mL = 30 (m = 3). We select L = 5, according to
the results in sections 3.1 and 3.2, so as to extract features
for the low frequency (�6 Hz) region. The results obtained
by incorporating various feature extraction strategies for
individual subjects are shown in figure 6. Figure 7 shows
the mean values of classification accuracies along with the

paired t-test results. The number of features selected is
set to k = 13 for comparisons and the effect of varying
k is addressed in figure 8. As shown in figure 7, the
proposed method Reg. W-CSP with feature selection gives
higher and statistically significant results than normal Reg.
W-CSP (p < 0.007), normal W-CSP [14] (p < 0.026)
and W-CSP with feature selection (p < 0.018). The Reg.
W-CSP provides 4.22% and 5.63% improvement over normal
W-CSP for FLD classification without and with feature
selection respectively. Feature selection using MI is found
to enhance the performance of the Reg. W-CSP algorithm
by 2.23%. The improved result clearly shows the use
of filtering out the less informative features to provide
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Figure 7. Average multi-class classification of hand movement
direction performance in terms of accuracy across subjects. A
comparative performance study using normal [14] and Reg. W-CSP
for feature extraction with and without feature selection is provided.
The results conclude that higher and statistically more significant
performance is obtained in most subjects using Reg. W-CSP
followed by FLD classification of selected features. The results are
of paired t-test with Reg. W-CSP for k = 13.

better classifications. In both algorithms, the classification
performance improves by including feature selection.
However the increase in W-CSP from (73.79 ± 10.29)% to
(74.61 ± 10.02)% is not statistically significant (p < 0.334).
In the case of Reg. W-CSP, the increase from (78.01 ± 9.37)%
to (80.24 ± 9.41)% is highly significant (p < 0.007). Hence
the MI-based feature selection works better in identifying Reg.
W-CSP features than in W-CSP features.

The effect of varying the number of features selected, k
is summarized in figure 8. The results are for data analysis
using Reg. W-CSP, followed by feature selection and FLD
classification. On an average over all subjects, the classification
performance increases steadily from k = 1 to 6 and remains
almost constant until k = 13 and decreases after k = 23. A
maximum mean classification accuracy of (80.24 ± 9.41)% is
obtained for k = 13. However, the optimal number of features
to be chosen is subject and problem specific. For instance,
the number of features providing the best classification
performance is 13, 13, 17, 9, 19, 21 and 16 for subjects 1
to 7 respectively.

Figure 9 shows the combined histogram of selected
k = 13 features for the seven subjects. The horizontal axis
gives the feature indices 1 to 30 of which 1–6, 7–12, 13–18,
19–24, 25–30 correspond to six features each from the five sub-
bands (3–6, 1.5–3, 0.75–1.5, 0.375–0.75 and 0.05–0.375 Hz
respectively). The histogram bars for each class are stacked.
A higher value indicates that the feature is selected in most
of the subjects in different movement direction classes. For
instance, as seen in figure 9, feature 1 is selected from the
data of only one of the seven subjects for North, South and
West classes (not necessarily the same subject for different
classes), whereas feature 29, is selected from all seven subjects
for all classes. From the plot, it is evident that for almost all
direction classes, the features are mostly selected from the

lowest subband used 0.05–0.375 Hz, thus proving the presence
of movement parameter information in low frequency EEG.

3.4. Spatial patterns from Reg. W-CSP

The spatial patterns refer to the projection of brain signal
sources to the various EEG sensors obtained using the feature
extraction algorithm. Here the spatial patterns from the Reg.
W-CSP filters is given by (W l−1

)T , where W l is the spatial filter
generated at subband l. Figure 10 shows the spatial patterns
obtained for subject 1. The rows and columns correspond to
each of the four direction classes (for the OVR approach)
and each of the L = 5 subbands used respectively. Being
an OVR approach, localized areas defining activity for each
movement direction are not well-defined. However, in all the
subbands, distinguishable activity for each movement class
can be identified.

4. Discussion

The previous section showed the multi-class classification
results obtained in our analysis. We further demonstrated the
significantly higher direction dependent SNR of low frequency
EEG using a SNR study. The results prove the applicability of
our algorithm in identifying movement direction information.

4.1. Movement direction encoded in brain recordings: focus
on low frequency EEG

As mentioned in section 1, various invasive and non-invasive
studies have been used to study center-out multi-directional
hand movements. The invasive SUA and MUA approaches
used single and multiple neuron firing rates to relate them
to movement directions [3, 5, 6]. Many studies have been
performed in primates and it was found that the firing rate
is cosine-related with movement direction, and this can be
used to identify movement directions on a single trial basis.
Voluntary control on external effectors was made possible
using this approach with MUA from monkey primary motor
cortex. Invasive LFPs were also used in a monkey study and
this reported low frequency direction tuning and showed its
applicability to decode single trial movement direction [7, 8].

Among the non-invasive techniques, a combined study
using MEG and EEG used 3 Hz low pass filtered MEG to
obtain a decoding accuracy of 67% in a four-direction center-
out hand movement experiment. By using EEG alone, 55%
decoding accuracy was reported in [3, 10]. The 3 Hz filtered
MEG was reported to show different temporal activity for
different movement directions. In our current study, a similar
activity is found in EEG signals filtered at 1 Hz as shown
in figure 5. In this study, our major focus is to identify the
most informative low frequency features of EEG. Our results
indicate a similar or even better performance using EEG in
movement direction classification considering the advantages
of EEG over MEG.

The involvement of the parietal region for movement
parameter control in non-human primates and humans was
reported in various studies [3, 4]. Similarly, activation in
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contralateral areas is expected for a hand movement task.
The role of low frequency brain features in controlling the
movement parameters were proved by studies using MEG,
ECoG, LFP, etc, in both humans and other primates. The results
shown in figure 4 conform to these findings in the literature.
The parameter we used is movement direction dependent SNR
in each of the temporal-frequency bins and the results show
higher a SNR in sensors Pz and C1 for frequencies �6 Hz.

This strengthens the findings in the literature using various
data acquisition modalities.

4.2. Reg. W-CSP approach for movement parameter
classification

Another major contribution in this study is the Reg. W-CSP
approach that can efficiently extract low frequency information
in EEG. A similar approach was used in our previous study

9
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Figure 10. The normalized spatial patterns obtained from Reg.
W-CSP spatial filters are displayed in the figure. The results for
subject 1 are shown. The OVR approach used designs four filters
corresponding to each direction in each of the subbands. The
distinct activity in each of the subbands aiding discrimination
between various directions can be noted.

[14] in the binary classification of hand movement directions.
In the current study, using the proposed approach of the Reg.
W-CSP algorithm, followed by MIBIF-based feature selection
and FLD classification, a maximum multi-class classification
accuracy of (80.24 ± 9.41)% is obtained and is found to be
more statistically significant than all other methods. Each
of these steps filters out the optimal information for the
problem at hand. Figure 4 explains the information retrieval
using wavelet decomposition. In all the 35 sensors used,
the significant movement direction dependent information is
obtained only in the lower decomposition levels. The algorithm
that we use selects exactly these informative levels to extract
features. Figure 8 explains the significance of using MI-based
feature selection. As the curve of mean accuracies show, we
obtained superior performance (80.24 ± 9.41)% by using
the selected 13 features rather than using all the features
(78.01 ± 9.37)%. Also, the figure explains the varying trend for
different subjects, making this a subject specific problem. The
performance of FLD classification is also reported as cross-
validation results in figures 6 and 7. Improvement in accuracy
is a very important focus of BCI research [2], where algorithms
that provide statistically significant and neurophysiologically
plausible results would be helpful in building more robust
BCI systems [22]. To this end, our proposed approach aims
to make a contribution towards developing such accurate and
robust BCI systems.

4.3. Experimental limitations

The current study encourages the applicability of non-invasive
data acquisition methods in extracting information regarding
the movement related parameter, direction. In this study we
perform an offline analysis of the recorded EEG data using the
proposed feature extraction and classification approach. The
results assure us that our strategy can better serve the BCI
purpose of refined movement control. However, a practical
BCI application aims to create real-time closed loop control

with an output device. In this study we identified the movement
direction with high classification accuracy with the help of
an offline cross-validation approach. In the feature extraction
technique, there are various parameters that can be further
optimized. The performance of our algorithm is found to be
subject dependent demanding training sessions for all the users
and also optimization to select subject specific information.
Similarly, the algorithm parameters, such as type of wavelets
used, number of features selected, etc, are also problem and
user specific. These factors play an important role in setting up
a real-time BCI system and need to be addressed in the future.

Furthermore, considering the major application of BCI in
the rehabilitation of stroke patients, the demand for identifying
movement parameters during motor imagery is important. In
this study we focus on actual movement, which is significantly
correlated with the neural substrates of motor imagery. In
future, we hope to apply our current results and data processing
strategy to design online experiments that can continuously
classify, decode and reconstruct the trajectory of imagined
motor movement.
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