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a b s t r a c t

There are two main approaches to design a neural fuzzy system; namely, through expert
knowledge, and through numerical data. While the computational structure of a system
is manually crafted by human experts in the former case, self-organizing neural fuzzy sys-
tems that are able to automatically extract generalized knowledge from batches of numer-
ical training data are proposed for the latter. Nevertheless, both of these approaches are
static where only parameters of a system are updated during training. On the other hand,
the demands and complexities of real-life applications often require a neural fuzzy system
to adapt both its parameters and structure to model the changing dynamics of the environ-
ment. To counter these modeling bottlenecks, intense research efforts are subsequently
channeled into the studies of evolving/online neural fuzzy systems. There are generally
two classes of evolving neural fuzzy systems: the Takagi–Sugeno–Kang (TSK) systems
and the Mamdani systems. While most existing literature consists of evolving Type-1
TSK-typed and Type-1 Mamdani-typed models, they may not perform well in noisy envi-
ronment. To improve the robustness of these neural fuzzy systems, recent efforts have
been directed to extend evolving Type-1 TSK-typed neural fuzzy systems to Type-2 models
because of their better known noise resistance abilities. In contrast, minimum similar effort
has been made for evolving Mamdani-typed models. In this paper, we present a novel
evolving Type-2 Mamdani-typed neural fuzzy system to bridge this gap. The proposed sys-
tem is named evolving Type-2 neural fuzzy inference system (eT2FIS), and it employs a data-
driven incremental learning scheme. Issues involving the online sequential learning of the
eT2FIS model are carefully examined. A new rule is created when a newly arrived data is
novel to the present knowledge encrypted; and an obsolete rule is deleted when it is no
longer relevant to the current environment. Highly over-lapping fuzzy labels in the
input–output spaces are merged to reduce the computational complexity and improve
the overall interpretability of the system. By combining these three operations, eT2FIS is
ensured a compact and up-to-date fuzzy rule base that is able to model the current under-
lying dynamics of the environment. Subsequently, the proposed eT2FIS model is employed
in a series of benchmark and real-world applications to demonstrate its efficiency as an
evolving neural fuzzy system, and encouraging performances have been achieved.
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1. Introduction

There are two main issues when performing structure learning in a neural fuzzy system; namely, the fuzzy partitioning of
the input and output spaces, and the rule generation scheme adopted. Fuzzy partitioning determines the numbers, the posi-
tions and the spreads of the fuzzy labels in the input–output spaces; while the rule generation scheme determines the set of
fuzzy rule base governing the neural fuzzy system. Existing neural fuzzy systems can then be classified into two types. That
is, design by expert knowledge, and design from data. In the former approach, the computational structure of a neural fuzzy
system is manually crafted by human experts. Prior knowledge regarding the fuzzy partitioning and the fuzzy rule base is
determined by the human experts. Some examples of such neural fuzzy systems include the ANFIS [15] and the GARIC
[5] models. Self-organizing neural fuzzy systems, which are based on the latter approach, adopt a more automated design
using numerical data. By integrating self-organizing numerical methods [7,6,25,50,52,44] into the learning mechanisms,
knowledge is automatically extracted from batches of raw numerical data to determine the positions and the spreads of
the fuzzy labels. Self-automated rule generation schemes [50,38,36,34] have also been proposed in the literature. Despite
the diverse philosophies behind the learning principles of these systems, they all embrace a uniform assumption that the
dynamics of an application is non-changing over time. Subsequently, only the parameters of the systems are fine-tuned dur-
ing training after the computational structures have been established. This, unfortunately, restricts the usefulness of these
neural fuzzy systems to a static environment. On the other hand, real-life applications with time-varying dynamics can range
from financial trading instruments [46,42], to assistive biomedical instruments [49,40], to physical phenomena [28,14].
Hence, it is pragmatic to explore alternative neural fuzzy systems with incremental evolutionary structure and parameters
to model such non-stationaries.

Evolving neural fuzzy systems, with their online learning abilities, have been developed to address the issue of time-vary-
ing application environment (see Table 1). They adopt a data-centric incremental learning mode2 where data is sequentially
arriving. Structure and parameter learning of the systems are then performed based only on the current data sample. This allows
an evolving neural fuzzy system to incorporate new knowledge that emerges after the system has identified its computational
structure. It also provides the system with a life-long learning cycle to detect temporal shifts in the data patterns. Through this
incremental processing of data, evolving neural fuzzy systems address the stability-plasticity trade-off [11] of a learning system.
This means, while a progressive learning of new knowledge modifies an initial trained system (i.e. a process known as plasticity,
that allows the continuous learning of new knowledge through changes to the structure and parameters of the initial trained
system), the system is able to avoid catastrophically erasing existing knowledge that is still relevant (i.e. a process known as
stability, that allows the system to recall previously learnt knowledge encoded in the structure and parameters of the initial
trained system).3 As stated by Abraham and Robins [1], a dynamic learning system can retain memory and minimize memory
losses through ‘‘a regulated balance between stability and plasticity to solve the trade-off between the stability required to re-
tain information and the plasticity required for new learning’’.

There are generally two classes of evolving neural fuzzy systems: the Takagi–Sugeno–Kang (TSK) systems and the Mam-
dani systems. Table 1 presents a list of some existing works in the literature. As seen, most existing works consist of evolving
Type-1 TSK-typed and Type-1 Mamdani-typed neural fuzzy systems, where the fuzzy labels in the antecedent/consequent
parts of the systems are Type-1 fuzzy sets. This may result in an unsatisfactory performance when modeling is performed
in a noisy environment [8]. On the other hand, Type-2 systems are extensions of Type-1 systems where the membership
grades of the fuzzy labels are Type-1 fuzzy sets [21,22,26]. With an additional degree of knowledge incorporated in the sys-
tems (analogous to the information provided by variance to a mean value in probability theory), Type-2 neural fuzzy systems
appear more promising for handling uncertainties present in noisy environment [32]. As such, recent efforts have been di-
rected to extend evolving Type-1 TSK-typed neural fuzzy systems to Type-2 models. In contrast, there is minimum parallel
effort for evolving Mamdani-typed neural fuzzy systems. Although the T2SONFS [18] model has been listed as an evolving
Type-2 Mamdani-typed neural fuzzy system in Table 1 because of its sequential learning, it is not a fully online system since
the inputs have to be normalized prior to the design of the system. In addition, existing models of evolving Type-2 systems
encounter one or more of the following major problems: (1) absence of rule pruning mechanism; and (2) lack of merger
operation. A system without a rule pruning mechanism will continuously learn new rules without the removal of irrelevant
rules, thus resulting in a complex and ever-expanding rule base; while a system without a merger operation might result in a
highly-overlapping partitioning, thus leading to a degradation in the level of interpretability4 of the system.

This paper presents the evolving Type-2 neural fuzzy inference system (eT2FIS), a novel evolving Type-2 Mamdani-typed
neural fuzzy system, which addresses the abovementioned deficiencies faced by existing systems. An incremental sequential
learning scheme is employed for the structure and parameter learning of the eT2FIS model. Through its carefully crafted

2 Static neural fuzzy systems adopt a batched learning mode, where the structures of the systems are fixed, and learning proceeds with cycling through a
collected set of observed data a number of epochs to fine-tune the parameters.
3 On the other hand, static neural fuzzy systems have fixed structures, with parameter fine-tuning abilities. Subsequently, when new training data are
presented to a system, re-training is needed to construct a new system with the updated set of training data. This, unfortunately, leads to an erase of knowledge
from the initial trained system.

4 Online learning typically results in systems that become order-dependent during training [4]. Here, interpretability of a neural fuzzy system adopts the two
conditions mentioned in [12,10]; namely, (1) the fuzzy partition must be readable/distinguishable in the sense that the fuzzy sets can be interpreted as
linguistic labels; and (2) the set of rules must be compact and consistent with good generalization capability.
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learning mechanism, eT2FIS is able to transform low-level raw numerical data to high-level human interpretable fuzzy rules.
The set of rule base governing the computational structure is of Type-2 IF-THEN Mamdani-typed fuzzy rules [30]. There are
three main operations in the learning of eT2FIS; namely, (1) generation of new fuzzy rules; (2) deletion of obsolete rules; and
(3) merger of highly over-lapping fuzzy labels in the input–output spaces. A new rule is created when a newly arrived data is
novel to the present knowledge encrypted; and an obsolete rule is deleted when it is no longer relevant to the current envi-
ronment. This addition-removal approach maintains an up-to-date fuzzy rule base in eT2FIS for the modeling of current
dynamics of the environment, where a regulated balance is maintained such that old knowledge (in the system) and new
knowledge (from an incoming training data) is able to co-define the structure of the model. This addresses the stability-plas-
ticity trade-off of the system. Highly over-lapping fuzzy labels in the input–output spaces are merged to maintain a compact
rule base in eT2FIS.

The rest of the paper is organized as follows. The computational structure, reasoning process and neural computations of
the eT2FIS model are described in Section 2. The proposed learning mechanisms of eT2FIS are introduced in Section 3.
Section 4 evaluates the learning and adaptation abilities of eT2FIS through a series of experimental simulations. Lastly,
Section 5 concludes the paper.

2. eT2FIS: Evolving Type-2 Neural Fuzzy Inference System

This section describes the computational structure, the reasoning process and the neural computations of the proposed
evolving Type-2 neural fuzzy inference system (eT2FIS).

2.1. Computational structure of eT2FIS

The proposed eT2FIS model is a five layers neural fuzzy system as shown in Fig. 1. Layer 1 consists of the input variable
nodes; layer 2 consists of the antecedent nodes; layer 3 is the rule nodes; layer 4 is the consequent nodes; and layer 5 con-
sists of the output variable nodes. In its initial form, there are no fuzzy partitioning or fuzzy rules in the system, i.e., there are
no nodes in the hidden layers 2–4. Learning for eT2FIS is performed incrementally where X(t) = [x1(t), . . . ,xi(t), . . . ,xI(t)]T is the
input vector at a time step t. The corresponding desired output vector is denoted as D(t) = [d1(t), . . . ,dm(t), . . . ,dM(t)]T, and the
computed output vector is denoted as Y(t) = [y1(t), . . . ,ym(t), . . . ,yM(t)]T. The notations used in Fig. 1 are defined as follows:

Fig. 1. Computational structure of the evolving Type-2 neural fuzzy inference system (eT2FIS).

Table 1
A summary of evolving neural fuzzy systems in the literature.

TSK systems (publication year) Mamdani systems (publication year)

Type-1 SONFIN (1998) [16] NeuroFAST (2001) [48] FALCON-ART (1997) [27]
GD-FNN (2001) [51] DENFIS (2002) [24] EFuNN (2001) [23]
eTS (2004) [3] SAFIS (2006) [39] eFSM (2010) [47]

Type-2 SEIT2FNN (2008) [17] ORGQACO (2009) [19] T2SONFS (2008) [18]
IT2FNN-SVM (2010) [20]
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I number of input dimensions;
M number of output dimensions;
IVi ith input variable node;
OVm mth output variable node;
Ji(t) number of fuzzy clusters in IVi at time t;
Lm(t) number of fuzzy clusters in OVm at time t;eAi;ji

jith fuzzy cluster in IVi;eClm ;m
lmth fuzzy cluster in OVm;

K(t) number of fuzzy rules at time t;
Rk kth fuzzy rule.

Layer 3 of eT2FIS encrypts the rule base of the system where each rule node encodes a Type-2 IF-THEN Mamdani-typed
fuzzy rule given as in (1):

Rk : IF x1 is eAðkÞ1;j1
and . . . and xi is eAðkÞi;ji

and . . . and xI is eAðkÞI;jI

THEN y1 is eC ðkÞl1 ;1
and . . . and ym is eC ðkÞlm ;m

and . . . and yM is eC ðkÞlM ;M
ð1Þ

where eAðkÞi;ji
(resp. eC ðkÞlm ;m

) is the jith antecedent (resp. lmth consequent) node associated with the ith input (resp. mth output)
variable that is connected to the rule node Rk. The fuzzy label in each antecedent/consequent node is an interval Type-2
membership function (see Fig. 2) whose footprint of uncertainty (FOU) [33] is defined as in (2):

lðxÞ ¼ ½lðxÞ; �lðxÞ� ð2Þ

where l(x) and �lðxÞ are the lower and upper membership functions respectively. They are defined accordingly as in (3):

lðxÞ ¼ lRðcR;r; xÞ if x 6 1=2 ðcL þ cRÞ
lLðcL;r; xÞ otherwise

�
; �lðxÞ ¼

lLðcL;r; xÞ if x 6 cL

1 if cL < x 6 cR

lRðcR;r; xÞ if x > cR

8><>: ð3Þ

where lL(cL,r;x) and lR(cR,r;x) are the left and right formation gaussian functions respectively. The gaussian function is de-
fined as: lðc;r; xÞ ¼ e�ððx�cÞ2=r2Þ such that c is the center and r is the width of the function. Adaptation of the centers is per-
formed using neural-network-based gradient descent approach [13,32] (see Appendix B); while the widths vary
incrementally as eT2FIS performs learning (see Section 3.2).

2.2. Reasoning process of eT2FIS

As seen from Fig. 1, the reasoning process of the eT2FIS model is represented by solid arrows where the input vector X (t)
is presented to the system at layer 1. The proposed system then performs inference based on the input vector by propagating
the information through layers 2–4. Consequently, the system produces a computed output vector Y(t) at layer 5. The details
on the reasoning process of eT2FIS are discussed here.

The generic operations for the reasoning process of eT2FIS are defined as follows: the forward activation functions of each
layer P 2 {1, . . . ,5} are denoted as fa(P), and the corresponding forward output for an arbitrary node is denoted as fo.

Layer 1: The function of the input nodes is to directly pass on the input vector to the next layer. Hence, the neural oper-
ations of IVi can be described as in (4):

foi ¼ fað1ÞðxiðtÞÞ ¼ xiðtÞ ð4Þ

Layer 2: The fuzzy labels eAi;ji define the antecedent segment of the Type-2 Mamdani-typed fuzzy rule described as in (1),
where each fuzzy label is defined as an interval Type-2 gaussian function described as in (2). The function of layer 2 of eT2FIS

Fig. 2. An interval Type-2 membership function in the antecedent/consequent node.

S.W. Tung et al. / Information Sciences 220 (2013) 124–148 127



Author's personal copy

is to perform similarity matching of the input value with the respective input labels. Hence, the neural computations of eAi;ji

can be described as in (5):

foi;ji
¼ fað2ÞðfoiÞ ¼ ½f i;ji ;

�f i;ji � ð5Þ

where the bounds of the interval Type-1 output set are computed as in (6):

f i;ji ¼ li;ji ðxiÞ; �f i;ji ¼ �li;ji ðxiÞ ð6Þ

such that li;ji
ðxÞ ¼ ½li;ji ðxÞ; �li;ji ðxÞ� refers to the Type-2 membership function embedded in eAi;ji . For simplicity, the time index

t has been dropped for the remaining parts of the reasoning process.
Layer 3: The set of Mamdani-typed rules that is induced incrementally from the numerical data is defined in the rule layer

of the eT2FIS model. Each rule node Rk computes the overall degree of similarity between the input vector and the anteced-
ent part of the kth fuzzy rule. Hence, the firing rate of Rk is computed as in (7), where

fok ¼ fað3Þ foðkÞ1;j1
; . . . ; foðkÞI;jI

� �
¼ ½f k;

�f k� ð7Þ

The bounds of the interval Type-1 output set are computed as in (8):

f k ¼ min
i2f1;...;Ig

f ðkÞi;ji
; �f k ¼ min

i2f1;...;Ig
�f ðkÞi;ji

ð8Þ

where foðkÞi;ji
¼ f ðkÞi;ji

; �f ðkÞi;ji

h i
is the computed output of eAðkÞi;ji

described as in (5).

Layer 4: This layer of eT2FIS consists of the fuzzy labels eClm ;m that define the consequent segments of the Mamdani-typed
fuzzy rules in the system. The function of layer 4 of the system is to perform consequent derivation for the fuzzy rules based
on the information from the current input vector. Since eClm ;m may serve as output to more than one fuzzy rule, the cumu-
lative neural computations of eClm ;m can be described as in (9):

folm ;m ¼ fað4Þ foðlm ;mÞ1 ; . . . ; foðlm ;mÞKlm ;m

� �
¼ ½f lm ;m;

�f lm ;m� ð9Þ

where Klm ;m is the total number of fuzzy rules in eT2FIS that shares the same consequent node eClm ;m. The bounds of the inter-
val Type-1 output set are computed accordingly as in (10):

f lm ;m ¼ max
k2f1;...;Klm ;mg

f ðlm ;mÞk ; �f lm ;m ¼ max
k2f1;...;Klm ;mg

�f ðlm ;mÞk ð10Þ

such that foðlm ;mÞk ¼ f ðlm ;mÞk ; �f ðlm ;mÞk

h i
is the output of the kth fuzzy rule that shares eClm ;m.

Layer 5: The output nodes perform a two-steps computation to obtain a crisp output value: type-reduction, followed by
defuzzification. A modified height-type-reduction [9] is adopted in the eT2FIS model, and it is computed using Karnik–Men-
del (KM) iterative algorithm [22]. Hence, the neural computations of OVm can be described as in (11):

fom ¼ fað5Þðfo1;m; . . . ; foLm ;mÞ ¼ ym ð11Þ

where ym ¼ 1=2ðYm þ YmÞ is the defuzzied value of the type-reduced set Ym ¼ ½Ym; Ym�. The type-reduced set is defined as:R
� � �
R
qlm

1=
P

lm hlmqlm=
P

lmqlm

� �
such that hlm is the midpoint of eClm ;m and qlm 2 folm ;m. Please refer to Appendix A for a detailed

implementation of the KM algorithm for determining the type-reduced set Ym.

2.3. Neural computations of eT2FIS

The neural computations defined in the proposed eT2FIS model are bi-directional in the forward and backward sense. The
neural computations of eT2FIS are discussed here.

Forward Operation: As seen from Fig. 1, the forward operation of eT2FIS coincides with its reasoning path. In particular,
the forward operation is defined as the neural computations of layers 1 to 3 of the system.
Backward Operation: The backward operation of eT2FIS is represented by dotted arrows in Fig. 1, where the desired output
vector D(t) is presented to the system in layer 5. The proposed system then passes the information towards the rule layer.
The backward operation is a mirrored computation of the forward operation as discussed below.

The generic operations for the backward operation of eT2FIS are defined as follows: the backward activation functions of
each layer P 2 {3, . . . ,5} are denoted as ba(P), and the corresponding backward output for an arbitrary node is denoted as bo.

Layer 5: The output nodes directly pass on the output vector to the next layer such that the neural operations of OVm can
be described as in (12):

bom ¼ bað5ÞðdmðtÞÞ ¼ dmðtÞ ð12Þ
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Layer 4: The consequent nodes perform similarity matching of the desired output values with the respective output labels
such that the neural computations of eClm ;m can be described as in (13):

bolm ;m ¼ bað4ÞðbomÞ ¼ ½blm ;m;
�blm ;m� ð13Þ

where blm ;m ¼ llm ;mðdmÞ and �blm ;m ¼ �llm ;mðdmÞ.
Layer 3: A rule node computes the overall degree of similarity between the desired output vector and the consequent part

of the kth fuzzy rule such that the neural computations of Rk are described as in (14):

bok ¼ bað3Þ boðkÞl1 ;1
; . . . ; boðkÞlM ;M

� �
¼ ½bk;

�bk� ð14Þ

where bk ¼minm2f1;...;Mgb
ðkÞ
lm ;m

and �bk ¼minm2f1;...;Mg
�bðkÞlm ;m

.

The forward-and-backward neural computations are defined to compute the activation levels of the fuzzy rules in eT2FIS
when a data pair [X (t); D(t)] is presented. The objective is two-folds; namely, (1) to establish the certainty factors of the fuzzy
rules, and (2) to determine the creation of a new rule (see Section 3.2). Certainty factor of a fuzzy rule reflects the modeling
potential of the rule for the current environment, and it is defined as in (15):

fkðtÞ ¼ max½agekðtÞ; actkðtÞ�; fkð0Þ ¼ 1 ð15Þ

where the certainty factor f of a newly created rule k is initialized to unity. This means that a newly created rule in eT2FIS is
assumed the greatest modeling potential since 0 < f 6 1. Subsequently, the computation of f consists of two parts: the for-
getting and the enhancement components. They are computed respectively as in (16):

agekðtÞ ¼ gkfkðt � 1Þ; actkðtÞ ¼ min½FðXÞ;BðDÞ� ð16Þ

where gk is a decaying constant; while FðXÞ ¼ 1=2 ðf k þ �f kÞ and BðDÞ ¼ 1=2 ðbk þ �bkÞ are the forward and backward activa-
tions of Rk respectively. The age component mimics the biological phenomenon of long-term depression (LTD) [31]. Intui-
tively, information from [X(t); D(t)] can be retained by a one-to-one retention of a fixed synaptic configuration encoding
the data pair. However, a more realistic approach is to consider passive decomposition of the configuration because the rel-
evance of a particular data pair is temporal under a dynamically changing environment. On the other hand, the act compo-
nent mimics the biological phenomenon of long-term potentiation (LTP) [31]. That means, information storage in the network
of a human brain often outlasts its initial synaptic configurations because long-term memory of knowledge can be enhanced
through repeated rehearsals of related information. Hence, the modeling potential of a forgotten fuzzy rule can be enhanced
via a repeated rehearsal of related information that first elicited its formation.

Through an incremental update of the certainty factors, eT2FIS is ensured a current and up-to-date rule base that is able
to model the current underlying dynamics of the environment. If a fuzzy rule is able to generalize the recent encountered set
of numerical data, the dominating factor in the computation of its certainty factor is the enhancement component. This, sub-
sequently, maintains a high value for the computed certainty factor, thus enhancing the presence of the rule in the fuzzy rule
base. On the other hand, the forgetting mechanism kicks in if a fuzzy rule fails to give a satisfactory generalization of the
recent set of encountered numerical data. Subsequently, the modeling potential of the rule decreases over time until the rule
becomes irrelevant to the environment or it gets restored through a rehearsal episode.

3. Learning mechanism in eT2FIS

Initialization is first performed when there are no existing fuzzy rules in the proposed eT2FIS model. An incremental
learning scheme is subsequently employed for the structure and parameter learning of eT2FIS where the system learns
and evolves with the arrival of each new data pair. There are three key operations in the structure learning of eT2FIS: (1)
generation of new fuzzy rules, (2) deletion of obsolete rules, and (3) merger of highly over-lapping fuzzy labels in the in-
put–output spaces. Following that, parameter learning is performed in eT2FIS using a gradient descent approach. The com-
putational structure of the eT2FIS model is then established, and the system can be employed to model an application or
further training is performed. Details on the structure learning mechanism of eT2FIS are presented in this section, and
the parameter learning mechanism is presented in Appendix B.

3.1. Initialization

Prior to the commencement of learning, there are no nodes in the hidden layers 2–4 of the proposed eT2FIS model. Learn-
ing of the system begins with extracting and utilizing knowledge from the first incoming data pair [X(0); D(0)] to establish an
initial structure of the eT2FIS model. Subsequently, the formation of a first fuzzy cluster eAi;1 in an input dimension i can be
described using its FOU as: li;1ðxÞ ¼ ½li;1ðxÞ; �li;1ðxÞ� where the left and right formation gaussian functions can be described
accordingly as in (17):

cL
i;1 ¼ xi � D; cR

i;1 ¼ xi þ D; ri;1 ¼ r0 ð17Þ

S.W. Tung et al. / Information Sciences 220 (2013) 124–148 129
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such that D defines a small perturbation and the width is initialized as r0. The same fuzzy clustering process is performed for
each output dimension m to formulate a first fuzzy cluster eC1;m. In addition, a new fuzzy rule R1 is formulated to encode the
knowledge from [X(0); D(0)] where feAi;1gI

i¼1 and feC1;mgM
m¼1 form the antecedent and consequent segments of R1 respectively.

3.2. Rule generation

The proposed eT2FIS model proceeds with the generation of a new fuzzy rule when a data pair [X(t); D(t)] is presented to a
non-empty system at a time t. The activation levels of the fuzzy rules are computed using (16). If an existing fuzzy rule is able
to represent the presented data, the system proceeds with the update of the certainty factors for the fuzzy rules as in (15). A
fuzzy rule is deemed as being able to represent the presented data if the computed activation level of the rule exceeds a rule
generation threshold K, i.e., actk > K.

On the other hand, a new fuzzy rule is created if existing rules in eT2FIS fail to provide a representation of the presented
data, i.e., actk 6K for all k. The eT2FIS model proceeds to identify the best matched fuzzy clusters in the input dimensions via
the computed similarity values. Deriving from (5), the similarity value between an input value xi and an existing cluster in
the ith input dimension is given as SVðxi; eAi;ji Þ ¼ 1=2 ðf i;ji þ �f i;ji Þ. Subsequently, the best matched fuzzy cluster in an input
dimension i is denoted as eAi;jHi

where jH

i ¼ arg maxji SVðxi; eAi;ji Þ. A new fuzzy rule RK(t+1), where K(t + 1) = K(t) + 1, is formulated
to encode the knowledge from [X(t); D(t)] such that each identified best matched fuzzy cluster can be categorized into three
operations as follows:

1. No action is required for the best matched fuzzy cluster and it is defined as part of the antecedent segment of RK(t+1). This sce-
nario occurs when the similarity value between the presented value and the best matched fuzzy cluster is greater than K.
That means, the best matched fuzzy cluster is able to represent the presented value.

2. Modify the best matched fuzzy cluster and the modified cluster is defined as part of the antecedent segment of RK (t+1). This sce-
nario occurs when the computed similarity value is less that K, but an updated similarity value between the presented
value and the modified best matched fuzzy cluster is greater than K. That means, the modified best matched fuzzy cluster
is able to represent the presented value although it is initially unable to prior to an update. There are two types of mod-
ifications: (a) Increase the spread of the fuzzy cluster: The spread between the centers of the left and right formation gauss-
ian functions of the best matched fuzzy cluster is denoted as si;jHi

, i.e., si;jHi
¼ cR

i;jHi
� cL

i;jHi
. The spread si;jHi

is then modified as
described in (18):

si;jHi
ðt þ 1Þ ¼ si;jHi

ðtÞ þ g � 1� SV xi; eAi;jHi

� �� �
� si;jHi
ðtÞ ð18Þ

where g is a modification rate. Subsequently, the centers of the left and right functions are updated accordingly as in (19):

cL
i;jHi
ðt þ 1Þ ¼ cR

i;jHi
ðtÞ � si;jHi

ðt þ 1Þ if xi < cL
i;jHi
ðtÞ

cR
i;jHi
ðt þ 1Þ ¼ cL

i;jHi
ðtÞ þ si;jHi

ðt þ 1Þ if xi P cR
i;jHi
ðtÞ ð19Þ

(b) Increase the width of the fuzzy cluster: The width of the best matched fuzzy cluster is modified as described in (20):

ri;jHi
ðt þ 1Þ ¼ ri;jHi

ðtÞ þ g � 1� SV xi; eAi;jHi

� �� �
� ri;jHi

ðtÞ ð20Þ

where g is a modification rate. Modification is performed on the best matched cluster by either increasing the spread or
the width of the membership function under two conditions: the updated similarity value between the presented value
and the modified best matched fuzzy cluster is greater than K, and the updated similarity value results in the largest in-
crease in the computed similarity value. Otherwise, modification to the best matched cluster is performed by increasing
both its spread and width.

3. A new fuzzy cluster is created and it is defined as part of the antecedent segment of RK(t+1). This scenario occurs when both the
computed similarity value and the updated similarity value (as discussed in 2) are less than K. That means, the presented
value is novel as compared to the existing clusters in the system. The formation of a new fuzzy cluster eAi;Jiðtþ1Þ, where
Ji(t + 1) = Ji(t) + 1, in the ith input dimension can be described using its FOU as: li;Jiðtþ1ÞðxÞ ¼ ½li;Jiðtþ1ÞðxÞ; �li;Jiðtþ1ÞðxÞ� where
the left and right formation gaussian functions can be described accordingly as in (21):

cL
i;Jiðtþ1Þ ¼ xi � D; cR

i;Jiðtþ1Þ ¼ xi þ D;ri;Jiðtþ1Þ ¼
rR if jL

i ¼ NULL

rL if jR
i ¼ NULL

RðrR;rLÞ otherwise

8><>: ð21Þ

such that

rR ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
ðci;jRi

� xiÞ2

log a

vuut
;ri;jRi

ðtÞ

0B@
1CA; rL ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
ðci;jLi
� xiÞ2

log a

vuut
;ri;jLi

ðtÞ

0B@
1CA ð22Þ
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The width of the newly created fuzzy cluster is determined based on the notion of behavioral category learning process
exhibited by humans [43]. Rðr1; r2Þ ¼ 1

2 ½r1 þ r2� defines a regulator function that ensures a newly created fuzzy cluster
has distinct semantic meaning, and a is a minimum membership threshold. Following [43], the minimum membership
threshold a is fixed as 0.2 in this paper. The immediate left and right neighbors of the newly created cluster are denoted
as jL

i and jR
i respectively, where

jL
i ¼

NULL if ci;ji P xi for 1 6 ji 6 JiðtÞ
arg min

ci;ji
<xi

jci;ji � xij otherwise

8<:
jR
i ¼

NULL if ci;ji 6 xi for 1 6 ji 6 JiðtÞ
arg min

ci;ji
>xi

jci;ji � xij otherwise

8<: ð23Þ

such that ci;ji ¼ 1=2 cL
i;ji
þ cR

i;ji

� �
. Refinements are subsequently made to the immediate left and right neighbors of the newly

created cluster as follows:
1. If the newly created cluster has no left neighbor (i.e. jL

i ¼ NULL), then only the right neighbor is updated:
ri;jRi
ðt þ 1Þ ¼ ri;Jiðtþ1Þ.

2. If the newly created cluster has no right neighbor (i.e. jR
i ¼ NULL), then only the left neighbor is updated:

ri;jLi
ðt þ 1Þ ¼ ri;Jiðtþ1Þ.

3. If the newly created cluster has both left and right neighbors, then they are updated: ri;jLi
ðt þ 1Þ ¼ ri;jRi

ðt þ 1Þ ¼ ri;Jiðtþ1Þ.

Fig. 3 illustrates the fuzzy partitioning process in an input–output dimension of the proposed eT2FIS model. A novel data
point is encountered in Fig. 3a, where the computed similarity values between the presented point and the existing clus-
ters fall below K. In addition, it should be checked that the computed similarity values between the presented point and
the modified versions of the existing clusters also fall below K. A new cluster is then created using information derived
from this novel data point as seen in Fig. 3b. The spreads of the cluster on either side of the center depend on the distance
of the presented point to the respective centers of its immediate neighbors. The centers of the immediate neighbors have
the minimum membership value a. Regulation is performed to preserve a distinct semantic meaning of the newly cre-
ated cluster as shown in Fig. 3c. Existing clusters are simultaneously refined to incorporate the newly created cluster.

The same identification process is performed for each output dimension to determine the consequent segment of RK(t+1).
Following that, certainty factors of the fuzzy rules are computed based on the modified structure of the eT2FIS model.

3.3. Merger of fuzzy labels

The second operation in the structure learning of eT2FIS is the merger of highly over-lapping fuzzy labels in the input–
output spaces. The objective is two-folds: to improve the semantic interpretation of the fuzzy clusters, and to reduce the
computational complexity of the system with a more compact rule base. The system proceeds to identify the most similar
fuzzy labels in the input dimensions via similarity matches. The similarity match between two existing clusters in the input
dimension i is denoted as SMðeAi;j1i

; eAi;j2i
Þ and its computation is described as in (24):

SMðeAi;j1i
; eAi;j2i

Þ ¼minðAj1i \j2i
=Aj1i

;Aj1i \j2i
=Aj2i
Þ ð24Þ

where Ajq
i

is the area enclosed by the isosceles triangle with center ci;jq
i
¼ 1=2 cL

i;jq
i
þ cR

i;jq
i

� 	
and base 4ri;jq

i

ffiffiffiffiffiffiffiffi
ln 2
p

; q ¼ 1;2; and

Aj1i \j2i
is the triangular area enclosed by the intersection of the two isosceles triangles. Fig. 4A. illustrates the graphical

meanings of the definitions given in (24). Subsequently, the most similar fuzzy labels in an input dimension i are denoted

(c)(b)(a)
Fig. 3. Fuzzy partitioning: (a) introduction of a novel data point; (b) creation of a new cluster based on the novel point before regulation; and (c) final
appearance of the fuzzy partitionings in the input–output dimension after regulation.
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as eAi;j0i
and eAi;j00i

such that the similarity match between them is the greatest among all existing clusters in the input dimen-

sion i.
The most similar fuzzy clusters eAi;j0i

and eAi;j00i
are merged if the similarity match between them exceeds a merger threshold

X, i.e., SMðeAi;j0i
; eAi;j00i

Þ > X. Fig. 4B. illustrates the merger process of two highly over-lapping fuzzy labels. The merged fuzzy

label is denoted as eAi;j0i[j00i
and it can be described using its FOU as: li;j0i[j00i

ðxÞ ¼ ½li;j0i[j00i
ðxÞ; �li;j0i[j00i

ðxÞ�where the left and right for-

mation gaussian functions can be described accordingly as in (25):

cL
i;j0i[j00i

¼ 1=2 cL
i;j0i
þ cL

i;j00i

� �
; cR

i;j0i[j00i
¼ 1=2 cR

i;j0i
þ cR

i;j00i

� �
ri;j0i[j00i

¼ 1=2 ðr0 þ r00Þ ð25Þ

such that r0 ¼ 1=
ffiffiffiffiffiffiffiffi
ln 2
p

ðcL
i;j0i[j00i
� ci;j0i

þ ri;j0i

ffiffiffiffiffiffiffiffi
ln 2
p

Þ and r00 ¼ 1=
ffiffiffiffiffiffiffiffi
ln 2
p

ðci;j00i
þ ri;j00i

ffiffiffiffiffiffiffiffi
ln 2
p

� cR
i;j0i[j00i
Þ. Without loss of generality, it is as-

sumed that ci;j0i
< ci;j00i

where ci;ji ¼ 1=2 cL
i;ji
þ cR

i;ji

� �
.

The same merger process is repeated for each output dimension to merge highly over-lapping fuzzy labels in the output
spaces. Subsequently, the proposed eT2FIS model performs consistency check on the rule base. An inconsistent rule base oc-
curs when there exists two rules in the rule base of the system such that the antecedent conditions are similar but the resul-
tant consequences differ. If the rule base is inconsistent, then inconsistent rules with lower certainty factors are deleted. This
approach not only ensures a consistent resultant rule base, it also ensures that eT2FIS provides the most aptly description of
the current environment.

3.4. Deletion of obsolete rules

The last operation in the structure learning of eT2FIS is the deletion of obsolete rules. This is necessary to remove irrel-
evant rules that do not participant in the modeling of the current environment, hence ensuring an up-to-date rule base that
is able to model the current underlying dynamics of the environment. This approach spares the proposed system from an
explosively increasing rule base by maintaining a compact rule base as it performs a life-long incremental learning of the
environment. In addition, by incrementally adding relevant new rules and deleting obsolete rules in the system, a regulated
balance is maintained between old knowledge in the system and new knowledge from incoming data pairs. This addresses
the stability-plasticity trade-off of the system.

As explained previously, the certainty factor of a fuzzy rule is high if it is able to generalize the recent encountered set of
numerical data. The inverse is also true where the certainty factor of a fuzzy rule is low if it fails to give a satisfactory
generalization of the recent set of encountered numerical data. Consequently, a fuzzy rule in eT2FIS is regarded as an obso-

(a) Computation of similarity match between two fuzzy clusters

(b) Merger process of two highly over-lapping fuzzy labels

Fig. 4. (A) Computation of similarity match between two fuzzy clusters and (B) merger process of two highly over-lapping fuzzy labels.
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lete rule if its certainty factor falls below a deletion threshold C, i.e., delete Rk if fk(t) < C such that K(t + 1) = K(t) � 1. Finally,
some of the fuzzy labels might be ‘‘orphaned’’ when all fuzzy rules associated with them have been deleted. The orphaned
fuzzy labels are then removed to ensure that the resultant computational structure of eT2FIS is compact.

4. Experimental results and analysis

This section illustrates the learning and adaptation abilities of the proposed eT2FIS model by employing it in four bench-
marking and real-world applications: (1) identification of a nonlinear system [16]; (2) online tracking of a financial stock
price; (3) modeling of highway traffic flow density [41]; and (4) prediction of a chaotic system [29].

4.1. Example 1 – Identification a nonlinear system

There are three parts to this application problem [16]: (a) the online identification of a non-time-varying system; (b) the
online identification of a time-varying system; and (c) the identification of a noisy system.

4.1.1. Online identification of a non-time-varying system
This experiment generalizes the dynamics of a nonlinear system, where the dataset is generated by a difference equation

as described in (26):

yðt þ 1Þ ¼ yðtÞ
1þ y2ðtÞ þ u3ðtÞ ð26Þ

such that the present output of the system, y(t + 1), depends nonlinearly on its past output, y(t), and an input, u(t) = sin(2pt/
100). Following the description in [16], 50000 training and 200 testing data pairs are generated with initial conditions (u(0),
y(0)) = (0,0). Subsequently, the eT2FIS model is applied to identify the nonlinear system in an online mode, where no prior
offline knowledge is used to train the system. The system performs structure and parameter learning upon the arrival of each
incoming data pair. The thresholds for the three key operations are set as follows: rule generation threshold, K = 0.4; merger
threshold, X = 1; and deletion threshold, C = 0. In addition, the spreads between the left and right formation functions of the
fuzzy labels in the system are initialized to zero, since there is no noise added to this problem. This means that the proposed
model is being used as an evolving Type-1 Mamdani-typed neural fuzzy system. Subsequently, six, four and three fuzzy la-
bels are identified by eT2FIS for this two inputs-one output application problem respectively. Fig. 5 illustrates the identified
fuzzy clusters in the input spaces u(t) and y(t). The respective fuzzy partitioning of the input spaces for the original problem
derived by the SONFIN model [16] have also been included as a comparison. As clearly seen from Fig. 5a, the fuzzy clusters
identified in eT2FIS are highly ordered and have clear semantic meanings with respect to the attached fuzzy labels, which
provides an interpretable resultant system [35]. Comparatively, Fig. 5b shows the initial identified fuzzy clusters in SONFIN.
As seen, the fuzzy clusters are highly over-lapping, making it difficult to induce any clear semantic meanings to the derived
clusters. To tackle this problem, SONFIN performs an additional step of computing the similarity of a newly formed cluster
with existing clusters in the input spaces, and subsequently align the new cluster. This improved result is shown in Fig. 5c.
Although the number of fuzzy clusters identified in the input spaces have reduced (from an initial 10 fuzzy clusters to 5 fuzzy
clusters in u(t); and an initial 10 fuzzy clusters to 7 fuzzy clusters in y(t)), the resultant fuzzy clusters still have a significant
amount of over-lap as seen in the first two clusters of the input space y(t). From this illustration, a key strength of a Mam-
dani-typed neural fuzzy system is well-demonstrated in eT2FIS, where intuitive semantic labels can be directly identified
from the raw numerical data for the input–output spaces. On the other hand, TSK models such as SONFIN generally report
large over-lapping regions in the identified fuzzy clusters where one can hardly induce any underlying data structure from
the observed fuzzy sets [47].

Subsequently, eT2FIS identifies fourteen fuzzy rules using the derived semantic fuzzy labels in the input–output spaces.
Fig. 6a lists the identified fuzzy rule base in eT2FIS. One can easily verify that the derived rule base is consistent. Fig. 6b
shows the modeling results of the eT2FIS model on the testing data. As seen, there is an almost perfect match between
the computed outputs of the network and the desired outputs of the system, with eT2FIS achieving a root mean squared
error (RMSE) of 0.053 on the testing data.

This modeling problem focuses on a non-time-varying system, thus the deletion operation is not necessary and it is
switched off by setting C = 0. To study the effects of the rule generation threshold, K, and the merger threshold, X, on the mod-
eling abilities of the proposed eT2FIS model, different values are tested. The test results concerning the number of identified
fuzzy labels, fuzzy rules and the RMSE on the testing data are listed in Table 2. Looking at the first table, it is observed that
eT2FIS performs consistently within certain ranges of K. When K is set to a low value, the modeling abilities of eT2FIS suffer
because fewer rules are created. On the other extreme, when K is set to a high value, eT2FIS performs better with a lower
reported RMSE value, but at the expense of a larger rule base. In general, a trade-off between interpretability and accuracy is
needed [37], and this is achieved in eT2FIS as follows: better performance is expected when K is high, with a decrease in the
interpretability of the system due to a larger rule base; while a better interpretability is achieved with a low K, resulting in a
decrease in the modeling abilities. Meanwhile, the number of identified fuzzy labels also increase with an increasing K value.
When K = 0.5, as much as eight fuzzy clusters are identified for the input space u(t). To achieve a more compact structure,
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merging of highly similar fuzzy clusters can be performed on the system. The test results using different values of X are
listed in the bottom table. As seen, the performance of eT2FIS is consistent when very similar fuzzy clusters are merged.
The result is a smaller rule base, and a lesser number of fuzzy clusters identified. However, when X is over-relaxed, not very
similar clusters might be merged, leading to a significant jump in the RMSE value. Ideally, merging should only be performed
for highly over-lapping fuzzy clusters, and this can be achieved by setting a larger merger threshold.

The performance of the proposed eT2FIS model is subsequently compared against the following evolving neural fuzzy
systems; namely, SONFIN [16]; SAFIS [39]; eTS [3]; FALCON-ART [27]; EFuNN [23]; and eFSM [47]. The benchmarking mea-
sure is the RMSE achieved on the testing data. Table 3 shows the benchmarking results of the models. From the table, it can
be seen that TSK-typed systems generally perform better with smaller RMSE values, using a similar number of rules. How-
ever, this is not unexpected since TSK-typed systems are generally more expressive and accurate compared to Mamdani-
typed models, focusing on achieving good modeling performances at the expense of an opaque system structure [47]. This
can be seen from the highly over-lapping fuzzy clusters generated in TSK-typed models as shown in Fig. 5. Comparing within
the Mamdani-typed systems, the proposed eT2FIS model is able to deliver an outstanding performance, both in terms of the
lowest RMSE value achieved and the lowest number of rules used. This result illustrates the excellent generalization abilities
of the proposed model, with an equally well-balanced interpretability maintained in the system.

4.1.2. Online identification of a time-varying system
This experiment is performed to demonstrate the evolving ability of the proposed eT2FIS model, with the dataset gener-

ated as in (27):

yðt þ 1Þ ¼ yðtÞ
1þ y2ðtÞ þ u3ðtÞ þ f ðtÞ ð27Þ

where a disturbance f(t) is introduced into the system in (26), such that f(t) is described as in (28):

f ðtÞ ¼
0 for 1 6 t 6 1000 and t P 2001
1 for 1001 6 t 6 2000

�
ð28Þ

Since this is a modeling problem concerning the identification of a time-varying system, the eT2FIS model is evaluated in an
online mode. The thresholds for the three key operations for the structure learning in eT2FIS are set as follows: K = 0.4;
X = 1; C = 0.

Fig. 7 illustrates the online modeling performance of eT2FIS, zooming in on the modeling of eT2FIS when the disturbance
f(t) is added in part (a), and removed in part (b). As seen, there are very good matches between the computed output of
eT2FIS and the desired output of the system, both after f(t) is introduced at t = 1001 and removed at t = 2001. This indicates

Table 2
Sensitivity test for different values of K and X in eT2FIS.

# Fuzzy labels # Rules RMSE

K
0.30 Inputs = 3, 4; Output = 3 6 0.091
0.35 Inputs = 4, 4; Output = 3 10 0.068
0.40 Inputs = 6, 4; Output = 3 14 0.053
0.45 Inputs = 5, 5; Output = 4 14 0.048
0.50 Inputs = 8, 5; Output = 4 21 0.033
X = 1; C = 0

X
0.9 Inputs = 8, 5; Output = 4 21 0.033
0.8 Inputs = 7, 5; Output = 4 20 0.032
0.7 Inputs = 6, 5; Output = 4 17 0.034
0.6 Inputs = 4, 5; Output = 4 12 0.055
0.5 Inputs = 4, 3; Output = 2 8 0.114
K = 0.5; C = 0

Table 3
Results of online identification of a non-time-varying system.

Model Typed # Rules RMSE

SONFIN TSK 10 0.013
SAFIS TSK 8 0.012
eTS TSK 19 0.008
FALCON-ART Mamdani 289 0.138
EFuNN Mamdani 18 0.058
eFSM Mamdani 14 0.073
eT2FIS Mamdani 14 0.053

S.W. Tung et al. / Information Sciences 220 (2013) 124–148 135



Author's personal copy

the prompt tracking of the proposed model to changes in the application environment, adapting to the changes in an efficient
manner. Overall, eT2FIS achieves a RMSE of 0.180 over the duration t 2 [1,3000]. Subsequently, the change in the number of
rules identified by eT2FIS throughout the course of online identification of this time-varying system is illustrated in Fig. 8a.
From the figure, it can be seen that there is an increment in the number of fuzzy rules each time the disturbance is added or
removed. Since the deletion threshold C has been set to zero, the deletion mechanism is switched off. This is illustrated in
Fig. 8a, where the number of rules can only increase. At the end of the course of this experiment, a total of twelve rules have
been identified by the eT2FIS model. Considering the short modeling span of 3000 time steps, the size of the fuzzy rule base
is still interpretable. However, the system might be burdened by a very large rule base if a longer modeling time span is per-
formed for time-varying application problems, affecting the interpretability of the system. A regulation on the size of the
identified fuzzy rule base is thus desirable in such cases.

To study the effect of the deletion threshold, C, on the modeling abilities of the eT2FIS model, different values of C are
tested, with the rest of the pre-selected variables unchanged. Deletion of obsolete rules is a feature in the proposed model
to tackle the prevailing issue of an ever-expanding structure in evolving neural fuzzy systems. As before, the test results con-
cerning the number of identified fuzzy labels, fuzzy rules and the RMSE values achieved are listed in Table 4. It is observed
that eT2FIS performs consistently when the values of C are kept small. The identified numbers of fuzzy labels and fuzzy rules
become more compact when deletion is performed, thus improving on the interpretability of the system. However, there is a
great jump in the RMSE value when C is set too large. This is because, for this particular time-varying problem, the rate of
change of the underlying dynamics is relatively slow. When the rate of updating the fuzzy rules through a deletion of ob-
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Table 4
Sensitivity test for different values of C in eT2FIS.

C # Fuzzy labels # Rules RMSE

0.0 Inputs = 6, 3; Output = 5 12 0.180
0.1 Inputs = 7, 3; Output = 5 11 0.172
0.2 Inputs = 6, 3; Output = 4 11 0.175
0.3 Inputs = 5, 3; Output = 4 8 0.174
0.4 Inputs = 10, 3; Output = 4 13 0.202

K = 0.4; X = 1.
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solete rules is too rapid, the system could end up forgetting the knowledge too soon after it has been learnt. In general, the
deletion threshold is set proportional to the rate of change of the environment’s dynamics. That is, a small C is sufficient for a
slow changing application problem, while a larger C is needed for a rapid changing application problem. Subsequently, the
change in the number of rules identified by eT2FIS throughout the course of online identification of the time-varying system
for C = 0.3 is illustrated in Fig. 8b. As seen, there is a good regulation of the number of fuzzy rules identified throughout the
experiment. An increase in the number of fuzzy rules is observed whenever f(t) is added or removed. Following each in-
crease, obsolete rules that are no longer participating in the modeling of the current environment are deleted. This is seen
from the decrease in the number of rules. At the end of this experiment, a more compact fuzzy rule base (consisting of 8
rules) is identified, while the modeling performance is maintained (as seen from Table 4, where RMSE = 0.174).

4.1.3. Identification of a noisy system
This experiment is performed to illustrate the noise resistance ability of eT2FIS, where the same nonlinear system in (26)

is considered. A total of 200 input–output data pairs are generated. Following the experimental description in [18], it is as-
sumed that each measured y(t) contains noise, and the noisy value is denoted as yn(t). The added noise is artificially gener-
ated white noise with uniform distribution. Simulations with noise being generated in the ranges [�0.1,0.1] and [�0.5,0.5]
are conducted. Noise is added to the original 200 clean input–output data pairs. For training, the inputs are yn(t) and u(t), and
the desired output is yn(t + 1). After training, another set of noise is added to the original 200 clean data pairs, and noisy val-
ues yn(t) are fed as inputs to test the noise resistance ability of eT2FIS. Subsequently, the RMSE between the computed output
of eT2FIS and the original desired clean output y(t + 1) of the system is calculated. There are 20 Monte Carlo realizations for
this experiment, where the mean and standard deviation values are averaged. The learning is performed in an offline manner
where the training data is learnt by cycling through it a number of epochs.

In the first part of the benchmarking, eT2FIS is compared against two variations of its Type-1 counterparts. For the first
variation, an evolving Type-1 Mamdani-typed model is built using the same learning mechanisms, where the spreads be-
tween the left and right formation functions of the fuzzy labels in the system are initialized to zero. This model is referred
to as eT1FIS-V1. For the second variation, an eT2FIS model is built using the learning mechanisms, where the testing system
is then converted to a Type-1 model by replacing all the Type-2 fuzzy sets by Type-1 fuzzy sets (center c = 1/2 (cL + cR); width
r remains unchanged). This model is then referred to as eT1FIS-V2. For noise level [�0.1,0.1], the thresholds in eT2FIS are set
as follows: K = 0.35; X = 0.55; C = 0; and the initial spreads between the left and right functions of the fuzzy labels are 0.02;
while considering a greater noise level [�0.5,0.5], K is reduced to 0.3 and the initial spreads between the left and right func-
tions of the fuzzy labels are increased to 0.024. Table 5 shows the performances of the three models. The Type-2 model out-
performs both versions of its Type-1 counterparts under the two different noise levels, where lower RMSE values are
reported. This is on top of the lesser number of training epochs required by eT2FIS. With the other pre-selected variables
unchanged (except the spreads of the fuzzy labels), eT1FIS-V1 generally identifies more rules. Although this helps in reduc-
ing the RMSE achieved, the system is not as stable compared to eT2FIS as seen from the larger standard deviations of eT1FIS-
V1. On the other hand, eT1FIS-V2 inherits the fuzzy rules from eT2FIS, with the fuzzy labels replaced as Type-1 sets. Since the
original system is built with the aim of creating a Type-2 model, this could explain the poorest performance of eT1FIS-V2
among all the models. On the other hand, the performance of eT1FIS-V2 is more stable compared to eT1FIS-V1 as seen from
the similar standard deviations achieved by eT1FIS-V2 from eT2FIS. This result illustrates the better and more stable noise
resistance ability of the proposed eT2FIS model compared to its Type-1 counterparts, indicating that it is more robust when
learning under noisy application environments.

In the second part of the benchmarking, the performance of the proposed eT2FIS model is compared against the following
models; namely, a Type-1 system – SONFIN [16]; and a Type-2 Mamdani-typed system – T2SONFS [18]. Table 6 shows the
results of the comparison. Being a Type-1 model, SONFIN performs the poorest among the three models for both different
noise levels. As a fair comparison, 500 epochs of training are performed for the models. As seen, both the Type-2 Mamda-
ni-typed models perform comparably in terms of the number of fuzzy rules identified, and RMSE values achieved. In fact,
it should be noted that the proposed model is able to achieve similar performances within 200 epochs of training (see Table
5). This indicates that eT2FIS is able to perform faster learning of the application environment. From this experiment, the
proposed Type-2 eT2FIS model has demonstrated better performances compared to both its Type-1 counterparts, as well
as generic Type-1 models, under noisy learning environments; while achieving comparable performance compared to
corresponding Type-2 models.

Table 5
Performances of eT2FIS, eT1FIS-V1 and eT1FIS-V2 for the identification of a noisy system.

Noise level [�0.1,0.1] [�0.5,0.5]

Model # Epochs # Rules Average RMSE ± STD # Rules Average RMSE ± STD

eT2FIS 200 10 0.034 ± 0.002 11 0.138 ± 0.004
eT1FIS-V1 500 12 0.048 ± 0.003 16 0.153 ± 0.007
eT1FIS-V2 500 10 0.063 ± 0.002 11 0.170 ± 0.004
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4.2. Example 2 – Online tracking of a financial stock price

The online modeling ability of the proposed eT2FIS model is evaluated using a real-world financial time-series data,
where the stock price of Google is investigated. The data was collected from Yahoo! Finance over a period of 6 years from
19 August 2004 to 21 September 2010, and a total of 1534 data points was collected. Fig. 9 shows the time-variant behavior
of the daily stock price, covering over a range of [100.01,741.79]. Also shown is the daily price differences of the stock, which
covers a range of [�52.12,89.87]. As seen from the figure, there is an exceptional period of volatility in the daily differences
from the fourth quarter of 2007 to the first quarter of 2009 as indicated by the dotted circle. Both the maximum and min-
imum price differences occur within this period, with the mean and standard deviation of the price differences in this period
achieving �0.5799 ± 13.97. The standard deviation is significantly higher compared to that over the entire time horizon
(0.2693 ± 9.321) and over the remaining time duration of the experiment (0.5470 ± 7.161).

The objective of this experiment is to track, in an online mode, the underlying movement of the stock price using the in-
put and output vectors, where y is the daily stock price.

input vector ¼ ½yðt � 2Þ; yðt � 1Þ; yðtÞ�; output vector ¼ ½yðt þ 1Þ�

The benchmarks for comparisons are the accuracies on the numerical data (calculated as the mean squared error MSE) and
the correspondence between the computed outputs with the desired outputs (computed as the Pearson correlation coeffi-
cient R). Due to availability constraint,5 the experimental results of eT2FIS are benchmarked against the following models;
namely, EFuNN [23]; and DENFIS [24]. The thresholds in the eT2FIS model are set as follows: K = 0.35; X = 1; C = 0.4; and
the initial spreads between the left and right functions of the fuzzy labels are 1.0. Since this is a modeling problem concerning
a rapidly changing time-varying application, the deletion mechanism in eT2FIS has been switched on to regulate the size of the
identified fuzzy rule base.

Fig. 10 shows the online tracking performance of the eT2FIS model for both the entire time horizon (A) and the period
from 4th quarter 2007 to 1st quarter 2009 (B). From Fig. 10A-a, eT2FIS demonstrates a satisfying performance in modeling
the time-varying stock price movement for the entire time frame of the experiment. The number of rules identified by eT2FIS
during the course of the experiment is shown in Fig. 10A-b. The modeling squared error at each time step is also shown. As
seen, there is a spike in the modeling error each time a change in the dynamics of the price movement is detected. More rules
are then identified by eT2FIS to capture this change of dynamics. Over the 6 years, the underlying dynamics of the stock price
movement changes at least 11 times. Subsequently, increments in the numbers of identified rules in eT2FIS are observed as
indicated in the figure. Zooming into the volatile period from 4th quarter 2007 to 1st quarter 2009 (as indicated by the box-
up in Fig. 10A), the online modeling ability of the proposed eT2FIS model is proven satisfactory as seen by the close map of
the computed output of eT2FIS with the desired output in Fig. 10B-a. Prior to this period, there are approximately 31 rules

Table 6
Performances of eT2FIS and the benchmarking models for the identification of a noisy system.

Noise level [�0.1, 0.1] [�0.5,0.5]

Model # Epochs # Rules Average RMSE # Rules Average RMSE

SONFIN 500 6 0.041 6 0.170
T2SONFS 500 6 0.034 6 0.138
eT2FIS 500 10 0.033 11 0.140
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Fig. 9. Google stock price from 19 August 2004 to 21 September 2010.

5 Non-evolving systems are not considered for benchmarking in this experiment because the experiment is performed in an online mode, where structure and
parameter learning are performed with the arrival of each incoming data pair and it is discarded after learning. On the other hand, offline neural fuzzy systems
assume that the set of training data is collected prior to learning, where structure and parameter learning are performed as two different stages using the
training dataset.
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identified in eT2FIS as seen from Fig. 10B-b. When a large modeling error is detected, the system identifies new rules to mod-
el the change in dynamics of the stock price movement. This can be seen by the rapid increment in the number of identified
rules. Subsequently, the number of identified rules stabilizes and the system performs parameter learning. By the end of
2007, the modeling error decreases and is subsequently kept at a relatively low level throughout the period. This shows
the responsiveness of the proposed eT2FIS model to changes in the environment, such that the system is able to adapt both
its structure and parameters to model the changing dynamics of the environment.

The tracking performances for the financial stock price are shown in Table 7. The proposed eT2FIS model achieves a MSE
value of 340.7 and a R value of 0.9912 for the online modeling of the stock price movement. This places the proposed system
in second place, outperforming the Type-1 model EFuNN, but losing out to the TSK-typed DENFIS. Bringing focus to the vol-
atile period from 4th quarter 2007 to 1st quarter 2009, a general trend is an increase in MSE and a decrease in R values
achieved by the benchmarking models. In particular, eT2FIS achieves a MSE value of 497.3 and a R value of 0.9870, showing
the lowest percentage increment in the MSE value among all three models. On the other hand, the percentage increment in
MSE value is the highest for DENFIS, with a significant increase of 84.2%. Although the overall performance of the proposed
model loses out to that of DENFIS, eT2FIS identifies a total of 34 fuzzy rules at the end of this experiment, as compared to
DENFIS where 203 rules are used. This is a remarkable 6 times more fuzzy rules used compared to the proposed model,
greatly decreasing the interpretability of DENFIS. It is noted that the DENFIS model does not prune obsolete rules, and
new fuzzy rules are constantly added to the system each time the dynamics of the application environment changes. As a
result, the size of the identified fuzzy rule base is ever-expanding. In retrospection, if the deletion mechanism is switched
off in eT2FIS such that regulation of the size of the identified fuzzy rule base is not practiced, the number of fuzzy rules iden-
tified is 107 and the MSE value achieved is 199.8. In this case, the savings in the fuzzy rules achieved by eT2FIS is almost 50%,
at the expense of 30% increment in the MSE value as compared to DENFIS. This result illustrates the modeling trade-off
achieved in the eT2FIS model, where both satisfactory interpretability (indicated by the small rule base size as shown in Ta-
ble 7) and accuracy of the system (indicated by the close map between the computed and desired outputs as shown in
Fig. 10A-a) are achieved.
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Fig. 10. (A) Tracking performance of eT2FIS for the entire time horizon and (B) tracking performance of eT2FIS from 4th quarter 2007 to 1st quarter 2009.

Table 7
Tracking performances for the financial stock price.

Model Typed # Rules Entire time horizon 4th Quarter 2007–1st Quarter 2009

MSE R MSE (% Increment) R (% Decrement)

EFuNN Type-1 Mamdani 462 360.3 0.9907 575.0 (59.6) 0.9836 (0.717)
DENFIS Type-1 TSK 203 153.2 0.9972 282.2 (84.2) 0.9937 (0.351)
eT2FIS Type-2 Mamdani 34 340.7 0.9912 497.3 (46.0) 0.9870 (0.424)
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4.3. Example 3 – Modeling of highway traffic flow density

The learning and generalization abilities of the proposed eT2FIS model are evaluated by employing it in a real-life appli-
cation involving the modeling of highway traffic flow density [41]. The data was collected from site 29 located at exit 15
along the east-bound Pan Island Expressway (PIE) in Singapore using loop detectors embedded beneath the road surface.
The inductive loop detectors were pre-installed by the Land Transport Authority of Singapore (LTA) in 1996 along major
roads to facilitate traffic flow data collection. Fig. 11 shows a picture of the location where the data was collected. There
are a total of five lanes: three straight lanes for the main traffic (lanes 1–3), and two exit lanes (lanes 4–5). Only data from
the three straight lanes (denoted as L1, L2 and L3 respectively) are used in this experiment. The data has four attributes: the
time t at which the traffic flow data was measured, and the traffic flow densities for the three straight lanes during t. The
eT2FIS model is used to model the traffic flow trend, and the trained model is then used to predict traffic flow density of
a lane (L1, L2 or L3) at time t + s for s = 5, 15, 30, 45 and 60 min.

Fig. 12 shows the traffic flow data for lanes L1–L3 spanning over a period of 6 days from 5th to 10th September 1996. The
data is divided into three cross-validation groups (denoted as CV1, CV2 and CV3 respectively). The training data for each
cross-validation group is extracted accordingly from the period labeled in Fig. 12. The benchmarking measurements are
the Pearson correlation coefficient R and the mean squared error MSE. The performance of the proposed eT2FIS model is sub-
sequently compared against the following models; namely, RSPOP [2]; MLP (with a configuration of 4 input nodes, 10 hidden
nodes and 1 output node); GenSoFNN [45]; EFuNN [23]; DENFIS [24]; and eFSM [47]. The thresholds in the eT2FIS model are
set as follows: K = 0.25; X = 1; C = 0; and the initial spreads between the left and right functions of the fuzzy labels are 0.16
for lanes L1 and L2; and K = 0.2 for lane L3. Considering that lane L3 is the lane next to the exit lanes, the traffic density along
lane L3 could be affected by cars filtering into L3 to exit the expressway. The novelty threshold has thus been made smaller
to take into account the higher volatility effect encountered in lane L3.

Fig. 13 illustrates the identified fuzzy clusters in lane L1 for the 4 input-1 output spaces for training set CV1 when
s = 5 min, together with the set of identified fuzzy rule base in eT2FIS. The distributions of the raw numerical data for lanes
L1–L3 are also shown in the figure. The fuzzy clusters identified in the proposed eT2FIS model coincide with the peaks of the
distributions as marked by the dotted circles, demonstrating the effectiveness of the incremental fuzzy partitioning em-
ployed in eT2FIS. Since the fuzzy clusters are highly ordered, clear semantic meanings can be attached to the fuzzy clusters.
Subsequently, a total of 15 fuzzy rules are identified by the eT2FIS model as listed in Fig. 13. One can easily verify that the
derived rule base is consistent, with a similar number of rules describing the morning and the evening traffic conditions.
Fuzzy rules 1–6 reflect the off-peak morning traffic condition; while fuzzy rules 9–14 reflect the off-peak evening traffic con-
dition; with the remaining rules (7, 8, 15) describe the peak morning-evening traffic conditions.

The consolidated traffic flow prediction results are shown in Fig. 14. The average R value and the average MSE value from
the three cross-validation groups CV1–CV3 for each prediction horizon are plotted with respect to the lanes L1–L3. The per-
formance of the proposed eT2FIS model is comparable with that achieved by the benchmarking models. In particular, the R
values achieved by eT2FIS are among the top performers when s = 60 min, while most benchmarking models have lower cor-
relations due to a longer time lag in the prediction horizon. This result demonstrates the good generalization abilities of the
proposed eT2FIS model such that it is able to learn and generalize the traffic trend to subsequently perform good forecasting
on unseen data.

Table 8 shows the average performances of all the models for this highway traffic flow density modeling task. Based on
the benchmarking measures, it can be seen that the eT2FIS model outperforms both GenSoFNN and EFuNN. The computed
average R and average MSE values of the proposed model are also comparable with fellow evolving models DENFIS and
eFSM. Comparing to RSPOP, a comparable average R value is achieved by eT2FIS. Although a slight deterioration in the
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Fig. 11. Location of site 29 along the Pan Island Expressway in Singapore.
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average MSE value is observed, it should be noted that RSPOP employs a batched learning mode while the proposed model
employs an incremental learning mode. That means, while a batched mode system has the luxury of re-learning a set of
training data with repeated cycles, eT2FIS extracts knowledge from the numerical data by a single pass. The MLP model
achieves the best performance in terms of the computed benchmarking measures. Unfortunately, it also achieves the great-
est standard deviations on the computed measures. That means, the performance of MLP is highly volatile, which makes it
unpredictable for this modeling task. Overall, this result demonstrates an encouraging modeling potential of the proposed
eT2FIS model; while maintaining a highly consistent and stable performance under varying conditions (i.e., time horizons).

4.4. Example 4 – Prediction of a chaotic system

The noise resistance ability of the proposed eT2FIS model is evaluated by employing it in a benchmark comparison involv-
ing the prediction of a chaotic system with noise. The original chaotic time-series is generated by a delay differential equa-
tion as described in (29):

@xðtÞ
@t
¼ 0:2xðt � sÞ

1þ x10ðt � sÞ � 0:1xðtÞ ð29Þ

which was first investigated by Mackey and Glass [29]. Following the problem described in [20], a fourth-order Runge–Kutta
method was applied to compute the numerical approximation of the series with conditions as follows: s = 30 and initial con-
dition x(0) = 1.2. Four past values are used to predict the present value, where

input vector ¼ ½xðt � 24Þ; xðt � 18Þ; xðt � 12Þ; xðt � 6Þ�; output vector ¼ ½xðtÞ�
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Fig. 12. Traffic flow densities of the three straight lanes along PIE at site 29.
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A total of 1000 data pairs are extracted from the interval t 2 [124,1123]. The first 500 pairs are then used as training set,
while the remaining 500 pairs are used for testing. In the training part, three training sets are created by adding Gaussian
white noise with mean 0 and standard deviations 0.1, 0.2 and 0.3 to x(t). On the other hand, for the testing part, the first
set is the original clean data, with two other testing sets created by adding Gaussian white noise with mean 0 and standard
deviations 0.1 and 0.3. The benchmarking measure is the root mean squared error RMSE. Subsequently, the performance of
the proposed eT2FIS model is benchmarked against the following evolving neural fuzzy systems; namely, Type-1 models –
SONFIN [16]; DENFIS [24]; EFuNN [23]; and Type-2 models – SEIT2FNN [17]; IT2FNN-SVM [20]. The thresholds in the eT2FIS
model are set as follows: K = 0.3; X = 1; C = 0; and the initial spreads between the left and right functions of the fuzzy labels
are 0.1.

In the first part of this experiment, intra-validation is performed within the training sets. The first 80% of the data is
used to train the models, and the remaining 20% is used to validate the performances of the trained models. There are a
total of 10 Monte Carlo realizations for the statistical analysis of the results. Table 9 shows the average RMSE values
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Fig. 14. Traffic flow prediction results.

Table 8
Average performances for the traffic flow prediction.

Model Typed Mode # Rules Average R (± STD) Average MSE (± STD)

RSPOP Mamdani Batched 14.4 0.834 (± 0.041) 0.146 (± 0.038)
MLP (4-10-1) – Batched – 0.847 (± 0.065) 0.130 (± 0.055)
GenSoFNN Mamdani Batched 50.0 0.813 (± 0.028) 0.164 (± 0.037)
EFuNN Mamdani Incremental 234.5 0.798 (± 0.050) 0.189 (± 0.041)
DENFIS TSK Incremental 9.7 0.831 (± 0.051) 0.153 (± 0.054)
eFSM Mamdani Incremental 20.3 0.840 (± 0.043) 0.154 (± 0.040)
eT2FIS Mamdani Incremental 21.0 0.833 (± 0.047) 0.153 (± 0.045)
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achieved by the models in performing intra-validation. The best performer is DENFIS with an average RMSE of
0.212 ± 0.095, and the worst performer is EFuNN with an average RMSE of 0.248 ± 0.120. The differences between all
benchmarking models are within 17% from the best performer, with eT2FIS claiming fourth position such that the dif-
ference between the proposed model and DENFIS is marginal (<6%). In addition, eT2FIS performs marginally better com-
pared to fellow Type-2 model IT2FNN-SVM. Based on these results, the proposed model has very comparable
performance with respect to all the benchmarking models.

In the second part of the experiment, cross-validations are performed between the training and testing sets. Table 10
shows the consolidated average performance of the proposed eT2FIS model for this prediction task. In general, the testing
RMSE values increase as the noise levels in the training sets increase. Within each noise level of the training data, the testing
RMSE values also increase with an increase in the noise levels of the testing data. Fig. 15 shows the prediction results for a
particular run on eT2FIS, where the system is trained using noisy data with standard deviation 0.1 and then tested on: (a)
clean data, and (b) noisy data with standard deviation 0.1. From the figure, eT2FIS demonstrates satisfactory performances
when tested on both the clean data and the noisy data. This is seen from the close maps between the computed outputs of
eT2FIS and the desired outputs of the system. As expected, larger fluctuations in the computed outputs can be seen when
tested on the data that is contaminated with noise. This result illustrates that the eT2FIS model is able to perform relatively
good modeling despite the presence of noise.

Table 11 shows the consolidated experimental results for the prediction of the chaotic system. The average measure re-
ports on the central tendency of the performance for the models, while the standard deviation measures the stability of the
performance of the models under varying noise conditions. The models are subsequently ranked according to the averages
and standard deviations of their computed RMSE values under different noise levels. Being Type-2 models, SEIT2FNN,
IT2FNN-SVM and eT2FIS are consistently ranked among the top three performers under different noise conditions. This im-
plies that Type-2 models are generally more capable of handling uncertainties under noisy environment. Overall, the pro-
posed eT2FIS model achieves an average ranking of 3.3, behind only fellow Type-2 models IT2FNN-SVM and SEIT2FNN.

Table 9
Average RMSE of the intra-validation on training sets for the prediction of chaotic system.

Model Train STD Average RMSE ± STD

0.1 0.2 0.3

SONFIN 0.113 0.226 0.302 0.214 ± 0.095
DENFIS 0.116 0.214 0.306 0.212 ± 0.095
SEIT2FNN 0.123 0.225 0.319 0.222 ± 0.098
IT2FNN-SVM 0.128 0.234 0.349 0.237 ± 0.110
EFuNN 0.126 0.252 0.366 0.248 ± 0.120
eT2FIS 0.120 0.225 0.327 0.224 ± 0.104

Table 10
Performance of eT2FIS for the prediction of chaotic system.

Train STD 0.1 0.2 0.3

Test STD Clean 0.1 0.3 Clean 0.1 0.3 Clean 0.1 0.3

RMSE 0.059 0.107 0.214 0.083 0.132 0.247 0.102 0.152 0.278
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Fig. 15. Prediction results for a run of eT2FIS: (a) train STD = 0.1, test clean and (b) train STD = 0.1, test STD = 0.1.
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This is hardly surprising since both IT2FNN-SVM and SEIT2FNN are TSK-typed models, and the proposed model is a Mam-
dani-typed model. TSK-typed models are precise fuzzy modeling systems whose main learning focus is on achieving good
resultant accuracy. On the other hand, Mamdani-typed models are linguistic fuzzy modeling systems which focus on
providing good interpretability of the systems, while maintaining a balance between the desired accuracies [37]. This result
demonstrates the noise resistance ability of eT2FIS over Type-1 neural fuzzy systems, which is a main advantage of Type-2
models.

5. Conclusions

This paper proposes the evolving Type-2 neural fuzzy inference system (eT2FIS) – a Type-2 Mamdani-typed neural fuzzy
system with an online learning mechanism. Compared to the existing evolving neural fuzzy systems, eT2FIS is one of the
first few attempts in unifying the concepts of evolving neural fuzzy systems with Type-2 Mamdani-typed models. Learning
is performed incrementally in eT2FIS such that the system evolves and learns with the arrival of a new data pair. This allows
the proposed system to incorporate new knowledge progressively. Hence, allowing a life-long learning for an application
environment. The eT2FIS model also addresses the stability-plasticity trade-off of a learning system by drawing inspiration
from the human biological memory retention mechanism. This is demonstrated through the learning of eT2FIS where posi-
tive associations between new knowledge from the environment and existing knowledge in the system enhances the related
knowledge (a biological phenomenon known as long-term potentiation), and negative associations between the new knowl-
edge from the environment and existing knowledge in the system degrades the related knowledge (a biological phenomenon
known as long-term depression). Subsequently, a new rule is created when the knowledge from the environment is novel
with respect to the knowledge in the system and an obsolete rule is deleted when it is no longer actively participating in
the modeling of the current environment. This addition-removal mechanism provides a regulated balance between old
knowledge in the system and new knowledge from incoming data, such that old and new knowledge can co-exist to define
the structure of the system. Another key feature in the proposed eT2FIS model is the merger of highly over-lapping fuzzy
labels in the input–output spaces. This ensures a compact and more interpretable structure of the eT2FIS model. Finally, eT2-
FIS is employed in four benchmarking and real-world applications. From the experimental results, the proposed eT2FIS mod-
el has demonstrated: (1) it can effectively adapt both its structure and parameters to model complex real-world application
problems; (2) it ensures a good level of human interpretability to the resultant system by providing highly semantic fuzzy

Table 11
Consolidated experimental results for the prediction of chaotic system.

Model Train STD = 0.1 Train STD = 0.2 Train STD = 0.3 Average rankP
Rank i=6ð Þ

Average (Rank
1)

±STD (Rank
2)

Average (Rank
3)

±STD (Rank
4)

Average (Rank
5)

±STD (Rank
6)

SONFIN 0.139 ±0.105 0.178 ±0.089 0.236 ±0.060 4.7
(4) (5) (5) (5) (5) (4)

DENFIS 0.147 ±0.120 0.161 ±0.125 0.175 ±0.136 5.0
(6) (6) (4) (6) (2) (6)

SEIT2FNN 0.119 ±0.084 0.141 ±0.077 0.216 ±0.033 2.8
(2) (4) (2) (3) (4) (2)

IT2FNN-
SVM

0.109 ±0.075 0.125 ±0.053 0.151 ±0.033 1
(1) (1) (1) (1) (1) (1)

EFuNN 0.143 ±0.081 0.195 ±0.064 0.257 ±0.051 4.2
(5) (3) (6) (2) (6) (3)

eT2FIS 0.127 ±0.079 0.154 ±0.084 0.177 ±0.091 3.3
(3) (2) (3) (4) (3) (5)
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Fig. 16. An interval Type-2 membership function, reproduced from Fig. 2, with a singleton point.
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labels and easily comprehensible linguistic IF-THEN fuzzy rules; and (3) it possesses a good noise resistance ability when
modeling under noisy conditions.

Appendix A. Type-reduction in eT2FIS

The height-type-reducer [9] replaces each Type-2 fuzzy set by a single point in the primary domain, referred to as a sin-
gleton, where it is denoted as y. Subsequently, for an interval Type-2 fuzzy set with a singleton y, the membership of y is
an interval with bounds [L,R]. The notations can be explained using Fig. 16, where the interval Type-2 fuzzy set of Fig. 2 is
reproduced. As seen, a possible singleton point for this fuzzy set is illustrated by the blue line. Subsequently, the

height-type-reduction has been modified in this paper as follows: For each interval Type-2 fuzzy cluster eClm ;m, the singleton

point hlm is chosen as 1=2 cL
lm ;m
þ cR

lm ;m

� �
where cL

lm ;m
and cR

lm ;m
are the centers of the left and right formation gaussian functions

of the Type-2 membership function embedded in eClm ;m respectively; and the interval bounds [L, R] are replaced by the interval
Type-1 output set folm ;m ¼ ½f lm ;m;

�f lm ;m� (see (9)).
For a set of Lm(t) interval Type-2 membership functions in the output space OVm, let hlm ; lm ¼ 1; . . . ; LmðtÞ, denote the Lm(t)

singletons, with the corresponding interval bounds ½f lm ;m;
�f lm ;m�. Assume that h1 6; . . . ;6 hLmðtÞ. This can be achieved by apply-

ing an Lm(t) � Lm(t) matrix to sort the set fhlmg. For convenience, define the following function as in (30):

Hðq1; . . . ;qLmðtÞÞ ¼
PLmðtÞ

lm¼1hlmqlmPLmðtÞ
lm¼1qlm

ð30Þ

To compute the upper bound Ym of the type-reduced set:

� Step 1: Set qlm ¼ 1=2 ðf lm ;m þ �f lm ;mÞ for lm = 1, . . . ,Lm (t). Compute H1 ¼ Hðq1; . . . ;qLmðtÞÞ.
� Step 2: Determine lw, where 1 6 lw 6 Lm(t) � 1, such that hlH 6 H1 6 hlHþ1.
� Step 3: Set qlm ¼ f lm ;m for lm = 1, . . . , lw and qlm ¼

�f lm ;m for lm = 1w + 1, . . . ,Lm(t). Compute H2 ¼ Hðq1; . . . ;qLmðtÞÞ.
� Step 4: If H1 = H2, then the upper bound is found and Ym ¼ H2. Else, set H1 as H2, and repeat by returning to Step 2.

To compute the lower bound Ym of the type-reduced set, the main difference is Step 3 of the above algorithm, where one
needs to set qlm ¼

�f lm ;m for lm = 1, . . . , lw and qlm ¼ f lm ;m for lm = 1w + 1, . . . ,Lm(t).

Appendix B. Parameter adaptation in eT2FIS

The parameter adaptation in eT2FIS follows the structure learning phase of the system, and it is performed for each
incoming data tuple. The trainable parameters of eT2FIS are the centers of the left and right formation gaussian functions
of the fuzzy labels embedded in the antecedent and consequent segments of the fuzzy rules. They are optimally tuned using
a supervised learning algorithm based on a gradient descent approach to minimize the error function defined as in (31):

E ¼ 1
2
P
m
ðdm � ymÞ

2 ð31Þ

where D(t) = [d1(t), . . . ,dM(t)]T denotes the desired output vector, and Y(t) = [y1(t), . . . ,yM(t)]T denotes the computed output
vector at a time instance t (see Fig. 1). To simplify the notation, the time index shall be dropped. Nevertheless, it should
be noted that parameter adaptation is performed at each time instance with the arrival of each data tuple.

For the rest of this section, the following generic notations are adopted:

NL
m ¼

PLm

lm¼1
hlmqL

lm ; DL
m ¼

PLm

lm¼1
qL

lm

NR
m ¼

PLm

lm¼1
hlmqR

lm ; DR
m ¼

PLm

lm¼1
qR

lm

such that the type-reduced set Ym ¼ ½Ym; Ym�, see (11), is bounded by Ym ¼ NL
m=DL

m and Ym ¼ NR
m=DR

m. As explained, the KM

algorithm for computing Ym requires the set hlm ¼ 1=2 cL
lm ;m
þ cR

lm ;m

� �n o
to be sorted in an ascending order. Let Em be the ma-

trix that performs such a sorting task where Em = (e) is a Lm � Lm matrix. Subsequently, the output sets of the consequent

nodes ff lm ;mg and f�f lm ;mg, see (10), are sorted using Em to form the sets f S
lm ;m

n o
and �f S

lm ;m

n o
respectively. Then

qL
lm ¼

�f S
lm ;m

if lm ¼ 1; . . . ; lL
H

m

f S
lm ;m

if lm ¼ lLH

m þ 1; . . . ; Lm

8<: ; qR
lm ¼

f S
lm ;m

if lm ¼ 1; . . . ; lRH

m

�f S
lm ;m

if lm ¼ lRH

m þ 1; . . . ; Lm

8<:
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where lLH

m and lRH

m are the left and right cross-over points determined using the KM algorithm (see Appendix A). Finally, re-

verse the sorting process of qL
lm

n o
and qR

lm

n o
using E�1

m , and denote the sets as xL
lm

n o
and xR

lm

n o
respectively. Also, the error

signal for an arbitrary node is given as d = �@E/@fo.
Layer 5: The error signal of OVm can be computed as in (32):

dm ¼ �
@E
@fom

¼ � @E
@ym
¼ dm � ym ð32Þ

To derive the updating steps for tuning the centers of the fuzzy labels embedded in the consequent segments, one needs to
compute the partial derivatives of (33):

@fom

@cL
lm ;m

¼ @fom

@cR
lm ;m

¼ 1
4

xL
lm

DL
m

þ
xR

lm

DR
m

 !
ð33Þ

Subsequently, the updating steps for the centers of the left and right formation gaussian functions of the consequent labels
are given as in (34):

cL
lm ;mðt þ 1Þ ¼ cL

lm ;mðtÞ þ gdmðtÞ
@fomðtÞ
@cL

lm ;m
ðtÞ

cR
lm ;mðt þ 1Þ ¼ cR

lm ;mðtÞ þ gdmðtÞ
@fomðtÞ
@cR

lm ;m
ðtÞ ð34Þ

where g > 0 is a learning constant.
Layer 4: Using chain rule, the error signal of eClm ;m can be described as in (35):

dlm ;m ¼ �
@E

@folm ;m
¼ ½dlm ;m;

�dlm ;m� ð35Þ

where the bounds of the interval Type-1 set are computed accordingly as in (36):

dlm ;m ¼ �
@E

@f lm ;m
¼

1
2 dm

1=2 cL
lm ;m
þcR

lm ;m

� �
DL

m�NL
m

DL
mð Þ2

0@ 1A if eb;lm ¼ 1; b ¼ lLH

m þ 1; . . . ; Lm

0 otherwise

8>><>>:
þ

1
2 dm

1=2 cL
lm ;m
þcR

lm ;m

� �
DR

m�NR
m

DR
mð Þ2

0@ 1A if eb;lm ¼ 1; b ¼ 1; . . . ; lRH

m

0 otherwise

8>><>>:

�dlm ;m ¼ �
@E

@�f lm ;m

¼
1
2 dm

1=2 cL
lm ;m
þcR

lm ;m

� �
DL

m�NL
m

DL
mð Þ2

0@ 1A if eb;lm ¼ 1; b ¼ 1; . . . ; lL
H

m

0 otherwise

8>><>>:
þ

1
2 dm

1=2 cL
lm ;m
þcR

lm ;m

� �
DR

m�NR
m

DR
mð Þ2

0@ 1A if eb;lm ¼ 1; b ¼ lRH

m þ 1; . . . ; Lm

0 otherwise

8>><>>: ð36Þ

Layer 3: Since a rule node Rk can contribute to more than one consequent fuzzy label eClm ;m by (9), the cumulative error signal
of Rk can be described as in (37):

dk ¼ �
@E
@fok

¼ ½dk; �dk� ð37Þ

where the bounds of the interval Type-1 set are computed accordingly as in (38):

dk ¼ �
@E
@f k
¼
P
lm

dðkÞlm ;m
; �dk ¼ �

@E

@�f k

¼
P
lm

�dðkÞlm ;m
ð38Þ

such that dðkÞlm ;m
(resp. �dðkÞlm ;m

) is the lower (resp. upper) bound of the error signal of eC ðkÞlm ;m
, and eC ðkÞlm ;m

is a consequent node inher-
iting the lower (resp. upper) firing strength of Rk by (10).

Layer 2: As before, an antecedent node eAi;ji can contribute to more than one rule Rk by (7), hence the cumulative error
signal of eAi;ji can be described as in (39):
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di;ji ¼ �
@E
@foi;ji

¼ ½di;ji ;
�di;ji � ð39Þ

where the bounds of the interval Type-1 set are computed accordingly as in (40):

di;ji ¼ �
@E
@f i;ji

¼
P

k
dði;jiÞk ; �di;ji ¼ �

@E

@�f i;ji

¼
P

k

�dði;jiÞk ð40Þ

where dði;jiÞk (resp. �dði;jiÞk ) is the lower (resp. upper) bound of the error signal of Rði;jiÞk , and Rði;jiÞk is a rule node inheriting the lower
(resp. upper) firing strength of eAi;ji by (8).

Next, to derive the updating steps for tuning the centers of the fuzzy labels embedded in the antecedent segments, one
needs to compute the partial derivatives of (41):

@foi;ji

@cL
i;ji

¼

�f i;ji

2 xi�cL
i;ji

� �
r2

i;ji

if xi 6 cL
i;ji

f i;ji

2 xi�cL
i;ji

� �
r2

i;ji

if xi > 1=2 cL
i;ji
þ cR

i;ji

� �
0 otherwise

8>>>>>>><>>>>>>>:

@foi;ji

@cR
i;ji

¼

f i;ji

2 xi�cR
i;ji

� �
r2

i;ji

if xi 6 1=2 cL
i;ji
þ cR

i;ji

� �
�f i;ji

2 xi�cR
i;ji

� �
r2

i;ji

if xi > cR
i;ji

0 otherwise

8>>>>>>><>>>>>>>:
ð41Þ

Subsequently, the updating steps for the centers of the left and right formation gaussian functions of the antecedent labels
are given as in (42):

cL
i;ji
ðt þ 1Þ ¼ cL

i;ji
ðtÞ þ g

�di;ji ðtÞ if xi 6 cL
i;ji

di;ji ðtÞ if xi > 1=2 cL
i;ji
þ cR

i;ji

� �
0 otherwise

8>><>>:
9>>=>>;
@foi;ji

ðtÞ
@cL

i;ji
ðtÞ

cR
i;ji
ðt þ 1Þ ¼ cR

i;ji
ðtÞ þ g

di;ji ðtÞ if xi 6 1=2 cL
i;ji
þ cR

i;ji

� �
�di;ji ðtÞ if xi > cR

i;ji

0 otherwise

8>><>>:
9>>=>>;
@foi;ji

ðtÞ
@cR

i;ji
ðtÞ ð42Þ

where g > 0 is a learning constant.
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