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Abstract
Objective. The non-stationary nature of EEG poses a major challenge to robust operation of
brain–computer interfaces (BCIs). The objective of this paper is to propose and investigate a
computational method to address non-stationarity in EEG classification.Approach. We
developed a novel dynamically weighted ensemble classification (DWEC) framework whereby
an ensemble of multiple classifiers are trained on clustered features. The decisions from these
multiple classifiers are dynamically combined based on the distances of the cluster centres to
each test data sample being classified. Main Results. The clusters of the feature space from the
second session spanned a different space compared to the clusters of the feature space from the
first session which highlights the processes of session-to-session non-stationarity. The
session-to-session performance of the proposed DWEC method was evaluated on two datasets.
The results on publicly available BCI Competition IV dataset 2A yielded a significantly higher
mean accuracy of 81.48% compared to 75.9% from the baseline SVM classifier without
dynamic weighting. Results on the data collected from our twelve in-house subjects yielded aQ2
significantly higher mean accuracy of 73% compared to 69.4% from the baseline SVM
classifier without dynamic weighting. Significance. The cluster based analysis provides insight
into session-to-session non-stationarity in EEG data. The results demonstrate the effectiveness
of the proposed method in addressing non-stationarity in EEG data for the operation of a BCI.

Q3 (Some figures may appear in colour only in the online journal)

1. Introduction

A brain–computer interface (BCI) is a communication system
that does not require any peripheral muscular activity, with the
goal of providing a direct means of communicating internal
brain states to the external world [1].

A major challenge for BCI research is the non-stationarity
of brain activity occurring continuously in association with
diverse behavioural and mental states [2]. Non-stationarity
refers to a change in class definitions over time and therefore
causes a change in the distributions from which the data

are drawn [3]. Consider the Bayesian posterior probability
of a class ω to which instance x belongs, P (ω|x) =
P (x|ω) · P (ω) /P (x), non-stationarity is defined as any
scenario where the posterior probability changes over time,
i.e., Pt+1 (ω|x) Pt (ω|x), where ω is the class to which data
instance x belongs.

The non-stationarity of EEG signals is caused by factors
such as changes in the physical properties of the sensors,
variabilities in neurophysiological conditions, psychological
parameters, ambient noise and motion artefacts. Two main
factors contributing to non-stationarity as reported in [4, 5] are:
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the differences between the samples extracted from a training
session and the samples extracted during an online session, and
the changes in the users brain activity during online operation.
As a result, the general hypothesis that the signals sampled
in the training set follow a similar probability distribution to
the signals sampled in the test set from a different session is
violated [6].

Kaplan has studied the fast dynamics of quasi-stationary
episodes in EEG signals and has identified different operating
modes in the EEG time series [7]. Several machine learning
techniques have been attempted recently to address the
non-stationarity issue in BCI [8, 10, 9]. Robust principal
component analysis has been proposed for visualizing spatial
patterns with the most prominent variability in the data
in order to automatically identify and reject outlying non-
informative signals [8]. Stationary linear discriminant analysis
attempts to find a direction in the feature space which is
both discriminative and stationary [9]. Stationary sub-space
analysis is an unsupervised learning method that finds sub-
spaces in which data distributions stay invariant over time
[10]. Methods such as Bayesian transduction, transfer learning,
active learning and distribution matching have also been
proposed to address the non-stationarity issue [11]. Even
though it would be interesting to study the application of these
methods, it exceeds the scope of the current study.

Density estimation for determining class conditional
distributions has been attempted by Hastie et al [12] for
discriminant analysis of Gaussian mixtures. The use of
probability forecasting has been extensively studied by Dawid
et al in [13] for probabilistic expert systems, while the
Bayesian combination of classifiers has been extensively
studied by Ghahramani et al in [14]. Recent advances include
a unifying framework for determining linear combiners for
classifier ensembles [15] and the Bayesian combination of
multiple imperfect classifiers proposed by Simpson et al in
[16].

In this study we propose a dynamically weighted
ensemble classification (DWEC) framework to cluster features
extracted using common spatial patterns (CSP) and build an
ensemble of multiple classifiers on the clustered features in
order to address the session-to-session non-stationarity in the
EEG data for the operation of a BCI. Clustering the features
extracted after CSP filtering facilitates the identification of
different modes in the EEG. Classifiers trained on the clustered
features offer complimentary decisions. Improved accuracies
can be achieved by appropriately combining the decisions from
an ensemble of multiple classifiers. An ensemble framework
for constructing subject independent BCI classification was
also attempted by Fazli et al in [17].

For stationary data, the Bayesian optimal classifier
combination was proposed by Kuncheva [18]. This work
extends the concept of Bayesian optimal combination for non-
stationary data. Since the underlying distribution of the test
data is unknown, classification accuracies for each classifier
need to be re-estimated. Particularly, we consider each test
sample to dynamically estimate the classification accuracy
based on the relative location of samples with respect to the
clusters.

The remainder of this paper is organized as follows:
section 2 describes the synthesized materials followed by the
methods in section 3. Section 4 presents comparative results
and the discussion. Finally, section 5 concludes this paper.

2. Materials

Two datasets were evaluated using the proposed method: the
publicly available BCI Competition IV dataset 2A [19] and
the ARTS12 motor imagery dataset collected from 12 healthy
subjects.

The BCI Competition IV dataset 2A comprises EEG data
collected from nine subjects that were recorded during two
sessions on separate days for each subject. The data were
collected on four different motor imagery tasks: left hand
(class 1), right hand (class 2), both feet (class 3) and tongue
(class 4). Each session comprised six runs separated by short
breaks, each run comprised 48 trials (12 for each class),
amounting to a total of 288 trials per session. Only the class 2
classification between left hand and right hand motor imagery
was considered in the current study. For more details on the
protocol please refer to [19]. The motor imagery data from the
first session were used to train the classifiers and the motor
imagery data from the second session were used as the test
data.

The ARTS12 motor imagery data were col-
lected using Nuamps EEG acquisition hardware
(http://www.neuroscan.com) with unipolar Ag/AgCl
electrodes, digitally sampled at 250 Hz with a resolution of
22 bits for voltage ranges of ±130 mV. EEG signals from
22 scalp positions, mainly covering the primary motor cortices
bilaterally, were recorded. The sensitivity of the amplifier
was set to 100 µV. Twelve healthy subjects were recruited
for the study. Two subjects chose to perform left hand motor
imagery while the remaining ten subjects chose to perform
on the right hand. The subjects were instructed, in the form
of visual cues displayed on the computer screen, to perform
kinaesthetic motor imagery of the chosen hand and to rest
during the background rest condition.

EEG data were collected in two sessions for this study
from each subject on two different days. In the first session,
two runs of EEG data were collected from a subject while
performing motor imagery of the chosen hand and during
the background rest condition. In the second session on
another day, three runs of EEG data were collected while
performing motor imagery of the chosen hand and during
the background rest condition. Each run lasted approximately
16 min, which comprised 40 trials of motor imagery and
40 trials of background rest condition. The motor imagery
data collected during the first session were used to train the
classifiers and the motor imagery data from the subsequent
sessions were used as test data.

3. Methods

The proposed framework consists of two steps: training and
testing. In the training step, the EEG data used for training
are subject to pre-processing and feature extraction. In this
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Figure 1. Schematic diagram. The training data and test data are
pre-processed and features are extracted. Training data are clustered
and multiple classifiers are trained on clustered features. The
decisions from multiple classifiers are dynamically weighted to
arrive at the final classification decision.

experiment EEG data were bandpass filtered at 8–30 Hz
and spatially filtered using the CSP algorithm. The extracted
features of each class were subjected to clustering separately.
The clustered features were subsequently used to train an
ensemble of multiple classifiers by combining all possible
clusters from each class.

In the testing step, the EEG data used for testing were
subjected to pre-processing and feature extraction similar
to the training data. In this experiment the EEG data used
for testing were bandpass filtered at 8–30 Hz and spatially
filtered using the CSP filter trained during the training
step. The extracted features were then evaluated by the
ensemble of multiple classifiers. The decisions from the
classifiers in the ensemble were dynamically combined using
a weighted majority voting method based on a similarity
measure computed from the distance of the test data to each
cluster centre of each classifier.

The following subsections provide a more detailed
description of the proposed framework. Figure 1 summarizes
the processes involved in the proposed method.

3.1. Feature extraction

EEG signals resulting from motor imagery have been found
to contain specific temporal, spectral and spatial features, that
enable them to be recognized automatically [20]. For example,
imagining a left hand movement is known to trigger a decrease
of power, known as event related desynchronization (ERD), in
the µ and β rhythms over the right motor cortex [20]. The

increase of band power that occurs after the motor imagery is
known as event related synchronization (ERS)[20].

The CSP algorithm, which is effective in computing
spatial filters for detecting ERD/ERS effects [21, 22], was used
to extract the features from the EEG data. CSP was extended
to multi-class problems in [23] and further extension and
robustification using the simultaneous optimization of spatial
and frequency filters has been proposed in [24–26].

The CSP algorithm computes the transformation matrix
W to yield features whose variances are optimal for
discriminating two classes of EEG measurements by solving
the eigenvalue decomposition problem

#1W = (#1 + #2)W$, (1)

where #1 and #2 are estimates of the covariance matrices of
band-pass filtered EEG measurements of the respective motor
imagery actions and $ is the diagonal matrix that contains
the eigenvalues of #1 in descending order of magnitude.
Spatial filtering is performed by linearly transforming the EEG
measurements using

Zi = W T Ei, (2)

where Ei ∈ Rch×nt denotes the single-trial EEG measurement
of the ith trial, Zi ∈ Rch×nt denotes Ei after spatial filtering,
W ∈ Rch×ch denotes the CSP projection matrix, ch is the
number of channels, nt is the number of EEG samples and T
denotes the transpose operator.

The CSP features of the ith trial are then given by

xi = log
diag(W̄ T EiET

i W̄ )

tr[W̄ T EiET
i W̄ ]

, (3)

where xi ∈ R2m are CSP features, W̄ represents the first m and
the last m columns of W , diag(·) returns the diagonal elements
of the square matrix and tr[·] returns the sum of the diagonal
elements of the square matrix. Note that m = 3 was used in
this study.

3.2. Clustering of EEG with the minimum entropy criterion

Since the features extracted using the CSP algorithm are the
solutions of a generalized eigenvalue problem, a multiple of the
extracted feature vectors is again a solution to the eigenvalue
problem. It should be noted that the feature space is inherently
non-Euclidean when comparing the extracted features. An
appropriate comparison for two feature vectors x1 and x2 in this
non-Euclidean space is the angle between these two vectors,
measured by the cosine distance, d(x1, x2) = 1 − (

x1·xT
2

|x1|·|x2| ).
Clustering EEG data using the cosine distance between the
feature vectors extracted by CSP has been shown to yield
correct source signals in high-dimensional data [27].

In this work, the features extracted from the training data
were initially clustered using the k-means algorithm with
the cosine distance measure. The resulting initial clusters
were optimized using the minimum entropy criterion[28].
The normalized information distance measures were used to
quantify the amount of information shared between clusters.
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Let a spatially filtered set of features X = {x1, . . . , xnt },
where xi is a feature vector such that xi ∈ Rn and nt is the
number of trials in the training data used for clustering. If C is
the space of all possible K−cluster partitions ofX , a partitional
clustering C = {c1, . . . , cK} is a way to divide X into K non-
overlapping subsets such that C ∈ C. In the minimum entropy
criterion, the optimal clustering C∗ ∈ C would have maximum
mutual information between the data and the clustering:

C∗ = arg max
C

{I(C; X )}. (4)

The entropy relation of (4) can be expressed as: C∗ =
arg maxC{H(X |C)}, where H(X |C) denote the conditional
entropy of X for a given clustering C.

The minimum entropy criterion is based on the argument
that optimal clustering would maximize the information shared
between the clustering and data. It has been shown that,
by using Havrda–Charvat structural entropy measure, the
conditional entropy can be estimated without any assumptions
about the distribution of the data. Havrda–Charvat structural
entropy is defined as:

Hα = (21−α − 1)−1

[
K∑

k=1

pα
k − 1

]

,α > 0,α ̸= 1. (5)

Where α is the structural dimension, K is the number of
partitions and pα

k is the probability of a sample being included
in the kth partition in the α-dimension [29].

The equation (5) can be simplified by discarding the
constant coefficient and with α = 2 to give: H2 = 1 −∑K

k=1 p2
k.The conditional quadratic Havrda–Charvat entropy

of X given C can be defined as:

H2 (X |C) =
K∑

k=1

p (ck) H2 (X |C = ck) . (6)

With the measure of conditional entropy (6), the objective
function (7) can be expressed as:

C∗ = arg min
C

{
K∑

k=1

p (ck) H2 (X |C = ck)

}

. (7)

Estimating the conditional entropy without information about
the underlying probability distributions is difficult. A solution
is to use the Parzen window [30] method for density estimation
as suggested in [31]. Principe et al used the Parzen window
method in conjunction with quadratic Renyis entropy for
density estimation [32]. In a similar manner we use the Parzen
window [30] to estimate the conditional entropy. Given that a
Gaussian kernel in n-dimensional space is

G(x − a, σ 2) = 1
(2πσ )

n
2

exp

(

−
∥x − a∥2

2σ 2

)

, (8)

where σ is the kernel width parameter and a is the centre of the
Gaussian window, the probability density estimation of x ∈ X
can be expressed as

p(x) = 1
nt

nt∑

i=1

G
(
x − xi, σ

2) . (9)

The quadratic entropy of the features X can then be estimated
by

H2(X ) = 1 −
∫

x
p2(x) dx

= 1 − 1
(nt )2

∫

x

(
nt∑

i=1

G
(
x − xi, σ

2)
)2

dx. (10)

Since convolving two Gaussians yields a Gaussian,
equation (10) can be expressed as

H2 (X ) = 1 − 1
(nt )2

nt∑

i=1

nt∑

j=1

G(xi − x j, 2σ 2). (11)

In a similar manner, the conditional quadratic entropy can
be estimated as

H2 (X |C = ck) = 1 − 1
t2
k

∑

xi∈ck

∑

x j∈ck

G(xi − x j, 2σ 2), (12)

where tk is the number of the data items in cluster ck. Given
the estimate in equation (12), the objective function (7) can be
written as

C∗ = arg max
C

⎧
⎨

⎩

K∑

k=1

p (ck)
1
t2
k

∑

xi∈ck

∑

x j∈ck

G
(
xi − x j, 2σ 2)

⎫
⎬

⎭ .

(13)

Here the probability of encountering the cluster ck in C is tk
nt

.
Therefore the conditional entropy ε based objective function
becomes

C∗ = arg max
C

(ε (C)), (14)

where,

ε(C) =
K∑

k=1

1
tk

∑

xi,x j∈C

(

exp

(

−
∥∥xi − x j

∥∥2

4σ 2

))

. (15)

Therefore, by maximizing ε (C), the conditional entropy
criterion is minimized.

3.3. Base classifier

The class-wise training data partitioned to clusters were used
to train the ensemble. Individual SVM classifiers that make up
the ensemble were trained independently. SVM has been found
to yield the highest classification accuracies for synchronous
BCI experiments [33]. Dara et al [34] have shown that the
classification performance of a single SVM classifier can be
surpassed by using an ensemble of SVM classifiers. It has also
been shown that a combination of different SVM classifiers
expands the regions of the test sample resulting in correct
classifications. If there are L different SVM classifiers in an
ensemble that has been trained independently on different
training samples, then each SVM classifier would have a
different generalization performance [35].

SVM classifiers have been known to show good
generalization performance and provide easy-to-learn exact
parameters for the global optimum [35]. Considering all these
factors, SVM classifiers with linear kernels were used as base
classifiers in the ensemble.
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3.4. The DWEC method for non-stationary data

A classifier is any function ) : Rn → *, that maps a
given object x ∈ Rn, where Rn is the feature space, to a
class label ω. Let the class label ω be a random variable that
can take values in the set of class labels * = {ω1, . . . ,ω+},
where + is the number of classes. The class with the highest
posterior probability is the most natural choice for a given
object x ∈ Rn, where Rn is the feature space. In the canonical
model of a classifier [36], a set of + discriminant functions,
G = {g1(x), . . . , g+(x)}, gi : Rn → R, i = 1, . . . ,+, each
yielding a score for the respective class, is generated. The final
output class label of the classifier is determined according to
the maximum membership rule. The maximum membership
rule can be given as,

)(x) = ωi∗ ∈ * ↔ gi∗ (x) = max
k = 1, . . . ,+

{gi(x)} .

In an ensemble consisting of L such classifiers where
each classifier ) j, produces a class label s j ∈ * where
j = 1, . . . , L. Thus for any object x ∈ Rn to be classified,
the outputs from the L classifiers produce a vector s =
[s1, . . . , sL]T ∈ *L.

The Bayesian optimal weighted majority voting for
combining an ensemble of classifiers was defined in [18].
The label outputs produced by each classifier in the ensemble
are represented as degrees of support for each class in the
following manner:

λ j,k =
{

1, if ) j labels x in class ωk

0, otherwise.

The discriminant function for class ωk obtained through
weighted voting is, gk (x) =

∑L
j=1 b jλ j,k, where b j is a

coefficient for classifier ) j. Thus the value of the discriminant
function would be the sum of the coefficients for these
members of the ensemble whose output for x is ωk. In this
context, the optimal set of discriminant functions based on
outputs of the L classifiers is

gk (x) = log P (ωk) P (x|ωk) , k = 1, . . . ,+.

Kuncheva [18] has shown that in an ensemble of L classifiers
with individual training accuracies p1, . . . , pL the optimal
set of discriminant functions can be achieved by weighted
majority voting with individual weights

b j ∝ log
p j

1 − p j
, (16)

where p j is the training accuracy of the jth classifier where
j = 1, . . . , L.

The equation (16) is applicable only to stationary data
where the distribution of the training data is similar to the
distribution of the test data. In the presence of non-stationarity,
using equation (16) with training accuracies would not lead
to the optimal set of discriminant functions. Therefore under
non-stationarity, the accuracies for each test sample should be
considered individually to reach the optimal set of discriminant
functions.

Since the performance of the classifiers is not known for
the test samples, the weights b j are actively calculated for
each test sample based on estimated individual accuracies

of classifiers in the ensemble in the proposed method. An
estimate for the classification accuracy of each classifier is
dynamically calculated based on the distances from test sample
to the centres of the clusters consisting of the training data.

The proposed method, in principle, is applicable to
classification problems with more than two classes. For
simplicity, we will describe the algorithm for binary
classification. In the proposed method, the training data are
partitioned by clustering the features of the two classes
separately. Let U and V be the number of clusters of class 1 and
class 2 respectively. Let the clusters of class 1 be denoted by
c1u, where u = 1, . . . ,U and clusters of class 2 by c2v, where
v = 1, . . . ,V. Each pair of clusters c1u and c2v correspond
to a specific classifier ) j, in the ensemble, where j =
1, . . . , L. Therefore, the number of classifiers in the ensemble,
L = U ∗ V.

Let the distance from the sample to the cluster centre c1u

be du and the distance to cluster centre c2v be dv . Let the ratio
between the two distance measures be denoted by duv , where,
duv = du

dv
.

A function to estimate the probability of correct
classification based on the distance measures to the centres
of clusters c1u and c2v consisting of training samples for the
classifier is defined as

puv (xt ) = 1 − 1
2

exp
(

− 1
ψ2

uv

(log (dtu) − log (dtv ))
2
)

(17)

where t = 1, . . . , nt denotes the index of the training samples
in xt and puv is the estimated accuracy of the classifier made
from clusters c1u and c2v . dtu is du for the tth training sample.

This function to estimate classification accuracy satisfies
the following limits: puv → 1, when duv → ∞ and puv → 1,

when duv → ∞. It should also be noted that puv ∈ [0.5, 1]
and puv = 0, when duv = 1. ψuv is a parameter whose optimal
value should be found by optimizing the objective function
given in equation (18) on the training data given by

f (ψuv ) =
[

1
nt

[
nt∑

t=1

puv (xt )

]

− p j

]2

(18)

where p j is the training accuracy of the jth classifier where
j = 1, . . . , L. In order to find an exact solution for the
ψuv parameter by optimizing the objective function given in
equation (18), it must be monotonically decreasing. It can be
shown that
∂ puv

∂ψ2
uv

=

−1
2

exp

(

− 1
ψ2

uv

(
log

(
dtu

dtv

))2
) (

log
(

dtu

dtv

))2(
ψ2

uv

)−2 ! 0.

(19)

Equation (19) implies
∂ 1

nt [
∑nt

t=1 puv (xt )]
∂ψ2

uv
! 0. Therefore an exact

solution for the ψuv parameter can be found by optimizing
equation (18). After the optimal ψuv parameter is found the
accuracy can be estimated for each test sample by substituting
the ψuv parameter value in equation (17) as,

puv (x) = 1 − 1
2

exp
(

− 1
ψ2

uv

(log (du) − log (dv ))
2
)

(20)
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Input

• Training data Train with correct labels ωi ∈ Ω = {ω1, ..., ωΓ} representing

Γ classes.

• Integer K specifying number of clusters.

• Test data Test

Output

• Predicted class labels s ∈ Ω for Test.

Training

(i) Cluster training data of each class into K clusters.

(ii) Train classifiers on clustered training data.

(iii) Evaluate distances dtu and dtv from the cluster centres to training samples

xt, where t = 1, . . . , nt.

(iv) Optimize objective function based on distance ratio to find suitable ψuv

parameter.

Test- Given a test instance x ∈ Test

(i) Evaluate distances du and dv from the cluster centres to sample x.

(ii) Estimate classification accuracies for each classifier using ψuv parameter

found on the training data.

(iii) Calculate weights for each classifier j in the ensemble as bj = log puv(x)
1−puv(x) .

(iv) Choose the classifier decision that receives the highest weighted majority

vote.

Figure 2. DWEC method. The inputs to the algorithm are the training data and the number of clusters to partition. The training step consists
of clustering and training the classifier ensemble. In the testing step a previously unseen instance is presented to the classifier ensemble.

where x denotes a test sample and puv is the estimated
classification accuracy of the classifier made from clusters
c1u and c2v . Next, the weights for the jth classifier can
be dynamically calculated for each test sample x as, b j =
log puv (x)

1−puv (x)
. Figure 2 summarizes the steps involved in the

DWEC method.

4. Results and discussion

The proposed DWEC method was tested on the publicly
available BCI Competition dataset 2A [19] and the ARTS12
dataset collected from 12 healthy subjects. For both datasets
single-trial EEG data were extracted for training the CSP
algorithm. Three pairs of CSP features for the 8–30 Hz band-
pass filtered EEG measurements, extracted at the time segment
of 0.5–2.5 s after the onset of the visual cue, were used.

The number of component classifiers in the ensemble
depends on the number of clusters as too many clusters will
result in smaller partitions leading to over-fitting and lower
generalization accuracies for unseen data. Therefore only two
to seven clusters, resulting in four to 49 individual classifiers
respectively, were investigated.

4.1. Classification accuracies

The proposed DWEC method was evaluated on the dataset
2A of BCI Competition IV and ARTS12 dataset collected
from 12 healthy subjects. Six separate ensembles of classifiers
were developed consisting of four to forty nine individual

classifiers. Their performances were compared against a single
SVM classifier. The empirical results for the dataset 2A of BCI
Competition IV are shown in table 1.

The highest classification accuracies for each subject
are in boldface. A series of pairwise t-tests were carried
out between the baseline results and each of the clustering
approaches. The minimum conditional entropy criterion was
used to find the optimal number of clusters. It considers only
the diversity among the partitional clusters. The classification
accuracies of the resulting classifiers, trained on a different
number of clusters, were analysed. It was observed that the
optimal numbers of clusters, seven, does not result in the best
classification accuracy. It can be seen that the optimal number
of clusters yielded a statistically significant improvement over
the baseline result (p = 0.048). However, the ensemble of
classifiers resulting from three clusters yielded the best overall
classification accuracy (81.5%). A t-test between the ensemble
built with three clusters and the ensemble built with seven
clusters revealed that the two ensemble classifiers are not
statistically different (p = 0.93). This could be attributed to the
over-training of component classifiers and a lack of sufficient
training data, as the sample numbers for training are reduced
when more clusters are created.

The results obtained for the ARTS12 data set collected
from 12 healthy subjects are shown in table 2. The training
data were clustered only to three clusters based on the previous
results. A pairwise t-test was carried out at a confidence level
of 0.05 and the increase over the baseline results obtained with
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Table 1. Results of dataset 2A.

Number of clusters where training data are partitioned

Subject Baseline acc. 2 3 4 5 6 7

A1 87.3 95.2 95.4 94.8 94.4 94.8 94.6
A2 56.8 63.8 64.2 64.1 62.5 63.9 63.4
A3 93.1 96.9 96.8 96.2 96.5 95.2 95.9
A4 63.6 66.7 67.3 66.7 66.8 66.4 65.5
A5 54.8 75.9 75.9 75.6 75.4 75.7 75.6
A6 62.6 64.9 65.2 63.6 65.8 63.8 64.5
A7 77.1 78.1 78.1 77.9 78.1 78.5 78.7
A8 94.2 96.1 96.1 96.4 95.2 95.7 95.6
A9 93.8 92.6 93.2 92.8 93.25 92.8 93.2

Mean 75.9 81.3 81.5 81.0 80.9 80.8 80.9

Std. dev. 16.6 14.3 14.2 14.4 14.1 14.1 14.4

p value 0.039 0.032 0.047 0.047 0.059 0.048

The baseline results produced by a single SVM classifier are compared against
ensembles created by combining multiple classifiers trained on clustered training data
for the BCI Competition IV dataset 2A. The two sample Student’s t-test is used to
assess the statistical significance of the improvement at a confidence level of 0.05.

Table 2. Results of data collected from 12 healthy subjects.

Acc. from DWEC with
Subject Baseline acc. three clusters

1 60.7 65.0
2 62.1 65.2
3 52.7 57.5
4 69.4 70.7
5 67.2 69.3
6 82.2 87.9
7 81.1 84.3
8 95.2 97.5
9 73.0 75.0

10 57.2 61.9
11 49.4 56.6
12 82.7 84.7

Mean 69.4 73.0

t-test (P value) 2.67 × 10−5

This table compares the baseline accuracy given by a
single SVM classifier against the ensemble classifier
trained on three clusters of training data for the data
collected from twelve healthy subjects. The two sample
Student’s t-test is used to assess the statistical significance
of the improvement at a confidence level of 0.05.

a single SVM classifier was found to be statistically significant
(p = 2.67 × 10−5).

4.2. Addressing non-stationarity

The presence of non-stationarity in the session-to-session data
can be clearly identified by the clustering analysis. Figure 3
highlights the presence of non-stationarity in dataset 2A. The
clusters of the feature space from the second session spanned
a different space compared to the clusters of the feature space
from the first session. A classifier trained on the first session
will not be able to classify the data from subsequent sessions
due to the presence of this non-stationarity. The feature space
consists of the two best features (m = 1 in CSP algorithm)
selected after the CSP algorithm.

Figure 4 shows two examples that are correctly classified
only by the proposed method. A reduced two-dimensional

feature space consisting of the two best features, by setting
m = 1 in the CSP algorithm, is used for the plot. Three base
classifier hyperplanes are shown in the figure by dashed lines.
The classifier L11 is trained on cluster 1 of class 1 and cluster 1
of class 2. L22 is trained on cluster 2 of class 1 and cluster 2 of
class 2 and L33 is trained on cluster 3 of class 1 and cluster 3 of
class 2. The baseline ensemble without dynamic weighting is
also shown as a dashed line. The black dots represent features
from the second session. Test sample x1 belongs to class 1, but
it is classified wrongly to class 2 by classifiers L22 and L33,
however L11 classifies it correctly and because the decision
of L11 is magnified by the weighting method, the effective
hyperplane of the ensemble for x1, shown as EL1, correctly
classifies the sample x1 in class 1.

Test sample x2 also belongs to class 1, but it is incorrectly
classified to class 2 by classifiers L11 and L33, however L22

classifies it correctly and because the decision of L22 is
magnified by the weighting method, the effective hyperplane
of the ensemble for x2 shown as EL2 correctly classifies the
sample x2 in class 1.

A further analysis was carried out on the BCI Competition
dataset 2A to ascertain whether the proposed DWEC method is
capable of accounting for non-stationarity in EEG data. In this
study, part of the test data was also included in the training data.
The hypothesis, that the clustering based classifier ensemble
is capable of accounting for non-stationarity when there is
more variability in the data, was statistically analysed for
significance. Table 3 summarizes the results of the analysis.

Two baseline cases were considered in the analysis (case
1 and case 2). In the first case, the classifiers were trained Q4
with all the training data similar to the standard procedure and
evaluated on only half of the randomly chosen test data. In
the second set-up (case 2), half of the test data were randomly
selected to be incorporated into the training data and were
tested on the other half of the test data. The clustering-based
ensemble was also trained in a similar manner and tested on a
randomly chosen half of the original test samples.

Two statistical tests were carried out to compare the
mean results of this study. First, the baseline cases where the
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Figure 3. Session-to-session non-stationarity in BCIC IV dataset 2A subject A1.
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Figure 4. Examples of two test samples from ARTS12 dataset subject 3. Three clusters of each class are combined resulting in nine
classifiers. Only three classifier hyperplanes L11, L22 and L33 are shown in the figure. The baseline classifier hyperplane is also shown by a
dashed line. The chosen test samples shown as black dots are correctly classified by the proposed method but misclassified by other
combination methods. The effective hyperplanes, resulting from dynamic weighting, for each of the test samples are shown as solid lines
EL1 and EL2. The dashed arrows perpendicular to the classifier hyperplanes indicate the direction of class 1 by each classifier.

ensemble of classifiers was not used were compared against
the corresponding cases with the ensembles. The probability
values of the pairwise t-tests are denoted as P1 in table 3.
The tests suggest that the proposed DWEC method results
in statistically significant improvements over the respective
baseline cases under both settings (P1 = 0.013 and 0.031).

The second comparison was carried out between the case
where half of the test samples were included for training
without the proposed classifier combination method, against
the case where the classifier ensemble was trained with only
the training data and tested on half of the test data. The test
indicates that the mean accuracies resulting from the two cases
are not different at a 0.05 level of significance (P2 = 0.068).

Even if our proposed method did not use any data from the
test set (case 3), the DWEC method achieved at least equal
performance to that of the baseline method with additional
data taken on the same day as the test samples (case 2).

4.3. Complexity analysis

The complexity of the proposed framework depends on the
complexities of the main components: the CSP algorithm,
clustering mechanism, classifier ensemble and optimal weights
calculation.

Pre-processing and feature extraction steps depend mostly
on the complexity of the CSP algorithm. The CSP algorithm

8
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Table 3. Comparison of effects of including data from the second
session.

Methods

Baseline without clustering DWEC with three clusters

Subject Case 1 Case 2 Case 3 Case 4

A1 87.49 90.06 96.17 97.42
A2 56.85 60.24 66.08 68.51
A3 93.25 96.91 97.13 98.47
A4 63.64 64.99 68.72 70.34
A5 55.03 57.09 76.39 78.47
A6 64.75 64.87 68.87 69.17
A7 77.11 78.35 78.82 80.17
A8 94.27 96.34 97.95 98.11
A9 93.92 95.71 95.01 96.59

Mean 76.26 78.51 82.79 84.14

Std Dev 16.47 16.57 13.65 13.41

P1 – – 0.013 0.031
P2 – 0.068 –

Case 1 and case 3: train classifiers on all training data and test on
half of test data. Case 2: train with half of training data and half of
test data and test on the other half of test data. Case 4: train with half
of training data and half of test data and test on the other half of test
data. P1 compares the significance between the baseline cases (case
1 and case 3) against the corresponding approaches with the
ensemble built by three clusters (case 2 and case 4). The P2 statistic
compares the case where half of the test samples were included for
training without the proposed classifier combination method (case 2)
against the case where classifiers are trained with only the training
data and tested on half of the test data (case 3).

needs to compute covariance matrices, which are in the order

Q5

O(N ∗ ch3), where N is the dimensionality of the data and
ch is the number of components (channels). In this study, the
dimensionality of the data was 6.

The complexity of the clustering algorithm depends on the
initialization step and the iterative updates. The initialization
step costs O((nt )

2 ∗ N) as the complete kernel matrix needs
to be set up. Finding the best target cluster for each datum
costs O(K) time and the update procedure costs O(nt ) time.
K is the number of clusters and nt is the number of data
samples. The cost of the main loop of the algorithm is therefore
O(I ∗ nt (K + µ ∗ nt )) where I is the number of iterations
and 0 < µ < 1 is the expected ratio of data items that
change membership. The number of membership changes
is large for the first few iterations, then quickly reduces as
the algorithm converges. Overall, the time complexity of
clustering is dominated by the quadratic cost of computing
the kernel matrix. The maximum number of iterations was set
to 50 for increased efficiency.

The complexity of the ensemble depends partly on the
number of SVM classifiers and on the SVM classification
algorithm. The complexity of one SVM classifier depends on
the number of features and support vectors. When a linear
kernel is used the time complexity depends only on the feature
dimensionality [35]. Therefore, the complexity for one SVM
classifier is in O(N), where N is the dimensionality of the data.
The complexity of the whole ensemble is O(N ∗ K2).

The calculation of optimal weights involves O(K2)

distance measures and their optimization. The optimization

function is smooth and convex with a complexity of O(K2).
Each gradient computation complexity is also O(K2), so if
all of them have to be computed during an iteration that adds
O(K4). If the total number of iterations for the optimization is
I, the complexity of optimization adds up to O(I ∗ K4).

5. Conclusion

In this study, we proposed a novel method to partition EEG data
using clustering, and multiple classifiers were trained using
the partitioned datasets. The final decision of the classifier
ensemble was then obtained by weighting the classification
decisions of individual classifiers. A combination method
based on the distances from the test sample to the
constituent cluster centres that form the specific classifier
was subsequently used to weigh the classifier decisions.
The proposed DWEC method was applied on the publicly
available dataset 2A from BCI Competition IV and the dataset
ARTS12 collected from 12 healthy subjects. The classification
accuracies obtained showed that the proposed method yielded
statistically significant improvements. The analysis carried out
in section 4.2 showed that the proposed DWEC approach can
be used to address non-stationarity in EEG data.
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