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Effective learning and recovery of relevant source brain activity patterns
is a major challenge to brain-computer interface using scalp EEG. Various
spatial filtering solutions have been developed. Most current methods
estimate an instantaneous demixing with the assumption of uncorrelat-
edness of the source signals. However, recent evidence in neuroscience
suggests that multiple brain regions cooperate, especially during motor
imagery, a major modality of brain activity for brain-computer interface.
In this sense, methods that assume uncorrelatedness of the sources be-
come inaccurate. Therefore, we are promoting a new methodology that
considers both volume conduction effect and signal propagation between
multiple brain regions. Specifically, we propose a novel discriminative
algorithm for joint learning of propagation and spatial pattern with an
iterative optimization solution. To validate the new methodology, we
conduct experiments involving 16 healthy subjects and perform numer-
ical analysis of the proposed algorithm for EEG classification in mo-
tor imagery brain-computer interface. Results from extensive analysis
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validate the effectiveness of the new methodology with high statistical
significance.

1 Introduction

Scalp EEG signals are stochastic, nonlinear, and nonstationary (Guler,
Kiymik, Akin, & Alkan, 2001) and have relatively low spatial resolution.
Therefore, it has been a considerable challenge to compute discriminative
and robust features for detecting the brain activity of interest, especially in
single-trial brain-computer interface (BCI) studies(Li & Guan, 2006; Llera,
Gomez, & Kappen, 2012). In this letter, we consider BCI using motor im-
agery, although the general methodology can be applied to other brain sig-
nals. Motor imagery is a dynamic brain state that can induce the same motor
representation internally as motor execution (Jeannerod, 1995). In particu-
lar, distinctive brain signals of event-related desynchronization (ERD) and
event-related synchronization (ERS) are detectable from EEG during mo-
tor imagery (Stavrinou, Moraru, Cimponeriu, Stefania, & Bezerianos, 2007;
Pfurtscheller, Brunner, Schlogl, & da Silva, 2006). Therefore, motor imagery
becomes an important modality in developing BCI systems (Lo et al., 2010;
Ang, Chin, Zhang, & Guan, 2008; Vidaurre, Sannelli, Muller, & Blankertz,
2011).

To improve the signal-to-noise ratio, spatial filtering has been widely
used to counter volume conduction effects (Blankertz, Tomika, Lemm,
Kawanabe, & Muller, 2008). In motor imagery, EEG classification, probably
the most recognized technique, is a common spatial pattern (CSP) (Ramoser,
Muller-Gerking, & Pfurtscheller, 2000). In CSP, the desired spatial filters are
designed to extract prominent ERD/ERS by maximizing the variance of the
projected signal under one condition while minimizing it under the other
(Koles, 1991; Gerkinga, Pfurtscheller, & Flyvbjergc, 1999). Various methods
have been proposed to improve the performance of CSP by addressing the
problem of selecting proper time segments or frequency bands of EEG. In
Lemm, Blankertz, Curio, and Muller (2005), common spatiospectral pattern
(CSSP) optimizes a simple filter by adding a one-time-delayed sample to
have more channels. In Dornhege et al. (2006), common sparse spectral
spatial pattern (CSSSP) extends CSSP by adding the optimization of a com-
plete global spatial-temporal filter into CSP. In Ang, Chin, Wang, Guan, and
Zhang (2012), Ang, Chin, Zhang, and Guan (2012), and Thomas, Guan, Lau,
Vinod, and Ang (2009), EEG signals are decomposed into several frequency
bands, CSP is applied to different bands independently, and feature fusion
or classifier fusion is introduced to produce final classification results. These
methods either implicitly or explicitly assume that raw scalp EEG wave-
forms are generated by uncorrelated source signals, and subsequently, they
may not account for more complicated brain signal dynamics such as causal
propagation between different brain regions.
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Recently brain activities during motor imagery other than ERD/ERS
have been observed in multifunctional areas using functional magnetic
resonance imaging (fMRI) or EEG (Formaggio, Storti, Cerini, Fiaschi, &
Manganotti, 2010; Chen, Yang, Liao, Gong, & Shen, 2009). In particular, the
analysis of neural connectivity is gaining more attention in neuroscience
because it describes the general functioning of the brain and communi-
cation among its different regions (Astolfi et al., 2006; Ewald, Marzetti,
Zappasodi, Meinecke, & Nolte, 2012). For example, causal connectivity is
found in motor-related core regions such as the primary motor cortex (M1)
and supplementary motor area (SMA) during motor imagery (Chen et al.,
2009). The causal flow or time-lagged correlation is beyond volume con-
duction and is caused by possible neuronal propagation (Gomez-Herrero,
Atienza, Egiazarian, & Cantero, 2008). To investigate such propagation ef-
fects, directed transfer function (DTF) has been used to evaluate causal flow
between any given pair of channels in a multichannel EEG in frequency do-
main, which was introduced in Baccala and Sameshima (2001), Kaminski
and Blinowska (1991), and Kaminski, Ding, Truccolo, and Bressle (2001).
This estimation of DTF is based on a multivariate autoregressive model
(MVAR), and, more importantly it has been applied to EEG data of vol-
untary finger movement and motor imagery for event-related causal flow
investigation (Ginter, Blinowska, Kaminski, & Durka, 2001; Schlogl & Supp,
2006). Kus, Kaminski, and Blinowska (2004) found that there is a rapid in-
crease of information outflow from electrodes Fc3 and C3 caused by ERS,
and propagation of β-synchronization from Fc3 and Fc1 to C3, C1, Cz, Cp3
and Cp1 exists, which gives evidence of communication among sensori-
motor areas. However, looking at only the time profiles of ERD/ERS, it is
difficult to determine the primary source of activity; hence, existing instan-
taneous demixing models are not capable of modeling signal propagation
among underlying ERD/ERS sources.

In the presence of neuronal propagation and causal relationship dur-
ing motor imagery, conventional spatial filter design methodology is not
sufficient to capture the underlying brain activities (Dyrholm, Makeig,
& Hansen, 2007; Bahramisharif, van Gerven, Schoffelen, Ghahramani, &
Heskes, 2012). We would like to note that although some of the connec-
tivity measurements mentioned above have been explored already (Wei,
Wang, Gao, & Gao, 2007; Gysels & Celka, 2007), only scalp connectivity
and intrachannel synchronization measurements are directly used as fea-
tures, whereas volume conduction effects are not rigorously addressed.
One consequence would be that bandpower variations are misinterpreted
as changes in connectivity (Grosse-Wentrup, 2009).

Therefore, rather than ignoring the connectivity or propagation between
sources in spatial filter design or using scalp connectivity directly as fea-
tures, we would like to promote a computational model that can more
accurately describe the underlying processes by considering both neuronal
propagation and volume conduction effects.
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In this work, we devise a novel discriminative learning model for motor
imagery EEG based on a multivariate convolutive process with an analysis
of the spurious effects in classifying ERD/ERS based on an instant linear
mixture model. The effectiveness of introducing a time-lagged demixing
matrix to produce time-decorrelated data is analyzed theoretically from the
perspective of background noise elimination. Furthermore, the demixing
matrices accounting for propagation and volume conduction are estimated
jointly and iteratively in the proposed unified model. From the experi-
mental study, we evaluate the efficiency of the new methodology in terms
of classification accuracy in the two-class motor imagery EEG classifica-
tion problem. We also analyze the effectiveness of the proposed method
for background noise elimination using the Küllback-Leibler divergence
measure.

This letter is organized as follows. In section 2, we discuss limitations
of conventional spatial filter design and the necessity of considering the
causal propagation. Then we give the details of the proposed discriminative
learning of propagation and spatial pattern. In section 3, the validity of the
proposed method is verified by experimental studies on two-class motor
imagery classification. Our concluding remarks are in section 4.

2 Discriminative Learning of Propagation and Spatial Pattern

2.1 Data Model and Problem Formulation. Let X(t) be the timeseries
of a multichannel EEG signal, with each component in X(t) representing a
particular EEG channel measured at time t. Considering the complex tem-
poral dynamics, especially the latent causal relations in X(t), we describe
the observed data X(t) as an m-dimension linear convolutive mixture pro-
cess of order l (Dyrholm et al., 2007; Mørup, Madsen, & Hansen, 2009),

X(t) =
l∑

τ=1

�(τ )S(t − τ ), (2.1)

where S(t) is the source signal of interest, �(τ ) is the projection matrix of
the order τ , and l is the maximum time-lagged order. When l = 0, the ob-
served data X(t) is an instant mixing process. For simplicity of description,
the additive EEG noise can be described by an component in S(t). Conven-
tionally, it is assumed in motor imagery EEG classification that X(t) is an
instant linear mixture of source signals. This leads to an instant demixing
solution to the estimation of S(t),

Ŝ(t) = WX(t), (2.2)

where W is the projection or demixing matrix containing m rows, and each
row of W is effectively a spatial filter w.
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Interestingly, we note that the estimate Ŝ(t) given by equation 2.2 is also
a mixture of the time-lagged components,

Ŝ(t) =
∑

τ

�w(τ )S(t − τ ), (2.3)

where �w(τ ) = W�(τ ) is a mixing matrix.
A perfect solution would be that �w(τ ) takes an identity matrix form

for τ = 0 and a zero matrix form for any τ �= 0. This is generally impossible
except in the exceptional case that �(τ ) = 0 for τ �= 0, or, in other words,
when the convolutive mixture model in equation 2.1 reduces to an instant
mixing model.

Remark 1. In discriminative analysis, the spatial filter W is designed to ex-
tract the most discriminative signal Ŝ(t). However, due to the time-lagged
relationships, discriminative signals are still mixed with nondiscriminative
ones in Ŝ(t). Therefore, it is necessary to take the causal flow into consider-
ation, together with spatial filter design in a unified model, to have a better
estimation of S(t), which is the motivation of this letter.

Solving the reconstruction problem of S(t) from equation 2.1 may lead
to a solution in the form of an infinite impulse response (IIR) filter. As we
will elaborate shortly and also for practical use, we simplify the problem
into a finite impulse response (FIR) filter given by

S(t) = W(X(t) −
p∑

τ=1

A(τ )X(t − τ )), (2.4)

where A(τ ) is the demixing matrix of the order τ that accounts for the
time-lagged propagation effect.

Remark 2. The manipulation of simplifying the IIR form into the FIR
form is for the convenience of practical implementation. Practically, this
mixing effect can be accounted for by a finite number of orders, while the
rest can be ignored. Although not rigorously proven, the feasibility of this
simplification in the discriminative problem will be discussed and validated
by the experimental results in section 3.

For the convenience of presentation and analysis, we divide the recon-
struction problem of S(t) into two parts. First, we define

X̃(t) = X(t) −
p∑

τ=1

A(τ )X(t − τ ), (2.5)
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where X̃(t) is the signal processed by a finite multivariate FIR filter of order
p. We refer to it as the time-decorrelated data in the following discussion.
The source signal can be recovered from the time-decorrelated data X̃(t) by

S(t) = WX̃(t). (2.6)

It is interesting that reconstructing S(t) based on equations 2.6 and 2.5 re-
sembles the classical causal connectivity estimation based on MVAR analy-
sis (Dyrholm et al., 2007; Gomez-Herrero et al., 2008; Haufe, Tomioka, Nolte,
Muller, & Kawanabe, 2010), where the process S(t) is usually defined as a
temporally and spatially uncorrelated time sequence. Different from the
connectivity identification, the objective in this letter lies in discriminative
learning. Therefore, rather than modeling the signals, the demixing matrix
A(τ ) is used to construct the ERD/ERS sources from the measurements.
Moreover, S(t) does correspond not to the innovation process but to the
ERD/ERS sources, which we explain in detail in the appendix. The objec-
tive in estimating A(τ ) is the variance difference between two classes but
not the independence of the source, so that the discriminative power of S(t)
is maintained. Based on the convolutive model, possible propagation effects
can be addressed in the discriminative model. Details of joint estimation of
A(τ ) and W in equations 2.6 and 2.5 for the objective of classification are
introduced in the following section.

2.2 Joint Estimation of Propagation and Spatial Pattern. We introduce
the principle of CSP in the design of joint estimation of propagation and
spatial pattern. As CSP can be viewed as a spatial transformation, the prin-
ciple lies in maximizing the power of the transformed signal for one class
while minimizing it for the other. The normalized sample covariance matrix
Ri of trial i is obtained as

Ri = XiX
T
i

tr(XiXT
i )

, (2.7)

where tr(·) is the trace of a matrix. In this letter, we consider only the binary
classification problem, and the two classes are indexed by c = {0, 1}. Let Qc
denote the set of trials that belong to class c such that Q0

⋂
Q1 = ∅. The

average covariance matrix for each class is then calculated as

R(c) = 1
|Qc|

∑
i∈Qc

Ri, (2.8)

where |Qc| denotes the total number of samples belonging to setQc. Suppose
the signal power is to be maximized for class 0; the objective function in
CSP is given by

max
w

wR(0)wT s.t. w(R(0) + R(1))wT = 1. (2.9)
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Note that the dependence of EEG signals (in equation 2.8 and onwards) on
time is implied unless otherwise stated. The idea of discriminating the
EEG signals of two different motor imagery classes in terms of power
(the variance of the projected signal) in equation 2.9 is directly related
to the nature of ERD/ERS. Therefore, we deal with the estimation of S(t) in
the proposed model by adopting variance differentiation as the objective.
To embed the estimation of A(τ ) in equation 2.4 into the objective function,
equation 2.9, we rewrite equation 2.5 to make the relationship between raw
EEG data X and the time-decorrelated data X̃ more compact by defining

Â(τ ) =
{

I, τ = 0

−A(τ ), τ > 0
, (2.10)

which we refer to as the time-lagged demixing matrix for the simplicity.
Therefore, X̃(t) in equation 2.5 becomes

X̃(t)=
p∑

τ=0

Â(τ )X(t − τ ). (2.11)

Similarly, the covariance matrix of X̃(t) is

R̃i = X̃iX̃
T
i

tr(X̃iX̃T
i )

, (2.12)

and the average covariance based on X̃(t) for each class is

R̃(c) = 1
|Qc|

∑
i∈Qc

R̃i. (2.13)

Replacing R(c) in equation 2.9 with R̃(c) and considering equations 2.11 and
2.12, the optimization problem becomes

max
w,Â(τ )

w

⎛⎝ p∑
τ1=0

p∑
τ2=0

Â(τ1)R
(0)(τ�)Â(τ2)

⎞⎠ wT , s.t.

w

⎛⎝ p∑
τ1=0

p∑
τ2=0

Â(τ1)(R
(0)(τ�) + R(1)(τ�)

⎞⎠ Â(τ2))w
T = 1, (2.14)

where R(c)(τ�) = 1
|Qc|

∑
i∈Qc

Xi(t − τ1)(Xi(t − τ2))
T . In this way, the estima-

tion of model 2.4 is achieved by solving the optimization problem in equa-
tion 2.14. Moreover, as shown in equation 2.14, only one Â(τ ), as a part
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of the feature extraction model, is obtained on the completion of the opti-
mization since the calculation is conducted with the averaged covariance
matrix R(c)(τ�) over all the trials. This is very different from the regression
model in connectivity analysis, in which the estimated models are different
for different trials.

Because the above objective function can be highly nonlinear, we adopt
an iteration procedure to estimate w and Â(τ ). Since both of the estimations
of the spatial filter w and the time-lagged demixing matrix Â(τ ) depend
on each other, the iterative method alternatively updates one while fix-
ing the other. To be specific, the spatial filter w can be obtained based on
a fixed Â(τ ) by solving equation 2.9. For Â(τ ), we calculate the jth col-
umn of Â(τ ), [â1 j, â2 j, . . . , âC j]

T , separately based on the fixed spatial filter
and [â1k, â2k, . . . , âCk]T (k = 1, . . . ,C and k �= j) from the last iteration. In
this way, the information flow from different channels is optimized indi-
vidually, and the update of Â(τ ) finishes on the completion of estimating
[â1 j, â2 j, . . . , âC j]

T for j = 1, . . . ,C. The implementation of the proposed dis-
criminative learning algorithm of propagation and spatial patterns is sum-
marized in algorithm 1. The loop will not stop until the convergence criteria
are met. Note that during the optimization, only one spatial filter w is used.
On completion of the optimization, X̃ can be obtained from equation 2.11,
and subsequently R̃(c) can be obtained based on equation 2.12. With Rc sub-
stituted with R̃(c), the optimization problem in equation 2.9 is equivalent to
solving the eigenvalue decomposition problem,

WR̃(0) = �WR̃(1), (2.15)

where � is the diagonal matrix containing the eigenvalues of (R̃(1))−1R̃(0).
With the projection matrix W, we select r pairs of spatial filters correspond-
ing to the r largest or smallest components in � as in the usual CSP proce-
dure. And the feature F̃i for trial i is obtained from X̃i as

F̃i = log
w jX̃iX̃

T
i wT

j∑
j w jX̃iX̃T

i wT
j

, j = 1, . . . , r, N − r + 1, . . . , N. (2.16)

2.3 Background Noise Separation. In this section, we investigate the
effectiveness of introducing the time-lagged demixing matrix Â(τ ) into the
estimation of the ERD/ERS source, combined with spatial filter design. To
further analyze and evaluate the proposed model, the difference between
the time-decorrelated EEG signal X̃(t) (see equation 2.5) and original EEG
data X(t) is investigated. Suppose X(t) is described by the following MVAR
model,

X(t) =
q∑

τ=1

B(τ )X(t − τ ) + N(t), (2.17)
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Algorithm 1:  Discriminative Learning of Propagation and Spatial Pattern

Input:

Training EEG data that comprises N sample blocks of X , with each block having

a specific class label;

Output:

Spatial filter w and time-lagged correlation estimates Â(τ).

begin

Set the initial parameters of the spatiotemporal filters Â(τ) as zero matrices;

for k = 1 : nk do

Compute X based on Â(τ) using equation 2.11;

Compute w by solving the optimization problem in equation 2.9;

% Update the spatial filter w

for j = 1 : C do

Compute [â1j, â2j, . . . , âmj]
T based on the updated spatial filter w by

solving the optimization problem in equation 2.14;

% Update Â(τ).

Compute the change in the norm Â(τ) by δ = Â(τ)k Â(τ)k−1 ;

if δ < ζ (ζ is a small preset constant) then

Stop.

where N(t) is the prediction error. It is also regarded as the innovation
process because it is spontaneous and cannot be totally predicted by past
observations (Gomez-Herrero et al., 2008). Note that B(τ ) is the mixing ma-
trix based on the regression model, which is different from A(τ ) estimated
in the proposed model for discriminative purposes and q is the order of the
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MVAR model. Similarly, equation 2.17 is rearranged in the following form
to make the input-output relationship more compact,

N(t)=
q∑

τ=0

B̂(τ )X(t − τ ), (2.18)

where

B̂(τ ) =
{

−I, τ = 0;
B(τ ), τ > 0.

(2.19)

Transforming equation 2.18 into the frequency domain yields

N( f ) = B( f )X( f ), (2.20)

B( f ) =
q∑

τ=0

B̂(τ )e−i2π f τ , (2.21)

where f is the frequency. Therefore, the transfer function of the system H( f )
can be described by

H( f ) = B−1( f ), (2.22)

such that X( f ) = H( f )N( f ).
By substituting equation 2.17 into 2.5 and following the steps from equa-

tion 2.20 to 2.22, we obtain

X̃( f ) = (I − A( f ))X( f ) (2.23)

=
(

H( f ) − A( f )
B( f )

)
N( f ), (2.24)

where

A( f ) =
p∑

τ=0

Â(τ )e−i2π f τ . (2.25)

Let H̃( f ) = H( f ) − A( f )
B( f ) , which is the transfer function from N( f ) to X̃.

Since the causal flow measurement DTF is defined based on the transfer
function (Kaminski et al., 2001), we see that the proposed method changes
the information flow by changing the transfer function from H( f ) to H̃( f ).
Moreover, comparison of the transfer functions of X̃ and X in equation
2.23 shows its similarity to the classical signal-plus-noise (SPN) model. In
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particular, in Xu et al. (2009), the observed EEG data containing ERP XE ( f )
is usually formulated as

XE ( f ) = �SE( f ) + Z( f ) (2.26)

where SE( f ) is the ERP of interest and Z( f ) is the background noise or the
ongoing activity.

Remark 3. As Xu et al. (2009) discussed, the background noise is not noise
despite its noise-like appearance but represents ongoing brain activity rich
in oscillatory content. In the light of the above discussion, we can interpret
equation 2.23 from a similar perspective. As indicated in equation 2.23,
the frequency component removed from X is an oscillatory signal with a
transfer function A( f )

B( f ) , and it can be regarded as an estimate of ongoing
activity. In other words, this ongoing activity constitutes part of the MVAR
process of X with the portion as A( f )

B( f ) . In this way, the ERD/ERS components
are enhanced in the proposed model with the oscillatory background noise
attenuated.

The Küllback-Leibler (KL) divergence is a measure of probability diver-
gence given two probability distributions, and it has been used to evaluate
nonstationarity in motor imagery EEG classification problem (Arvaneh,
Guan, Ang, & Quek, 2013a, 2013b; Bamdadian, Guan, Ang, & Xu, 2012).
Therefore, to verify that the component removed from X is the background
noise, we adopt the KL divergence as the criterion.

As the gaussian model is usually used to model EEG data, we consider
the KL divergence between two gaussian distributions. In particular, the
KL divergence between two gaussian distributions with the means and
nonsingular covariance matrices corresponding to distribution N0/N1 as
μ0/μ1 and �0/�1 is

DKL(N0||N1)= 1
2

(
tr

(
�−1

1 �0

) − (μ1 − μ0)
T�−1

1 (μ1 − μ0)

− ln
(

det �0

det �1
− k

) )
. (2.27)

It is reasonable to assume that the improved separation of background noise
will result in more stationary data with fewer within-class dissimilarities.
We therefore adopt KL divergence to measure such within-class dissimi-
larities. The smaller the KL divergences within trials from the same class,
the less the variation of the data, which generally relates to better classifi-
cation results. Since EEG data are usually processed to be centered and the
dimension k of the distribution is the number of channel m, for every trial i
in class c, we use DKL(N (0, Ri)||N (0, R(c))) to measure the dissimilarity of
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the distribution of this trial from the mean distribution of the class c as

DKL(N (0, Ri)||N (0, R(c))) = 1
2

(
tr(R−1

i R(c)) − ln
(

det Ri

det R(c)

)
− m

)
,

(2.28)

and subsequently we obtain an average probability divergence D for EEG
data X as

D =
∑
c=0,1

1
|Qc|

∑
i∈Qc

DKL(N (0, Ri)||N (0, R(c))). (2.29)

Similarly, we obtain D̃ based on X̃ as

D̃ =
∑
c=0,1

1
|Qc|

∑
i∈Qc

DKL(N (0, R̃i)||N (0, R̃(c))). (2.30)

In this way, by comparing D and D̃, we can evaluate the quality of X and X̃
in terms of within-class dissimilarities.

Remark 4. It is worth noting that the proposed method addresses a more
complicated dynamics of motor imagery EEG but does not depend on the
very critical explanation of the generation of ERD/ERS. On the one hand,
it is possible that propagation effects that contribute to the generation of
ERD/ERS exist. On the other hand, discriminative sources could correlate
with noise in a convolutive way. Blind source separation or connectivity
estimation methodology, as discussed before, may not be effective for clas-
sification problems because it is difficult to differentiate between two kinds
of propagation effects. The proposed model, which is formulated in a phe-
nomenological form, equation 2.23, takes both cases into consideration.

3 Experimental Results and Discussion

3.1 Data Description and Processing. Sixteen subjects participated in
the study with informed consent. Ethics approval was obtained before-
hand from the Institutional Review Board of the National University of
Singapore. EEGs from the full 27 channels were obtained using Nuamps
EEG acquisition hardware with unipolar Ag/AgCl electrodes channels. The
sampling rate was 250 Hz with a resolution of 22 bits for the voltage range
of ±130 mV. A bandpass filter of 0.05 to 40 Hz was set in the acquisition
hardware.
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In the experiment, the training and test sessions were recorded on dif-
ferent days with the subjects performing motor imagery. During the EEG
recording process, the subjects were asked to avoid physical movement
and eye blinking. In addition, they were instructed to perform kinesthetic
motor imagery of the chosen hand in two runs. During the rest state, they
did mental counting to make the resting EEG signal more consistent. Each
run lasted approximately 16 minutes and consisted of 40 trials of motor
imagery and 40 trials of rest state. Each training session consisted of two
runs, while the test session consisted of two or three runs.

We select the time segments from 0.5 s to 2.5 s after the cue (Arvaneh,
Guan, Ang, & Quek, 2011). The raw data are prefiltered by an 8 Hz to 35 Hz
bandpass filter that covers rhythms related to motor imagery. The filtered
training data are used to train the feature extraction model based on the
proposed method as described in section 2.2. The numbers of spatial filters
in W are chosen as 2 and 3 (r = 2, 3 in equation 2.16). Finally, the extracted
training features are used to train a support vector machine (SVM) classifier.

3.2 Investigation on the Order of the Time-Lagged Demixing Matrix.
To determine the order p of Â(τ ) in equation 2.11, we fit the MVAR model
to EEG data as in equation 2.17. Although the orders p and q have different
meanings, the analysis of the order q of the mixing matrix B(τ ) in equation
2.14 provides the information at which time-lagged level the propagation
effects are stronger. Based on equation 2.20 and the analysis given in sec-
tion 2.3, as Â(τ ) corresponds to certain components of B(τ ) in frequency
domain, it is reasonable to choose the order p of Â(τ ) in accordance with
q, the order of B(τ ). Therefore, the analysis of the mixing matrix B(τ ) can
be used to initialize the order p of Â(τ ) in the proposed model. The Swartz
Bayesian criterion is used to automatically select the model order that best
matches the data (Schneider & Neumaier, 2001). We found that for every
subject, the order 5 for q is selected for most of the trials and the order 4
or 6 is selected for the remaining of the trials. Therefore, we restrict the
investigation on the order 4, 5, or 6.

Figure 1 illustrates the result of one subject in the data set introduced in
section 3.1. The y-axis indicates the value of the norm of mixing matrix B(τ )

in equation 2.17 of different orders, and the x-axis indicates the order τ . The
coefficient matrices are obtained under MVAR models with q equal to 4, 5, or
6 and averaged over the training set and test set, respectively, resulting in the
six lines in Figure 1. We see that in all six cases, the norms of the coefficient
matrices of orders 2 and 3 are the highest, which means that the data at time
t are most influenced by the data at time t − 2 and time t − 3. Therefore,
the order p of Â(τ ) should include these two time lags, and subsequently
the proposed discriminative learning model addresses the most influential
propagation effects. Furthermore, we focus on investigating the feasibility
of the proposed model with orders 4 and below.
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Figure 1: Norms of coefficient matrices under the MVAR model. The x-axis
represents the order τ , and y-axis represents the norm of B(τ ). Three MVAR
models with order q from 4 to 6 are used to fit EEG data of training and test sets
separately, yielding six lines. And the peak points of the six lines correspond to
either τ = 2 or τ = 3.

3.3 Classification Results. Tables 1 and 2 summarize the performance
of the proposed feature extraction method, compared with CSP as the base-
line. In these two tables, we refer to the proposed method as discriminative
propagation and spatial pattern analysis (DPSP). Tables 1 and 2 correspond
to r = 2 and r = 3, respectively, and in both tables, results of DPSP with
p = 1, 2, . . . , 4 are included.

According to the results, the proposed feature extraction method im-
proves the performance of the classifier, and the improvements are sig-
nificant when the order of Â(τ ) in DPSP is 2 or 3 regardless of the value
of r, which is in agreement with the previous analysis based on the MAVR
model. Specifically, the average classification accuracy for order 2 is 68.30%,
and the accuracy for order 3 is 67.91% when r = 2, both of which are higher
than that of CSP (65.56%). The paired t-test confirms the significance of the
improvement at a 5% level with p-values equaling 0.008 and 0.040, corre-
sponding to the cases of p = 2 and p = 3, respectively. Similar to the results
based on two pairs of spatial filters, the average classification accuracy is
68.98% for p = 2 and 68.75% for p = 3 of DPSP when r = 3, higher than that
of CSP (66.48%). Also, the significance of the improvement is confirmed by
t-test with p-values of 0.027 and 0.022, corresponding to the cases of p = 2
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Table 1: Session-to-Session Transfer Test Results for r = 2 (%).

DPSP

Subject CSP p = 1 p = 2 p = 3 p = 4

1 65.00 65.41 62.91 66.66 67.08
2 51.25 51.25 54.17 52.08 52.08
3 55.00 55.00 57.50 55.83 55.00
4 66.67 66.67 70.41 71.25 77.08
5 54.58 54.16 67.08 70.41 58.33
6 67.08 67.50 72.50 69.16 69.58
7 77.08 77.08 77.92 76.66 72.5
8 94.16 94.16 92.50 96.25 95.41
9 74.58 75.00 75.83 75.83 74.58

10 61.66 61.25 60.41 60.83 60.00
11 46.25 46.67 49.16 53.33 47.08
12 77.00 77.08 81.25 79.58 73.33
13 51.25 51.25 54.58 51.25 50.00
14 72.08 72.08 79.16 73.75 74.58
15 65.83 65.58 67.50 64.16 64.58
16 69.58 69.60 70.00 68.75 65.00
Mean 65.56 65.59 68.30 67.91 66.01
SD 12.26 12.28 11.57 11.79 12.35
p-value – 0.64 0.008∗ 0.040∗ 0.63

∗ p ≤ 0.05.

and p = 3, respectively. The accuracy for order 4 is 66.01% when r = 2 and
66.41% when r = 3, which are not significant. Interestingly, the accuracy
for order 1 is almost the same as that of CSP in both tables, which also
confirms our previous analysis: it is necessary and sufficient for Â(τ ) to
cover the major components of B̂(τ ). The propagation effect is strongest at
orders 2 and 3, and the optimization based on Â(τ ) for order 1 has very
limited effect and results in almost the same result. The optimization based
on Â(τ ) of order 4 accounts for most of the propagation effect, but more
parameters pose a risk of overfitting. In other words, ideally the higher
the order of Â(τ ), the better the results should be, since more propagation
effects are taken into consideration. However, for a higher order, the in-
creased number of parameters would cause overfitting, which makes the
classification results deteriorate. To keep a balance between accounting for
the propagation effects and overfitting, it is effective to cover as few major
components of propagation as possible, which come from orders 2 and 3 in
this experiment.

Figure 2 is used to show the comparison result in a more intuitive way.
Each plot in Figure 2 shows the test accuracy under DPSP with order p
against that under CSP. The x-axis represents the accuracy results under
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Table 2: Session-to-Session Transfer Test Results for r = 3 (%).

DPSP

Subject CSP p = 1 p = 2 p = 3 p = 4

1 70.41 70.41 71.66 73.33 73.33
2 54.58 54.58 57.08 60.83 54.16
3 56.66 56.66 57.50 55.83 55.00
4 75.41 76.66 76.66 74.16 75.41
5 53.33 53.33 67.08 66.67 54.16
6 68.33 68.33 71.66 71.66 70.83
7 72.50 72.50 75.00 72.92 71.66
8 94.58 94.58 91.66 94.58 95.00
9 76.25 76.58 77.91 76.25 72.50

10 57.50 60.83 60.41 61.67 60.00
11 47.50 47.50 50.41 47.92 47.08
12 75.83 75.41 80.83 81.25 72.05
13 49.58 49.58 51.25 50.00 49.58
14 74.16 74.16 80.41 74.58 75.41
15 64.16 64.16 64.58 65.00 72.08
16 72.91 72.91 68.75 72.08 68.75
Mean 66.48 66.52 68.98 68.74 66.14
SD 12.51 12.04 11.51 11.70 12.34
p-value – 0.53 0.027∗ 0.022∗ 0.55

∗ p ≤ 0.05.

CSP, and the y-axis represents that under DPSP. In each plot, a circle above
the diagonal line marks a subject for which DPSP outperforms CSP.

Figure 3 shows A(τ ) for two subjects. For a better comparison of differ-
ences between the proposed method and the MVAR model, mixing matrices
B(τ ) based on the MVAR model of the two subjects are also provided. As
shown in Figure 3, the diagonal elements of B(τ ) are much higher than
the off-diagonal elements, because the self-spectrum of the signal is usu-
ally stronger than the cross-spectrum between the EEG signals. However,
there are no large differences between diagonal and off-diagonal elements
of A(τ ), and diagonal elements are not significantly higher, which means
the self-spectrum of the signal is not modulated radically by A(τ ). More-
over, since elements of higher values concentrate in certain columns, higher
weights are given to tune propagation from certain channels.

3.4 Analysis of Background Noise Separation. To further verify the
validity of DPSP, we have evaluated the classwise KL divergence (see sec-
tion 2.3). Results averaged among all subjects are shown in Table 3 and
Figure 4. Note that for the computation of DKL of both the training set and
the test set, the average covariance matrix R/R̃ is the mean of the training
set since under the single-trial analysis setting, we cannot obtain the mean



Discriminative Learning of EEG Propagation 2725

0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y 
un

de
r 

D
P

S
P

 p
 =

2,
 r

 =
2

Accuracy under CSP
 p =2, r =2

 p−value=0.008

0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y 
un

de
r 

D
P

S
P

 p
 =

2,
 r

 =
3

Accuracy under CSP
 p =2, r =3

 p−value=0.027

0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y 
un

de
r 

D
P

S
P

 p
 =

3,
 r

 =
2

Accuracy under CSP
 p =3, r =2

 p−value=0.04

0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1
A

cc
ur

ac
y 

un
de

r 
D

P
S

P
 p

 =
3,

 r
 =

3

Accuracy under CSP
 p =3, r =3

 p−value=0.022

Figure 2: Session-to-session transfer test accuracy. The x-axis represents the
accuracy results under CSP, and the y-axis represents that under DPSP with
different orders p and numbers of spatial filters r. The y = x line is denoted by a
dotted-dashed line. In each plot, a circle above the y = x line marks a subject for
which DPSP outperforms CSP. It can be seen from the plots that improvements
of DPSP for order 2 and 3 are significant.

of the test set. Therefore, the fact that the average divergence D of the test
set is larger than that of the training set in all cases reflects the differences
between the test set and the training set, as indicated by Table 3. This is
mainly caused by the session-to-session transfer effects. According to the
results, the proposed DPSP algorithm decreases the KL divergence within
the same class for both the training set and the test set, which means that
compared to the raw EEG data X, data processed by DPSP X̃ are more sta-
tionary. A more significant decrease is achieved for the test set, which means
that the proposed method is more robust to the session-to-session transfer
effects. Moreover, the comparison between different orders indicates that
better performance is achieved with the order 2, which is in accord with the
accuracy results.

Figure 5 illustrates the correlation between the decrease of KL divergence
and the increase of the classification accuracy at the subject level. The linear
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(a) Comparison between A(τ) and B(τ) for subject 7

(b) Comparison between A(τ) and B(τ) for subject 14

Figure 3: Comparison of coefficient matrices obtained by the proposed method,
A(τ ), and the mixing matrices in MVAR, B(τ ). For both subjects, the diagonal
elements of B(τ ) are much higher than the off-diagonal elements. For A(τ ),
elements of higher values are found in certain columns.

correlation coefficient rc equals 0.30 and 0.31, corresponding to p = 2 and
p = 3, respectively. Due to the large variety across subjects, their KL diver-
gence may lie in different feature spaces. The decrease of KL divergence and
the increase of classification performance may not correlate linearly. As il-
lustrated in Figure 5, almost all the points lie in the first quadrant, indicating
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Table 3: Decrease of KL Divergence (%).

p = 2 p = 3 p = 4

D D̃ 1 − D̃
D D̃ 1 − D̃

D D̃ 1 − D̃
D

Training set 4.96 4.09 17.68% 4.25 14.39% 4.84 2.55%
Test set 64.3 25.2 60.84% 36.68 42.98% 57.09 11.24%

Figure 4: Decrease of the KL divergence. The decreases of the KL divergence
in X̃ of different orders compared to X are shown as percentages. A great
decrease in the KL divergence indicates that X̃ is more stationary than X. There-
fore, the proposed DPSP algorithm is more robust toward varying background
noise and session-to-session transfer effects.

that the decreased KL divergence is positively correlated with the increased
classification accuracy. Therefore, the decrease of the KL divergence con-
tributes to the increase of the classification accuracy to a certain extent.
Nevertheless, the reason for the increase of the classification could be more
complicated so that KL divergence cannot completely represent it. We will
investigate this issue in the future work.

4 Conclusion

The coexistence of brain connectivity and volume conduction may have
complicated effects in EEG measurements and poses technical challenge
to detecting specific brain activities of interest. Conventional linear spatial
filters design methods with the assumption of unconnectedness of sources
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Figure 5: Correlation between the decrease of the KL divergence and the in-
crease of the classification accuracy. The x-axis represents the decrease of the KL
divergence, and the y-axis represents the increase of the classification accuracy.
Panels a and b correspond to p = 2 and p = 3 respectively.

are not sufficient in addressing such complicated dynamics. Due to the
causal relationship, reconstructed ERD/ERS signals based on instantaneous
demixing may not be the optimized results in terms of discrimination.
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Moreover, the propagation effects are closely related to the background
noise and nonstationarity of EEG. It is possible that an electrode that con-
tains no discriminative information could be given a high weight due to
information flow from signals containing ERD/ERS, and such dependence
could be very unstable compared with original ERD/ERS source. This anal-
ysis is the motivation to propose the unified model for discriminative learn-
ing of propagation and spatial patterns.

Therefore, we have reported in this letter a novel computational model
that accounts for both time-lagged correlations between signals and the
volume conduction effect. Different from the sparsely connected sources
analysis (SCSA) model in Haufe et al. (2010) and MVAR-ICA model in
Gomez-Herrero et al. (2008), the proposed computational model is de-
signed from discriminative analysis but also takes propagation into ac-
count. Besides, an iteration procedure–based algorithm is implemented for
the estimation of the proposed discriminative model. Experiment results
have shown statistically significant improvement in classification accuracy
under the proposed learning method. Moreover, the effectiveness of the
background noise attenuation is also confirmed with a significant decrease
of KL divergence of EEG data of the same class, especially for test data.
This indicates that the proposed method is more robust than conventional
methods against the session-to-session nonstationarity in EEG.

Appendix: Relations Between the Convolutive Model and
the Instantaneous Model with Connected Sources

Based on the model in Haufe et al. (2010) and Gomez-Herrero et al. (2008),
X(t) can be assumed to be generated as a linear instantaneous mixture of
source signal S(t), which follows an multivariant autoregression (MVAR)
model,

X(t)= MS(t), (A.1)

S(t)=
∑

τ

Bs(τ )S(t − τ ) + ε(t), (A.2)

where Bs(τ ) is the coefficient matrix of the MVAR model and it represents
the connectivity between sources (Ginter et al., 2001; Schlogl & Supp, 2006).
From equation A.1, the innovation process ε(t) can be written as

ε(t)= M−1X(t) −
∑

τ

Bs(τ )M−1X(t − τ )

=
∑

τ

B̂s(τ )X(t − τ ), (A.3)
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where

B̂s(τ ) =
{

M−1, τ = 0

−Bs(τ )M−1, τ > 0
. (A.4)

Equation A.3 shows the equivalence between this model and the convo-
lutive model in Dyrholm et al. (2007) and Mørup et al. (2009) and the
proposed approach, with the underlying convolutive sources replaced by
innovations. Because the objective in Haufe et al. (2010) and Gomez-Herrero
et al. (2008) is connectivity analysis, the estimation of Bs(τ ) and M is based
on the nongaussianity assumption of ε(t). In the proposed model, S(t)
represents the discriminative sources related to ERD/ERS, and thus the
estimation of the FIR matrix Â(τ ) in equation 2.11 and spatial filter w is
based on maximizing the variance difference between the two classes. With
the discriminative objective, it is preferable to apply the convolutive model
to impose the variance difference as the prior information of the source.
Moreover, since the two models are equivalent, it is also possible to build a
discriminative model based on the instantaneous mixing model with con-
nected sources in equations A.1 and A.2. In future work, we would like to
explore possible discriminative learning approach to study the connectivity
that contains class information.
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