
Journal of Neural Engineering

J. Neural Eng. 11 (2014) 035016 (13pp) doi:10.1088/1741-2560/11/3/035016

Detection of motor imagery of swallow EEG
signals based on the dual-tree complex
wavelet transform and adaptive model
selection

Huijuan Yang1, Cuntai Guan1, Karen Sui Geok Chua2, See San Chok2,
Chuan Chu Wang1, Phua Kok Soon1, Christina Ka Yin Tang1

and Kai Keng Ang1

1 Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore
2 Tan Tock Seng Hospital Rehabilitation Centre, Singapore

E-mail: hjyang@i2r.a-star.edu.sg

Received 20 March 2014, revised 26 March 2014
Accepted for publication 26 March 2014
Published 19 May 2014

Abstract
Objective. Detection of motor imagery of hand/arm has been extensively studied for stroke
rehabilitation. This paper firstly investigates the detection of motor imagery of swallow
(MI-SW) and motor imagery of tongue protrusion (MI-Ton) in an attempt to find a novel
solution for post-stroke dysphagia rehabilitation. Detection of MI-SW from a simple yet
relevant modality such as MI-Ton is then investigated, motivated by the similarity in activation
patterns between tongue movements and swallowing and there being fewer movement artifacts
in performing tongue movements compared to swallowing. Approach. Novel features were
extracted based on the coefficients of the dual-tree complex wavelet transform to build
multiple training models for detecting MI-SW. The session-to-session classification accuracy
was boosted by adaptively selecting the training model to maximize the ratio of
between-classes distances versus within-class distances, using features of training and
evaluation data. Main results. Our proposed method yielded averaged cross-validation (CV)
classification accuracies of 70.89% and 73.79% for MI-SW and MI-Ton for ten healthy
subjects, which are significantly better than the results from existing methods. In addition,
averaged CV accuracies of 66.40% and 70.24% for MI-SW and MI-Ton were obtained for one
stroke patient, demonstrating the detectability of MI-SW and MI-Ton from the idle state.
Furthermore, averaged session-to-session classification accuracies of 72.08% and 70%
were achieved for ten healthy subjects and one stroke patient using the MI-Ton model.
Significance. These results and the subjectwise strong correlations in classification accuracies
between MI-SW and MI-Ton demonstrated the feasibility of detecting MI-SW from MI-Ton
models.

Keywords: motor imagery, brain–computer interface, swallowing, dysphagia, tongue
protrusion

(Some figures may appear in colour only in the online journal)

1. Introduction

Dysphagia is the inability to swallow or difficulty in
swallowing caused by stroke or other neuro-degenerative
diseases. Post-stroke dysphagia has been documented in

approximately 30–42% of acute stroke patients requiring
hospital admission [1]. Problems in post-stroke dysphagia
range from oral transit phase issues to reduced oropharyngeal
control and post-pharyngeal phase issues. Conventional
treatment methods include: dietary changes, food and
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position changes, tongue strengthening exercises, pharyngeal
maneuvers, and thermal and neuro-muscular stimulation
methods such as VitalStim [2]. Recently, transcranial magnetic
stimulation has been used to reorganize the human motor
cortex, on the basis of the frequency, intensity and duration
of the stimulus [3]. Control of swallowing generally occurs at
two levels of brainstem and cerebral cortex [4]. Swallowing is
a complex process involving sensory processing of ingested
materials, oral–pharyngeal–laryngeal motor coordination,
integration with respiration and mastication components, and
finally overall cognitive and attentional processing [5, 6].

Evidence that motor imagery activates similar pathways
to executed movements [7] has motivated the use of motor
imagery for the rehabilitation of stroke patients [8, 9]. Motor
imagery, i.e., mental rehearsal or simulating the physical
movements, appears to provide an alternative way to access
the motor system for rehabilitation. Mental practice has been
used in combination with actual practice to rehabilitate motor
deficits in patients with subacute stroke. Improvements have
been shown in strength, function, and the use of both upper
and lower extremities in chronic stroke [10]. The increase
in stride length after performing the motor imagery exercise
therapy yielded improvements in gait speed [11]. While motor
imagery may be a useful tool in activating hand and limb
areas in the brain [7–9], it has never been used as a potential
therapeutic strategy for swallowing. Shared brain activation
areas of swallowing and tongue elevation including the left
lateral pericentral and anterior parietal cortex, and anterior
cingulated cortex and adjacent supplement motor area suggest
the possibility of using motor imagery of tongue protrusion
as a means of detecting the motor imagery of swallow [6].
In addition, Furlong et al suggested that sensory input to
the tongue, tongue thrust and wet swallow activated similar
swallowing-related areas in the brain such as the posterolateral
sensorimotor and primary gustatory cortex, both critical in the
central control of swallowing [12]. Accurate detection of the
motor imagery of swallow (MI-SW) from the idle state, based
on either the MI-SW model or the MI-Ton model, may serve as
a possible switch to trigger physical swallow which could be
facilitated by traditional physical means with synchronization.

The objectives of this study were to: (1) test the
hypotheses that MI-SW and MI-Ton could be detected from the
background idle state for their possible use in stroke dysphagia
rehabilitation; (2) build a model based on another simple
yet relevant modality of MI-Ton electroencephalography
(EEG) signals and use the model to detect MI-SW, (3) test
the hypotheses by determining the classification accuracies
across sessions and modalities, (4) determine the classification
accuracies in a sample of ten healthy volunteers and one subject
with chronic stroke. Some preliminary results of this work
were presented in [13–15]. It should be noted that this paper
focused on detecting MI-SW EEG signals for stroke dysphagia
rehabilitation based on an MI-SW model or a simple yet
relevant MI-Ton model. To achieve satisfactory classification
accuracies across sessions and modalities, the model was
adaptively selected such that the ratio of the between-classes
distances versus within-class distances based on the features
of training and evaluation data can be maximized, while

our earlier work focused on proposing a model adaptation
technique to address the non-stationarity problem [14], which
was tested on MI-SW data. The model that yielded the largest
number of consistent features between training and evaluation
data was selected; however, separation between the two classes
was not considered.

2. Materials and methods

2.1. Subjects

Two phases of study were carried out in the following manner:
phase 1, a prospective study of a convenient sample of
ten healthy subjects was conducted in a research lab; this
was followed by phase 2, a single-case study of a chronic
stroke dysphagia patient who participated in similar EEG-
based experiments in an ambulatory rehabilitation clinic.
Prior to recruitment, ethical approval was obtained from the
hospital’s institutional review board and written informed
consents were obtained from all subjects. In phase 1 of
the study, a total of ten healthy subjects (i.e., eight males
and two females) with ages of 35.9 ± 7.7 years (mean ±
standard deviation) participated in the experiments. None of
the healthy subjects had a history of respiratory, swallowing or
neurological disorders, or eating or nutrition problems. Seven
subjects had experience of motor imagery of hand grasping
and three subjects were brain–computer interface-naive. In
phase 2 of the study, a stroke subject who was a 56 year
old ethnic Chinese male participated in the experiment. He
presented with severe brainstem hemorrhagic stroke involving
the right hemipons and midbrain with mass effect on the fourth
ventricle one year prior to enrollment. The etiology of the
stroke was hypertensive in nature. He had tetraparesis and
severe post-stroke dysphagia with complete dependence on
nasogastric tube feeding. Two months following his stroke,
fiberoptic endoscopic evaluation of swallowing showed the
presence of moderate oropharyngeal dysphagia with reduced
orolingual control. Delayed swallows, mild reduced hyo-
laryngeal excursion and pharyngeal stripping were present.
Increased aspiration risk was seen with more delayed swallows
when the patient was fatigued, leading to an increased
aspiration risk. He also had moderately severe cerebellar
dysarthria.

2.2. The experimental design

Three sessions of experiments were conducted for healthy
subjects with each session consisting of two runs. The first
two sessions consisted of MI-SW and idle, whereas the
third session consisted of MI-Ton and idle. The purposes of
collecting two sessions of MI-SW data were to evaluate the
performance of session-to-session classification of MI-SW,
whereas only one session of MI-Ton data was collected to test
classification of MI-SW using a simple yet relevant MI-Ton
model. Session-to-session classification performance of MI-
Ton was not the main concern of this paper. Two sessions of
experiments were conducted for the stroke patient, with each
session consisting of two runs: one run of MI-SW versus idle,
and one run of MI-Ton versus idle. The detailed settings of

2



J. Neural Eng. 11 (2014) 035016 H Yang et al

Figure 1. Timing scheme for EEG data collection.

Table 1. Detailed experimental settings.

Subj. Sess./run Tasks No. of trials

1/1 MI-SW versus idle 40 + 40
1/2 MI-SW versus idle 40 + 40

Healthy 2/1 MI-SW versus idle 40 + 40
controls 2/2 MI-SW versus idle 40 + 40

3/1 MI-Ton versus idle 40 + 40
3/2 MI-Ton versus idle 40 + 40

1/1 MI-SW versus idle 40 + 40
Patient 1/2 MI-Ton versus idle 40 + 40

2/1 MI-SW versus idle 40 + 40
2/2 MI-Ton versus idle 40 + 40

Note: Subj.: subjects. Sess.: session. No.: number.

the experiments can be found in table 1. In performing MI-
SW, the subjects were advised to imagine swallowing a cup of
water, or juice, or food such as a noodle or a bolus, whereas
for MI-Ton, the subjects were advised to imagine protruding
the tongue as far as possible, and as many times as possible.
The subjects were advised not to perform any actions and not
to close their eyes for the idle state. The resting state shown
as a blue progress bar firstly appeared on the black screen. A
short acoustic tone was then presented for 1 s, followed by
a preparation of 2 s shown as a ‘+’ symbol. Thereafter, the
cue in the form of a virtual character performing swallowing
for MI-SW, or tongue protrusion for MI-Ton, or a filled circle
image for idle was shown for 3 s. With the disappearance of
the visual cue, the subject started imagining the required tasks
(for MI-SW or MI-Ton) or doing nothing (for idle) for 12 s. A
rest time of 6 s was followed at the end of the trial. Each trial
lasted for 23 s and the sequence of action and idle state in each
run was randomized. The timing scheme of the experiments is
shown in figure 1.

2.3. EEG and electromyography (EMG) recordings

The EEG measurements were obtained using the Neuroscan
NuAmps EEG acquisition hardware [16], digitally subsampled
at 250 Hz with a resolution of 22 bits and voltage ranges of
±130 mV. The placements of all 40 electrodes in the EEG
cap followed the international 10–20 electrode placement
standard. A notch filter of 50 Hz was enabled to remove
artifacts caused by electrical power lines. In the experiments,
the subjects were instructed to avoid physical movements
such as eye blinking and unintentional swallow. To monitor

Figure 2. Placements of the electrodes for EMG recording.

the EMG activity during imagination or idle, EMG recording
was done using two pairs of electrodes from the NuAmps
taped beneath the skin of the submental and infrahyoid
muscle groups, as shown in figure 2. The choice of these
locations to measure the EMG activity was based on the
facts that submental muscles are important in hyoid laryngeal
excursion during swallowing. The electrodes were connected
to the NuAmps EEG amplifier. Four channels, namely HEOL,
HEOR, VEOU and VEOL, were used for EMG recordings.
The other thirty-four channels, i.e., Fp1, Fp2, F7, F3, Fz, F4,
F8, FT7, FT9, FC3, FCz, FC4, FT8, FT10, T7, C3, Cz, C4,
T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, O1, Oz, O2,
PO1 and PO2, were used for EEG recordings. The average of
the EEG signals for channels A1 and A2 (i.e., A1+A2

2 ) was used
as the reference.

2.4. Dual-tree complex wavelet transform-based feature
extraction (DTCWT-FE)

Our proposed feature extraction was based on the dual-
tree complex wavelet transform (DTCWT) [17–19]. Sets of
double-density dual-tree complex wavelets were employed
[18, 19], which employed two scaling functions and four
distinct wavelets. The wavelets were designed such that the
two wavelets of the first pair were offset from one another by
one half, and the other pair of wavelets formed an approximate
Hilbert transform pair. In the implementation, the filter
banks were constructed using finite impulse response perfect
reconstruction filter banks, which were applied recursively to
the low-pass sub-band using the analysis and synthesis filters
for the forward and inverse transform [18]. The reasons for
selecting this wavelet were due to its perfect reconstruction,
being nearly shift-invariant, with approximately analytic real
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Figure 3. Schematic diagram illustrating the proposed DTCWT-FE scheme.

and imaginary parts of the filters and anti-aliasing effects
[18, 19]. Further, the impulse responses of the filters were
similar to that of the ERD/ERS produced during motor
imagery. The 1D DTCWT decomposed and represented the
input signal S as a complex shifted and dilated mother wavelet
ψ(x) and scaling function φ(x), which was given by

S(x) =
∑

J∈Z,d∈{1,2}
CJ+1,dφJ+1,d (x) +

∑
s�J

∑
d∈{1,2}

Cs,dψs,d (x)

(1)

where Z, J, s and d denote the set of natural numbers,
total decomposition level, level index and direction index,
respectively. Cs,d is the complex wavelet coefficient with
ψs,d (x) = ψs,d,1(x) + √−1ψs,d,2(x) and φJ+1,d(x) =
φJ+1,d,1(x) + √−1φJ+1,d,2(x). The signal was decomposed
into J = 5 levels in the experiments. The highest frequency
component in the signal was 125 Hz since the sampling
frequency was 250 Hz. In this case, the delta rhythm
was represented by coarse coefficients CJ+1,d,r, where r
(r ∈ {1, 2}) denotes real and imaginary coefficients,
while the theta, alpha, beta and gamma rhythms were
represented by detailed coefficients Cs,d,r at levels 5, 4, 3,
and levels 2 and 1, respectively. To detect event-related
synchronization/desynchronization (ERS/ERD) during motor
imagery, the features consisted of the following at different
levels and directions: powers (Fw), phases (Fp), coarse
representation of the EEG signals (Fa), and higher order
statistics such as skewness and kurtosis of the powers
and phases. A schematic diagram illustrating the proposed
dual-tree complex wavelet transform-based feature extraction
scheme (DTCWT-FE) is shown in figure 3.

The power and phase at level s and direction d (Fw
s,d and

F p
s,d), and coarse representation (Fa

s,d) are given by

Fw
s,d =

ns∑
i=1

A f
s,d (i) (2)

F p
s,d =

ns∑
i=1

P f
s,d (i) (3)

Fa
s,d = CJ+1,d,1 (4)

where ns denote the length of coefficients at level s and
direction d; A f

s,d and P f
s,d were calculated by using

A f
s,d = (Cs,d,1)

2 + (Cs,d,2)
2 (5)

P f
s,d = arctan

(
Cs,d,2

Cs,d,1 + ε

)
(6)

where ε is a small constant used to avoid the denominator
being zero; arctan(x) is the arctangent of element x. The
shape and tail direction information for the distribution of
the coefficients is important in the detection of ERD/ERS
generated during motor imagery; the ‘skewness’ and ‘kurtosis’
were computed to measure the ‘asymmetry’ and ‘peakedness’
of the distribution of powers and phases of the wavelet
coefficients at different levels (s) and directions (d), which
were given by

Kkw
s,d = Skw(K f

s,d ) (7)

Kur
s,d = Cur(K

f
s,d ) (8)

where the K = {A, P} represent the amplitude and phase,
respectively. The skewness and kurtosis were calculated by
using

Skw(x) =
1
n

∑n
i=1(xi − x̄)3

(
1
n

∑n
i=1(xi − x̄)2

)3/2
(9)

Cur(x) =
1
n

∑n
i=1(xi − x̄)4

(
1
n

∑n
i=1(xi − x̄)2

)2 − 3 (10)

where x = {x1, x2, . . . , xi, . . .} and x̄ is the sample mean.
The nominator and denominator were the third central
moments and sample variance, and the fourth and second
sample moments about the mean, for equations (9) and (10),
respectively. Fw, Fp, Fa, Akw, Aur, Pkw and Pur were obtained by
concatenating Fw

s,d , F p
s,d , Fa

s,d , Akw
s,d , Aur

s,d , Pkw
s,d and Pur

s,d at different
levels and directions, respectively. These features were further
normalized by deducting the mean and divided by the standard
deviation to obtain F̃w, F̃p, F̃a, Ãkw, P̃kw, Ãur and P̃ur. Finally,
the wavelet-based feature vector (Fv) was given by

Fv = F̃w||F̃p||F̃a||Ãkw||P̃kw||Ãur||P̃ur (11)

where ‘||’ denotes ‘concatenation’. The features generated
using the proposed DTCWT-FE for both MI-SW and MI-
Ton are illustrated in figure 4. In the experiments, the EEG
signals were decomposed into J = 5 levels. To illustrate the
wavelet features, the electrodes ‘C3’ and ‘C4’ were selected,
and an entire time segment from 2.5 s to 15.5 s after the
onset of the visual cue was employed to compute the DTCWT.
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Figure 4. Illustration of the features generated by proposed DTCWT-FE method. (a), (b) and (d), (e): coarse representation of MI-SW versus
idle, and MI-Ton versus idle EEG signals for subject ‘lj’. (c) and (f): scatter plot of the whole set of features averaged across trials for
MI-SW versus idle (c), and MI-Ton versus idle (f).

The features obtained for each class were averaged across all
the trials in the same class, e.g., 80 trials of motor imagery
and 80 trials of idle were used in the analysis. The coarse
signal obtained was further smoothed with a moving window
(e.g., of length 10) with the resultant coarse signal shown
in figures 4(a), (b) and (d), (e). Significant ERD and ERS
could be seen at the beginning and in the middle of the motor
imagery from the coarse signal [20], while electrode ‘Cz’ was
selected and the subject-specific optimal time segment of 2 s
was employed to compute the entire set of features, with the
scatter plot of features shown in figures 4(c) and (f).

2.5. Adaptive model selection for session-to-session
classification

The assumption that training and testing data followed the
same distribution in many machine learning algorithms [21]
may not hold due to the non-stationarity of EEG signals.
The non-stationarity was caused by the changes in electrode
locations, variations in the electrodes impedance due to dry-
up of electrodes over sessions, changes in mental states
(e.g., fatigue and vigilance), different attention levels, and
background noise and artifacts caused by eye and muscle
movements. The visual feedbacks during online feedback
sessions could also contribute to the non-stationarity. Existing
methods for tackling the non-stationarity include covariate
shift adaptation [22, 23]. The effects of non-class-related

non-stationarities in motor imagery EEG were analyzed;
subsequently, the parameters of a linear classifier without
label information were adapted [23]. ‘ReTrain’ and ‘ReBias’
were proposed for classifier adaptation to the testing data
[24]. The continuous output of the modified classifier was
used in ‘ReBias’, which was shifted by a certain amount to
minimize the error on the labeled feedback data, whereas the
offline features were employed in ‘ReTrain’ to train the linear
discriminant analysis classifier; subsequently, the hyperplane
that yielded the minimum error on labeled feedback data was
chosen.

Our idea was to select the most suitable model from the
multiple training models generated during cross-validation,
for the classification of the given testing data. Specifically, the
model was selected by maximizing ratio of the between-classes
distances and within-class distances (msBWD), evaluated
via the features of the training and evaluation data. Hence,
the testing data consisted of two parts: a small amount
of evaluation data used for model selection [25], and the
testing data used to test the session-to-session classification
performance.

2.5.1. Calculation of within-class and between-classes
distances. The suitability of each model was evaluated on
the basis of the proposed within-class and between-classes
distances calculated using the features of training and
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evaluation data. Let us denote the classifier as Cr and assume
that an r times and n-fold cross-validation was carried out; the
(p, q)th generated model was given by

Md(p, q) = Cr(Fv, Itr(p, q), Ite) (12)

where p = 1, 2, . . . , r and r = 1, 2, . . . , n; Itr and Ite

denote the indexes of the training data in cross-validation
and evaluation data, respectively. The models obtained on the
basis of these random partitions were used for subsequent
model selection catering for the testing data. For ease of
presentation, we assumed the balance of trials in the two
classes. Let us denote the feature vectors for training and
evaluation data as Ftr and Fte, respectively, the number of trials
for training and evaluation data as 2m and 2n, respectively, and
the dimensionality of the feature vector as k. The features for
class ‘i’ of training (Fi

tr) and evaluation data (Fi
te) were given

by

Fi
tr = Ftr|(Ytr(Itr) = i) (13)

Fi
te = Fte|(Yte(Ite) = i) (14)

where Itr and Ytr, and Ite and Yte are the indexes and labels
for training and evaluation data, respectively, and i ∈ {0, 1}
represents classes ‘0’ and ‘1’. The normalized correlation
distances of within-class (D00 and D11) and between-classes
(D10 and D01) cases were calculated by using

Di j = Ds(F
i

tr, F j
te) (15)

where i, j ∈ {0, 1} represent classes ‘0’ and ‘1’. Ds(a, b) was
used to calculate the normalized correlation distances between
feature vectors a and b, given by

Ds(a, b) = Ab√
Aa ∗ √

Bb
(16)

where Aa, Bb and Ab are given by Aa = ∑k
j=1 (au j. ∗ au j),

Bb = ∑k
j=1 (bv j. ∗ bv j) and Ab = ∑k

j=1 (au j ∗ bT
v j), where XT

represents the matrix transpose of X ; Aa, Bb and Ab were of
dimension u × 1, 1 × v and u × v, respectively. Obviously,
the size of Di j was m × n, considering the balance of the two
classes. Removal of the respective mean distances from the
within-class distances and between-classes distances was then
carried out to obtain Dw

ii and Db
i j (i �= j), i.e., Dw

ii = Dii − D̄ii

and Db
i j = Di j − D̄i j where D̄ii and D̄i j are the mean distances

of within-class (i = {0, 1}) and between-classes (i �= j,
i, j ∈ {0, 1}) cases.

2.5.2. The criterion for model selection. The covariance
matrices of the within-class distances and between-classes
distances were represented as Cii and Ci j (i �= j), respectively,
which were calculated on the basis of Dw

ii and Db
i j and given

by

Cii = 1

n
(Dw

ii )
TDw

ii (17)

Ci j = 1

n
(Db

i j)
TDb

i j (18)

Thereafter, the distances to the hyperplane w were calculated
by using

w = μd ∗ �−1
w (19)

where μd and �w are given by

�w = 1

2

⎛
⎝ ∑

i={0,1}
Cii +

∑
{i, j}∈{0,1},i�= j

Ci j

⎞
⎠ (20)

μd = 1

2

⎛
⎝ ∑

i={0,1}
D̄ii −

∑
{i, j}∈{0,1},i�= j

D̄i j

⎞
⎠ . (21)

Subsequent projections of the within-class and between-
classes distances (σw and σb) into the direction of w were
given by

Sw = wT ∗ σw ∗ w (22)

Sb = wT ∗ σb ∗ w (23)

where σb and σw are given by

σb = 1

2

⎛
⎝ ∑

{i, j}∈{0,1},i�= j

Db
i jD

b
i j

T

⎞
⎠ (24)

σw = 1

2

⎛
⎝ ∑

i={0,1}
Dw

ii Dw
ii

T

⎞
⎠ . (25)

Finally, the best separation of the within-class and between-
classes distances in the direction of w was given by

(Ve,Ue) = eigs

(
Sb

Sw

)
(26)

Rcd (p, q) = trace(Ue) (27)

where eigs() was the method used for solving the generalized
eigenvalue problem, e.g., AVe = UeA for matrix A and A = Sb

Sw
.

Ue was the diagonal matrix of Sb
Sw

’s eigenvalues and for matrix
Ve the columns were the corresponding eigenvectors; trace(X )

was the trace of matrix X , e.g., trace(X ) = ∑k
i=1 Ue(i),

which was the sum of the eigenvalues. The largest eigenvalue
corresponded to the maximum separation of Sb

Sw
. Hence, the

( p̂, q̂)th model was selected by using

( p̂, q̂) = argmax
p,q

(Rcd(p, q)) (28)

A schematic diagram illustrating the session-to-session
classification based on our proposed model selection criterion
is shown in figure 5. Once the model was selected on the basis
of our proposed criterion, i.e., msBWD, the features of the
testing data from a moving window of 2 s were classified.
Finally, the best accuracy among all the moving windows was
reported as the testing accuracy.

3. Results

A total of 160 trials for healthy controls (i.e., 80 trials of motor
imagery and 80 trials of idle), and 80 trials for a stroke patient
(i.e., 40 trials of motor imagery and 40 trials of idle) in a session
were used in the performance evaluation of cross-validation
classification. Further, the features of 160 trials for healthy
controls and 80 trials for a stroke patient from one session of a
subject were used to train the model, which was subsequently
used for classifying the features of the same number of trials
from another session for the same subject, in the performance
evaluation of session-to-session classification. No trial was
excluded in the experiments; details of the trials can be found
in table 1.
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Figure 5. Schematic diagram illustrating the session-to-session classification using the proposed model selection based on between-classes
and within-class distances (msBWD).

3.1. Cross-validation classification accuracies

We firstly evaluate the classification performance on the basis
of 10 × 10-fold CV. The indexes for a 10-fold CV for all of
the observations were randomly generated each time. In each
part, the current part was reserved for validation, while the
other nine parts from random partition were used to train the
model. This would repeat for ten times with the mean accuracy
being reported. Two frontal EEG channels of FP1 and FP2
related to EOG artifacts and eye blinks, and two side EEG
channels of FT9 and FT10 were excluded. The support vector
machine (SVM) is a powerful classification tool that classifies
data by finding the best hyperplane to separate all data points
of one class from those of the other classes. The SVM has
demonstrated its superior performance for the classification of
EEG signals and has been the state-of-the-art model for other
classification tasks [9, 13–15, 26–28, 32]. Since the feature
dimension in our method was much larger than the number of
data instances, the ‘rbf’ kernel was not suitable [28]; hence,
a ‘linear’ kernel SVM was selected as the classifier. In the
implementation, the bioinformatics toolbox of Matlab was
employed and the regularization factor (denoted as C) was
set to the default value of ‘1’.

3.1.1. Comparison of cross-validation accuracies using
different time segments. The accuracies of classifying
MI-SW and MI-Ton from the background idle state using
our proposed DTCWT-FE scheme were compared with those
obtained using other methods such as the: common spatial
pattern (CSP) [29, 30]; filter bank CSP (FBCSP) [31]; and
sliding window discriminative CSP (SWDCSP) [32]. The
subject-specific optimal time segments of 2 s were manually
selected for our proposed method by studying the motor
imagery of the swallow pattern. A small amount of trials
can be employed to derive the best time segments on the
basis of a nested cross-validation in a supervised manner.
This is applicable for MI-Ton since it is simple and the
activation patterns are relatively stable. In the experiments,
20 trials of MI-Ton and 20 trials of idle were employed to
select the best time segment that yielded the highest accuracy
in cross-validation. However, a subject-specific stable time

Table 2. Comparison of cross-validation classification accuracies of
MI-SW versus idle using proposed and other methods.

sb./ Cross-validation accuracy (Ac ± Vr)

ss. DTCWT-FEa FBCSPb CSPc SWDCSPd

sd/1 61.10 ± 3.64 52.31 ± 2.96 51.38 ± 2.43 46.05 ± 3.36
sd/2 63.19 ± 3.35 55.94 ± 3.80 60.63 ± 2.08 54.94 ± 2.52
lj/1 71.25 ± 2.49 76.94 ± 1.94 69.25 ± 3.06 76.24 ± 1.84
lj/2 82.37 ± 3.54 61.81 ± 2.53 67.31 ± 1.35 62.40 ± 1.81
hj/1 80.59 ± 1.96 81.31 ± 2.09 78.75 ± 1.41 71.00 ± 2.92
hj/2 84.07 ± 2.42 88.31 ± 1.56 84.13 ± 2.42 86.61 ± 2.26
aw/1 64.19 ± 3.70 54.81 ± 3.63 62.75 ± 3.14 52.92 ± 4.51
aw/2 62.44 ± 3.34 57.00 ± 2.33 61.44 ± 2.44 55.88 ± 4.40
cr/1 84.69 ± 2.17 73.06 ± 3.14 81.88 ± 2.10 62.83 ± 3.01
cr/2 96.67 ± 1.18 90.19 ± 1.59 91.94 ± 4.14 83.81 ± 3.23
wy/1 76.61 ± 2.36 80.75 ± 1.76 76.00 ± 1.57 78.88 ± 3.47
wy/2 76.90 ± 0.85 74.75 ± 1.82 65.44 ± 2.82 72.72 ± 3.58
cc/1 63.67 ± 4.69 51.00 ± 3.80 53.63 ± 2.23 52.75 ± 2.55
cc/2 69.36 ± 2.94 77.38 ± 2.12 75.06 ± 2.17 74.02 ± 1.71
mt/1 68.00 ± 2.78 64.69 ± 2.11 57.50 ± 3.02 62.48 ± 4.66
mt/2 60.43 ± 5.23 62.56 ± 1.54 57.94 ± 2.70 59.01 ± 3.50
zy/1 67.12 ± 2.95 60.31 ± 2.95 64.81 ± 2.00 60.64 ± 3.59
zy/2 59.59 ± 2.59 50.69 ± 3.45 58.75 ± 3.92 53.98 ± 1.13
cj/1 60.01 ± 3.37 51.25 ± 3.19 51.56 ± 3.70 49.97 ± 4.07
cj/2 65.59 ± 2.60 51.75 ± 2.24 50.94 ± 2.81 53.22 ± 2.60
Aas 70.89 ± 2.91 65.84 ± 2.53 66.05 ± 2.58 63.52 ± 3.04
Pt. a versus b a versus c a versus d
Pv. ∗∗0.0066 ∗∗0.000 89 ∗∗0.000 31

Ac: accuracy (%), Vr: variance; Aas: averaged accuracy across
subjects and sessions; sb./ss.: subject/session; Pv.: p-value; Pt.:
paired t-test. The best performance is shown in bold.
**: significant.

segment for MI-SW was difficult to obtain without using
sufficient trials, e.g., 80 trials. This was due to the long
time required to finish the motor imagery of swallow. Large
variation existed in the time to reach ERD/ERS, as shown in
figure 6 for the time segments selected using CV. The time
segments from −0.5 s to 1.5 s after the onset of the action
cue were selected for other methods, with the comparison
results for MI-SW and MI-Ton shown in tables 2 and 3. As
observed from the tables, our proposed method achieved
the best accuracies among all the methods. The averaged
accuracies across subjects for the classification of MI-SW
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(a) session 1 (b) session 2

Figure 6. Best time segments selected by cross-validation for motor imagery of swallow versus idle for two sessions.

Table 3. Comparison of cross-validation classification accuracies of
MI-Ton versus idle using proposed and other methods.

sb./ Cross-validation accuracy (Ac ± Vr)

ss. DTCWT-FEa FBCSPb CSPc SWDCSPd

sd/1 62.43 ± 3.09 48.75 ± 3.39 59.81 ± 2.78 50.93 ± 1.96
lj/1 84.77 ± 2.11 85.56 ± 2.01 82.56 ± 2.39 84.47 ± 1.53
hj/1 81.10 ± 3.07 79.44 ± 3.34 81.50 ± 2.23 70.61 ± 3.49
aw/1 63.77 ± 3.22 47.06 ± 3.64 52.69 ± 2.42 48.02 ± 2.01
cr/1 97.16 ± 0.99 97.00 ± 0.26 98.50 ± 1.40 93.05 ± 1.84
wy/1 83.48 ± 2.02 81.13 ± 2.06 78.69 ± 2.67 76.99 ± 3.50
cc/1 63.08 ± 1.62 65.38 ± 2.57 62.25 ± 3.45 67.78± 1.45
mt/1 75.60 ± 1.77 63.00 ± 1.17 65.00 ± 2.31 63.56 ± 2.72
zy/1 63.43 ± 2.82 57.44 ± 3.18 56.25 ± 2.64 56.44 ± 3.37
cj/1 63.12 ± 4.57 56.19 ± 3.91 50.94 ± 2.51 50.18 ± 2.25
Aas 73.79 ± 2.53 68.10 ± 2.55 68.82 ± 2.48 66.20 ± 2.41
Pt. a versus b a versus c a versus d
Pv. ∗∗0.0241 ∗∗0.0118 ∗∗0.0041

versus idle were significantly higher than those obtained using
FBCSP (5.05%, p-value: 6.6 × 10−3), CSP (4.84%, p-value:
8.9×10−4) and SWDCSP (7.37%, p-value: 3.1×10−4) at the
5% significance level. Similarly, the averaged classification
accuracies across subjects for the classification of MI-Ton
versus idle were significantly higher than those obtained for
FBCSP (5.69%, p-value: 0.0241), CSP (4.97%, p-value:
0.0118) and SWDCSP (7.59%, p-value: 0.0041). The higher
averaged CV accuracies for MI-Ton in comparison to those
for MI-SW revealed that it was easier to perform MI-Ton
than MI-SW for stroke rehabilitation. The CV accuracies for
the stroke dysphagia patient (denoted as: ‘sp’) are shown
in table 4. The averaged accuracies of 66.40% and 70.24%
were obtained for MI-SW versus idle and MI-Ton versus idle.
Like for the results obtained for healthy subjects, the CV
accuracies for MI-Ton were higher than those for MI-SW.

Strong correlation was observed between the
classification accuracies of MI-SW versus idle and MI-Ton
versus idle across subjects. The Pearson correlation
coefficients were 0.9143 (p-value: 2.1263 × 10−4) and 0.8843
(p-value: 6.7991×10−4) between the accuracies of MI-SW of
session 1 and MI-Ton, and between the accuracies of MI-SW
of session 2 and MI-Ton, respectively. The strong correlation

Table 4. Cross-validation classification accuracies of MI-SW versus
idle and MI-Ton versus idle for the stroke dysphagia patient.

Cross-validation accuracy
Tasks sb./ss. (Ac ± Vr)

MI-Ton versus idle sp/1 78.28 ± 2.39
sp/2 62.19 ± 5.19
As 70.24 ± 3.79

MI-SW versus idle sp/1 54.93 ± 5.37
sp/2 77.86 ± 4.47
As 66.40 ± 4.92

As: averaged accuracy across sessions (%).

not only revealed the subjectwise similar responses to the
two motor imagery tasks, but also showed the possibility of
classifying MI-SW using the MI-Ton model, with the result
that a switch could be provided to trigger actual swallow for
rehabilitation. Estimation of the accuracy at 95% confidence
on the respective action performed at chance level was done
using the binomial inverse cumulative distribution function
for a total of 80 and 160 trials (for the stroke patient and
healthy subjects) in one session. The results indicated that the
subjects whose accuracy fell between 38.75% and 61.25%
(for the stroke patient) and between 42.5% and 57.5% (for
healthy subjects) were deemed as performing at chance level.
Hence, all healthy subjects performed above chance level
using the proposed method. However, the stroke patient
performed at the chance level for MI-SW session 1.

3.1.2. Comparison of cross-validation accuracies using the
same subject-specific time segments. To exclude the
confounding effects caused by the difference in selecting time
segments, we also carried out the comparison of accuracies
of the proposed and other methods on the basis of the same
selected subject-specific time segments. The pairwise scatter
plot of the cross-validation accuracies for different pairs of
methods is shown in figure 7. By employing the selected
subject-specific time segments, the averaged accuracies (%) of
MI-SW obtained for DTCWT-FE, CSP, FBCSP and SWDCSP
were: 70.89 ± 2.91, 67.95 ± 2.34, 68.02 ± 2.10 and
66.58 ± 2.71, respectively. The averaged accuracies of CSP,
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Figure 7. Pairwise scatter plot of CV classification accuracies using the same selected time segments for (a)–(c): MI-SW and (d)–(f):
MI-Ton. ((a), (d)) DTCWT-FE and CSP; ((b), (e)) DTCWT-FE and FBCSP; and ((c), (f)) DTCWT-FE and SWDCSP. Each dot represents
the classification accuracy of a subject.

FBCSP and SWDCSP were improved by 1.90%, 2.18% and
0.38%, compared with those obtained using the fixed time
segments. However, the averaged accuracy of our proposed
DTCWT-FE was still 2.94%, 2.87% and 4.31% higher than
those obtained by CSP, FBCSP and SWDCSP, respectively.
Similarly, compared with those obtained using the fixed
time segments, the accuracies of MI-Ton using the selected
time segments were improved by: 4.05%, 1.24% and 2.33%
for CSP, FBCSP and SWDCSP, respectively. However, the
averaged accuracies of our proposed method were still 0.92%,
4.45% and 5.26% higher than those for CSP, FBCSP and
SWDCSP, respectively, using the selected time segments.
Observing figure 7, it can be seen that our proposed method
was especially effective for the low-accuracy performers, e.g.,
those subjects whose accuracies were below 70%. In contrast,
the performance for the low-accuracy performers was poor
for CSP-based methods due to the noise sensitivity of these
methods, as supported by the results presented in tables 2 and
3, and figure 7.

3.2. Classification accuracies across sessions and modalities

The session-to-session classification accuracies of motor
imagery of swallow EEG signals were evaluated using two
kinds of models generated on the basis of the EEG signals

from a different session: (a) MI-SW versus idle and (b) MI-
Ton versus idle. The purpose was to test the session-to-session
classification accuracies not only using the model generated
from the same modality, but also using the model generated
from a different yet similar modality for the purpose of
rehabilitation of stroke patient. Note that the models were
generated on the basis of the subject-specific time segments
selected by cross-validation. Six healthy subjects (‘lj’, ‘hj’,
‘cr’, ‘wy’, ‘cc’ and ‘mt’) whose cross-validation classification
accuracies for the three sessions (two sessions of MI-SW
versus idle, and one session of MI-Ton versus idle) were
above 63% were selected for the evaluation. 13 overlapping
windows of 2 s moving through the whole time interval of
[2.5, 15.5] s were employed; the best performance among the
windows was reported as the test accuracy. In the experiments,
the classification accuracies using the full model (i.e., training
the model using the full set of features of training data), the best
model (i.e., selecting the training model with the best cross-
validation accuracy), and the selected model, based on our
proposed msBWD, were compared with the results presented
in table 5. The features of the evaluation data were further
grand averaged across trials to improve robustness.

The results shown in table 5 revealed that the averaged
session-to-session classification accuracies of 70.32% and
69.74% were achieved using the full MI-SW and MI-Ton
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Table 5. Session-to-session classification accuracies of motor imagery of swallow EEG signals for healthy subjects.

sb./ Full model Best model msBWD (sw) msBWD (ton)

ss. swa tonb swc tond 20tr.e 40tr.f r-tng 20tr.h 40tr.i r-tnj

lj1 75.00 70.00 75.00 70.63 72.86 73.33 75.00 72.86 73.33 74.17
lj2 76.25 81.25 76.25 81.25 77.86 78.33 75.00 80.00 81.67 85.00
hj1 76.25 71.88 76.88 73.13 74.29 77.50 75.83 72.86 75.00 75.83
hj2 71.88 68.75 73.13 71.25 70.71 73.33 76.67 72.86 73.33 67.50
cr1 78.13 80.00 79.38 82.50 83.57 86.67 86.67 85.00 86.67 82.50
cr2 80.63 95.00 83.13 95.63 86.43 85.83 92.50 97.86 97.50 97.50
wy1 73.75 64.38 71.88 62.50 70.00 67.50 77.50 61.43 61.67 60.83
wy2 68.13 64.38 66.88 65.00 68.57 66.67 65.00 67.14 66.67 71.67
cc1 59.38 58.75 60.00 59.38 60.71 61.67 58.33 60.71 60.83 60.00
cc2 65.00 62.50 63.13 66.25 67.14 65.83 62.50 65.00 65.00 62.50
mt1 61.25 59.38 60.63 57.50 65.71 63.33 60.00 60.00 63.33 63.33
mt2 58.13 60.63 55.63 61.88 60.71 62.50 61.67 60.71 60.00 54.17
Aas 70.32 69.74 70.16 70.58 71.55 71.87 72.22 71.37 72.08 71.25
Pt. a versus c b versus d a versus e a versus f a versus g b versus h b versus i b versus j
Pv. 0.73×× 0.11×× 0.19×× 0.17×× 0.19×× 0.03∗∗ 0.01∗∗ 0.20××

Note: r-tn: retrain; Aas: averaged accuracy across subjects and sessions (%); 20tr.: using 20 trials to select the model. The best
performances using MI-SW (sw) and MI-Ton (ton) models are shown in bold and underlined, respectively. ××: insignificant;
∗∗: significant.

Table 6. Session-to-session classification accuracies of motor imagery of swallow for the stroke patient.

Full model Best CV model msBWD (sw) msBWD (ton)

Session sw ton sw ton 20tr. 40tr. 20tr. 40tr.

1 61.25 57.50 62.50 60.00 65.00 62.50 60.00 60.00
2 65.00 66.25 62.50 76.25 65.00 67.50 75.00 80.00
As 63.13 61.88 62.50 68.13 65.00 65.00 67.50 70.00

As: averaged classification accuracy across sessions.

models to classify MI-SW, respectively. The classification
accuracies were further increased by 1.63% and 2.34% with the
selection of the suitable MI-Ton model using 20 and 40 trials
of evaluation data based on the proposed msBWD method.
The increase was significant at 5% significance level with
p-values of 0.029 and 0.007. However, retraining the model
using the wavelet features from the selected model and those
of the evaluation data did not further improve the accuracy,
despite the fact that it was still 1.51% higher than that
obtained using the full model. Similarly, the accuracy was
increased by 1.23%, 1.56% and 1.91% by using 20 and 40
trials of evaluation data to select the MI-SW models for the
classification, and retraining the model, respectively. However,
this was not significant compared with the results of using
the full model at 5% significance level. The reason for the
performance drop on using the MI-Ton model to classify
MI-SW for some subjects such as ‘wy’ lay in different
strategies being implemented for MI-SW and MI-Ton.
For example, during the imagination of MI-SW, no obvious
tongue movements were involved; hence the session-to-
session classification accuracy of using the MI-Ton model
was not good. The paired t-test also revealed no significant
difference on the classification accuracies for using MI-SW
and MI-Ton models. The session-to-session classification
accuracies of MI-SW using MI-SW and MI-Ton models for
the stroke patient are shown in table 6. It can be seen that
comparable performances were achieved using the full model
of MI-Ton (accuracy: 61.88%) and using MI-SW (accuracy:

63.13%). The accuracy of using the MI-Ton model had been
further boosted by 5.62% and 8.12% using 20 and 40 trials to
select the model, respectively. However, on selecting a suitable
MI-SW model for classifying MI-SW, the accuracies only
increased by 1.87% and 2.5% compared with those achieved
using the full model and best model, respectively.

4. Discussion and conclusions

To summarize, in this paper, two hypotheses were tested
and the results revealed that: (1) MI-SW and MI-Ton could
be detected from background idle for ten healthy subjects
and one stroke dysphagia patient; (2) MI-SW could be
detected using a model built from MI-Ton, as evidenced
by the similar session-to-session classification accuracies
obtained using the MI-SW model and MI-Ton model. The
proposed dual-tree complex wavelet transform-based feature
extraction demonstrated its effectiveness in detection of MI-
SW and MI-Ton, as supported by the averaged cross-validation
classification accuracies, i.e., 70.89% and 73.79% for MI-SW
and MI-Ton for healthy subjects, and 66.40% and 70.24%
for MI-SW and MI-Ton for the stroke dysphagia patient.
The averaged CV classification accuracies for both MI-SW
and MI-Ton for healthy subjects were significantly better
than those obtained from CSP, SWDCSP and FBCSP. In
particular, our proposed method performed especially well
for the low-accuracy performers, thanks to the stable multi-
level dual-tree complex wavelet features. In contrast, the
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Figure 8. Comparisons of classification accuracies obtained by tuning C for ‘linear’ SVM (‘Acc-C’), obtained by tuning both C and σ for
‘rbf’ SVM (‘Acc-CS’) and obtained by ‘linear’ SVM with the default regularization parameter (‘Acc-Def’).

performances of the CSP-based methods (e.g., CSP, FBCSP
and SWDCSP) were easily affected by the noise, especially for
low-accuracy performers. Statistical tests with 95% confidence
estimating the accuracy on respective actions at the chance
level showed that all subjects performed above chance level
except for the stroke patient for MI-SW session 1, whose
performance fell at the chance level. Further, the averaged
session-to-session classification accuracies obtained for ten
healthy subjects (one stroke patient) were 72.28% and 72.08%
(65% and 70%) on selecting the best MI-SW model and
MI-Ton model using the proposed model selection method.

While previous studies have documented comparable
accuracies of motor imagery of hand/arm classification
for healthy and stroke patients [29, 31, 32], our findings
imply that obtaining similar classification accuracies is
possible for the detection of MI-SW and MI-Ton for healthy
subjects, despite the facts that performing MI-SW was
more difficult than other modalities of motor imagery. This
was due to the involvements of sensory processing, oral,
pharyngeal and laryngeal movement execution, coordination
of mastication and respiration and attentional processing [12],
which complicated the process and led to high variability of
the EEG signals among sessions and subjects. In contrast,
other modalities of motor imagery including MI-Ton were
relatively simple to perform, which motivated the use of
the MI-Ton model for detecting MI-SW, as supported by
the overlapping activated areas of swallowing and tongue
movements [6, 12]. Comparing with healthy subjects, it was
noticed that the averaged cross-validation accuracy of the
single stroke dysphagia patient had dropped for both MI-SW
(4.49%) and MI-Ton (3.55%); and 7.28% and 2.08% decreases
in accuracies on selecting the best MI-SW model and
MI-Ton model resulted. This agreed with previous findings
of significant reductions of cortical sensorimotor activations in
amyotrophic lateral sclerosis patients [33]. The lesser decrease

in cross-validation accuracy for MI-Ton in comparison
to MI-SW, and session-to-session classification accuracy of
MI-SW using the MI-Ton model in comparison to the
MI-SW model, further demonstrate the feasibility of using
the MI-Ton model to detect MI-SW.

Note that ‘linear’ SVM was selected, with the
regularization parameter being set to the default value in our
method. Let us now discuss how the performance will be
affected by selecting the parameters on the basis of 5 × 5-fold
CV and grid search [28]. Selections of the parameters were
carried out in two stages. Firstly, the regularization parameter
(C) for ‘linear’ SVM, or the pair of parameters of (C, σ ) for
‘rbf’ SVM that yielded the best performance were selected. In
the implementation, C varying from 1 × 10−3 to 1 × 106, and
σ varying from 1×10−5 to 1×105, increases by a factor of 10
were employed. A finer search was then implemented to select
among the ten values centered at the parameters selected at the
first stage. Comparisons of the classification performance by
tuning the parameters with that obtained by ‘linear’ SVM with
the default regularization parameter are shown in figure 8.
The results revealed that the averaged CV accuracies were
improved by 1.37% (p-value: 0.0148) and 3.01% (p-value:
0.0004) by tuning C for a ‘linear’ kernel, and by tuning both
C and σ for the ‘rbf’ SVM, compared with those obtained for
‘linear’ SVM with the default C. However, it was noted that
the selected best parameters vary significantly across sessions
and subjects, which may create problems in implementation.
Hence, we only reported the results from using ‘linear’ SVM
with the default regularization parameter.

Non-cerebral artifacts produced by eye movements and
eye blinks, and muscle movements, obscure and complicate
the interpretation of EEG signals [34–36]. In the experiments,
the subjects sat comfortably in a chair to perform the motor
imagery tasks following the visual cue shown at the center
of a computer screen. The vertical eye movements were
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the primary artifacts reflected in FP1 and FP2, which were
excluded in the processing to minimize the influence of
confounding factors. FT9 and FT10 located at the most distal
locations with respect to the center of the brain were easily
affected by muscle artifacts and were not the primary activation
regions for MI-SW and MI-Ton. Excluding these two channels
for processing did not yield degradation of the classification
performance. This was supported by the CV accuracies of
using 32 EEG channels including FT9 and FT10, which were
slightly lower than those achieved using 30 EEG channels
without including these two channels. The EMG signals were
monitored and manually inspected by an EEG expert to ensure
that no excessive body movements, especially for unconscious
swallowing and chewing, presented during the experiments.
No trials were excluded in the processing.

The limitation of this exploratory study was that the
sample size, i.e., ten healthy subjects and one dysphagia stroke
patient, was relatively small. This limitation may serve as an
impetus for a larger study to validate the important preliminary
findings presented in this paper. The probable clinical efficacy
for MI-SW or MI-Ton for swallowing rehabilitation could
be targeted at common problems such as delayed swallow
initiation and weak swallow in post-stroke dysphagia patients
to reduce the latency of onset of the pharyngeal phase and
its related complications of premature spillage and aspiration.
Thus, a possible MI-SW-based or MI-Ton-based swallowing
rehabilitation model could be coupled with a suitable end
effector such as a visual image and tactile feedback with
vibration or subtetanic electrical stimulation in the submental
area. This technique would need to be closely combined with
conventional dysphagia rehabilitation in the same treatment
episode due to the complexity of swallowing.
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