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Abstract Recently, neuro-rehabilitation based on brain-computer interface
(BCI) has been considered one of the important applications for BCI. A key
challenge in this system is the accurate and reliable detection of motor im-
agery. In motor imagery-based BCIs, the common spatial patterns (CSP) al-
gorithm is widely used to extract discriminative patterns from EEG signals.
However, the CSP algorithm is sensitive to noise and artifacts, and its perfor-
mance depends on the operational frequency band. To address these issues,
this paper proposes a novel optimized sparse spatio-spectral filtering (OSSSF)
algorithm. The proposed OSSSF algorithm combines a filter bank framework
with sparse CSP filters to automatically select subject-specific discriminative
frequency bands as well as to robustify against noise and artifacts. The pro-
posed algorithm directly selects the optimal regularization parameters using a
novel mutual information-based approach, instead of the cross-validation ap-
proach that is computationally intractable in a filter bank framework. The
performance of the proposed OSSSF algorithm is evaluated on a dataset from
11 stroke patients performing neuro-rehabilitation, as well as on the publicly
available BCI competition III dataset IVa. The results show that the proposed
OSSSF algorithm significantly outperform the existing algorithms based on
CSP, stationary CSP, sparse CSP and filter bank CSP in terms of the classi-
fication accuracy (p<0.01), and substantially reduce the computational time
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of selecting the regularization parameters compared to the cross-validation
approach.

Keywords Brain Computer Interface · EEG · Mutual Information ·
Regularization · Spatio-spectral Filtering

1 Introduction

A brain-computer interface (BCI) provides a direct communication pathway
between the brain and an external device that is independent from any mus-
cular signals. Thus, BCIs enable users with severe motor disabilities to use
their brain signals for communication and control [1]-[3]. Most BCIs use elec-
troencephalography (EEG) to measure brain signals due to its low cost and
high temporal resolution [4]. Among EEG-based BCIs, the detection of motor
imagery has attracted increased attention in recent years, which is neurophys-
iologically based on the detection of changes in sensorimotor rhythms called
event-related desynchronization (ERD) or synchronization (ERS) during mo-
tor imagery [4]-[6].

Recently, it was shown that motor imagery-based BCI is effective in restor-
ing upper extremities motor function in stroke [7]-[10]. To benefit from BCI
in the stroke rehabilitation, the accurate and reliable detection of ERD/ERS
patterns is important. However, detecting ERD/ERS patterns is generally im-
peded by poor spatial specifications of EEG due to the volume conduction
[11] and different sources of noise and artifacts [12]. Moreover, the discrimina-
tive spatio-spectral characteristics of motor imagery vary from one person to
another [13]. Thus, extracting discriminative spatio-spectral features is a chal-
lenging issue for EEG-based BCIs. Nevertheless, the common spatial patterns
(CSP) algorithm has been shown to be effective in discriminating two classes
of motor imagery tasks [12,14]. Despite its effectiveness and widespread use,
the CSP is highly sensitive to noise and artifacts [15], and its performance
greatly depends on the operational frequency band [12].

To address the sensitivity to noise and artifacts of the CSP algorithm, reg-
ularization algorithms were introduced to robustify it [16]-[19]. In [19], it was
shown that regularizing the CSP objective function generally outperformed
regularizing the estimates of the covariance matrices. Recently, the sparse com-
mon spatial patterns (SCSP) algorithm was proposed by inducing sparsity in
the CSP spatial filters [20,21]. The proposed SCSP algorithm optimizes the
spatial filters to emphasize on the regions that have high variances between
the classes, and attenuates the regions with low or irregular variances which
can be due to noise or artifacts. Stationary CSP (sCSP) is another algorithm
which regularized CSP by penalizing the variations between covariance matri-
ces [36]. In [36], it is shown that sCSP outperforms several existing regularized
CSP algorithms.

To address the dependency on the operational frequency band of the CSP
algorithm, several spatio-spectral algorithms were introduced. Common spatio-
spectral patterns (CSSP) optimized a first order finite impulse response (FIR)
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temporal filter with the CSP algorithm [22]. To improve the flexibility of CSSP,
common sparse spectral-spatial patterns (CSSSP) was then proposed by simul-
taneous optimization of an arbitrary FIR filter within the CSP analysis [23].
Subsequently, the spectrally weighted common spatial patterns (SPEC-CSP)
algorithm [24] and the iterative spatio-spectral patterns learning (ISSPL) [25]
algorithm were proposed to further improve CSSP [25]. Recently, the filter
bank common spatial patterns (FBCSP) algorithm [26] was proposed that
combined a filter bank framework with CSP to select the most discriminative
features using a mutual information-based criterion [27]. The FBCSP algo-
rithm was used as the basis of all the winning algorithms in the EEG category
of the BCI competition IV.

However, to the best of the authors knowledge, the issues of the sensitiv-
ity to noise and artifacts and the dependency on the operational frequency
band of the CSP algorithm have not been simultaneously addressed yet. To
address these two issues simultaneously, this paper proposes a novel sparse
spatio-spectral filtering algorithm optimized by a mutual information-based
approach. The proposed OSSSF algorithm decomposes EEG data into an ar-
ray of pass-bands, and subsequently performs the sparse CSP optimization in
each band. In the proposed algorithm, the optimal regularization parameters
are directly selected using a new mutual information-based approach, instead
of using the cross-validation approach that is computationally intractable in
a filter bank framework (For more explanation see Section 2.2).

In order to evaluate the performance of the proposed algorithm, two datasets
are used: the publicly available dataset IVa from BCI competition III [28], and
the data collected from 11 stroke patients [9]. The classification accuracies of
the proposed OSSSF algorithm are also compared with four existing algo-
rithms, namely CSP [12], sCSP [36], SCSP [20] and FBCSP [27].

The remainder of this paper is organized as follows: Section 2 describes the
proposed method. The applied data sets and the performed experiments are
explained in section 3. Section 4 presents the experimental results and finally
section 5 concludes the paper.

2 Methodology

The architecture of the proposed optimized sparse spatio-spectral filters (OS-
SSF) is illustrated in Fig. 1. It consecutively performs spectral filtering and
sparse spatial filtering to extract and select the most discriminative features
for motor imagery classification. The proposed methodology comprises the
following steps:

• Step 1 - Spectral filtering: This step uses a filter bank that decomposes
the EEG data using nine equal bandwidth filters, namely 4-8, 8-12, ...,
36-40 Hz as proposed in [26,27]. These frequency ranges cover most of the
manually or heuristically selected settings used in the literature.

• Step 2 - Sparse spatial filtering: In this step, the EEG data from each
frequency band are spatially filtered using optimal sparse CSP filters. Let
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Fig. 1 Architecture of the proposed OSSSF algorithm

Xb∈RNc×S denote a single-trial EEG data from the bth band-pass filter,
where Nc and S denote the number of channels and the number of mea-
surement samples respectively. A linear projection transforms Xb to the
spatially filtered Zb as

Zb = W∗
bXb, (1)

where each row of the transformation matrix W∗
b∈R2m×Nc indicates one

of the 2m optimal sparse spatial filters. The details on finding the optimal
sparse spatial filters corresponding to each frequency band are explained
in sections 2.1 and 2.2.

• Step 3 - Feature extraction: The sparse spatio-spectrally filtered EEG data
are used to determine the features associated to each frequency range.
Based on the Ramoser formula [29], the features of the kth EEG trial from
the bth band-pass filter are given by

vb,k = log(diag(Zb,kZ
T
b,k)/trace[Zb,kZ

T
b,k]), (2)

where vb,k ∈R1×2m; diag(.) returns the diagonal elements of the square
matrix; trace[.] returns the sum of the diagonal elements of the square
matrix; and the superscript T denotes the transpose operator. Since nine
frequency bands are used, the feature vector for the kth trial is formed as

Vk = [v1,k,v2,k, ...,v9,k], (3)

where Vk∈R1×18m.
• Step 4 - Feature selection: The last step selects the most discriminative
features of the feature vector V. Various feature selection algorithms can
be used in this step. The study presented in [26] showed that the mutual
information-based best individual feature (MIBIF) algorithm [27] yielded
better 10 × 10-fold cross-validation results than other considered feature
selection algorithms. Moreover, the study showed that selecting four pairs
of the best individual features using MIBIF yielded a higher averaged ac-
curacy compared to the different numbers of selected features [26]. Thus,
in this work the MIBIF algorithm is used to select four pairs of features.
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2.1 Sparse spatial filters

The second step of the proposed algorithm performs sparse spatial filtering
using the optimized SCSP filters. This subsection describes details of the SCSP
filters, and the next subsection describes the proposed mutual information-
based approach to find the optimum SCSP filters.

The CSP algorithm [12,14] is an effective technique in discriminating two
classes of EEG data. The CSP algorithm linearly transforms the band-pass
filtered EEG data to a spatially filtered space, such that the variance of one
class is maximized while the variance of the other class is minimized. The
CSP transformation matrix corresponding to the bth band-pass filter, Wb, is
generally computed by solving the eigenvalue decomposition problem:

Cb,1Wb = (Cb,1 +Cb,2)WbD, (4)

where Cb,1 and Cb,2 are respectively the averag covariance matrices of the
band-passed EEG data of each class; D is the diagonal matrix that contains
the eigenvalues of (Cb,1 + Cb,2)

−1Cb,1. Usually, only the first and the last
m rows of Wb are used as the most discriminative filters to perform spatial
filtering [12].

Despite the popularity and efficiency of the CSP algorithm, the CSP algo-
rithm which is based on the covariance matrices of EEG trials can be distorted
by artifacts and noise [15]. This issue motivated an approach that involves
sparsifying the CSP spatial filters to emphasize on the regions with high vari-
ances between the classes, and to attenuate the regions with low or irregular
variances. To sparsify the CSP spatial filters of the bth band, first the CSP al-
gorithm is reformulated as an optimization problem proposed in our previous
work [21]:

min
wb,i

i=m∑
i=1

wb,iCb,2w
T
b,i+

i=2m∑
i=m+1

wb,iCb,1w
T
b,i

Subject to: wb,i(Cb,1+Cb,2)w
T
b,i =1 i ={1, 2, ..., 2m}

wb,i(Cb,1+Cb,2)w
T
b,j =0 i, j= {1, 2, ..., 2m} i ̸= j,

(5)

where the unknown weights wb,i ∈ R1×Nc , i = {1, .., 2m}, respectively denote
the first and the last m rows of the CSP projection matrix from the bth band-
pass filter. In this optimization, the constraints keep the covariance matrices
of the both projected classes diagonal and uncorrelated.

Sparsity can be induced in the CSP algorithm by adding an l0 norm regu-
larization term into the optimization problem given in (5). ∥x∥0, the l0 norm
of x, is the measure giving the number of non-zero elements of x. However,
solving a problem with the l0 norm is combinatorial in nature and thus com-
putationally prohibitive. Furthermore, since an infinitesimal value is treated
the same as a large value, the presence of noise in the data may render the
l0 norm completely ineffective in inducing sparsity [30]. Therefore, instead of
the l0−norm, the approximation below is used to measure the sparsity [21]:
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∥x∥0 −→ ∥x∥1
∥x∥2

, (6)

where ∥x∥k = (
∑n

i=1 |xi|k)1/k for k equal to either 1 or 2, and n denotes
the total number of elements of the vector x. For the sparsest possible vector

whereby only a single element is non-zero ∥x∥1

∥x∥2
equals to one, whereas for a

vector with all equal non-zero elements ∥x∥1

∥x∥2
equals to

√
n. The proposed SCSP

algorithm is then formulated as:

min
wb,i

(1−r)(
i=m∑
i=1

wb,iCb,2w
T
b,i+

i=2m∑
i=m+1

wb,iCb,1w
T
b,i)+r

i=2m∑
i=1

∥wb,i∥1
∥wb,i∥2

Subject to: wb,i(Cb,1+Cb,2)w
T
b,i =1 i ={1, 2, ..., 2m}

wb,i(Cb,1+Cb,2)w
T
b,j =0 i, j= {1, 2, ..., 2m} i ̸= j,

(7)

where r (0≤r≤1) is a regularization parameter that controls the sparsity and
the classification accuracy. When r=0, the solution is essentially the same as
the CSP algorithm.

The SCSP algorithm is a nonlinear optimization problem, and due to the
equality constraints, it is a non-convex optimization problem. It is solved using
several methods such as sequential quadratic programming (SQP) and aug-
mented lagrangian methods [31]. In this study, for r ̸=0, spatial filters obtained
from the CSP algorithm are used as the initial point.

2.2 Optimizing sparse spatial filters using mutual information

Choosing a suitable value for the regularization parameter r in (7) is a challeng-
ing issue in the proposed algorithm. A larger value of r results in more sparse
spatial filters, but may decrease the accuracy because some useful information
is lost. Therefore, optimal r values should be chosen in a way to yield more
efficient features.

The existing regularized CSP algorithms generally use the cross-validation
method on the train data to automatically select the optimal regularization
parameters [19]. Thus, a set of candidates are considered for the regularization
parameter. For each candidate the corresponding regularized CSP filters are
calculated and then evaluated using m×n-fold cross-validation on the train
data. Finally, the candidate yielding the highest average m×n-fold cross-vali-
dation accuracy is selected as the regularization parameter. However, perform-
ing m×n-fold cross-validation for a set of different regularization parameters
is computationally intensive. Particularly, in the proposed filter bank frame-
work, the problem is more pronounced due to the use of a separate SCSP for
each band, since the value of the regularization parameter may differ from
band to band. As an illustration, if 5 different r values (candidates) were to
be evaluated for each SCSP of the nine frequency bands, the m×n-fold cross-
validation should be performed for 59 different combinations. Thus, selecting
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the optimal regularization parameters using the cross-validation approach is
computationally intractable in a filter-bank framework.

To address this issue of computationally intractable approach, this paper
proposes a mutual information-based algorithm to directly select the r values
from a predefined set. Mutual information is a non-linear measure of statistical
dependence based on information theory [32]. Indeed, in this work the r value is
optimized by maximizing the mutual information between the feature vectors
obtained from the sparse spatio-spectral filters and the corresponding class
labels. Based on the proposed algorithm, the optimal r value and consequently
the optimal SCSP filters from the bth band-pass filter are found as follows:

1) For each r value from a predefined set R, r∈R= {r1, r2, ..., rn}, obtain the
corresponding sparse spatial filters wr

b,i, i={1, ..., 2m}, from the bth band by
solving (7).

2) Initialize the set of features Fb = [Fb,r1 ,Fb,r2 , ...,Fb,rn ] as given in (2) from
the training data, where Fb,rj ∈ Rnt×2m denotes the features obtained from
SCSP filters when r = rj , and nt denotes the total number of training trials.
In this work, the ith column vector of Fb,rj is presented as fb,rj ,i.

3) Compute the mutual information of each feature vector fb,r,i with the class
label Ω = {1, 2}. The mutual information of fb,r,i, I (fb,r,i;Ω) ∀ [ r ∈ R =
{r1, r2, . . . , rn}, i = {1, 2, . . . , 2m}], can be computed using [33]:

I(fb,r,i;Ω) = H(Ω)−H(Ω|fb,r,i) , (8)

where H(Ω) is the entropy of the class label defined as:

H(Ω) = −
2∑

Ω=1

P (Ω) log2 P (Ω) ; (9)

and the conditional entropy is

H(Ω|fb,r,i) = −
2∑

Ω=1

P (Ω|fb,r,i) log2 P (Ω|fb,r,i)

=−
2∑

Ω=1

nt∑
k=1

P (Ω|fb,r,i,k) log2 P (Ω|fb,r,i,k) , (10)

where fb,r,i,k is the ith feature value of the kth trial from Fb,r, and P is the
probability function. The conditional probability P (Ω|fb,r,i,k) can be com-
puted using Bayes rule given in (11) and (12).

P (Ω|fb,r,i,k) = (P (fb,r,i,k|Ω)P (Ω))/P (fb,r,i,k) , (11)

P (fb,r,i,k) =
2∑

Ω=1

P (fb,r,i,k|Ω)P (Ω) . (12)
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The conditional probability P (fb,r,i,k|Ω) can be estimated using the Parzen
Window algorithm [27], given by

p̂ (fb,r,i,k|Ω) =
1

nΩ

∑
t∈IΩ

ϕ (fb,r,i,k − fb,r,i,t, h) , (13)

where nΩ is the number of trials in the training data belonging to class Ω;
IΩ is the set of indices of the training trials belonging to class Ω; fb,r,i,t is
the ith feature value of the tth trial from Fb,r, and ϕ is a smoothing kernel
function with a smoothing parameter h. The proposed algorithm employs the
univariate gaussian kernel given by

ϕ (y, h) =
1√
2π

e
−
(

y2

2h2

)
, (14)

and normal optimal smoothing strategy [34] given by

hopt =

(
4

3nΩ

) 1
5

σ, (15)

where σ denotes the standard deviation of y from (14).

4) Find the feature with the highest mutual information. The r value corre-
sponding to this feature is selected as the optimal regularization parameter
for SCSP from the bth frequency band. Mathematically, this step is performed
as follows:

I
(
fb,r∗b ,i∗ ;Ω

)
= max

i={1,2,...,2m}
r∈R={r1,r2,...,rn}

I(fb,r,i;Ω) , (16)

where r∗b denotes the optimal regularization parameter constructing the op-
timal SCSP filters from the bth frequency band (i.e. W∗

b).

The relevance of computing mutual information to select the optimal r
value is as follows: The mutual information I(fb,r,i;Ω) evaluates the reduction
of uncertainty given by the feature vector fb,r,i. If the mutual information
between the feature vector fb,r,i and the class labels Ω is large (small), it
means that fb,r,i and Ω are closely (not closely) related [33]. Maximizing the
objective function (16) results in selecting the optimal r value that yields the
feature with the highest relevance with respect to the class labels. Note that the
proposed method to select the optimal regularization parameter is not limited
to the SCSP algorithm, but applicable for all regularized CSP algorithms that
require automatic selection of regularized parameters.
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2.3 Feature extraction

Based on the optimal regularization value selected for each SCSP, the third
step of the proposed OSSSF algorithm extracts the features from the bth band
as Fb,r∗b

= [fb,r∗b ,1, fb,r∗b ,2, ..., fb,r∗b ,2m] where Fb,r∗b
∈ Rnt×2m; nt and and 2m

denote the total number of the training trials and the sparse spatial filters
respectively. Since there are nine frequency bands, all the extracted features
can be presented as V = [F1,r∗1

,F2,r∗2
, ...,F9,r∗9

] where V∈Rnt×18m.

2.4 MIBIF feature selection

The forth step of the OSSSF algorithm selects discriminative features from
the features V using the mutual information-based best individual feature
(MIBIF) algorithm. The MIBIF sorts all the 18m extracted features in de-
scending order of mutual information computed in step 2 and selects the first
k features. Mathematically, this step is performed as follows till |S| = k

V = V\fb,r∗b ,i,S = S ∪ fb,r∗b ,i|
I
(
fb,r∗b ,i;Ω

)
= max

i=1..(2m)
b=1..9

I
(
fb,r∗b ,i;Ω

)
, (17)

where S is the set of the selected features; \ denotes set theoretic difference;
∪ denotes set union; and | denotes given the condition. The parameter k in
the MIBIF algorithm denotes the number of best individual features to select.
Based on the results presented in Section 4 k = 4 is used in this work.

3 Experiments

3.1 Data description

In this study, the EEG data of 16 subjects from two datasets were used. These
two datasets are described as follows:

1) Dataset IVa [28] from BCI competition III [35]: This publicly available
dataset comprised EEG data from 5 healthy subjects recorded using 118 chan-
nels. During the recording session, the subjects were instructed to perform one
of two motor imagery tasks: right hand or foot. 280 trials were available for
each subject, where 168, 224, 84, 56 and 28 trials formed the training sets for
subjects aa, al, av, aw, and ay respectively. Subsequently, the remaining trials
formed the test sets. Since the objective of this work is not investigating the
performance of the OSSSF algorithm on a small training set, the number of
training trials were increased to 140 for subjects aw, and ay.

2) Neurorehabilitation dataset [9]: This dataset contained 25 channels EEG
data from 11 hemiparetic stroke patients who used motor imagery-based BCI
with robotic feedback neurorehabilitation (refer NCT00955838 in Clinincal-
Trials.gov). In this study, the data collected from the calibration phase of this
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dataset were used. This phase comprised 80 motor imagery trials of stroke-
affected hand and 80 trials of the rest condition. Each trial lasted approxi-
mately 12 s. For each trial, the subject was first prepared with a visual cue
for 2 s on the screen, and another visual cue then instructed the subject to
perform either the motor imagery task or the rest for 4 s, followed by 6 s of
resting.

3.2 Data processing

The performance of the proposed OSSSF algorithm were compared with three
existing feature extraction algorithms, namely CSP, SCSP and FBCSP. The
SCSP algorithm with two different approaches in selecting the optimal regu-
larization parameters was considered: SCSP-CV which uses the 10-fold cross-
validation approach, and SCSP-MI which uses the proposed mutual informa-
tion approach.

The EEG data from 0.5 to 2.5 s after the visual cue were used in all the
above-mentioned algorithms. For the CSP algorithm, the EEG signals were
band pass filtered using 8 to 35 Hz elliptic filters, since this frequency band
included the range of frequencies that are mainly involved in performing motor
imagery. Subsequently, the CSP filters were used to compute the features. For
the sCSP and SCSP algorithms, the EEG signals were also band pass filtered
using 8 to 35 Hz elliptic filters. Next, the spatially filtered signals obtained
by sCSP and SCSP were used to compute the features accordingly. For the
FBCSP algorithm, the EEG data were band pass filtered using 9 Chebyshev
Type II filters. Thereafter, CSP was performed in each band, and a reduced
set of features from all the bands was selected using the MIBIF algorithm
[27]. For the OSSSF algorithm, the EEG data were band pass filtered using
9 Chebyshev Type II filters, and the subsequent steps described in section 2
were applied.

It is noted that in this study, for each applied (s/S)CSP, m =2 pairs of
the filters were used, and for all the mentioned algorithms the Näıve Bayesian
Parzen Window classifier [27] was employed in the classification step. For the
proposed OSSSF (s/SCSP) algorithms, 20 different candidates of r , r ∈ R =
{0.01, 0.02, ..., 0.19, 0.2}, were evaluated using the train data, and those yield-
ing the highest mutual information with the class labels (the highest cross-
validation accuracy) were selected as the optimal r values. In case that none
of the r values yielded the higher mutual information with the class labels
(higher cross-validation accuracy) compared to the standard CSP filters, the
CSP features were used rather than the OSSSF (s/SCSP) features (i.e. r = 0).
In the sCSP algorithm, the number of trials in each epoch was selected from
the set of {1, 5, 10} using cross-validation as suggested by [36].
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4 Results and discussion

In the proposed algorithm, in each frequency band, the regularization value r
that yielded the highest mutual information between the best feature and the
class labels is selected as the optimal r value. However, in the cross-validation
algorithm, the optimal regularization value is the one resulting in the highest
cross-validation accuracy.

(a) (b)

Fig. 2 Effects of varying regularization value on the mutual information of the best features,
as well as the 10-fold cross-validation accuracy for: (a) Subject av, and (b) Subject aa.
The train data filtered from 8 to 35 Hz were used in this figure. r∗ indicates the optimal
regularization value.

Fig. 2 illustrates how the mutual information between the best features and
the class labels, as well as the 10-fold cross-validation accuracy change by vary-
ing the r value for two subjects. This figure shows that the use of small values
of r increased the mutual information and the 10-fold cross-validation accu-
racy by attenuating noisy and redundant EEG signals, while further increase
in the r value reduced both the mutual information and the cross-validation
accuracy. Interestingly, for subject av, both the mutual information-based al-
gorithm and the cross-validation algorithm yielded the same optimal r value
(see Fig. 2.a) . For subject aa, although the two algorithms yielded different
optimal r values, the difference between the cross-validation accuracies of the
optimal r values is very small (see Fig. 2.b). According to Fig. 2, evaluating a
small set of r values suffices to find the optimal r values.

As described in the section 2.1, selecting the optimal regularization param-
eters of the OSSSF algorithm using the cross-validation method is computa-
tionally intractable, due to the use of a separate SCSP for each frequency band.
Therefore, the proposed mutual information-based approach which is compu-
tationally tractable is used to select the optimal regularization parameters of
the proposed OSSSF algorithm.

As mentioned in Section 2.4, in the fourth step of the proposed OSSSF al-
gorithm, the MIBIF feature selection algorithm is used to select the most dis-
criminative features among the features extracted from all the nine bands. The
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proposed OSSSF algorithm was evaluated using different number of selected
features by performing 5-fold cross-validation on the train data of Dataset IVa
[28] from BCI competition III. Fig. 3 shows the average classification accu-
racies of the proposed OSSSF algorithm using different number of features
selected by MIBIF. This figure shows that selecting 4 pairs of the features
yielded on average the highest classification accuracy. According to these re-
sults, in the remaining of this paper the OSSSF algorithm with 4 pairs of the
features was used.
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(a)

Fig. 3 Average 5-fold cross validation accuracy of the proposed OSSSF algorithm using
different number of features, on the train data of the dataset IVa BCI competition III

Table 1 presents the classification accuracies on the test data from the
dataset IVa obtained using different algorithms. The SCSP algorithms using
the 10-fold cross-validation and the mutual information-based approach to se-
lect the regularization parameters are respectively abbreviated as SCSP-CV
and SCSP-MI. Table 1 shows that the SCSP-MI algorithm substantially out-
performed the CSP algorithm in terms of the classification accuracy by an av-
erage of 1.93%. Hence, the results show that the proposed mutual information-
based approach truly finds a regularization parameter leading to more discrim-
inative spatial filters. The results also show that SCSP-CV performed slightly
better than sCSP and SCSP-MI and yielded an average improvement of 2.4%
in the classification accuracy compared to the CSP algorithm. However, there
is no statistically significant difference between the SCSP-MI and the SCSP-
CV results , and the sCSP results and SCSP-CV results (p > 0.05).

Importantly, using an Intel Quad 2.83 GHz CPU and the package fmincon
in MATLAB 7.5, the SCSP-CV algorithm took an average of 5339.9 s to se-
lect the optimal regularization parameters among 20 different small r values.
In contrast, the SCSP-MI algorithm only took an average of 505.36 s under
the same conditions. The elapsed computational times and the obtained clas-
sification accuracies illustrated that the proposed mutual information-based
approach is able to select the optimal regularization parameter of the SCSP
algorithm effectively and efficiently.
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Table 1 Test classification accuracies of dataset IVa from BCI competition III, obtained
by CSP, sCSP, SCSP-CV, SCSP-MI, FBCSP, and the proposed OSSSF.

Subject Train size Test size CSP sCSP SCSP-CV SCSP-MI FBCSP OSSSF

aa 168 112 66.96 71.43 72.32 71.42 73.21 77.68
al 224 56 98.21 98.21 98.21 98.21 100 100
av 84 196 66.32 69.39 68.88 68.88 74.49 77.04
aw 140 140 90.17 92.14 92.85 93.57 93.57 94.28
ay 140 140 93.57 94.28 95 92.85 91.43 92.14

Mean 151 129 83.05 85.09 85.45 84.98 86.54 88.23

Table 1 also shows that the FBCSP algorithm improved the CSP results
by an average of 3.49%. Although FBCSP averagely outperformed SCSPs,
SCSPs resulted in higher classification accuracies for subject ay. Taking the
advantages of both SCSP and FBCSP, the proposed OSSSF algorithm further
improved the results and outperformed CSP, sCSP, SCSP-MI, SCSP-CV, and
FBCSP, by an average of 5.18%, 3.14% 2.78%, 3.25%, and 1.69% respectively.

Regarding the computation time, the most time consuming part of the OS-
SSF algorithms is finding the regularization parameters. Although, the com-
putation time has been considerably reduced using the proposed mutual infor-
mation-based algorithm, it may be still challenging to train the model using
the OSSSF algorithms in few minutes break between the calibration and test
sessions. However, using parallel computing can make this issue feasible.

Fig. 4 Selected operational frequency bands using the FBCSP and the proposed OSSSF
algorithms.

Fig. 4 illustrates the operational frequency bands selected by the FBCSP
and the proposed OSSSF algorithms for the 5 subjects from the BCI compe-
tition III dataset IVa. Comparing this figure and the classification accuracies
given in Table 1, the results show that the selected frequency bands for sub-
jects aa and av are similar for both FBCSP and OSSSF. However, OSSSF
yielded higher classification accuracy in these subjects by optimizing the CSP
spatial filters of the selected frequency bands. The results also show that the
selected frequency bands of the subjects aw and ay are different in FBCSP
and OSSSF. Indeed, in these two subjects the proposed OSSSF algorithm im-
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Table 2 10-fold cross-validation accuracies of neuro-rehabilitation dataset obtained by CSP,
sCSP, SCSP-CV, SCSP-MI, FBCSP, and the proposed OSSSF.

Patient code CSP sCSP SCSP-CV SCSP-MI FBCSP OSSSF

P003 70.62 72.57 78.12 79.37 78.75 79.37
P005 57.5 61.38 65.0 64.37 66.87 68.75
P007 66.25 75.69 77.5 77.5 85.0 93.12
P010 58.75 66.76 66.87 68.12 62.5 67.5
P012 43.75 58.65 58.12 57.5 64.37 65.0
P029 85.0 90.13 90.0 90.0 87.5 89.37
P034 63.75 75.06 72.5 71.87 78.12 81.25
P037 53.12 69.78 70 66.82 70 72.5
P044 67.47 72.57 71.87 71.25 69.37 70.62
P047 88.12 90.33 91.87 91.25 93.75 93.12
P050 71.25 78.05 77.5 76.25 82.5 83.75
Mean 65.96 73.64 74.49 74.02 76.25 78.58

proved the classification accuracy by optimizing the spatial filters, and also by
selecting more optimal frequency bands due to attenuating noisy EEG signals.

Table 2 compares the average 10-fold cross-validation accuracies of 11
stroke patients from the neuro-rehabilitation dataset obtained using the OS-
SSF algorithm against the CSP, sCSP, SCSP-CV, SCSP-MI, and FBCSP algo-
rithms. The results showed that the proposed OSSSF algorithm outperformed
the other algorithms by an average of 12.6%, 4.94%, 4.1%, 4.5% and 2.3% re-
spectively. Compared to the dataset IVa, the performance difference between
OSSSF and CSP in the neuro-rehabilitation dataset was more salient. This
can be due to the fact that the neuro-rehabilitation dataset was more con-
taminated by noise, and artifact-corrupted trials. Thus, the OSSSF algorithm
could considerably improve the performance by increasing the signal to noise
ratio.

In terms of the statistical significance, a Friedman test [37] was applied.
We used the Friedman test, since it is a non-parametric equivalent of the re-
peated measure ANOVA [37]. Statistical analysis on all the results presented
in the tables 1 and 2 showed that the regularized spatial and spatio-spectral fil-
ters used in this paper had significant effects on the classification performance
at the 1% level (p = 2× 10−7). Post-hoc multiple comparisons revealed that
sCSP, SCSP-CV, SCSP-MI, FBCSP and the proposed OSSSF algorithm were
significantly more efficient than the CSP algorithm. Moreover, the proposed
OSSSF algorithm was significantly more efficient than sCSP and SCSP-MI,
while among the sCSP, SCSP-MI, SCSP-CV and FBCSP algorithms none of
them performed significantly more efficient than the other.

The limitation of the proposed algorithm is when the train set is very small.
Our investigation showed that the FBCSP algorithm and the proposed OSSSF
algorithm were unsuccessful in classifying trials with a small training size (e.g.
less than 20 trials per class). This may be due to over fitting. Thus, when the
number of train trials is too small, we suggest using the SCSP algorithm with
a fixed frequency band rather than the OSSSF algorithm.
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The proposed OSSSF algorithm reduces the adverse effects of some intra-
session non-stationarities by attenuating irrelevant channels as well as selecting
the most discriminative frequency bands. However, the variations in the data
are not considered directly in the OSSSF optimization problem. Moreover,
since the OSSSF algorithm only uses the train data, the trained model may
not be able to capture some of session-to-session non-stationarities that are
not seen in the train data. Thus, the OSSSF results can be further improved
by jointly using adaptive algorithms such as [38] to better deal with non-sta-
tionarities.

5 Conclusion

This session proposed a novel optimized sparse spatio-spectral filtering algo-
rithm (OSSSF) to simultaneously address the dependency on operational fre-
quency bands and the sensitivity to noise and artifacts of the CSP algorithm.
The proposed OSSSF algorithm optimizes the sparse spatial filters over multi-
band frequency filters to find the best combination of the sparse CSP features
extracted from different frequency bands. The SCSP filters of the proposed
algorithm are directly optimized using a new mutual information-based ap-
proach instead of using the cross-validation approach that is computationally
intractable in a filter bank framework. The experimental results on five healthy
subjects from the publicly available BCI competition III dataset IVa, as well
as 11 stroke patients performing neuro-rehabilitation demonstrated that the
proposed OSSSF algorithm outperformed the existing algorithms called CSP,
sCSP, SCSP, and FBCSP. Furthermore, the results showed that compared to
the cross validation method, the proposed mutual information-based approach
is able to efficiently and effectively optimize the regularization parameters of
the sparse CSP spatial filters with substantially reduced computational time.
More importantly, the proposed new mutual information-based approach is not
limited to the SCSP algorithm, but it is applicable for all general regularized
CSP algorithms that require automatic selection of optimal

regularization parameters.
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