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Abstract
Objective. Session-to-session nonstationarity is inherent in brain–computer interfaces based on
electroencephalography. The objective of this paper is to quantify the mismatch between the
training model and test data caused by nonstationarity and to adapt the model towards
minimizing the mismatch. Approach. We employ a tensor model to estimate the mismatch in a
semi-supervised manner, and the estimate is regularized in the discriminative objective function.
Main results. The performance of the proposed adaptation method was evaluated on a dataset
recorded from 16 subjects performing motor imagery tasks on different days. The classification
results validated the advantage of the proposed method in comparison with other regularization-
based or spatial filter adaptation approaches. Experimental results also showed that there is a
significant correlation between the quantified mismatch and the classification accuracy.
Significance. The proposed method approached the nonstationarity issue from the perspective of
data-model mismatch, which is more direct than data variation measurement. The results also
demonstrated that the proposed method is effective in enhancing the performance of the feature
extraction model.

Keywords: electroencephalograph, motor imagery, brain–computer interface

(Some figures may appear in colour only in the online journal)

1. Introduction

The nonstationarity of brain activities is an established phe-
nomenon that has various implications in neuroscience and
neuroengineering [1]. Recent neuro-imaging studies have
shown that the nonstationarity may be caused by low fre-
quency spontaneous fluctuations in brain signals that are
coherent within resting state networks (RSNs) [2, 3]. As
reported in [2], intrinsic brain activity of RSNs persists during

task performance and contributes to variability in evoked
brain responses. Other contributory factors include electrode
impedance and positioning, and the subjects’ different
response behaviours.

The characteristics of the brain signal of a specific mental
task may vary largely from trial to trial, and from session to
session [4, 5]. This poses a grand challenge especially to
online brain signal detection and classification such as in
BCIs [6–9]; even if a BCI performs well in calibration, it may
suffer from a considerable performance drop over time. For
example in [10], some BCI subjects who achieved
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classification accuracies around 85% in the calibration session
obtained only accuracies around 65% in later sessions.
Therefore, nonstationarity and its consequences must be well
addressed before BCI can be applied in real-world applica-
tions out of the laboratory [11–13].

Among a number of algorithms that have been proposed
to address the nonstationary issue, one category considers
improving the robustness of the model using calibration data
only, such that this may translate to better generalization in
processing unseen test data [14–16]. In [17] and [18], for
example, cross-subject data are integrated to build subject-
specific brain signal classification models with a widely-used
subject-specific spatial filtering technique, i.e., common spa-
tial pattern (CSP). In [19], CSP is modified by penalizing the
nonstationary projection directions so as to minimize the
effects of artefacts. In [20], the authors introduce a different
penalizing term that measures the Kullback–Leibler (KL)
divergence of electroencephalograph (EEG) across trials, and
the learning algorithm aims to minimize within-class dis-
similarities while maximizing inter-class separation.

Another category of methods investigates the actual
variations across sessions and then adapts detection models
accordingly. While brain signal detection algorithms usually
consist of a feature extraction step and a classification step,
some methods focus on the classification step and study the
shift of discriminative patterns in the fixed feature space
[11, 21, 22]. Studies in [11] show that the two-class motor
imagery EEG classification accuracy could increase sig-
nificantly among more than 90% of the subjects by using
simple adaptive procedures, such as bias adaptation. Other
algorithms consider variations of EEG data across sessions by
incorporating data from test sessions to update the feature
extraction model [23, 24]. Another adaptive approach, instead
of updating the model, maps the EEG data from the evalua-
tion session space to the training session space by a linear
transformation so that differences between sessions can be
reduced and the training model can work better on the
transformed test data [25].

A critical question pertaining to nonstationary brain
signal detection is how to construct a metric that measures
this mismatch between test data and the model obtained from
training data, and how to make use of the mismatch metric to
guide the adaptation of feature extraction and classification
algorithms. In this regard, there are two major challenges.
One challenge lies in the fact that brain signal data have
complex and multi-way structures. In a typical BCI system,
the data structures are usually indexed by subject, trial, sensor
channel, time, or frequency bin. The multi-way structures,
however, may not be sufficiently explored if much simplified
representations such as mean covariance matrices are used,
e.g., in CSP. The other challenge is how to integrate the
mismatch metric into a discriminative framework so that the
former is directly relevant to the discrimination of brain
signals.

This report presents a systematic attempt to quantify the
data-model mismatch and use the mismatch metric as a basis
for the model adaptation. We employ a tensor model to
capture the multidimensional structure of EEG, because it

provides a natural and convenient representation of multi-way
data [26, 27]. In particular, the tensor structure is applied to
the covariance matrices of EEG data so that the event-related
(de) synchronization (ERD/ERS) effects of multi-trial data as
well as the projection matrix can be formulated in a unified
model [28]. Interpreted from a regression perspective, the
residual part in this tensor model form reflects the fitness of
the projection matrix in describing the ERD/ERS effects
underlying the covariance matrices. Therefore, this residual
error can be used to evaluate the mismatch between the fea-
ture extraction model and data.

As it is difficult to achieve the residual error minimiza-
tion and the discrimination objective simultaneously, we
propose a two-step approach where the residual error is
estimated in the first step and then combined with the dis-
crimination objective function in a regularized manner. For
model adaptation, the major challenge in the first step lies in
learning the mismatch relevant to the discriminative task
without the true labels of new sessions. To this end, we adopt
a semi-supervised learning approach to take the class infor-
mation into consideration instead of the conventional error
minimization used in regression model estimation. Then, the
estimation of the mismatch metric is integrated into the dis-
crimination objective function with a regularization approach
to adapt the feature extraction model. In this way, the per-
formance of feature extraction model can be enhanced by the
adaptation toward reducing the data-model mismatch.

The performance of the proposed adaptation method is
evaluated on a recorded data set from 16 subjects performing
motor imagery tasks on different days. Experimental results
show that there is a significant correlation between the
quantified mismatch and the classification accuracy. More
importantly, the classification results validate the advantage
of the proposed method in comparison with other regular-
ization-based or spatial filter adaptation approaches.

This paper is organized as follows. In section 2, spatial
pattern analysis with tensor model is presented, followed by
the introduction of the adaptation method based on the
quantification of the mismatch between model and data. In
section 3, we introduce the experimental set-up and data
processing procedures for evaluating the proposed method.
Section 4 presents an investigation of the correlation between
the classification performance and data-model mismatch
metric, and the classification results of the proposed method
in a two-class motor imagery classification problem. Con-
cluding remarks are given in section 5.

2. Spatial pattern analysis in tensor space for
nonstationary signal

2.1. Spatial filtering in tensor decomposition form

For convenience, we will follow the conventional notations
and definitions in the area of multi-linear algebra. Thus, in
this study, tensors are denoted by calligraphic letters [26]. For
the details of the definitions and notations, please refer to
appendix A.
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Given ∈ ×X j n nc t as the time-series of EEG signal
recorded from the jth trial, where nc is the number of channels
and nt is the number of time samples, the covariance matrix of
the jth trial is

=R X X . (1)j j jT

Let V be a projection matrix that maps EEG data from the
scalp space to a surrogate channel space, where the resulted
covariance matrix

Λ = V R V (2)j T j

is usually assumed to be diagonal for ERD/ERS feature
extraction [29, 30].

Remark 1. There is evidence that multiple brain regions may
cooperate during motor imagery, which would result in
source interaction and connectivity [31, 32]. However, signals
after projection with strengthened ERD/ERS effects are
usually assumed to be independent in spatial filter design
methods, e.g., CSP. Since the proposed method addresses the
model adaptation issue, the diagonal covariance matrix
assumption is adopted so that the regression error reflects
the mismatch of the CSP spatial filters in this work.

To describe multiple trials in a unified model, we adopt
the tensor model to formulate the mapping from source sig-
nals to scalp EEG data. Let  be a tensor including the
covariance matrices of totally nj trials as ∈ × × n n nc c j. Then,
the jth frontal slice of  is the covariance matrix Rj for trial j,
which can be written as

Λ= − −R V V . (3)j T j 1

And (3) for all trials can be formulated as

Λ= × × × +  V V , (4)d1 2 3

where ∈ × × n n nc c c is the cubic tensor with ones along the
super diagonal, and ∈ × × n n nc c j is the tensor of residual
error components. Each of the frontal slices of  is denoted

by Ek. ⎡⎣ ⎤⎦ Λ λ λ λ= ∈ ×, ,..., ,d
n T n n1 2 j j c where

λ ∈j n, 1 ,...,j
j is the vector containing the diagonal elements

of Λj in (3). In addition, Λd can be regarded as the matrix
containing the variances of the signals of all trials after
projection.

The objective of the discriminative spatial pattern learn-
ing is to estimate spatial filter V in (4) so that the recon-
structed source signal can be classified. In CSP, the solution
can be obtained as a generalized eigen-decomposition of
average covariance matrices of two classes. Define

∈ × ×̄ M M 2 as a tensor such that +R( ) and −R( ) are frontal
slices [28], where +R( ) and −R( ) are the average covariance
matrices from class (+) and (−), respectively. The solution of
CSP can be written in a tensor form as

Λ= × × ×  W W¯ ¯ , (5)d1 2 3

where W is used to denote the solution of projection matrix

obtained by CSP. ⎡⎣ ⎤⎦ Λ λ λ= ∈+ − ×¯ ,d
T n( ) ( ) 2 c, where λ +( ) and

λ −( ) are, respectively, vectors consisting of the eigenvalues of
+R( ) and −R( ) upon the joint diagonalization.
An interesting term in (4) but absent in (5) is  . This is

the residual part of modelling which is not taken into con-
sideration in CSP. It is often neglected in conventional spatial
filter design methods, where the multi-way structure of the
data is simplified by averaging covariance matrices. In [28],
this non-jointly-diagonalized term has been explored and it is
assumed to be related to the quality of the EEG trials.
Compared with parameters that measure the data variation,
the residual part  provides a natural data-model mismatch
metric in a more direct way. In other words, the residual part
 can be used to evaluate the performance of the spatial filter
because it reflects how accurate the model is in describing the
ERD/ERS process. Based on this motivation, we adopt the
tensor model of the covariance matrices for the data-model
mismatch metric estimation and utilize it to guide the spatial
filter adaptation.

2.2. Tensor decomposition based adaptation

As the residual part  can be regarded as a quantification of
the mismatch between model and data, the mismatch between
the calibration model and test data from different sessions is
of particular interest, which is formulated as

Λ= − × × ×   W W , (6)dte te 1 tr 2 tr 3 ,te

where te is the tensor of covariance matrices of all test trials
and Wtr is the solution of CSP in (5) obtained from the cali-
bration session. Then, Λd,te contains the variances of the
signals after projection, and te is the tensor of residual error
components, i.e., the mismatch metric between the calibration
model and the test data. The error part of test data, te, is
usually much larger than that of the training data, i.e.

Λ= − × × ×   W W . (7)dtr tr 1 tr 2 tr 3 ,tr

Examples will be shown in section 3.
To address the session-to-session transfer problem, Wtr

should be adapted toward minimizing the residual error with
respect to the test data while keeping power differences
between classes maximized. However, it is difficult to com-
bine the objective function that minimizes the residual error
with the one maximizing the Rayleigh coefficient in CSP, as
both W and Λ are dependent on each other. To this end, we
propose a two-step approach where the residual error is
estimated in the first place and then combined with the
objective function of CSP in a regularized manner.

2.2.1. Residual error estimation. Instead of using te in (6),
we adopt an iteration approach which is summarized in
algorithm 1 to estimate the residual error. Details of the
derivation of the updating equations (9) and (10) can be found
in appendix B and [28]. In (6), Λd,te corresponds to the
variance features used for classification of the test data
(details of variance feature extraction can be found in [15]).
The estimation of te is not useful for the adaptation of the
discrimination model, if Λd,te is not separable. To solve this
problem, we propose a semi-supervised learning approach to
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evaluate the discrimination model as shown in algorithm 1.
Different from the iteration in [28], the class information is
addressed in the estimation of te to obtain the data-model
mismatch metric relevant to the discriminative objective.

As shown in (5), Λ̄d consists of λ +( ) and λ −( ), which are

the vectors comprising, respectively, the eigenvalues of +R( )

and −R( ) upon joint diagonalization. Generally speaking, λ +( )

and λ −( ) are the centres of distributions of the training
features. It is desirable that the test features are close to the
corresponding centers in a class-wise way. Therefore, we
adopt λ +( ) and λ −( ) as the references of variance features of the
two classes by using pseudo labels of the test data, denoted as
ŷ as shown in (8). Upon the class-wise initialization, (9) and
(10) are iterated in a data-driven manner so that this
estimation process is not relying on the predicted labels
totally. In other words, by combining the semi-supervised
initialization and iteration procedure, we can balance the
trade-off between discrimination objective and the risk of
semi-supervised learning. This approach also allows that
intrinsic variations remain as for each trial Λ× ×V V d2 3 te,

are not necessarily the same, and only the residual parts that
cannot be jointly diagonalized will be penalized.

2.2.2. Transformation of regularization term into positive-
definite matrix. The residual error term ̂te estimated in
algorithm 1 cannot be regularized directly because it may not
be positive-definite, and in this case the regularization
actually increases the mismatch as discussed in [19]. In this
section, we introduce two methods to guarantee that the
penalty term to be positive, and the results comparison and
discussion will be given in the next section.

Let Ê
j

te be the jth frontal slice of ̂te. To guarantee that the
penalty term is positive, we consider the penalty term in the

form

⎜ ⎟⎛
⎝

⎞
⎠∑=

=

w w wP E E( ) ˆ ˆ , (12)s
T

j

n
j j

1

te te

Tte

where nte is number of test trials available for adaptation and
w is a spatial filter. The penalty term in (12) may fail to
penalize appropriate elements of W in certain cases, as
pointed out in [33, 34]. To solve this problem, we propose a
novel operator *. Let ∈ ×E n nc c be an arbitrary error term
with eigen-composition

= =( )E U d U i ndiag , 1 ,..., . (13)i
T

c

Then, we have

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
∑= ⋮ ⋮
=

 E d

u u u

u u u

*( )

...

...

...

, (14)
i

n

i

i i in

i in in
1

1
2

1

1
2

c c

c c

where uij is the element of the ith column and jth row of U.
Detailed discussion of operation * and its relationship with
the ‘flipping’ method in [19] can be found in appendix C. The
penalty term based on (14) is

∑=
=

 ( )w w wP E( ) * ˆ . (15)f
T

j

n
j

1

te

te

With the regularization terms, the regularized objective
functions based on CSP become

μ
=

+ +
+

+

+ −( )
w

w w

w w w
J

R

R R P
( )

( )
, (16)

T

T
( )

( )

( ) ( )

μ
=

+ +
−

−

+ −( )
w

w w

w w w
J

R

R R P
( )

( )
, (17)

T

T
( )

( )

( ) ( )

where μ ∈ [0, 1] is the tuning parameter. By maximizing (16)
and (17), spatial filters that respectively maximize the power
of class (+) and (−) can be obtained [35].

Note that while +R( ) and −R( ) are computed using training
data only, wP ( ) is calculated based on a batch of unlabelled
test data as presented in algorithm 1 and (12)–(14). Therefore,
(16) and (17) are applied to update the spatial filters and it can
be considered as adaptation. By penalizing wP ( ) in the
objective function, the residual part  can be minimized in the
updated CSP space. Subsequently, the updated model fits the
new data better, and the performance of feature extraction can
be improved.

3. Experimental set-up and data description

3.1. Experimental set-up

EEGs from 27 channels were obtained using Nuamps EEG
acquisition hardware with monopolar Ag/AgCl electrodes
channels. The scalp map of the 27 channels being used is
illustrated in figure 1. The sampling rate was 250 Hz with a
resolution of 22 bits for the voltage range of ±130 mV. A
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bandpass filter of 0.05–40 Hz was set in the acquisition
hardware.

In the experiment, the training and test sessions were
recorded on different days with the identical experimental set-
ups for each subject. The training and test sessions contained
2–3 runs. Each run lasted for approximately 16 min, and
comprised 40 trials of motor imagery and 40 trials of idle
state. The length of each trial was 12 s, including 2 s of pre-
paratory segment, 4 s of visual cue, and 6 s of resting, which
is illustrated in figure 2. During the EEG recording process,
the subjects were asked to avoid physical movement, mini-
mize eye blinking, and perform kinaesthetic motor imagery of
the chosen hand. Given that the subjects were very likely to
engage in different mental activities during the idle state on
different days, they were instructed to do mental counting to
make the idle class EEG signal more consistent, since mental
counting is a better defined paradigm than relaxing. More-
over, as a kind of mental work, it could also be more effective
in contrasting motor imagery tasks [36].

3.2. Data processing and feature extraction

Since filter bank CSP (FBCSP) [37, 38] is one of the most
successful feature extraction methods for motor imagery EEG
classification, we implement the proposed adaptation method
based on FBCSP. First, we train FBCSP and the naive
Bayesian Parzen window (NBPW) classifier with the training
data as in [37, 38]. Then, data from the test session is divided

equally into two batches, and, as described in section 2.2, ̂te

is estimated based on the first batch of the test data and the
projection matrix Wa is obtained by using different penali-
zation terms as in section 2.2.2. Note that during the adap-
tation procedure the true labels of the test data are not
available. This adaptation procedure is only applied to the
bands selected in FBCSP for the sake of efficiency. Finally,
the updated projection matrices were applied to the training
data and the classifier was retrained by the updated training
features. Test data from the second batch is classified by the
updated model. The aforementioned processing procedures
are illustrated in figure 3. For convenience of presentation, we
refer the batch of test data used to estimate the error term as
the adaptation batch and the rest of test data as the evaluation
batch.

To compare the proposed method with other regulariza-
tion based methods and adaptation methods, we implement
Tikhonov (Tik) regularized CSP, spatially regularized (SP)
CSP [35], unsupervised data space adaptation (DSA) [25],
CSP with naive regularization (nv CSP), and stationary CSP
(sCSP) [19]. For Tik and SP, we use cross-validation (CV)
results of the training set to select the best regularization term,
as in [35]. In DSA [25], the space adaptation matrix is cal-
culated using the test data from the adaptation batch:

= −
W R R W¯ ¯ , (18)DSA te

1
2

tr

1
2

tr

where R̄tr and R̄te are average covariance matrices of training
set and adaptation batch, respectively. In nvCSP, R̄te is used
as the regularization term, as shown below

=w w wP R( ) ¯ . (19)T
te

Note that for nvCSP we use the ratio between the number of
the training trials and test trials to determine the regularization

Figure 1. Scalp map of the 27 channels.

Figure 2. Time segmentation of one trial.

Figure 3. Flowchart of the EEG processing procedure consisting
three stages: training stage, adaptation stage and evaluation stage. In
the training stage, the training data are used to train FBCSP and
NBPW classifier. In the adaptation stage, training model is applied to
adaptation batch to obtain the pseudo label ŷ , and ̂ is estimated for
the spectral bands selected in FBCSP. With the training data and ̂ ,
the adapted feature extraction model is obtained by regularized CSP
(R-CSP), and subsequently, the training features as well as the
NBPW classifier are updated. In the evaluation stage, the adapted
feature extraction model and NBPW classifier are applied to the
evaluation batch.
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coefficient, i.e., μ = n

n
te

tr
, where ntr denotes the number of

training trials. For a better comparison, sCSP is implemented
in an adaptive manner using data from adaptation batch

∑= − ( )w w wP R R( ) ¯ , (20)T

j

j
te tr

where  denotes the ‘flipping’ operator introduced in [19].
Moreover, to validate the necessity of algorithm 1, we use te

in (6) as the regularization term, by substituting Ej
te into (12)

and (15) for Ê
j

te.
Since sCSP and the proposed method are used for

adaptation, the CV based training set cannot be used to select
μ. Thus, we choose to cross-validate the classification per-
formance in a leave-one-subject-out manner. In particular, μ
is pre-set as μ ∈ [0.1, 0.2 ,..., 1], and for a current subject the
value of μ is chosen as the one with the best average per-
formance for the rest of the subjects. All methods are
implemented with FBCSP in the same way, i.e., they are all
applied to the bands selected by FBCSP.

4. Experimental results

4.1. Analysis of residual error

In this section, we investigate the residual error  to validate
the proposed method in measuring the mismatch between the
feature extraction model and data.

In particular, we perform the correlation test between
|| ||tr te and the classification accuracy. 5 × 5 CV accuracies
are used for training data and session-to-session transfer test
classification accuracies are used for test data. Figure 4

illustrates the correlation between the classification accuracy
based on FBCSP and average || ||tr te of trials from the
training/test set. Pearsonʼs correlation coefficient rc equals
−0.60 for the training data with p-value as 0.01. Therefore,
we can see that the accuracy for the training data significantly
correlates to || || in a negative way. The p-value for the test
data is not significant (0.19) but the correlation is also
negative −0.34.

For further analysis, we conduct a correlation analysis
between || ||te and the differences between the CV accuracy
of test data and the session-to-session transfer test classifica-
tion accuracy, as illustrated by figure 5. Because the CV
accuracy of the test data can be deemed as the upper bound of
the test classification accuracies, such differences can reflect
the accuracy ‘drop’ caused by the session-to-session transfer.
Pearsonʼs correlation coefficient rc equals −0.46 with p-value
0.07. As shown in figure 5, there is a trend that with higher
|| ||te the accuracy drop could be larger. The session-to-ses-
sion transfer test classification accuracy is subject to several
factors including the data quality of both training set and test
set, and the mismatch caused by the nonstationarity. It is
possible that the mismatch measurements for test data are
better in illustrating the performance drop caused by the
cross-session nonstationarity ( = − = −r r0.46 V. S. 0.34c c ).
Given the analysis based on figures 4 and 5, || ||te can reflect
the performance of the computational model generally.

In addition, the change of ̂te with respect to the iteration
number is also investigated because there is an iteration
procedure in algorithm 1. Figure 6 shows an example of the
change in || ˆ ||te during the process of iteration, where the four
frequency bands are selected by mutual information for this
subject. As shown in figure 6, the change in || ˆ ||te is very
small after two iterations, and this trend exists for every
subject. Thus, it is reasonable to run the iterations twice, and

Figure 4. Relation between the residual error and classification
accuracy. Each circle or triangle marks one subject. The x-axis
represents the classification accuracy and the y-axis represents || ||tr

or || ||te . For both training data and test data, || ||tr and || ||te

correlate to the classification accuracy in a negative way. Pearsonʼs
correlation test shows a significant correlation for training data with
coefficient r equalling −0.60 and p-value equalling 0.01. Two
regression lines are almost parallel, which indicates that the
correlations are similar between the training data and the test data.

Figure 5. Correlation analysis between || ||te and the difference
between the CV accuracy and the BL accuracy of test data. Pearsonʼs
correlation coefficient rc equals −0.46 with p-value as 0.07. There is
a trend that with higher || ||te the accuracy drop could be higher, and
it is possible that the mismatch measurements for test data is better in
describing the performance drop caused by the cross-session
nonstationarity.
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this setting is applied to all subjects to obtain the classification
results in the following section.

4.2. Classification results

In this section, we present the classification results using the
proposed tensor decomposition adaptation (TDA) method.
Table 1 summarizes the performance of methods mentioned
in section 3.2 compared with FBCSP without any adaptation
or regularization as the baseline (BL). Note that all classifi-
cation accuracies are based on the evaluation batch. We use
the subscript s or f to indicate that (12) or (14) is used to
transform E into a positive definite matrix, and Ete indicates
that the direct differences between test data and model in (6)
are used. Generally, all adaptation methods improve the
performance of FBCSP while spatial-smoothing methods
(‘Tikhonov’ and ‘SP’) fail to increase accuracies. Paired t-test
results show that only TDAs and TDAf outperform the
baseline in a significant way, and TDAs achieves the highest
accuracy of 74.41%, which indicates the effectiveness of the
proposed methods. However, for subjects 2, 11, and 15, there
is insignificant or no improvement. Since the BL accuracies
for these three subjects are relatively lower, it is possible that
these subjects fail to yield discriminative data, or, in other
words, they can be regarded as BCI illiterate subjects [39].
Being an adaptation method, the proposed method works
under the assumption that the test data itself is discriminative
with possibly limited effects on illiterate subjects. Regarding
the differences between TDAs and TDAf, one reason for the

better results of TDAs could be that E Eˆ ˆj j
te te

T

is simpler so it is

closer to the original error while operation  E*( ) causes more
changes to the error and becomes less accurate. Moreover, the
iteration in algorithm 1 actually decreases  || ˆ ˆ || Fte te

2 , equal-

ling ∑ E Etr ( ˆ ˆ )j
n j j

te te

T
te (appendix B), which could also be a

reason that E Eˆ ˆj j
te te

T

in (12) matches TDA better.

The changes in the feature distribution between sessions
are shown in figure 7. In particular, in each subfigure of
figure 7, the distributions of the two-dimensional (2D) fea-
tures in different sessions are plotted and the corresponding
frequency bands are listed. The terms ‘a-batch’ and ‘e-batch’
are used to represent the adaption batch and the evaluation
batch, respectively. Those features are the most discriminative
pairs selected by mutual information in the FBCSP procedure.
We can see that without adaptation, the feature distributions
shift greatly. It is clearly shown that such a shift has been
reduced significantly by TDA, and, subsequently, the feature
distributions become more consistent across sessions. More
importantly, we find that the variances of the feature dis-
tributions are also reduced by TDA, which means that the
proposed method can also reduce the within-session
nonstationarity.

The class-wise feature distribution is shown in figure 8 to
compare the separations of features from different classes
with and without adaptation. The nonlinear classification
boundary in NBPW classifier is presented by the contrast of
different color patterns. By comparing the top and bottom
rows in figure 8, we note that the separability of the test
features is improved by the proposed method for subject 5.
For this subject, there is a larger overlap of the features of two
classes in the case without adaptation compared to that with
adaptation. For subjects 1 and 3, it can be seen that more
features lie on the correct side of the classifier under the
proposed method, although the improvements in the feature
separability are less significant. Therefore, for some subjects
(e.g., subjects 1 and 3), the reduced shifts in the average
distance between training and test features contribute to the
improvements of the proposed method. For some other sub-
jects (e.g., subject 5), the proposed method is able to adapt the
feature extraction model toward increasing the feature
separability, which is a more meaningful adaptive behaviour.

Figures 9(a) and (b) show the change of || ||tr te with
different values of tuning parameter μ. The x-axis represents
the value of μ and the y-axis || ||tr te . Note that in this analysis
|| ||tr te is calculated by substituting the projection matrix after
adaptation into (6) or (7). Therefore, when μ = 0, || ||tr te

equals to that in (6) or (7), accordingly. The BL values are
given by dotted/dashed lines. For the two sets of test data,
|| ||te decreases first and then increases. The trends for TDAs

and TDAf are different, the reason for which could be that
after squaring the scale of the elements in the penalty terms
changes greatly. Figures 9(c) and (d) show the change of
accuracy with respect to μ. Comparing figures 9(a)–(d), we
see that in general the lower the value of || ||te , the higher the
accuracy. Since  reflects the mismatch between model and
data, when a high weight is given to the penalty term, we
sacrifice the fitness of that model for training data. The value
of μ actually controls the balance between test data and
training data. As shown in figures 9(a) and (b), μ = 0.1 for
TDAf and μ = 0.8 for TDAs can be deemed as ‘equilibrium’

points, where the decrease of te is significant while tr is not
increased greatly. This is the reason why these two parameters
yield the best accuracy improvements in figures 9(c) and (d).
Figures 9(e) and (f) show classification improvements with

Figure 6. The change in || ˆ ||te with respect to the iteration number
kin algorithm 1 of the best four frequency bands of subject 1. As
shown in this figure, the change in || ˆ ||te becomes very small after
two iterations. Thus, for the efficiency of computation, it is
reasonable to run the iterations twice.
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decrease in || ||te . In both cases, we find that improvements
increase with decrease in || ||te , which is not significant in the
Pearsonʼs correlation test though. As we have discussed
earlier, since the improvements are subject to both || ||tr and
|| ||te , it is reasonable that such unilateral correlations are not
significant.

4.3. Discussion

4.3.1. Data-model mismatch estimates. As described in
section 2, the role of the regularization term of TDA can be
viewed as minimizing the regression error of the model. A
natural idea is to use the residual parts of the training data to
regularize the model to improve model generalization.
However, from the experimental study, it is found that the
classification performance of such an implementation is not
significantly higher than that of FBCSP without any
regularization. The reason is that, since the average
covariance matrices are obtained from training data, the
residual parts are trivial, as shown in figure 4. Therefore, it is
more effective to utilize the residual error from the test data to
adapt the model. By improving the model from the
perspective of fitness, the classification performance can be
enhanced simultaneously. Regarding the necessity of the
tensor formulation and the iteration, we have performed the
adaptation using te in (6) and there is no significant

improvement, which validates our consideration that
penalizing te could not be effective since Λ dte, in (6) may
not be discriminative.

4.3.2. Relationship between the mismatch and classification
accuracy. Given the analysis based on figures 4 and 5 and
the classification results, the mismatch estimates have
possible different implications for different classification
results. For the session-to-session results, the mismatch
estimates are better in illustrating the performance drop
instead of just the classification accuracies. Thus, for subjects
with higher CV accuracies as well as relatively larger
mismatch, reducing || ||te yields better improvements. In
contrast, for subjects with much lower CV/BL accuracies, the
improvements brought by the proposed method may not be
significant. Being an adaptation method based on reducing the
mismatch, the proposed method is more effective when there
is a performance drop caused by the cross-session
nonstationarity but has limited effects for those illiterate
subjects who cannot generate discriminative signals.

4.3.3. Computational complexity. For most of the
regularization based methods, the most time-consuming part
is related to finding the optimization parameters using CL.
However, since the proposed method is designed for
adaptation, such CL based on training set is meaningless.

Table 1. Session-to-session transfer classification results on the evaluation batch(%).

Subject BL SP Tik nvCSP DSA sCSP P E( )s te P E( )f te TDAs TDAf

1 67.50 68.75 68.75 61.25 73.50 67.50 66.25 75.00 71.25 76.25
2 58.75 55.00 47.50 68.75 60.00 53.75 56.25 56.25 56.25 56.25
3 50.63 50.63 59.49 70.89 67.09 60.76 63.29 60.76 70.89 70.89
4 71.25 71.25 71.25 61.25 83.75 86.25 78.75 77.50 80.00 87.50
5 75.00 77.50 80.00 60.00 72.50 77.50 82.50 78.75 82.50 78.75
6 82.50 82.50 82.50 77.50 81.25 82.50 81.25 81.25 81.25 82.50
7 80.00 80.00 73.75 51.25 56.25 68.75 73.75 76.25 82.50 75.00
8 93.33 93.33 93.33 95.00 93.33 95.00 96.67 95.00 96.67 95.00
9 78.75 78.75 83.75 72.50 83.75 85.00 78.75 78.75 81.25 82.50
10 65.00 63.29 65.00 51.25 62.03 58.23 63.29 61.25 73.75 63.75
11 50.00 51.25 52.50 51.25 53.75 50.00 50.00 45.00 50.00 51.25
12 78.75 77.50 78.75 77.50 77.50 76.25 80.00 81.25 85.00 80.00
13 53.95 51.25 51.25 51.25 71.25 70.00 68.75 63.75 62.50 65.00
14 71.25 71.25 71.25 80.00 80.00 76.25 73.75 76.25 75.00 72.50
15 57.50 60.00 66.25 52.50 58.75 63.75 60.00 61.25 60.00 60.00
16 73.75 75.00 75.00 76.25 81.25 77.50 77.50 80.00 77.50 76.25

Mean 69.24 69.20 69.63 66.15 72.73 71.81 71.92 71.77 74.14 73.34
p-value — >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 0.0023 0.029

All classification accuracies are based on the evaluation batch. FBCSP without any adaptation
or regularization is used as the baseline (BL). Tikhonov (Tik) regularized CSP, spatially (SP)
regularized CSP, data space adaptation (DSA), naive regularization using average covariance
of the test set (nvCSP), and stationary CSP (sCSP) are introduced in section 3.2. P E( )s te and
P E( )f te indicate that Ete in (6) is used and transformed into a positive definite matrix by (12)

and (14), respectively. Similarly, TDAs and TDAf indicate the proposed method with (12) and
(14), respectively. The significant t-test results with p-value less than 0.05 are highlighted
in bold.
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Therefore, we adopt leave-one-out to choose different
regularization terms μ. Moreover, our analysis on the
relationship between || ||tr te and accuracy improvements in
figure 9 also provides insights into the selection of μ by
balancing || ||te and || ||tr . For the number of iterations in
estimating te in algorithm 1, we show that only after 2
iterations, the change of || ||te becomes quite small. In
addition, more iteration steps could be redundant, because we
want to maintain the discriminative property of Λd. Therefore,
we choose the number of iterations as 2, which satisfies the
requirements and also reduces the computation burden. Based
on the above discussion, for these two parameters there exist
feasible values based on which general improvements can be
achieved, although tuning the parameters for each individual
subject may yield better results for certain subjects.

Moreover, we would like to address the effectiveness of
the proposed method as it can be combined with FBCSP
easily with low computational complexity and achieve
performance improvements. For example, with four fre-
quency bands selected for a subject in FBCSP, it takes
0.0574 s for Matlab with an off-the-shelf CPU to obtain the
mismatch estimates for one trial. The rest time between trials
is around 5 s and usually much longer between runs. Thus,
such computational complexity is acceptable for the proposed
method to be implemented online, which will be further
validated through online experiment in our future work.

As described before, there exist other works to tackle the
nonstationarity problem by utilizing data from other subjects
[17, 18]. However, based on FBCSP, usually different
frequency bands are selected for different bands, which
makes such multi-subject strategies difficult to implement
with FBCSP. Moreover, a generic framework is proposed in
[34], in which CSP and its regularization methods are unified
based on divergence. The divergence-based regularization
objective function needs to be solved by a geodesic searching
approach or a deflation method. Considering the computa-
tional burden combination with FBCSP, it is reasonable to
focus on the adaptive or regularization objective function that
could be solved by eigen-decomposition in one step. For a
similar reason, the signals after projection are assumed to
have diagonal covariance matrices in (3) as in CSP. Given the
neuroscience findings about source connectivities, a possible
extension of the proposed method could be measuring the
data-model mismatch for the computational model based on
convolutive sources [40].

5. Conclusion

For practical BCI systems, a computational model obtained
from the training/calibration session is required to be applied

Figure 7. (a)–(c) Feature distributions of the training session and two test batches without any adaptation, where ‘a-batch’ and ‘e-batch’ are
used to represent the adaption batch and the evaluation batch. (d)–(f) Corresponding feature distributions using TDA. The distances between
training features and test features are smaller by using TDA.
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to test sessions conducted on different days, while data
variation between sessions often leads to the inaccuracy of
the computational model. Despite the effort made on adap-
tive BCI, the quantification of mismatch between data and
model needs to be investigated. In this work, we present a
systematic attempt to quantify the mismatch between model
and data, and use the mismatch metric to guide the model
adaptation.

To capture the multidimensional structure of EEG, we
adopt a tensor model to formulate the mapping between the
variances of the source signals and covariance matrices of
scalp EEG signals. The residual error of this model proves to
be an effective quantification of the mismatch between
model and data. Different from the conventional regression
models, the mismatch metric needs to be relevant to the
discrimination function. However, in adaptation, true class
labels of test data are not available in this discriminative
estimation of the mismatch metric. To solve this problem,
the estimation is accomplished by a semi-supervised learn-
ing approach. Then, the feature extraction model can be
updated accordingly toward reducing the data-model
mismatch.

We implement the proposed adaptation method com-
bined with FBCSP, which improves the session-to-session

transfer classification accuracy significantly as confirmed by
the statistical test. Moreover, our correlation analysis also
validates the effectiveness of the proposed metric as a quan-
tification of mismatch between model and data.

Appendix A. Notations and basic definitions

Definition 1. Tensor: a tensor, also known as a Nth-order
tensor, a multidimensional array, a N-way or a N-mode, is an
element of the tensor product of N vector spaces, which is a
higher-order generalization of a vector (first-order tensor) and
a matrix (second-order tensor), denoted as ∈ × × × I I I... N1 2 ,
where N is the order of . An element of  is denoted by
ai i i, , ..., N1 2 , ⩽ ⩽i I1 n, =n N1, ..., .

Definition 2. Tensor Slice: a tensor slice is a 2D section
(fragment) of a tensor, obtained by fixing all indices except
for two indices.

Definition 3. Unfolding: the n-mode unfolding of tensor
∈ × × × I I I... N1 2 is denoted by A n( ). More specifically, a

tensor element i i i( , , ..., )N1 2 maps onto a matrix element

Figure 8. Visualization of the feature separation from the evaluation batch. The nonlinear classification boundary in NBPW classifier is
presented by the contrast of different color patterns. (a)–(c) Feature distributions of e-batch without any adaptation. (d)–(f) Corresponding
feature distributions using TDA. By employing TDA, more features fall in the corresponding side of the boundary.
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Figure 9. (a), (b) Change of || || with respect to μ. The x-axis represents the value of μ, and the y-axis represents || ||tr te averaged across
subjects. || ||tr te based on FBCSP without any adaptation are denoted with dotted-dashed lines. (c), (d) Change of accuracy with respect to μ.
The x-axis represents the value of μ, and the y-axis represents accuracy averaged across subjects. (e), (f): Change of accuracy with respect to
change of || ||. The x-axis represents the decrease of || ||, and the y-axis represents change of accuracy. Each triangle marks one subject.
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i j( , )n , where
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Definition 4. n-mode product: the n-mode product of a tensor
∈ × × × I I I... N1 2 and a matrix ∈ ×U J In n, denoted by

× U,n is a tensor in  × × × × × × ×− +I I I J I I... ...n n n N1 2 1 1 given by

∑

×

=
=

− +
( )U

a u, . (A.2)

n i i i j i i

i

I

i i i j i

, , ..., , , , ...,

1

, , ..., ,

n n n N

n

n

N n n

1 2 1 1

1 2

Remark 2. Given a tensor ∈ × × × I I I... N1 2 , and two matrices,
∈ ×F J In n and ∈ ×G J Im m, one has

× × = × × = × ×  F G G F F G( ) ( )n m m n n m .

Definition 5. Khatri–Rao product: for two matrices
= ∈ ×A a a a[ , , ..., ]J

J J
1 2

A and =B b b b[ , , ..., ]J1 2

∈ ×J JB with the same number of columns J, their Khatri–Rao
product, denoted as ⊙, performs the following operation:

⎡⎣ ⎤⎦ ⊙ = ∈ ×( ) ( )vec vecA B b a b a, ..., . (A.3)T
J J

T J J J
1 1

A B

Remark 3. Given a tensor ∈ × × × I I I... N1 2 and a sequence of
matrices ∈ ×U n I Jn n, =n N1, 2, ..., , their multiplication

× × × U U U... N
N

1
1

2
2 satisfies

⎡⎣ ⎤⎦
× × ×

= ⊙ ⊙− + −

 U U U

U A U U U U U

...

... ... . (A.4)

N
N

n
n

N N n n

1
1

2
2

( )
1 1 1 1

Appendix B. Derivation of the update equations

Let = J || ||E F
2 and E(3) be the mode-3 unfolding of  . Then,

(4) becomes

Λ= − ⊙E R V V( ) . (B.1)d
T

(3) (3)

substituting (B.1) into JE, we have

⎡⎣
⎤⎦
Λ

Λ Λ

= − ⊙

+ ⊙ ⊙

J R R R V V

V V V V

tr 2 ( )

( ) ( ) (B.2)

E
T

d
T

d
T

d
T

(3) (3) (3)

differentiating (B.2) with respective to Λd
T, we obtain

⎡⎣

⎤⎦
⎡⎣

⎤⎦
⎡⎣ ⎤⎦

δ δΛ

δΛ Λ

Λ δΛ

δΛ

Λ δΛ

Λ δΛ

= − ⊙

+ ⊙ ⊙

+ ⊙ ⊙

= − ⊙

+ ⊙ ⊙

= ⊙ − ⊙( )

J R V V

V V V V

V V V V

R V V

V V V V

V V R V V

tr 2 ( )

( ) ( )

( ) ( )

tr 2 ( )

2 ( ) ( )

tr 2 ( ) ( ) . (B.3)

E d
T

d
T

d
T

d
T

d
T

d
T

d
T

d
T

d
T

d
T

(3)

(3)

(3)

By setting δ =J 0E , we obtain

Λ = ⊙{ }R V V( ) (B.4)d
T

(3)
†

which is equivalent to (9) in algorithm 1. Similarly, by sub-
stituting the mode-2 unfolding of  into JE, we can obtain the
update equation for V, i.e., (8) in algorithm 1.

Appendix C. Comparison of different ‘Flipping’
methods

As pointed out in [33, 34], the ‘flipping’ method fails to
capture relevant nonstationarity in certain cases, which is
illustrated by the following example:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Σ

Σ

Σ

=

=

=

+

+

+

¯ 0.9 0.15
0.15 0.1

,

0.9 0.05
0.05 0.1

,

0.9 0.25
0.25 0.1

. (C.1)

( )

( ,1)

( ,2)

Suppose that Σ +¯( ) is the average covariance matrix of class +,
and Σ +( , 1) and Σ +( , 2) are covariance matrices of two trials. To
extract the nonstationrity between trials, the penalty matrix in
sCSP with ‘flipping’ is

⎡
⎣⎢

⎤
⎦⎥∑Δ Σ Σ= − =

=

+ + ( )¯ 0.1 0
0 0.1

. (C.2)
i

k1

2
1

2
( , ) ( )

Thus, the nonstationarity of the off-diagonal elements cannot
be penalized. To further investigate this problem, we consider
a general case where Δ Σ Σ= − ¯ and Δ ∈ ×M M . Assume
that the eigen-decomposition of Δ is

Δ = UDU , (C.3)T

where = u uU [ ,..., ]M1 are the eigenvectors and
= =( )D d i Mdiag , 1, 2 ...,i , is the diagonal matrix con-

taining corresponding eigvenvalues.
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Then, the penalty term before ‘flipping’ is

⎛
⎝
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∑
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=

=
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w w w u u w

w u u w

d

d

d u u w w , (C.4)
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ip iq ip iq
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1 1 1

where uip or uip is the pth or the qth element in ui. The penalty
term after ‘flipping’ is

∑ ∑∑Δ =
= = =

w w d u u w w( ) . (C.5)T

i

M

i

p

M

q

M

ip iq p q

1 1 1

The reason why the ‘flipping’ method fails to penalize rele-
vant nonstatioary elements is that by only taking absolute
value of eigenvalue di some coefficients u uip iq would cancel
each other. In the example in (C.1), assume that

Δ Σ Σ= −+ +¯1 ( ,1) with Δ = U D U
T1 1 1 1 , where

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

= − −
−

= −

U

D

0.707 0.707
0.707 0.707

0.1 0
0 0.1

.

1

1

Then, we have

Δ = − + +

+ − +

 ( )
( )

w w w w w w

w w w w

( ) 0.1 0.5 0.1 0.5

0.1 0.5 0.1 0.5 , (C.6)

T
1
2

1 2 2
2

1
2

1 2 2
2

where the coefficient of w w1 2 is 0 after taking absolute value
of eigenvalues. To avoid this, u uip iq should be set to be
positive if it is not, as below

∑ ∑∑Δ

Δ
Δ
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⩾
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= = =





w w

w w

w w

d u u w w*( )
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T
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which is equivalent to (14).
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