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While earlier Brain-Computer Interface (BCI) studies have mostly focused on modulating

specific brain regions or signals, new developments in pattern classification of brain

states are enabling real-time decoding and modulation of an entire functional network.

The present study proposes a new method for real-time pattern classification and

neurofeedback of brain states from electroencephalographic (EEG) signals. It involves

the creation of a fused classification model based on the method of Common Spatial

Patterns (CSPs) from data of several healthy individuals. The subject-independent model

is then used to classify EEG data in real-time and provide feedback to new individuals. In

a series of offline experiments involving training and testing of the classifier with individual

data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved,

demonstrating that the classification system at hand can reliably decode two types of

imagery used in our experiments, i.e., happy emotional imagery and motor imagery.

In a subsequent experiment it is shown that the classifier can be used to provide

neurofeedback to new subjects, and that these subjects learn to “match” their brain

pattern to that of the fused classification model in a few days of neurofeedback training.

This finding can have important implications for future studies on neurofeedback and its

clinical applications on neuropsychiatric disorders.

Keywords: neurofeedback, BCI, subject-independent classification, emotion imagery, common spatial patterns

Introduction

A variety of studies using Brain-Computer Interfaces (BCI) and neurofeedback have demonstrated
that individuals can be trained to gain control of different brain signals. Researchers have
anticipated that long-term BCI training may lead to neuroplastic changes, potentially opening
up new treatment approaches for certain psychiatric disorders, e.g., depressive disorders,
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schizophrenia, and attention deficit hyperactivity disorder (Strehl
et al., 2006; Choi et al., 2011; Linden et al., 2012; Ruiz et al.,
2013a,b; Young et al., 2014). Many of these studies are based on
the idea that patients can be trained to correct their abnormal
brain activation to produce healthy brain activation, aided by the
feedback of their own brain activity.

While earlier BCI studies have mostly focused on modulating
specific brain regions or signals, new developments in pattern
classification of brain states are enabling real-time decoding and
modulation of an entire functional network (Cox and Savoy,
2003; Peltier et al., 2009; Hollmann et al., 2011; Laconte, 2011;
Sitaram et al., 2011; Rana et al., 2013; Sato et al., 2013; Niazi
et al., 2014; Ruiz et al., 2014b). However, a major methodological
concern arises from these approaches: the prior studies have
focused on building pattern classifiers to decode subject-specific
brain patterns, and it is not clear if a general approach could be
developed such that a classifier trained on brain signals from a
group of individuals could be used to distinguish between any
two given specified brain states. Progress in this type of classifier
using a fused model, created by combining data from several
subjects, hereafter called subject-independent pattern classifier, is
increasingly considered to be necessary. The goal is to decode,
in real-time, from an individual’s brain signals without having to
first train the pattern classifier on his subject-specific data (Rana
et al., 2013; Ruiz et al., 2014b). One potential application of such
a technique involves training neuropsychiatric patients to correct
and reverse their abnormal patterns of brain activity: instead
of providing feedback of their own brain activity (purportedly
abnormal due to the presence of an active neuropsychiatry
disorder), future neurofeedback experiments could reinforce
patients whenever they are able to emulate patterns of activity
similar to those of healthy brains. A system that is capable of
providing neurofeedback in this manner has to fulfill two basic
requirements: (1) The feature extraction method must consider
information from spatial, temporal and spectral domains to be
able to encapsulate the entire functional network. (2) The feature
extraction method has to be generalizable to multiple subjects in
order to be able to construct a fused classification model.

It is to be noted that there have been a few published
reports of subject-independent pattern classification, although
they have been limited to event related potentials and were not
demonstrated to be generalized to other brain states. A previous
attempt to create a subject-independent classificationmodel from
P300 event related potentials for a BCI spelling application was
reported in Lu et al. (2009). More recently, similar results were
reported by Jin et al. (2013) and Kindermans et al. (2014). The
above studies aimed to build a subject-wide model of ERP signals
to minimize calibration time for new users of the BCI speller
application. Although the results were promising, the reported
methods were limited to event related signals with very specific
spatial and temporal characteristics which might not be suitable
for a more general application of classifying between any two
arbitrary brain states.

Another study by Fazli et al. (2009) used Common Spatial
Patterns (CSP) to extract features from the EEG data of event-
related synchronization and desynchronization during motor
imagery. Multiple linear classifier were combined to form a

merged classifier that enabled classification on new data without
calibration.

These reports show that group-based, real-time classification
on signals with well-known characteristics is possible. However,
in a paradigm that reinforces brain-pattern matching by enabling
group-based neurofeedback of more general patterns of activity
in functional networks, the characteristics of the signal in terms of
spatial and spectral distribution are not always know in advance.
However, the fact that CSP is a data-dependent method makes
it an interesting candidate for such an approach (Krusienski
et al., 2012). CSP constructs spatial filters from the data that,
when projected, identify important parts of the data, i.e., regions
on the scalp that contain information for the discrimination of
two classes (see Koles et al., 1990; Koles, 1991; Müller-Gerking
et al., 1999; Ramoser et al., 2000; Blankertz et al., 2008). The
above-mentioned study by Fazli et al. shows that CSP can be
used in a group-based setting, however, the efficacy was only
shown in offline tests. An example for the use of the CSP method
in a single-trial BCI setting is given in Guger (Guger et al.,
2000). Here, motor imagery data is used to train subject-specific
classifiers based on CSP, and were also successfully tested in
real-time experiments.

Toward our long-term goal of developing a BCI for training
neuropsychiatric patients to produce brain-patterns similar
to those of healthy subjects as a treatment approach, two
intermediate steps have to be taken. The first step is designing and
building a technically reliable system that fulfills all the technical
requirements. Secondly, to iron-out all technical issues, we plan
to test the system at this stage only in a healthy participant
population. The current study is targeted to achieve the above
two aims, by demonstrating that a subject-independent Common
Spatial Pattern classifier can be used in a neurofeedback paradigm
for brain pattern matching.

As per our aims, the current study is divided into two
experimental stages (Figure 1). In the first set of experiments,
a subject-independent classifier was trained from EEG data
collected from a group of healthy individuals whowere instructed
to perform positive emotional imagery and motor imagery. The
motor imagery task was chosen as a contrasting brain state to the
positive emotional state in a two-class Support Vector Machine
(SVM) classifier. For training the two-class SVM classifier, EEG
features were obtained by spatially filtering the band-separated
EEG signals by the method of CSPs (Ang et al., 2012).The CSPs
of the trained classifier represented the healthy brain patterns
pertaining to the two states, i.e., positive emotion and motor
imagery.

Once the classifier was proven to be feasible for robust
classification of positive emotion and motor imagery in different
participants, a second stage experiment tested whether the
classifier could decode brain states and provide feedback in
real-time. Five new individuals participated in a neurofeedback
experiment, in which they were trained to replicate the
common brain states of the participants of the first experiment,
aided by the feedback provided by the subject-independent
classifier.

The result of this study shows that the classification of
these brain states can be performed in real-time and used as a
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FIGURE 1 | Flow diagram explaining the two experimental stages. The first stage is color-coded in green, the second stage is color-coded in blue. In the first

stage, data is collected offline from several subjects according to the offline recording paradigm. After analysis, this data yields individual classification results for all the

subjects. These results are obtained by the method shown in Figure 2. According to these results and further statistical tests the data of the most promising subjects

is selected. The data of the others is rejected. A fused classification model from all the data of these subjects is created and then used in the real-time system to

provide neurofeedback.

neurofeedback system, and demonstrates the technical feasibility
of the subject-independent pattern classification approach.

Materials and Methods

Real-time Pattern Classification
A real-time pattern classifier is constructed in two stages: An
offline stage in which the classifier is trained on previously
recorded data, and an online stage in which the trained classifier
is used to provide feedback to the participant in real-time. In
the offline stage, a classification model is trained by extracting
relevant features from the data. These features capture the most
discriminative characteristics of the different classes of data. In
the online part, the model is applied to new data in real-time. The
class-label that is predicted by the classifier at every time point is
converted to feedback by the neurofeedback system.

In our implementation, the classification system is built to
discriminate between two classes using trial-by-trial EEG data.
The approach is based on the Filter Bank Common Spatial
Patterns algorithm (Ang et al., 2008, 2012; Figure 2). In the first
step, a filter bank is created by repeatedly band-pass filtering the
raw EEG data using Chebyshev type 2 filters. In the next step, the
data in each frequency band is spatially filtered by the method
of CSP. This procedure yields features for each of the bands.
These features are finally evaluated by computing their mutual
information with the label of the data from each trial, i.e., the
class-label, and thus the most discriminative pairs of CSP and
frequency bands are selected. The selected features are then used
for the classification. A more detailed description of this method
is given in the following sections.

Feature Extraction
The algorithm of CSP can be understood as a method that creates
weight maps of the channels of the EEG signal. The weight maps
reflect the importance of the signal content of the channels for
separating the conditions encoded in the data (Blankertz et al.,
2008). The maps are essentially spatial filters that are projected
onto data. By projection of these filters, the data is transformed
to maximize the ratio of the variance of the EEG amplitudes
between the two conditions. Therefore, the variance of the filtered
signal can be used as a discriminative feature for a classification
task.

The approach is based on the simultaneous diagonalization
of two matrices as described in Fukunaga (1972). CSP has been
used for feature extraction in EEG data classification for the first
time in a study by Koles et al. (1990), and in several studies that
followed (e.g., Müller-Gerking et al., 1999; Ang et al., 2008, 2012).

The decomposition of one trial of EEG data can be
described as,

Z = PTE.

Where E represents a single trial of band-pass filtered EEG time
series. Z denotes the EEG time series E after spatial filtering by the
CSP projection matrix PT . This projection matrix is computed by
solving the Eigen-decomposition problem,

Sx = UψxU
T; x ∈

{

a, b
}

,

where Sx originates from transformations of the sample
covariance matrices of the trials of the two classes in the
EEG data. U is the matrix of eigenvectors of Sx and ψx are
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FIGURE 2 | The flow-chart shows how the consecutive steps of frequency filtering and spatial filtering of the training data and automatic feature

selection lead to the construction of a classification model that can be used for classifier testing with new data. The result of the classification is the

estimation of a class label for the testing data set.

the eigenvalues. The index x may be substituted by a and b,
representing the labels of the two classes. A brief explanation of
the transformations is given below; a formal description can be
found in Fukunaga (1972). Koles and Lazar (Koles et al., 1990)
describe the use of this approach in an experimental setting with
EEG data.

For obtaining Sx the sample covariance matrix of the data
of each condition is calculated, normalized with respect to its
trace and averaged over trials. These matrices are combined
to form a composite covariance matrix that is factored into
its eigenvectors. These eigenvectors are used to formulate a
whitening transformation that renders the composite covariance
matrix isotropic. The same transformation is applied to the
individual trial-averaged, normalized sample covariance matrices
of the EEG data of each class. It has been shown that after
this application the two transformed matrices share the same
eigenvectors, and the sum of their eigenvalues λ is 1 (Fukunaga,
1972).

Using the eigenvectors, the projection matrix can be
computed as,

P = UW

whereW denotes the aforementioned whitening matrix. The first
and lastm rows of the projection matrix P are used to decompose
the EEG into CSP.

After that the classification features F are extracted from the
decomposed EEG time series Z by computing and normalizing
its variances by the firstm and last m rows of Z,

F = log

(

var (Z)
∑2m

i= 1 var (Z)

)

.

Automatic Feature Selection Based on Mutual

Information
After the extraction step, a set of pattern features exists for each
band in the filter bank. The optimal subset of these features is
selected from the whole set of features by a mutual information-
based algorithm. Mutual information is an information theoretic
quantity that measures the mutual dependence of two random
variables (Cover and Thomas, 2006). In the training phase of
our classification system, the two random variables are: (1) the
variable that represents the extracted features, and (2) the variable
that represents the class for every trial, for the whole duration of
the EEG acquisition.

Mutual information can be formulated as:

I (F, ω) = H (ω)−H(ω|F)

where F denotes the set of features, and ω denotes the class labels
(Ang et al., 2012). H(ω) is the entropy defined as:

H (ω) = −62
ω= 1 p (ω) log2 p(ω).
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The conditional entropy is given by

H (ω|F) = −62
ω= 1 p (ω|F) log2 p(ω|F)

Bayes rule is used to compute the conditional probability of the
class given the features:

p (ω|F) =
p (F|ω) p (ω)

p (F)
.

After computing the mutual information for all the available
features and the class-labels of the corresponding data trials, they
are sorted by descending value of mutual information, and the k
best ones are selected.

Support Vector Machine
Classification is the task of estimating the class label of a given
data sample on the basis of a trained model. From the data
one or more characteristic features are extracted. The model for
classification is built by feeding a set of labeled training features
into the classifier.

A SVM is a type of classifier that maximizes the separation
between two classes of data by finding a hyperplane that
separates a high dimensional feature space into two subspaces
of distinct classes. The estimation of the class label is carried
out by computing the signum of the decision function yi that is
defined as,

yi = wTxi + b

The hyperplane is optimal if the objective function L is
minimized

L =
1

2
wTw+ C

∑N

i= 1
ξ i

under the constraint

yi ≥ 1−ξ i with ξ i ≥ 0

The N feature vectors xi are weighted by the vector w. Here, b
is a constant bias value. A margin of ξ around the hyperplane
is allowed to account for misclassification of each index i of
the feature vector if a dataset cannot be separated without
classification error. The slack variables ξ can be weighted by C.

The hyperplane is a linear decision boundary in a feature space
that optimally separates points of one class-label from the other.
It is defined by the closest feature vectors called support vectors,
from which the name of the classification system SVM is derived
(Schölkopf et al., 1999; Laconte et al., 2005). Once the hyperplane
is found, the unknown class-label of a new feature point can be
easily predicted based on its position with respect to the decision
boundary.

Experimental Setup and Data Flow
Our algorithm is implemented in theMatlab interpreter language
(Matlab Inc., Natick MA, US). It works on EEG signals in a trial-
by-trial manner, i.e., the data is recorded continuously and then

split into a number of trials (e.g., 64) of equal duration (e.g., 5 s)
for each condition.

The general setup of the hardware for conducting our
experiments can be seen in Figure 3. The data acquisition system
was connected to a computer for collecting data offline, storing it
and training the classification models. This setup was expanded
for the real-time experiments by adding another computer for
the presentation of stimuli and neurofeedback. Thereby, data
acquisition and processing and stimulus presentation could be
uncoupled.

In both, the offline and real-time setups, the BCI2000 software
was used to retrieve the data from the acquisition system and the
Fieldtrip Buffer was used to access the buffered signal in Matlab
(Schalk et al., 2004; Oostenveld et al., 2011).

The experiments for our study were conducted at the
Institute for Medical Psychology and Behavioral Neurobiology
at the University Clinic of Tübingen and the Escuela de
Medicina, Universidad Católica, Santiago de Chile as part of
a research collaboration between the two institutions. Two
comparable hardware and software setups were used for our
experiments depending on the institution where the experiments
were conducted. The EEG signals where recorded from 28
channels and the EOG was captured with four channels. In
both experimental series the signal was sampled at 500Hz. For
further information on the implementation of the classification
system and the experimental setup please see the Supplementary
Material, Section Methods.

Classification Parameters
For both, offline classification and real-time neurofeedback
sessions we used the same parameters of the classification
software. The filterbank ranged from 0 to 36Hz and consisted of
6 bandpass frequency filters, each one with a bandwidth of 6Hz.
We chose m = 2 as the number of spatial filters to use for the
CSP algorithm in accordance to prior studies with CSP (Müller-
Gerking et al., 1999; Ang et al., 2012). The number of features
to be extracted from the data was k = 4. We tested different
values for kwith our data, and the results showed that the average
classification accuracy over all subjects did not differ significantly,
but the standard deviation of the classification results was lowest
when k = 4.

Generation of Visual Feedback
Real-time feedback of the brain states was given by changing
the bars of a graphical thermometer (Figure 4B, second block)
in proportion to the output of the online SVM classifier. The
feedback was initialized with the baseline value, which was
represented by 10 blue bars that reached up to the dashed red line
in the middle of the thermometer. In each update interval one
bar was added to or removed from the thermometer, according
to the sign of the output of the SVM, i.e., the classification result.
The bars above the baseline value were colored in red. The letter
besides the thermometer indicated the type of imagery (positive
emotion or motor imagery).

Bias Correction of the SVM
Systemic changes, e.g., alignment of the EEG cap and slight
differences in recording impedance, as well as mood and
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FIGURE 3 | The general setup of hardware and software used for our experiments. The color-coding of the flow-chart indicates the experiment type.

Components shown in a green color were used in the offline setup. Blue marks components that have been used in the real-time setting. Components with both

colors were used in both experimental setups. All software components surrounded by a solid line were installed on the data processing computer, the ones

surrounded by a dashed line were run on the computer for stimulus presentation.

FIGURE 4 | Block design protocols for conducting offline classifier training and neurofeedback sessions. (A) Experimental cues, and their onsets and

durations during data acquisition for offline classification. (B) Experimental cues, and their onsets and durations for online classification and the visual feedback for the

neurofeedback training.

concentration level of the subject potentially introduce a bias of
the classifier toward one condition (Sitaram et al., 2011). We
corrected for this bias by first collecting EEG signals during a
baseline period when the participant was instructed to focus on a
fixation cross, and not move or perform any mental imagery. We
then subtracted the mean of the SVM values during the baseline
period from the SVM values in the real-time feedback.

Experimental Paradigm
The experiment was divided into two stages: In stage one, data
for training the classification model was recorded and later
used to test the classification system offline. In stage two, a

fused classification model was built from the data of stage one.
The model was used to provide neurofeedback to two new
healthy subjects. In the first stage, data from 27 healthy female
participants between the age of 18 and 29 (average age: 24.6) was
recorded. For the first 23 subjects, EEG data was recorded with
the BrainAmps system. The EEG data of the last four subjects was
recorded with the NuAmps system. Each subject was seated in a
comfortable chair in front of a screen for presentation of stimuli.

Ethics approval was given by the Medical Faculty of the
University of Tübingen and the Medicine Department of
Universidad Católica de Chile. Informed consent was obtained
from all subjects before the experiment.
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Offline Classifier Training
Each recording session used a block-design protocol (Figure 4A).
The core components of the experimental paradigm were two
types of imagery. In one condition cued by the letter “H,”
participants were asked to perform mental imagery of a happy
situation. In the other condition cued by the letter “M,” the task
was to perform motor imagery. One session comprised five runs
of 4min each. During these 4min, 4 different stimuli were shown
repeatedly for 5 s each. A pause of 2 s was introduced between
two stimuli. The order of the stimuli was deterministic. The first
stimulus was a previously selected image from the International
Affective Picture System (IAPS, Lang et al., 1997), the second one
was the letter “H” representing the word “Happy,” followed by
the letter “R” for “Rest,” and finally the letter “M” for “Motor.”
The letters were presented in a size that was easily readable
for the participants. They performed happy imagery during the
presentation of the letter “H,” counted backwards during the
letter “R,” and performed motor imagery during the letter “M.”
There were eight regulation trials for each condition per run,
totaling 80 regulation trials for one session.

Participants were instructed well in advance to identify several
emotional episodes from their personal lives, so that they could
use those episodes during happy imagery. Also, before the
experiment, participants were asked to identify one image from
the IAPS that best epitomized “happiness.” To remind and
strengthen their emotional recall strategies, the pre-selected IAPS
images were included in the block design preceding the happy
imagery block, as a reminder of the specific type of emotion
imagery to employ.

For the motor imagery block, subjects were instructed to
perform kinesthetic motor imagery of an action involving
opening and closing of both hands repeatedly (e.g., squeezing a
small ball). The hand movement was shown to the participant
prior to the experiment, and was practiced several times under
supervision from the researcher.

Online Classification and Neurofeedback
In the second stage of the experiment, a fused classification
model was built from the data of all the 16 subjects with a mean
classification accuracy of 75% or greater. During preprocessing,
the EEG data was normalized to a range between −1 and 1.
The 1.5% largest and the 1.5% smallest values in the EEG signal
were identified and considered as outliers and replaced by the
new maximum or minimum value of the normalized range, 1
or −1. Our signal showed that, on subject average, amplitude
values of about −100 and 100µV lay above the 1.5% percentile
and below the 98.5% percentile. The amplitudes of the EEG for
waking adults usually lie between 10 and 100µV (Niedermeyer
and Silva, 2005). The normalization was necessary to even out
absolute differences of the values in the data between subjects and
the two different acquisition systems.

The data from the 16 subjects was then concatenated and a
classificationmodel was created according to the aforementioned
methodology. The total number of trials used for creating the
model was 1280 (80 ∗ 16).

For the feedback training runs, we recruited five healthy
subjects who had not been part of the first set of experiments.

The new subjects were instructed to learn to control the feedback
signal (Instruction: “Make the feedback thermometermove up!”).
They were notified that the feedback signal comes from a
classifier that contains information from other subjects’ brain
states, and that the matching of their own brain activity/state
with the classifier information would allow them to control the
feedback signal. As the original subjects performed happy and
motor imagery, the new subjects were also instructed that it might
be easier to match the original brain states performing those
mental actions (cued by the letter H andM in the experimental
paradigm).

The real-time feedback paradigm consisted of the following
blocks (Figure 4B): In the very beginning of each session a “+”
sign was shown (fixation period). Subjects were instructed to
fixate on the plus sign, and to avoid moving or blinking. In
the first regulation block, the letter “H” for the happy imagery
was shown right next to the feedback thermometer. The second
regulation showed the letter “M,” indicating the motor imagery.
Between each of these blocks, the sign “−” was presented to
indicate a resting period. During this period, subjects were
allowed to blink, relax and get ready for the next task block.
After the first four out of the eight regulation blocks an additional
fixation period “+” was shown. Thus, the classification system
could readjust the bias of the SVM for the second half of the
run. Each of the blocks was presented for 20 s, except for the
resting periods which lasted 10 s. A whole real-time testing run
lasted 5min. The update interval for the feedback was 1 s. The
data that was used to classify and adjust the feedback accordingly
comprised the data of the last second. According to the sampling
frequency of 500Hz, 500 data points were used.

Data from the subjects was measured in three sessions
comprising four runs each. Therefore, the number of regulation
trials per session was 32 and the total number of regulation trials
was 96. The three sessions were conducted on three different days
across 2 weeks.

Results

Offline-classification Results
In order to analyze and assess the quality of the data of the 27
participants, we performed visual inspection of the EEG signals
in the Brainvision Analyzer software (Brain Products GmbH,
Gilching, Germany). EEG signals from all subjects were of good
quality, and hence no part of the data was rejected.

Figure 5A shows a bar graph of the classification accuracies
of all 27 participants in a 10 times 10-fold cross-validation test:
In this test the 80 raw EEG trials were randomly permuted for
each participant. In 10 repetitions, 90% of the trials were used for
feature extraction and classifier training, and the remaining 10%
were used for classifier testing. This procedure was repeated 10
times for the data of each participant. The trials were randomly
permuted to generate a new composition of the folds in each
repetition. The classification accuracies indicate the number of
times that the classifier predicted the label of the testing trials
correctly, averaged over all the permutations. The standard
deviation of the accuracy of the 10 repetitions of the cross-
validation was within the bounds shown by black lines above and
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FIGURE 5 | Results of the offline classification for all the subjects in a 10-times 10-fold cross-validation test and the 1001 repetitions of a

randomization test. (A) Mean classification accuracies in percent, i.e., the number of correctly estimated class labels in the test set. The mean level of 50% is

(Continued)
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FIGURE 5 | Continued

marked by a dashed gray line. The standard deviation of the 10 repetitions are shown with black indicators. The dotted gray line marks the 75% level. The blue

asterisks indicate the subjects that were chosen for the subject-independent classification model. (B) Sensitivity (light gray) and specificity (dark gray) of the classifier,

averaged over all permutations of the cross-validation test for the individual subjects. (C) Boxplots of the results of the randomization test. The boxes show the first

and the third quartile of the classification accuracies of the randomly labeled data. The short blue lines show the median. 99.9% of the data lie within the bounds

indicated by the whiskers. The blue markers report the results of the cross-validation with correctly labeled data. The dashed gray line marks the 50% mean accuracy

level and the dotted gray line the 75% mean accuracy level.

below each of the bars. The average classification accuracy for
all the cross-validation runs of all the participants was 75.30%.
For Subjects 11 and 22, the classification accuracy is below
chance, indicating that the classifier was not able to devise a
good model. Figure 5B shows sensitivity and specificity of the
classifier for the cross-validation test. To ascertain the statistical
significance of the results of the offline classification experiment,
a randomization test was carried out. In this test, for each
subject 1001 repetitions of the 10-times 10-fold classification
with our system were executed. The labels of the trials in the
data were randomly permuted in each repetition. The results
of this test showed that the individual classification accuracy of
these subjects with correctly labeled data lie outside of the 99.9%
percentile of the results of the randomization test (Figure 5C).

In order to assess the validity and robustness of the fused
model, another cross-validation analysis, with 20 folds repeated
10 times, was performed with the concatenated data from the 16
chosen subjects. The classification accuracy averaged over the 10
repetitions was 61.5% with a standard deviation close to zero.

Furthermore, a leave-one-subject-out-analysis has been
carried out with the data of the selected subjects. Sixteen models
have been trained on the data of 15 subjects and tested on the
data of the remaining one. The bar graph in Figure 6 shows
the classification accuracies of the analysis when the data was
tested on the subject indicated on the x-axis, i.e., the data of
this subject had no influence on the model. The classification
accuracy averaged over all the 16 tests was 66.2% with a standard
deviation of 13.2.

Figure 7A shows the CSP extracted from the fused model
used in the neurofeedback sessions. The left topographic plot
represents the pattern for the “happy” condition, and the right
one shows the pattern for the “motor” condition. The black
dots indicate EEG channels. These patterns show the channels
of the EEG that contain the most discriminating information
for the classification of the two brain states. The darker the gray
value is in the map, the more prominent is the ratio of variance
in the corresponding channel. Therefore, these patterns can be
interpreted as weight-maps indicating the contribution of the
individual channels toward classification. The left topographic
map shows greater involvement of the frontal cortex in the
“happy” as compared to the “motor” condition. The right plot,
on the other hand, indicates that the data from the channels over
the motor cortex were more important to classify this condition.
Figure 7B shows the most prominent CSP, i.e., the first and last
column of the inverse projection matrix P, averaged over all the
subjects with a classification accuracy of 75% or greater (n = 16).
To generate the plots, for each subject, the absolute values of the
CSPs of each cross-validation run were averaged. Then, the values

FIGURE 6 | Results of the leave-one-subject-out analysis. Sixteen

different models have been built training the classifier on the data of 15

subjects and testing the classifier on the data by the remaining subject,

indicated on the x axis. The classification accuracies are shown on the y axis.

of these composite individual CSPs were scaled to a range of 0–1
to ensure that the data of each subject contributes equally to the
final averaged plot.

The classifier selected bands two and three of the filter bank
for feature extraction, i.e., the band from 6 to 12Hz and from 12
to 18Hz.

Online-classification and Neurofeedback Results
The results of the real-time feedback sessions are presented in
Figure 8. The first healthy subject showed an increase of the
classification accuracy of 62.2% averaged over the four runs of
the first session on day 1 to 71.6% averaged over the four runs of
the session of the second day. One week later, in the third session,
the results were still stable with an average classification accuracy
of 72.0%. The second subject achieved an average classification
accuracy of 58.5% on the first day. On the second day the average
classification accuracy increased to 63.0% and on the third day to
68.0%. The third and fourth subjects started with a classification
accuracy close to chance. Their classification accuracies increased
to 61.9 and 57.41%, respectively, due to subsequent training. The
fifth subject was able to increase his/her average classification
accuracy from 61.8% on the first day to 70.2% after the final
training session.

The above values were computed by counting howmany labels
were estimated correctly by the classifier. As the feedback interval
was 1 s, there were 152 data samples in each run for which the
classifier estimated the class labels.
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FIGURE 7 | The most prominent Common Spatial Patterns (CSPs)

extracted from the classification model and from a combination of

subjects. Black dots mark EEG channels. The darker the gray value in the

plot is, the more prominent is the ratio of variance in the respective channels.

The topographic map on the left shows the pattern for the happy condition,

whereas the pattern of the motor condition is shown on the right. (A) The

CSPs extracted from the concatenated data of the 16 well-performing

subjects were used to create the classification model. (B) Individual CSPs

averaged over all the subjects with a mean classification accuracy of 75% or

more. Black dots mark EEG channels.

Sensitivity and specificity of the classifier are shown in the
Supplementary Figure 1.

For further investigation of potential learning effects, we
attempted to quantify the similarity of the CSP of all subjects
throughout the course of the neurofeedback training. The CSPs
for each run of each subject were extracted from the EEG
data recorded during the sessions. The two most prominent
CSP vectors were combined and their similarity with the CSPs
extracted from the fused classification model were computed.
The methods used for comparing the CSPs were: correlation
coefficient, mutual information and Euclidean distance. All three
methods produced similar results, and hence for conciseness we
will only present the results of the correlation method.

Figure 9 shows the dynamics of the two most prominent
CSP over the course of the experiment for the first subject. The
figure plots the similarity index against the number of runs. Two
topographical plots show the CSPs for data of runs with the
lowest and the highest similarity values.

Linear regression models between the similarity indices and
the classification accuracies were created for all subjects. Table 1
shows the r2-values of the regression, giving an estimate of
how well the similarity of the pattern predicts the classification
accuracy.

Discussion

The aim of the present study was to demonstrate a new
method for real-time subject-independent pattern classification
and neurofeedback of brain states from EEG signals and to assess
the feasibility of this approach as a precursor to its application in
a planned, future study on patients with difficulties achieving a
healthy affective state (e.g., depressive disorders).

The present implementation of the classification system is
based on the application of spatial filters on EEG data in different
frequency bands (Ang et al., 2008). Spatial filtering is achieved
by the method of CSP and the best features, i.e., the most
discriminative pairs of CSPs and frequency bands are selected
by a Mutual Information-based approach (Ang et al., 2012). The
procedure was applied and tested in an offline experiment with
27 healthy subjects and subsequently in a series of sessions with
five subjects who received real-time neurofeedback.

The result of the offline experiment with a mean classification
accuracy of 75.30% for the 27 subjects shows that the
classification system at hand can reliably decode the two types of
imagery, i.e., emotional imagery and motor imagery. The spatial
patterns yielded by the algorithm and averaged over subjects
indicate that the channels in the frontal regions are important for
discrimination of the happy imagery condition, whereas for the
motor imagery condition the channels above the central brain
areas are important. The findings for the motor condition are
in line with previous studies on classification of motor imagery
(Müller-Gerking et al., 1999). The importance of frontal regions
for the emotional imagery condition is concordant with the
extensive literature signaling the involvement of frontal areas in
emotion processing and regulation (Phan et al., 2002; Ochsner
et al., 2004; Kohn et al., 2014).

To choose the subjects to include in the fused classification
model incremental training and testing of the model with
different thresholds of the individual mean classification accuracy
(i.e., 60, 65, 75, 80, 90%) were carried out. In each iteration
subjects with an individual mean classification accuracy of
above the threshold value were in included. A threshold value
of 75% was the best choice for having enough number of
training samples for generalization, i.e., all trials from 16
subjects, while maintaining good data quality, which means
sufficient information in the data for reliable classification.
The classification results for these subjects with the correctly
labeled data lay outside of the 99.9% percentile of the
distribution of the classification test with randomly permuted
class labels, which shows that the classification results are very
significant and suited to be used for the second stage of the
experiment.

The CSP plot that was generated for Figure 7B shows
very similar patterns to the one that we extracted from
the subject-independent classification model (Figure 7A). In

addition to the online classification results, this shows that

removing outliers and normalizing and concatenating the EEG
data before applying the classification algorithm is a viable

method for creating the classification model.
Additional offline analysis was carried out to ascertain the

performance of the classifier. Although, the subject-independent
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FIGURE 8 | Classification accuracies of the real-time neurofeedback sessions on three consecutive days for the five healthy subjects. Fifty percent is

the random level. The markers indicate the mean classification accuracy of all the regulation trials of the corresponding run. The lines are trend lines, computed from

the mean classification accuracy. Run 4 on day 2 had to be excluded from the data of Subject 3 because the subject reported concentration issues due to external

disturbance.

offline cross-validation analysis showed a relatively low
classification accuracy of 61.5%, the low standard deviation of
the mean classification accuracies during the cross-validation
test indicate stable performance.

Besides, we have also included the data from the “Rest”
trials in another round of analyses. The classification system
was able to distinguish “Happy” vs. “Rest” trials and also
“Rest” vs. “Motor” trials with an average accuracy of 69.5
and 78%, respectively (Please see Section Classification
analysis Including the “Rest” Trials of the Supplementary
Material).

The leave-one-subject-out-analysis showed performance
comparable to the subject-independent offline cross-validation
analysis. The average classification accuracy for 11 subjects lay
well above chance, for some even close to 90%. However, for five
subjects, namely S7, S14, S20, S23, and S24, the system was not
able to achieve above chance accuracy. Subjects S7 and S23 were
among the best in the cross-validation analysis carried out for
the individual subjects. One interpretation of this result might
be that these subjects exhibited a very clear and distinct brain
activation pattern that was easily classifiable individually but that
was quite different from that of the other subjects to be included
in a fused classifier. The individual classification accuracies and
their high statistical significance in terms of the randomization
test with permuted class labels may neither be the only nor
the best criterion for the selection of subjects for the fused
classification model. A method that selects subjects according to
comparison of their individual CSP could be devised. However,
such a method has pitfalls of its own that need to be addressed, as
we explain in Section Online-classification and Neurofeedback
Results and in the following paragraph.

Another possibility to find the best fused model from our
data would be to run a large series of tests that builds many
of such models derived from subgroups of our population
of healthy subjects and tests and validates them against the
remaining data. However, this kind of “brute-force” analysis
requires substantial computing power and time, a potential topic
of a future investigation.

The online experiment in the five new subjects demonstrates
that mental states can be decoded from brain activity in real-time
to provide neurofeedback. The results from the three sessions of
Subjects 1, 2, and 5, which were distributed across 2 weeks, show
a reliable classification accuracy that increases in the beginning
and becomes stable in the last session. The upwards trends for
these subjects shown in Figure 8 indicate a learning effect of
the training with the classifier. Subjects 3 and 4 were not able
to improve the classification accuracy throughout the course of
the training to the level of the other subjects. Nonetheless, the
absolute increase on average for Subject 3 is 10% points, which is
a considerable increment. The results of Subject 4 show a general
upwards trend. However, this increase is not significant. The
reasons for that could be that some subjects need longer to find
good strategies tomatch themodeled brain patterns and some are
simply not able to perform the necessary imagery in a consistent
and persistent manner. In spite of the general upward trend the
observation can be made that the classification accuracies are not
increasing monotonically over time. This fact can be attributed to
session-to-session variability in the internal state of the subject,
i.e., levels of concentration, fatigue and motivation but also
to trying different imagery strategies. As one of the external
factors, noise from the EEG may corrupt the data. Both lead to
variations in the performance of the classifier. Furthermore, there
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FIGURE 9 | Dynamics of the two most prominent Common Spatial

Patterns over the course of the experiment for the first subject. The

figure plots the similarity index, i.e., the correlation coefficient of the subject’s

CSP of a particular run and the CSP of the model, against the number of runs.

Four topographical plots show the CSPs for data of runs with the lowest and

the highest similarity values for visual comparison with the classification model

seen in Figure 7A. The topographical plots marked by “H” represent the

pattern for the happy condition, the ones marked by “M” the pattern for the

motor condition.

TABLE 1 | The correlation coefficient (CC) between the subject’s Common

Spatial Patterns in all the runs and the CSPs of the classification model

has been computed.

Subject CC: happy condition CC: motor condition

Subject 1 0.0138 0.0182

Subject 2 0.00654 0.0553

Subject 3 0.00169 0.274

Subject 4 0.00091 0.0148

Subject 5 0.0114 0.000535

Regression analysis has been carried out to quantify the relationship between the similarity
value (CC) and the classification accuracy for all the runs of the individual subjects. The
r2-values are shown here. With one exception, the motor condition in Subject 3, they
are all very low, indicating no (linear) relationship between the similarity index and the
classification accuracy.

is numerous prior evidence that learning to control brain signals
by neurofeedback is not necessarily a monotonically increasing
process (Gruzelier et al., 1999; Subramanian et al., 2011; Linden
et al., 2012).

The block length for the imagery trials has been increased
from 5 s in the offline case to 20 s in the online case as suggested
in the literature (Ruiz et al., 2013b; Sulzer et al., 2013).

The results of the investigation of the dynamics of the
individual CSPs of each subject do not show a clear positive
correlation of the similarity indices and the classification
accuracy. For all of them the goodness-of-fit of the linear
regression model is low. There could be several reasons for
this to happen. Although computing the similarity measures
with linearly increasing random noise showed the expected

result of almost linear decrease of the similarity indices (see
Supplementary Figure 2), these measures might still not be
optimal to quantify similarity of CSPs in a useful way as they
firstly might not fully capture the information conveyed in the
patterns and secondly might not be able to account for variations
in the patterns, e.g., slight spatial shifts.

Furthermore, it is important to understand that the CSP show
the regions that exhibit the most discriminative information of
the data used to compute them. In the optimal case, “pattern
matching” could be measured by comparing the CSPs extracted
from the data during the real-time experiments to the ones from
the model because the patterns extracted from the subjects’ data
and the patterns of the model would be very similar. However,
under the conditions of real-time experiments this might be
an overoptimistic expectation. There are factors that influence
the data and, therefore, change the subject’s CSPs. Consider the
occurrence of movement artifacts, for example. Especially when
only looking at a few data samples the respective CSPs might
be influenced by artifacts that exhibit high variances (Blankertz
et al., 2008). The classifier, however, going a step further by
extracting (weighted) features from the EEG transformed by the
filter matrices of the fused model, could still prevail and extract
the relevant information, as it relies on the transformationmatrix
of the model and its weights learned in prior. For these reasons
the expectation that a high classification accuracy inevitably leads
to an increased similarity of the subjects’ CSPs to the model CSP
cannot always be fulfilled.

Moreover, CSP show regions of high information content
for the discrimination of two conditions (Müller-Gerking et al.,
1999). That means that patterns for one condition change when
the brain-state of the other condition changes. As an example,
let us assume that during a run of neurofeedback the subject
is able to exhibit the desired brain activations for one of the
conditions. For the other condition, however, she is exploring
a new mental strategy. This would lead to high classification
accuracies at least for the first condition because the classifier
is extracting features based on the group model. The CSPs, on
the other hand, may look completely different to the ones of
the model, even though the classifier can classify the brain state
successfully.

Considering the above, we propose that the classification
accuracy is a better measure than the similarity of CSP for
assessing the performance and the learning effect of the subjects.
Our results from the online training showed that new subjects
are able to “match” the brain patterns of a fused classifier based
on the brain signals of a different group of individuals, aided
by the feedback provided by the subject-independent classifier.
Future experiments could investigate if prolonged training leads
to further increase and more stable classification accuracies and
patterns. More robust and meaningful similarity measures for
CSP could also be investigated.

Our results have important implications for future
experiments on BCIs and its potential clinical applications.
For example, for depressive disorders, in which current
treatments are commonly based on antidepressants and/or
psychotherapy (Lam et al., 2009; Parikh et al., 2009; Patten
et al., 2009; Gelenberg et al., 2010), several attempts have been
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made using neurofeedback. However, the majority of previous
neurofeedback studies have attempted to train patients to
achieve a healthy brain state aided by the feedback of their own
brain activity. As an example, the most used protocols of EEG
based neurofeedback in depression have focused on Alpha band
(and its inter-hemispheric asymmetry) and Theta/Beta ratio
within the left prefrontal cortex (Choi et al., 2011; Dias and
van Deusen, 2011; Escolano et al., 2014) in an effort to correct
abnormal patterns of brain electrical signals. These systems have
been built upon the idea that a patient can learn by practice
to consciously generate healthy brain states. However, patients
could have difficulties finding healthy patterns of brain activity.
A subject-independent classifier, which provides neurofeedback
information of a healthy pattern of brain states, could offer a
novel alternative for patients suffering from brain disorders
characterized by an abnormal mood or affect (e.g., depression).

Furthermore, many neurofeedback studies have provided
feedback of neural information coming from a few sources
or circumscribed brain areas (for example: Ruiz et al., 2013b;
Sitaram et al., 2014; Young et al., 2014). The pattern classification
system allows the feedback of distributed patterns of activity
of the brain, accounting for the coordinated action of multiple
networks, such as schizophrenia (e.g., Gaspar et al., 2009;
Fitzsimmons et al., 2013; Ruiz et al., 2013a, 2014a) and autistic
disorders (e.g., Just et al., 2012; Maximo et al., 2014).

Besides that, different patients might have different brain
alterations although sharing the same clinical diagnosis. Hence,
the use of a particular brain pattern or signal coming from
the patients’ brain activity for neurofeedback might not be
appropriate for all patients. A subject-independent classifier
that offers the patient a healthy brain state to “match” by

neurofeedback, can offer an interesting alternative for both the
problem of the heterogeneity of brain abnormalities among
patients, and the involvement of distributed brain regions in
neuropsychiatric disorders. Future studies should explore in
detail the clinical benefits of this new approach.
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