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This paper reviews strategies to use BCI technology for neurorehabilitation
after stroke. It compares two strategies in three randomized control trials
for upper limb rehabilitation.
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ABSTRACT | Current rehabilitation therapies for stroke rely

on physical practice (PP) by the patients. Motor imagery (MI),

the imagination of movements without physical action, pre-

sents an alternate neurorehabilitation for stroke patients

without relying on residue movements. However, MI is an

endogenous mental process that is not physically observable.

Recently, advances in brain–computer interface (BCI) technol-

ogy have enabled the objective detection of MI that spear-

headed this alternate neurorehabilitation for stroke. In this

review, we present two strategies of using BCI for neuroreh-

abilitation after stroke: detecting MI to trigger a feedback, and

detecting MI with a robot to provide concomitant MI and PP. We

also present three randomized control trials that employed

these two strategies for upper limb rehabilitation. A total of

125 chronic stroke patients were screened over six years.

The BCI screening revealed that 103 (82%) patients can use

electroencephalogram-based BCI, and 75 (60%) performed

well with accuracies above 70%. A total of 67 patients were

recruited to complete one of the three RCTs ranging from two

to six weeks of which 26 patients, who underwent BCI neuro-

rehabilitation that employed these two strategies, had signifi-

cant motor improvement of 4.5 measured by Fugl-Meyer Motor

Assessment of the upper extremity. Hence, the results demon-

strate clinical efficacy of using BCI as an alternate neuroreh-

abilitation for stroke.

KEYWORDS | Brain–computer interface (BCI); motor imagery;

robotic; stroke rehabilitation

I . INTRODUCTION

Stroke is ranked as the third most common cause of dis-
ability worldwide, and the global burden of stroke is in-
creasing [1]. Stroke survivors can partially recover their
lost motor function from rehabilitation that involved repe-
titive and task-specific physical practice (PP) [2]. Since it is
difficult or impossible for some stroke survivors to move
the stroke-impaired limb during rehabilitation, motor
imagery (MI), which is the mental process of imagination
of movements without PP, represents an alternate rehabili-
tation approach [3], [4]. The rationale of performing MI
arises from the neural correlation it shared with PP [5].
The main advantage of MI in rehabilitation is that stroke
survivors who have difficulty in performing PP can still
perform MI. However, while PP is observable, MI is an
endogenous mental process. Hence, it is impossible to
check the compliance of performing MI by stroke patients
from simple observation during rehabilitation. As such, MI
is delivered in rehabilitation by a large variety of manners,
such as the use of audiotapes or one-to-one guidance by a
therapist [6].

Recent advances in analysis of brain signals and im-
provements in computing capabilities have enabled people
with motor disabilities to use their brain signals for com-
munication and control without using their impaired neu-
romuscular system [7]. This technology, brain–computer
interface (BCI), is useful in helping people who have suf-
fered a nervous system injury by providing them with an
alternative means of communication, mobility, and rehab-
ilitation [8], [9]. It was found that neurophysiological
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phenomena called event-related desynchronization or syn-
chronization (ERD/ERS) [10] are detectable from electro-
encephalogram (EEG) in a majority of stroke patients
while performing MI [11]. Thus, EEG-based BCI can be
used to objectively assess the performance of MI. In this
way, stroke patients, who suffer from severe limb weak-
ness, but are still able to imagine movements of the paretic
hand can use BCI to trigger a contingent feedback upon the
detection of MI-related brain signals [12]–[14]. By re-
establishing contingency between cortical activity related
to MI and feedback, the use of BCI might strengthen the
sensorimotor loop and foster neuroplasticity that facilitates
motor recovery [15], [16]. Hence, the use of BCI facilitates
the alternate MI approach for neurorehabilitation in
stroke.

There were numerous clinical studies that reported the
use of BCI for stroke rehabilitation [17], [18]. The follow-
ing reviews studies that reported clinical efficacy:

• Buch et al. [12] first used a magnetoencephalogra-
phy (MEG)-based BCI to detect mu rhythm (9–
12 Hz) to provide visual feedback in which a screen
cursor was raised or lowered toward the direction
of a target displayed on the screen. Once MI was
detected, an orthosis attached to the stroke-
impaired hand was triggered to provide a sensori-
motor feedback. The results showed that six out
of eight patients could achieve BCI control, but no
significant motor improvements were found.

• Mihara et al. [19] studied ten patients who received
near-infrared spectroscopy (NIRS)-based BCI with
visual feedback versus ten other patients who
received NIRS-based BCI with irrelevant feedback.
The results showed that the former group yielded
averaged motor improvements of 5.0 measured by
Fugl-Meyer motor assessment (FMMA) [20] com-
pared to 2.3 in the latter group. Both groups
yielded statistically significant motor improve-
ments, but the former group yielded significantly
greater improvements in the hand/finger subscale
measured by FMMA compared to the latter group.

• Ramos-Murguialday et al. [13] performed a ran-
domized control trial (RCT) on 16 patients who
used EEG-based BCI to detect motor intention
with hand and arm orthoses feedback versus 14
other patients who used EEG-based BCI with ran-
dom orthoses feedback. Both groups received phy-
siotherapy. The results showed that the former
group yielded averaged motor improvements of
3.4 measured by combined hand and modified arm
FMMA compared to 0.4 in the latter group. The
results also showed that the former group yielded
statistically significant motor improvements, but
not the latter group.

• Rayegani et al. [21] studied ten patients who re-
ceived occupational therapy (OT) with additional
neurofeedback therapy (neurofeedback can be

viewed as an operant conditioning concept of
BCI operation [22]) for improving hand function
versus ten patients who received OT with addi-
tional biofeedback therapy and ten patients who
received only OT. In the study, neurofeedback in-
volved the detection of motor imagery from sen-
sorimotor rhythm (12–18 Hz), theta (4–8 Hz), and
beta (13–30 Hz) bands of EEG to provide a visual
feedback to the subject. The results showed that all
three groups had similar motor improvements mea-
sured by Jebsen-Taylor Hand Function Test [23].

• Ono et al. [24] studied six patients who received
EEG-based BCI with simple visual feedback of the
open and grasp animated picture of the hand ver-
sus six patients who received EEG-based BCI with
somatosensory feedback using motor-driven ortho-
sis to extend the fingers of the stroke-impaired
hand. The results showed that three out of six
patients in the latter group had motor improve-
ments measured by the Stroke Impairment Assess-
ment Set [25], but none in the former group
improved.

Although a systematic review had attested that adding
to PP is an effective intervention for stroke [26], there is
still scanty evidence in terms of clinical efficacy to indicate
the benefits of MI compared to PP in stroke rehabilitation
[27]. The studies of using BCI in [13], [21], and [24] had
demonstrated clinical improvements. However, two of the
studies have added PP in the BCI intervention (physio-
therapy in [13] and OT in [21]). One of the studies showed
significant motor improvements in using BCI and PP
compared to random feedback and PP [13], but the random
feedback may decrease the motor improvements of the
latter group. Furthermore, the other study [21] showed no
significant motor improvements of BCI and PP compared
to PP alone [21], Hence, there is still scanty details on how
to integrate BCI as neurorehabilitation intervention for
stroke as well as scanty clinical evidence to indicate its
effectiveness when compared to PP.

In this review, we present two strategies of applying
BCI for neurorehabilitation after stroke. We then present
the results of three RCTs we have conducted that utilized
these strategies for upper limb stroke rehabilitation. Fi-
nally, we present motor improvements from all patients
enrolled in these three RCTs to investigate the clinical
efficacy of BCI as an alternate neurorehabilitation for
stroke.

II . STRATEGIES FOR BCI
NEUROREHABILITATION

Robotics has been used in stroke rehabilitation since the
1990s, and numerous robotic devices, such as the
InMotion Arm Robot (Interactive Motion Technologies
Inc., USA, also known as MIT-Manus) and the Armeo
Power (Hocoma, Switzerland), are now commercially
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available. In a recent systematic review on robotics for
stroke rehabilitation, there is clear evidence that robotic
interventions improve upper limb motor functions in
stroke rehabilitation [28]. Moreover, a recent study by
Klamroth-Marganska et al. [29] performed an RCT on
38 patients who received robotic intervention versus con-
ventional therapy. The results showed that the former
group yielded averaged motor improvements of 3.4 mea-
sured by FMMA compared to 2.0 in the latter group. The
results also showed that the former group yielded statis-
tically significant motor improvements than the latter
group, but it was noted that the absolute difference be-
tween the two groups was small and, hence, the clinical
relevance was questionable.

There are several modes of human–robot interaction in
robotic stroke rehabilitation, such as active, passive, assis-
tive, active-assistive, passive-mirrored, corrective, path
guidance, and resistive. (The reader is referred to [28] for
details.) For example, in assistive mode, the robot provides
assistance to the subjects in completing a voluntary move-
ment task. In passive mode, the robot performs the move-
ment without any voluntary movement by the subject.
Thus, the basic strategy of robotic stroke rehabilitation is
to provide PP on the stroke-impaired limb of the stroke
patient, with or without voluntary movement, in the form
of a sensorimotor feedback shown in Fig. 1.

An example of a robot that provides PP for stroke re-
habilitation is the MIT-Manus, which is a robot with
two degrees of freedom that provides horizontal elbow and
forearm reaching exercises using an 8-point clock face-
drawing interactive video game [30]. A small yellow circle
on the screen indicates the current position of the robotic
arm that holds the patient’s stroke-impaired arm, and a big
red circle indicates a target position. During rehabilitation,
the stroke-impaired upper limb of a subject is strapped to
the MANUS robotic exoskeleton. The subject is required to
move the stroke-impaired upper limb from the center to-

ward the target on the screen and back along a predeter-
mined trajectory. If the subject cannot perform the
movement task, the MIT-Manus robot will provide assis-
tance to move the subject’s upper limb toward the target.
The MIT-Manus robot, which delivers intense PP training
with sensorimotor feedback, has been shown to yield
motor improvements in stroke patients that matched the
motor improvements of patients who received intense PP
training delivered by therapists [31].

A. BCI Triggered Feedback
Fig. 2 shows a strategy of using BCI to detect MI to

provide feedback for neurorehabilitation after stroke. This
strategy was first employed by Buch et al. [12] using an
MEG-based BCI. Once MI was detected, an orthosis at-
tached to the stroke-impaired hand was triggered to pro-
vide sensorimotor feedback. This was also employed by
Mihara et al. [19] using a NIRS-based BCI to provide visual
feedback, and by Ramos-Murguialday et al. [13] using an
EEG-based BCI to provide sensorimotor feedback with a
hand and arm orthoses. Ono et al. [24] also employed this
strategy to study the efficacy of EEG-based BCI to provide

Fig. 1. Strategy of using a robot to provide intensive PP for

stroke rehabilitation.

Fig. 2. Strategy of using the brain–computer interface (BCI) to detect motor imagery (MI) to trigger a feedback for neurorehabilitation in stroke.
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simple visual feedback versus somatosensory feedback
using a motor-driven orthosis.

An advantage in the strategy of using BCI to provide
feedback shown in Fig. 2 is that any form of feedback can
be deployed. However, the result from a large RCT of
121 stroke patients had demonstrated that there was no
significant difference between patients who performed
MI, without using BCI, compared to patients who received
standard arm therapy in early poststroke. This raised an
important issue on the clinical benefit of MI in stroke
rehabilitation [27]. In addition, it was further pointed out
that integrating MI in rehabilitation had yielded an incon-
clusive clinical outcome [6], [27], [32].

B. Concomitant BCI and PP
Practically, stroke survivors who have residue move-

ments, or recovered some motor abilities from stroke
rehabilitation will have little difficulty in performing PP.
Furthermore, a systematic review of 15 studies in the lit-
erature from 1985 to 2009 had shown that MI is effective
for upper-limb rehabilitation after stroke only when added
to PP [26]. Hence, another strategy of using BCI for neu-
rorehabilitation after stroke is by integrating BCI with a
robot to provide concomitant MI and PP shown in Fig. 3.
In this strategy, once MI is detected using the BCI, feed-
back is provided to cue the stroke patient to perform vo-
luntary movement while the stroke-impaired limb is
strapped to a robotic end-effector. In this way, if the sub-
ject has difficulty in performing the voluntary movement
task, the robot can provide assistance in the form of a
sensorimotor feedback as shown in Fig. 1.

The main advantage of using the BCI-triggered feed-
back strategy in Fig. 2 compared to PP in Fig. 1 is that it
facilitates the rehabilitation of stroke patients without a
residual motor function. Nevertheless, the best way to
improve motor function is to have more physical practice

[33]. This underlying principle of more practice is better,
which can be readily observed from the years it takes for a
child to reach and grasp like an adult [34]. Thus, once a
stroke patient recovered some motor function, PP is still
required to recover further. In contrast, the Concomitant
BCI and PP strategy in Fig. 3 combines MI with PP to
facilitate the rehabilitation of a larger population of stroke,
with or without a residue function. Hence, a plegic stroke
patient who recovered some motor function using this
strategy can perform PP to improve further.

III . RANDOMIZED CONTROL TRIALS

We had conducted three RCTs that employed two strate-
gies of using BCI for stroke rehabilitation shown in Figs. 2
and 3 over six years from April 1, 2007 to June 31, 2013.
This section provides a description of the three RCTs.

A. EEG Signal Recording
In all the three RCTs, EEG measurements from

27 channels were collected using the NuAmps EEG acqui-
sition hardware (http://www.neuroscan.com) with uni-
polar Ag/AgCl electrodes channels, digitally sampled at
250 Hz with a resolution of 22 b for voltage ranges of
!130 mV. EEG recordings from all channels were band-
pass filtered from 0.05 to 40 Hz by the acquisition
hardware.

B. Detecting MI Using EEG-Based BCI
The main challenge in detecting MI using EEG-based

BCI is the huge intersubject variability in the EEG with
respect to the brain signal characteristics [35]. Hence, in
all three RCTs, we employed the Filter Bank Common
Spatial Pattern (FBCSP) algorithm [36] to construct a
patient-specific model from a calibration session in order
to detect MI as shown in Figs. 2 and 3.

Fig. 3. Strategy of using the BCI to detect MI with a robot to provide concomitant MI and PP for neurorehabilitation in stroke.
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The FBCSP algorithm had been shown to be an effec-
tive algorithm in detecting MI from EEG in BCI Compe-
tition IV held in 2008 [37]. (The reader is referred to [36]
for details on the FBCSP algorithm.) The algorithm com-
prises four progressive stages of EEG processing to com-
pute the patient-specific model. The first stage employs a
filter bank that decomposes the EEG into multiple fre-
quency passbands. The second stage performs spatial fil-
tering using the common spatial pattern (CSP) [38]. Each
pair of bandpass and spatial filters in the first and second
stages computes the CSP features that are specific to the
bandpass frequency. The third stage selects discriminative
CSP features based on the subject’s task using the mutual
information-based best individual feature (MIBIF) algo-
rithm [39]. The fourth stage employs a classifier to model
and classify the selected CSP features.

C. First RCT on BCI With Robotic Feedback
We conducted the 1st RCT of using EEG-based BCI for

neurorehabilitation after stroke over 2.5 years from April 1,
2007 to October 30, 2009 [11], [40]. Since stroke patients
suffer neurological damage to their brains, the portion of
their brain that is responsible for generating ERD/ERS can
be compromised. Thus, we first sought to investigate the
extent of detectable brain signals on a population of stroke
patients.

We collected EEG data from 54 stroke patients of
which 46 performed MI and eight performed finger tap-
ping. We analyzed the EEG collected using the FBCSP
algorithm described in Section III-B. The results showed
that only six patients yielded accuracies of detecting MI at
chance level. Hence, the results showed that a majority of
stroke patients (87%) can use EEG-based BCI for stroke
rehabilitation [11]. Despite the high percentage of usa-
bility, the results showed that a BCI screening session is
still necessary to identify subjects who can use the EEG-
based BCI system. Hence, in the subsequent RCTs that we
had conducted, we performed a BCI screening session to
recruit patients who can use BCI.

In the BCI screening session, a total of 160 trials of EEG
that randomly comprised 80 MIs of the stroke-affected
upper limb and 80 idle conditions were collected from each
patient. The patients’ abilities to perform MI were then
evaluated based on 10 ! 10-fold cross-validations of these
160 trials of EEG data using the FBCSP algorithm described
in Section III-B. Patients with classification accuracy >
58% (95% confidence estimate of the accuracy at chance
level) were deemed to have passed BCI screening.

In addition, we sought to compare the efficacy of the
EEG-based BCI with robotic feedback using the strategy
illustrated in Fig. 2 versus intense robotic training using
the commercially available MIT-Manus robot using the
strategy illustrated in Fig. 1. The MIT Manus robot was
chosen for its positive results in hemiplegic stroke [41]. In
this RCT, we analyzed the motor improvements of 12
sessions of 1-h BCI with robotic feedback compared to

robotic upper limb stroke rehabilitation for four weeks.
Clinical efficacy, in terms of motor improvements, was
measured using upper extremity FMMA scores pre-
intervention at week 0, mid-intervention at week 2,
end-intervention at week 4, and follow-up at week 12.

D. Second RCT on BCI With Robotic Feedback
We conducted the second RCT over three years from

January 1, 2011 to January 1, 2014 [42]. While other exist-
ing studies had demonstrated motor improvements in
stroke patients using transcranial direct current stimula-
tion (tDCS) [43], [44], we sought to investigate whether
tDCS could facilitate the stroke patients’ ability to operate
BCI with robotic feedback and subsequently the efficacy in
poststroke motor recovery. The setup of BCI with robotic
feedback in this trial employed the strategy in Fig. 2 that
was similar to the first RCT.

In this RCT, we analyzed the motor improvements of
ten sessions of 20 min of tDCS compared to sham-tDCS
prior to 1-h BCI with robotic feedback using the MIT-
Manus robot for upper limb stroke rehabilitation for two
weeks. Clinical efficacy, in terms of motor improvements,
was measured using upper extremity FMMA scores prein-
tervention at week 0, end-intervention at week 2, and
follow-up at week 4.

E. Third RCT on BCI With Concomitant MI and PP
We conducted the third RCT recently over 2.5 years

from January 1, 2011 to June 30, 2013 [45]. We sought to
investigate the clinical benefits of concomitant MI and PP
using the strategy shown in Fig. 3 by using an EEG-based
BCI coupled with a haptic knob (HK) robot [46], [47]. We
investigated the hypothesis of whether that this strategy
could facilitate the beneficial effects of therapist-assisted
arm mobilization for stroke patients compared to robot-
assisted PP shown in Fig. 1 and to standard arm therapy
(SAT).

In this RCT, we analyzed the motor improvements of
18 sessions of intervention over six weeks, three sessions
per week, 90 min/session. The primary outcome measure
was upper extremity FMMA scores measured pre-
intervention at week 0, mid-intervention at week 3, end-
intervention at week 6, and follow-up at weeks 12 and 24.

IV. RESULTS FROM CLINICAL TRIALS

A. First RCT on BCI With Robotic Feedback
The first RCT screened 54 chronic stroke patients, of

whom 48 passed the BCI screening. Among those who
passed the BCI screening, 38 had performed well with
accuracies above 70%. Subsequently, 26 of those who
passed BCI screening were recruited for randomization
[40], and the remaining 22 declined further participation.
A total of 11 patients were randomized to the BCI-Manus
group that underwent EEG-based BCI with robotic
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feedback intervention. The remaining 15 patients were
randomized to the Manus group that underwent MIT-
Manus robotic intervention. The group size was not
balanced because simple randomization was performed.
Twenty-five patients completed the study and follow-up
with one dropping out from the Manus group.

The results showed that the BCI-Manus and Manus
groups improved with an average FMMA score of 4.5 and
6.3 end-intervention at week 4, respectively, measured
relative to the baseline FMMA before intervention. Clini-
cally important changes in the upper extremity FMMA
were estimated in the range from 4.25 to 7.25 to have an
effect on important functional tasks [48]. Hence, there
were statistically and clinically significant motor improve-
ments in both groups, but no significant intergroup differ-
ences were found. (The reader is referred to [40] for
details on the results of the RCT.)

The result of 11 stroke patients from the BCI-Manus
group using the BCI-triggered feedback strategy illustrated
in Fig. 2 is further analyzed in Section IV-D.

B. Second RCT on BCI With Robotic Feedback
The 2nd RCT screened 37 chronic stroke patients, of

whom 26 passed the BCI screening. Among those who
passed the BCI screening, 18 patients had performed well
with accuracies above 70%. Subsequently, 19 of those who
passed BCI screening were recruited for randomization
[49], and the remaining seven declined further participa-
tion. A total of ten patients were randomized to the tDCS
group that underwent tDCS and EEG-based BCI with ro-
botic feedback intervention. The remaining nine patients
were randomized to the sham-tDCS group that underwent
EEG-based BCI with robotic feedback intervention. All 19
patients completed the study and follow-up.

The results showed that the tDCS group and sham-
tDCS groups improved with an average FMMA score of 0.9
and 2.8 end-intervention at week 2 respectively, measured
relative to the baseline FMMA before intervention. There
were statistically significant motor improvements in both
groups, but these improvements were not clinically signi-
ficant and no significant inter-group differences were
found. The results also showed that the online BCI accu-
racies and laterality coefficients from the tDCS group were
significantly higher than the sham group. (The reader is
referred to [49] for details on the results of the RCT.)

The result of nine stroke patients from the sham-tDCS
group using the BCI-triggered feedback strategy illustrated
in Fig. 2 is further analyzed in Section IV-D. The result
from ten patients in the tDCS group is not included in
further analysis since the use of tDCS was a confounding
factor that improved the online BCI accuracies of the
patients in this group.

C. Third RCT on BCI With Concomitant MI and PP
The third RCT screened 34 chronic stroke patients, of

whom 29 passed the BCI screening. Among those who

passed the BCI screening, 19 had performed well with
accuracies above 70%. Subsequently, 22 of those who
passed BCI screening were recruited for randomization
[45], and the remaining seven who passed BCI screening
declined further participation. A block randomization was
performed with a block size of three to balance the group
size. A total of seven patients were randomized to the BCI-
HK group that underwent the EEG-based BCI and HK
robot to perform concomitant MI and PP intervention us-
ing the strategy illustrated in Fig. 3. Another eight patients
were randomized to the HK group that underwent robot-
assisted hand grasping, and knob manipulation PP inter-
vention shown in Fig. 1. The remaining seven patients
were randomized to the SAT group that underwent repe-
titive task training [50], focusing on forearm pronation-
supination movements incorporating wrist control and
grasp-release of various objects. All three groups received
30 min of therapist-assisted arm mobilization following
the principles of the professionally recognized Neuro-
developmental Treatment Approach for stroke rehabilita-
tion [51] for each session of intervention. Twenty-one
subjects completed the study and follow-up with one
dropout from the BCI-HK group.

The results showed that the BCI-HK, HK, and SAT
groups improved with an average FMMA score of 7.2, 7.3,
and 4.9 end-intervention at week 6, respectively, mea-
sured relative to the baseline FMMA before intervention.
There were statistically and clinically significant motor
improvements in all groups, but no significant intergroup
differences were found. Significantly greater FMMA im-
provements were observed in the BCI-HK group compared
to the SAT group mid-intervention at weeks 3 and post-
intervention at weeks 6 and 12. However, no significant
greater FMMA improvements were observed in the HK
group compared to the SAT group. (The reader is referred
to [45] for details on the results of the RCT.)

The result of six stroke patients from the BCI-HK group
using the Concomitant BCI and PP strategy shown in Fig. 3
are further analyzed in Section IV-D.

D. Results From All RCTs
The three RCTs that we had conducted performed

EEG-based BCI screening for 54, 37, and 34 chronic stroke
patients, respectively. A total of 48, 26, and 29 patients
passed the screening in the RCTs, and a total of 38, 18, and
19 had good performance with accuracies above 70%,
respectively. Hence, a total of 125 stroke patients were
screened, of whom 103 passed the BCI screening and 75
had good performance. The results thus show that 82% of
the chronic stroke patients can use the EEG-based BCI
system for neurorehabilitation, of which 60% of them had
performed well with accuracies above 70%.

Fig. 4 shows the clinical outcome measured by the
FMMA score of the upper extremity on stroke patients
recruited to receive EEG-based BCI stroke rehabilitation.
The clinical outcomes were analyzed from all 11 patients
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who completed the BCI-Manus intervention in the 1st
RCT, all nine patients who completed the sham-tDCS in-
tervention in the 2nd RCT, and all six patients who com-
pleted the BCI-HK in the 3rd RCT. The clinical outcomes
of all the 26 patients from these three RCTs were then
combined to perform an overall analysis. Paired t-tests
were performed on the FMMA scores’ improvements after
the intervention that were relative to the baseline FMMA
before intervention.

The results showed motor improvements of 4.55 !
6.07, 2.78 ! 3.96, and 7.17 ! 2.32 from the three clinical
trials, respectively. The results from 2 of the 3 clinical
trials were both statistically and clinically significant. The
combined results from all three clinical trials showed a
statistically significant improvement of 4.54 ! 4.86 from
26 stroke patients.

V. CONCLUSION

In this paper, we presented a strategy to use BCI to detect
MI to trigger a feedback, and another strategy to use BCI to
detect MI with a robot to provide concomitant MI and PP
for neurorehabilitation after stroke. We described the
three RCTs that we had conducted that employed these
two strategies.

In the three RCTs, we performed a BCI screening of a
total of 125 chronic stroke patients over six years. In our
studies, a patient passed the BCI screening if the accuracy
of detecting MI using the FBCSP algorithm [37] was above
the chance level. This process is more simple and objective
compared to the use of subjective tools, such as the Kines-
thetic and Visual Imagery Questionnaire [52], to assess
whether the patient is able to imagine vivid images of
movement [6]. The results showed that a majority 82%
of stroke patients could use EEG-based BCI for neuroreh-
abilitation, and 60% had performed well with accuracies
above 70%. The 18% BCI illiteracy in stroke patients who
had BCI accuracy of less than 58% at the chance level is

close to our initial finding in [11], and falls within the
estimated range of 15%–30% commonly found in the
BCI Laboratory [53]. As shown in the study by Ramos-
Murguialday et al. [13], stroke patients who received BCI
with hand and arm orthoses feedback had significant im-
provements, but not those who received random feedback.
Since a BCI with random feedback is functionally similar
to a BCI with an accuracy of about 50% at chance level, the
results from the study showed that BCI accuracy had an
effect on the improvements of the patients. Therefore, it is
important to select patients who passed the BCI screening
for stroke rehabilitation. However, it is noted that the
passing accuracy at the chance level may be too low for
optimal detection of MI compared to the recommended
accuracy of 70% for BCI in communication and control
[54]. Nevertheless, in another study by Mihara et al. [19],
patients who received BCI with random feedback also had
significant improvements. The significant improvements
obtained, despite the low BCI accuracy, may be due to a
higher level of engagement by the patient to perform mo-
tor imagery of the stroke-impaired upper limb for rehab-
ilitation. Therefore, high accuracy may not be a crucial
factor in neurorehabilitation since the BCI is used to pro-
vide feedback and not as a communication and control
system that requires a high degree of accuracy [55].

We also presented the motor improvements measured
using FMMA scores of the upper extremity from the three
RCTs. The first and second RCTs employed the strategy of
using an EEG-based BCI to drive a robot to provide a
sensorimotor feedback for neurorehabilitation in stroke.
The patients in the first RCT had significant motor im-
provements measured by FMMA scores, but not the
patients in second RCT. This is due to the shorter inter-
vention of two weeks in the second RCT compared to four
weeks in the first RCT. Hence, the results showed that the
length of intervention may affect the outcome of the
studies. However, the results of the first RCT showed mo-
tor improvements that were similar to the strategy of using
a robot to provide PP without using EEG-based BCI to
detect MI [40]. This result is consistent with the study in
[27] that showed no significant difference between pa-
tients who performed MI without using BCI compared to
patients who performed PP. Hence, the results from the
first and second RCTs on using BCI with robotic feedback
were not entirely promising.

The third RCT employed the other strategy of using
EEG-based BCI and a robot to provide concomitant MI and
PP for neurorehabilitation in stroke. The patients in the
third RCT had significant motor improvements, and the
averaged improvement across the patients was greater than
the first RCT. This may be due to the longer six weeks of
intervention compared to the first and second RCTs. Nev-
ertheless, these patients had motor improvements that
were significantly better than patients who received PP
from SAT, and patients who received PP using a robot were
not significantly better than those who received PP from

Fig. 4. Clinical outcome in FMMA improvements of stroke patients

who received EEG-based BCI intervention in three clinical trials

(n ¼ 11, 9, 6), and all patients combined ðn ¼ 26). The vertical bar

plots the standard deviations across subjects in each group.
$P G 0.05, $$$P G 0.001.
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SAT [45]. Hence, the results from the third RCT on using
BCI with a robot to provide concomitant MI and PP were
more promising than using BCI with a robot to provide a
sensorimotor feedback in the first and second RCTs.

Overall, 26 patients who received EEG-based BCI neu-
rorehabilitation in the three RCTs had significant motor
improvements. This overall result demonstrates the clini-
cal effectiveness of the two strategies in using EEG-based
BCI for neurorehabilitation in stroke.

From the results, the length of intervention appeared
to be a confounding factor. Hence, we recommend adopt-
ing an intervention of at least six weeks, three sessions per
week, to observe significant improvements in the use of
BCI for neurorehabilitation after stroke. Furthermore, the
patients in the three RCTs who received EEG-based BCI
neurorehabilitation either performed MI of the left or
right upper limb. On the other hand, four actions of MI
can be detected using BCI, namely, left hand, right hand,
foot, and tongue [56]. Since MI of the foot and tongue are
detectable, BCI for neurorehabilitation can also be ex-
tended to lower limbs [57] and dysphagia [58], respec-
tively. Moreover, dry EEG electrodes have now been

successfully used for visual-evoked potential BCI [59].
Although the use of dry EEG electrodes for MI BCI was
found to be inferior to gel-based EEG electrodes [60],
future development of dry EEG for MI BCI may help to
reduce the setup time for neurorehabilitation. Last but not
least, research to address the BCI inefficiencies of current
algorithms [61] is crucial so that more patients will be able
to use BCI for stroke rehabilitation. h

Acknowledgment

The authors would like to thank the following clini-
cians and therapists for conducting the three Randomized
Control Trials: Dr. K. S. G. Chua, Dr. E. Chew, Dr. Y. S.
Ng, C. W. K. Kuah, G. J. Ephraim Joseph, and L. Zhao.
The authors would also like to thank the following scien-
tists and engineers who are involved in developing the
EEG-based BCI system for neurorehabilitation after
stroke: Dr. H. Zhang, Dr. L. Zhou, K. S. Phua, C. Wang,
Z. Y. Chin, and K. Y. Tang. Last but not least, they would
also like to thank L. H. Lim for her constructive comments
to improve this manuscript.

RE FERENCES

[1] V. L. Feigin et al., ‘‘Global and regional burden
of stroke during 1990–2010: Findings
from the Global Burden of Disease
Study 2010,’’ Lancet, vol. 383, no. 9913,
pp. 245–255, Jan. 2014.

[2] M. W. O’Dell, C.-C. D. Lin, and V. Harrison,
‘‘Stroke rehabilitation: Strategies to enhance
motor recovery,’’ Annu. Rev. Med., vol. 60,
no. 1, Feb. 2009.

[3] N. Sharma, V. M. Pomeroy, and J.-C. Baron,
‘‘Motor imagery: A backdoor to the motor
system after stroke?’’ Stroke, vol. 37, no. 7,
pp. 1941–1952, Jul. 2006.

[4] F. Di Rienzo, C. Collet, N. Hoyek, and
A. Guillot, ‘‘Impact of neurologic deficits
on motor imagery: A systematic review
of clinical evaluations,’’ Neuropsychol. Rev.,
vol. 24, no. 2, pp. 116–147, Jun. 2014.

[5] M. Jeannerod, ‘‘Mental imagery in the
motor context,’’ Neuropsychologia, vol. 33,
no. 11, pp. 1419–1432, Nov. 1995.

[6] F. Malouin, P. L. Jackson, and C. L. Richards,
‘‘Towards the integration of mental practice
in rehabilitation programs. A critical
review,’’ Front. Hum. Neurosci., vol. 7,
Sep. 2013.

[7] J. R. Wolpaw, N. Birbaumer, D. J. McFarland,
G. Pfurtscheller, and T. M. Vaughan,
‘‘Brain-computer interfaces for communication
and control,’’ Clin. Neurophysiol., vol. 113, no. 6,
pp. 767–791, Jun. 2002.

[8] J. J. Daly and J. R. Wolpaw, ‘‘Brain-computer
interfaces in neurological rehabilitation,’’
Lancet Neurol., vol. 7, no. 11, pp. 1032–1043,
Nov. 2008.

[9] A. Burns, H. Adeli, and J. A. Buford,
‘‘Brain-computer interface after nervous
system injury,’’ Neuroscientist, vol. 20, no. 6,
pp. 639–651, Dec. 2014.

[10] G. Pfurtscheller and F. H. Lopes da Silva,
‘‘Event-related EEG/MEG synchronization
and desynchronization: Basic principles,’’
Clin. Neurophysiol., vol. 110, no. 11,
pp. 1842–1857, Nov. 1999.

[11] K. K. Ang et al., ‘‘A large clinical study
on the ability of stroke patients to use
EEG-based motor imagery brain-computer
interface,’’ Clin. EEG Neurosci., vol. 42, no. 4,
pp. 253–258, Oct. 2011.

[12] E. Buch et al., ‘‘Think to move: A
neuromagnetic Brain-Computer Interface
(BCI) system for chronic stroke,’’
Stroke, vol. 39, no. 3, pp. 910–917,
Mar. 2008.

[13] A. Ramos-Murguialday et al.,
‘‘Brain-machine interface in chronic
stroke rehabilitation: A controlled
study,’’ Ann. Neurol., vol. 74, no. 1,
pp. 100–108, Jul. 2013.

[14] N. Birbaumer, A. R. Murguialday, and
L. Cohen, ‘‘Brain-computer interface
in paralysis,’’ Curr. Opin. Neurol., vol. 21,
no. 6, pp. 634–638, 2008.

[15] B. H. Dobkin, ‘‘Brain-computer interface
technology as a tool to augment
plasticity and outcomes for neurological
rehabilitation,’’ J. Physiol., vol. 579, no. 3,
pp. 637–642, 2007.

[16] M. A. Dimyan and L. G. Cohen,
‘‘Neuroplasticity in the context of motor
rehabilitation after stroke,’’ Nat. Rev.
Neurol., vol. 7, no. 2, pp. 76–85,
2011.

[17] K. K. Ang and C. Guan, ‘‘Brain-computer
interface in stroke rehabilitation,’’ J.
Comput. Sci. Eng., vol. 7, no. 2, pp. 139–146,
Jun. 2013.

[18] A. Venkatakrishnan, G. Francisco, and
J. L. Contreras-Vidal, ‘‘Applications
of brain-machine interface systems in
stroke recovery and rehabilitation,’’
Curr. Phys. Med. Rehab. Rep., vol. 2, no. 2,
pp. 93–105, Jun. 2014.

[19] M. Mihara et al., ‘‘Near-infrared
spectroscopy-mediated neurofeedback
enhances efficacy of motor imagery-based
training in poststroke victims: A pilot study,’’
Stroke, vol. 44, no. 4, pp. 1091–1098,
Apr. 2013.

[20] A. R. Fugl-Meyer, L. Jääskö, I. Leyman,
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