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Abstract
Objective. The various parameters that define a hand movement such as its trajectory, speed, etc,
are encoded in distinct brain activities. Decoding this information from neurophysiological
recordings is a less explored area of brain–computer interface (BCI) research. Applying non-
invasive recordings such as electroencephalography (EEG) for decoding makes the problem
more challenging, as the encoding is assumed to be deep within the brain and not easily
accessible by scalp recordings. Approach. EEG based BCI systems can be developed to identify
the neural features underlying movement parameters that can be further utilized to provide a
detailed and well defined control command set to a BCI output device. A real-time continuous
control is better suited for practical BCI systems, and can be achieved by continuous adaptive
reconstruction of movement trajectory than discrete brain activity classifications. In this work,
we adaptively reconstruct/estimate the parameters of two-dimensional hand movement
trajectory, namely movement speed and position, from multi-channel EEG recordings. The data
for analysis is collected by performing an experiment that involved center-out right-hand
movement tasks in four different directions at two different speeds in random order. We estimate
movement trajectory using a Kalman filter that models the relation between brain activity and
recorded parameters based on a set of defined predictors. We propose a method to define these
predictor variables that includes spatial, spectral and temporally localized neural information and
to select optimally informative variables. Main results. The proposed method yielded correlation
of (0.60±0.07) between recorded and estimated data. Further, incorporating the proposed
predictor subset selection, the correlation achieved is (0.57±0.07, p 0.004)< with significant
gain in stability of the system, as well as dramatic reduction in number of predictors (76%) for
the savings of computational time. Significance. The proposed system provides a real time
movement control system using EEG-BCI with control over movement speed and position.
These results are higher and statistically significant compared to existing techniques in EEG
based systems and thus promise the applicability of the proposed method for efficient estimation
of movement parameters and for continuous motor control.

Keywords: brain-computer interface, motor control, electroencephalography

(Some figures may appear in colour only in the online journal)

1. Introduction

The brain–computer interface (BCI) system functions by
decoding the neural activity and translating the brain control

states directly to output commands that communicate and
control with the interfaced external devices [1, 2]. Electro-
encephalography (EEG) is a non-invasive technique that can
acquire electrophysiological activity of the brain. EEG, owing
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to its simple and inexpensive setting, is widely used for
neuroscience and neural signal processing research and clin-
ical applications [1]. Several signal features, such as rhythms
and evoked potentials, can be identified from the scalp-
recorded EEG [3] that can effectively decipher brain activity.
Recent developments also suggest that the BCI users can
develop control over a specific EEG feature by feedback-
training provided by an adaptive BCI system [4].

Decoding motor activity or limb movement control
executed by the brain is a popular area of research in BCI.
Sensory motor rhythms [3, 4], movement related potentials
[5], spectral band powers [6], etc, are some of the neural
features identified from EEG that are utilized in movement
related studies. Various studies dealing with identifying/
classifying discrete motor activity from the EEG signals have
been reported in the literature [3–6]. However, a continuous
reconstruction of the finer movement parameters such as
speed, direction, position, acceleration, etc, from the brain
activity is a less explored area in BCI research [7]. Literature
reports various attempts to infer movement parameters from
invasive recordings such a single/multi-unit activity (SUA/
MUA) [8–10], localized filed potentials (LFPs) [11], elec-
trocorticography (ECoG) [12, 13], etc, from primates as well
as humans. Many researchers believed that the movement
parameters are deeply encoded in the neuronal firing and the
scalp recordings such as EEG or magnetoencephalography
(MEG) [7, 15–18, 31] has low signal-to-noise ratio to decode
these information. However, with the advance of signal pro-
cessing and machine learning techniques, researchers are now
able to identify the movement parameter information from
non-invasive recordings.

In [8], researchers suggest that the movement direction
may be encoded in the neural ensemble in the arm area of
motor cortex and the activity of cells was studied using a
population vector algorithm. A study reported in [9] investi-
gates the spatiotemporal encoding of hand velocity and
direction in primates using multi-electrode arrays. In [10] the
researchers attempt to establish relationships between neural
firing rates and movement parameters, and the trajectories
were reconstructed using linear and Kalman filtering. The
study in [12] showed that continuous two-dimensional (2D)
hand position can be approximately predicted from ECoG
recorded from hand/arm motor cortex. Reference [13] reports
an ECoG study in primates, which uses ensemble posterior
parietal cortex (PPC) neurons to reconstruct the trajectory of
movement to an end target position.

There are very few studies in literature that attempt to
reconstruct movement parameters from non-invasive record-
ings. The work in [14, 15] demonstrates a continuous
decoding of 2D movement from MEG. Reference [16] reports
reconstruction of three-dimensional (3D) hand velocity per-
formed using EEG during a center-out reaching task. Our
previous works [17, 18] on hand movement direction and
speed analysis performs reconstruction of speed components
during hand movement from the simultaneously recorded
EEG and multiclass classification of movement direction.
Another study in [19] also reported the effective reconstruc-
tion hand movement velocity from EEG data. In our previous

study on hand movement trajectory reconstruction [20] we
used multiple linear regressor models for estimation. Further,
various studies in literature have reported use of motor ima-
gery and the resultant event-related synchronization/desyn-
chronization patterns to achieve continuous and defined
movement control. Studies have reported continuous 3D
control of a quadcopter [21], asynchronous control of a car in
a 3D virtual environment [22] and a virtual helicopter in 3D
space [23] using EEG signals.

In this study, our objective is to adaptively estimate hand
movement trajectory parameters with higher accuracy and
lesser number of predictors from simultaneously recorded
EEG. To acquire the brain and hand movement data, an
experiment was designed. The subjects performed cue-based
right-hand center-out movements in four different directions
and at two different speeds to reach a target. The movement
task performed in a 2D horizontal plane produced a move-
ment trajectory defined by the parameters x, y co-ordinates
and absolute values of speed and position. We perform
wavelet analysis on the recorded EEG data. Wavelet analysis
is a widely used tool for processing non-stationary signals,
such as, EEG. In BCI, wavelets are used for various purposes
such as data de-noising, construction of time-frequency
representations and weighted transforms [24, 25], etc. In our
algorithm, we use discrete wavelet transform (DWT) to
decompose EEG signal into different subbands. The subband
signals along with their time delayed versions form the pre-
dictor matrix, onto which the movement parameters are fitted.

Kalman filters have been widely used for estimation
problems ranging from target tracking to vehicle control [26–
29]. Kalman filters have been applied for decoding hand
kinematics from neural activity recorded using invasive
[10, 27] data acquisition methods. In the proposed method,
we use Kalman filters to adaptively estimate hand movement
parameters from EEG signals. Furthermore, we propose a
method to select the most informative predictor variables to
model the estimator. The proposed method includes a priori
selection of channels by a ranking algorithm and a backward
elimination of predictors to create the best fit model. The
system is validated and performance is evaluated in terms of
correlation between recorded and estimated parameters.

The rest of this paper is organized as follows: section 2
describes the different signal processing and statistical tools
involved in the proposed movement parameter estimation
technique. Section 3 reports the results of the experiment and
analysis performed. Section 4 provides a detailed discussion
of the results followed by conclusions of our work.

2. Methods

In this study, our aim is to adaptively estimate parameters of
hand movement trajectory solely from scalp recordings. The
data acquisition unit of the designed BCI simultaneously
records the brain activity and hand movement speed and
position information, while the subject performs defined hand
movements. The experiment design consisted of cue-based
center-out 2D hand movements in the horizontal plane. The
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movements involve aiming at targets in four different direc-
tions at two different speeds. The details of the experiment are
given in sub-sections 2.1 and 2.2 followed by the data ana-
lysis methods.

2.1. Subjects and equipment

The experiment was conducted at the Brain Computer Inter-
face Laboratory, Institute for Infocomm Research, Agency for
Science, Technology and Research, Singapore. A Neuroscan
SynAmps 128 channel EEG amplifier was used for recording
EEG from seven healthy male subjects. Ethics approval from
National University of Singapore Institutional Review Board
(NUS-IRB) and written informed consent from subjects were
obtained. The lower cut-off frequency of amplifier is 0.05 Hz
and it works at a sampling rate of 250 Hz. While performing
the experiment, the subjects were strapped to an MIT-Manus
robot [29] to record the exact hand position and speed at
every sample time. The setup of the experiment is shown in
figure 1(c).

2.2. Experiment protocol

The movement tasks involved in this experiment are center-
out right-hand movements in horizontal 2D space. Eight
different types of movement consisting of four orthogonal
directions and two different speeds as shown in figures 1(a)
and (b) are included in the protocol. The directions are termed
as North (N), South (S), East (E) and West (W) that corre-
spond to forward, backward, rightward and leftward move-
ments, respectively of the hand from a fixed center position.

A maximum center-to-target distance of 15 cm is achieved by
the subject for each task. The subject is also required to move
at different speeds, fast and slow, that are movements com-
pleted within 0.4 and 1.2 s respectively. The timeline for each
experiment trial is indicated in figure 1(d). The cues used in
the experiment to indicate various tasks are also provided.
The screen with encircled cross at the center indicates home
screen. The cue ‘N’ is indicated by an empty circle at the
target position as shown in the figure. This notifies the subject
to prepare for a movement task-North. As the center circle
disappears, the subject starts to execute the task. At the end of
the trial, the home screen re-appears. The experiment is
conducted for eight sessions for each subject. Each session
consists of 50 cycles of experiment, in which each cycle
includes eight trials corresponding to the eight tasks in ran-
dom order.

2.3. Data preprocessing

The preliminary data analysis step in a BCI system is signal
pre-processing which improves the signal-to-noise ratio of the
signal by removing noise and artifacts. Similar to our pre-
vious studies, 35 channels from the primary and supple-
mentary motor cortex are used to perform further analysis.
The time segment including last 1 s of preparation and 1 s of
movement task from every trial (indicated as ‘analysis’ in
figure 1(d)) is considered for further processing. The EEG
signal is low pass filtered at a cut-off of 96 Hz, and the power
line frequency, 50 Hz, is notch-filtered. The muscular move-
ment and ocular artifacts that could affect the EEG data is
removed using specialized signal processing steps. Multiple-
lag regression model [30] is implemented to identify the effect
of eye movement (using the recorded EOG (electro-
oculagraphy) signals and its time shifted components) on the
EEG data. This is then subtracted from the recorded EEG to
remove eye movement artefacts. The muscular artifacts that
are present as diffused activity in EEG signals can be
removed using spatial filtering [31]. The data undergoes
spatial filtering using Laplacian filters [32] to remove move-
ment artifacts.

The trajectory parameters that are recorded in this
experiment are 2D co-ordinates of speed and position. In
order to remove the sensor noise during measurements, low
pass filtering at 1 Hz is performed. For the continuous esti-
mation of movement parameters, reconstruction must be
performed at every sample, equivalent to an estimation
interval of 4 ms (250 Hz sampling). However, the low fre-
quency of the parameters allows the increase of estimation
interval up to 500 ms. The estimation value is set as 200 ms in
our study. In order to estimate the movement parameters, we
use only the corresponding time samples from EEG.

We define the trajectory parameter as,

Y s s s d d d, , , , , , 1x y x y
T R6{ } ( )( )= Î ´ ⋅R

where T is the number of samples/trial and R is the number
of trials recorded. This includes x and y co-ordinates of speed
(s) and position (d) and the absolute speed and position given

by, s s sx y
2 2= + and d d d .x y

2 2= +

Figure 1. The experimental setup and timeline. (a) and (b) shows the
details of direction and speed movement tasks that the subjects
performed. (c) The experimental setup. (d) Timeline for experiment.
For details see text.
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2.4. Wavelet analysis and predictor definition

The preprocessed EEG signal is used to a define predictor set
that models the estimator for the movement parameter
information. The brain activity recorded as multi-channel
EEG is characterized by its non-stationary behavior. The
analysis of non-stationary signal poses a challenge, as this
brings about a requirement for continuously estimating opti-
mal signal features or extracting stationary features from the
signal. This requires a multi-resolution analysis on the non-
stationary EEG data. As our objective is to estimate low
frequency movement parameters using linear fitting strategy,
it is essential to utilize low frequency EEG signal. Hence,
EEG signal needs to be decomposed into subbands with
increasing resolution towards low frequency EEG. The DWT
provides an effective solution for non-stationary signal ana-
lysis by performing multi-resolution analysis on the signal
thereby addressing the time-frequency resolution trade-off
[33]. DWTs make use of prototype functions, called wavelets
whose dilated and contracted versions can provide fine
spectral and temporal analysis, respectively. The wavelet
analysis involves signal decomposition into approximate and
detailed coefficients by successive low pass and high pass
filtering followed by sub sampling. Orthonormal wavelet
bases are used to create filter banks such that they span non-
overlapping subspaces. The orthogonal filter bank performs
half band filtering by splitting the signal into these subspaces.

The discrete wavelet analysis proceeds as the signal is
convolved by these bases and down sampled by a factor of 2.
This process is repeated by successive decomposition of the
approximate coefficients from the previous level. The max-
imum number of decomposition levels achieved is given by
L Tlog ,2( )= where T is the signal length. We obtain the
wavelet coefficients of the signal as A D D D, , , , ,L L L 1 1{ }¼-
where Al and Dl denote the approximate and detailed coef-
ficients for level l. These coefficients span various non-uni-
form subbands of the signals. The inverse process of
reconstruction is performed to obtain the subband signals. Up
sampling by 2 followed by convolution with time reversed
wavelet bases reconstructs the signal from the approximate
and detailed coefficients. The signal from each subband can
be reconstructed by using the respective coefficients while
nullifying others.

In our study, the single trial recorded brain activity is
given by E E, ,C TÎ ´R where C is the number of channels
recorded. This is divided into L+1 subband signals by
wavelet decomposition followed by subband reconstruction.
The proposed approach requires spatial, spectral and temporal
information of EEG to be included in the variable/predictor
set on which the recorded movement parameters are fitted
linearly. The predictor set, X ,P T R( )Î ´ ⋅R where
P C L 1( ( ) )q= + is thus defined as

x l L c C1 to 1, 1 to , 1 to 2l c
TR1{ } ( )t qÎ = + = =t

´R

where xl ct denotes the EEG recorded from channel c,
reconstructed at subband l and delayed by 1.t - In the rest
of this paper, the predictor at time sample k will be denoted by

Xk which is equivalent to x kl c ( )t and the trajectory parameter
at instant k is Yk.

2.5. Adaptive estimation: Kalman filter

The Kalman filter is an optimal linear estimator that infers
parameters of interest from indirect, inaccurate and uncertain
observations. It is a recursive process that updates the filter
model every time a new measurement arrives. Hence Kalman
filtering is a preferred method for real time processing in
various applications and is proved to provide better results
than in batch processing. The Kalman filter minimizes the
mean square error of the estimated parameters in the presence
of Gaussian noises with known mean and variances [26]. The
Kalman filter models a discrete time linear dynamic system in
which the state of the system at any instant of time can be
defined by a linear model. It consists of generative model
which assumes the measured output of the system (EEG
signal) is linearly related to the state (movement trajectory). In
our study, we define the generative model as,

X H Y q 3k k k k ( )= +

Here, Hk is the matrix that linearly relates predictor with state
of the system and the measurement noise is denoted by qk,
which is approximately the normal distribution, Q0, k( )À
where Qk is the noise covariance matrix. The state of the
system at k 1 th( )+ instant is assumed to be linearly
dependent on state at instant k. This concept is used to create
system model which in our system estimates the state of hand
at k 1( )+ .

Y A Y w 4k k k k1 ( )= ++

In the system model, Ak represents the linear coefficient
matrix and process noise, w W0,k k( )» À where Wk is the
noise covariance matrix. The Kalman filter algorithm aims to
predict or estimate hand movement state Yk 1+ from Yk by
following equation (4). The parameters in the model
H Q A W, , ,k k k k are estimated from the data. In this study,
it is assumed that these variables are constant and hence are
estimated from the training data using least square estima-
tion [27].

The estimation of hand state using a Kalman filter
algorithm consists of a priori step estimation, Yk̂

-
of the

obtained state and a posteriori step that provides the final
estimation, Yk̂ by an update Y .k̂

-
The measurement update

equations are further used to estimate the state,

Y Y K X HY 5k k k k k( )ˆ ˆ ˆ ( )= + -
- -

where, Kk denotes the gain matrix. The estimated data, Ŷ is
obtained by accumulating Yk̂ at all k instants.

2.6. Multiple linear regression (MLR)

In this study, we use MLR as a baseline method for trajectory
reconstruction. The objective is to fit the recorded trajectory
parameters over multiple regressor variables by a linear fitting
strategy. The challenge involves defining the multiple
regressor variables or predictors such that the fitting is

4

J. Neural Eng. 12 (2015) 066019 N Robinson et al



efficient for a least square regression approach. The linear
regressor problem can be modeled as,

Y k x k 6
l

L

c

C

l c l cMLR
1

1

1 1

ˆ ( ) ( ) ( )åååb=
t

q

t t
=

+

= =

Here, Ŷ is the estimated value of Y, l cb t is the estimated
regression weight, x kl c ( )t denotes the predictor at instant k
belonging to subband l and recorded from channel c and t
denotes the time lags provided. The regressor equation in (3),
can be expressed in the form,

Y X 7MLRˆ ( )b= ⋅

where .P6 1( )b Î ´ +R An extra column of ones is included to
introduce constant term introduced in the model. This is
solved by using the least-squares method as,

XX X Y 81( ) ( )b = ¢ ¢-

2.7. Predictor subset selection

The estimators in this study uses a set of defined predictors
that includes recorded EEG data from a set of channels, their
time lags and components in various subbands. In a real time
scenario, this amounts to a huge dataset to be processed
instantaneously. Hence there is a requirement to select the
predictors that carry optimal information regarding hand
movement parameters, for their better estimation. It has other
advantages of improving the prediction performance of the
system by removing redundant data and, also, reduction in
processing time. More importantly, the selected predictors are
the ones that can provide best estimation of movement
parameters and hence will point to the brain activity that is
significant in movement definition.

In this study, we use a regression based predictor subset
selection by a backward elimination process [34]. This mode
of predictor subset selection is usually applied for MLR
models to obtain the best fitting combination of variables.
Further, it takes into account the joint predictive capability of
the variables and hence offers better selection than the other
stepwise regression based approached. However, in this
study, we propose to use this approach in a generic manner
that selects an optimal subset of the input predictors which
can later be used for linear estimators such as MLR or Kal-
man filters. The explanation for this backward elimination
procedure is as follows: the MLR model for any given set of
variables is of the form equation (7). Initially, the entire
predictor set is used to determine b using equation (8) and the
p-values corresponding to each predictor. From the non-sig-
nificant predictor set (p-value greater than critical α), the
predictor that is least significant (highest p-value) is removed.
The MLR model is re-calculated using the modified set. The
process is repeated until all the predictors are statistically
significant or have p-values less than critical .a The resulting
predictor set provides that linear combination that best esti-
mates output parameter.

The backward elimination method offers search for the
linear combination of the predictors that provides the ‘best’ fit

using a statistical approach. However, the method fails to
utilize the class labels or movement parameter characteristics
for selection of predictors. To achieve this, we can utilize
variable ranking and selection algorithms based on ranking
parameters such as mutual information (MI), I or correlation
(XC), .P MI is calculated using a supervised approach that
consider the class labels, w of the movement trials [35]. We
have a multiclass problem and hence the calculation is as
follows,

I f f

f f f

; , , , .

log 9
i to

i i

1 2 8

1 8
2( ) ( )

( ) ( ) ( ∣ ) { }
( ∣ ) ( )å

w w w w w w w

w r w r w

= F - F Î ¼

F =-
=

In the equation, we calculate the mutual information of
variable, f with class labels. For ranking the predictors we
define f as the predictor set from equation (2). Here ( )F ⋅
indicates the various entropy measures. In this study, we have
eight different classes, denoted by iw corresponding to four
different directions and two different speeds.

We also used a simpler metric, Pearson correlation
coefficient, P to measure the relation between predictor
variables and recorded movement parameter. The summation
of the coefficients obtained is used to rank the predictors.

f
f Y

f Y

cov ,

var var
10

i

i

i1:6

( )
( )

( )
( )

( )åP =
=

In both these methods, the number of predictors to be selected
is set such that there is no significant fall in the estimation
performance.

2.8. Priori selection of channels

In the methods discussed above, the approach of backward
elimination is more suited for choosing the best fit model.
The variable ranking algorithms fail to identify the sig-
nificance of combination of predictors and also ranking is
made irrespective of spatial, spectral and temporal identities.
Hence, in the proposed approach we perform a priori
selection of channels by variable ranking so that the most
informative channels from various subbands are identified.
The selection is performed using equations (9) and (10). For
calculating mutual information, the variables, f is defined as
the band power from each of the subbands signals. For
calculating the set of channels highly correlated with the
movement parameters, we define variable f as the subband
signal to calculate Pearson correlation coefficient, according
to equation (10). Further, this subset of channels are used to
derive the predictor as per equation (2). In the proposed
approach, the predictors thus obtained undergo a backward
elimination step to get best regressor model. Thus the
combined selection approach provides a considerable
reduction in the number of predictors that builds a faster and
more efficient estimator.

2.9. System block diagram

The previous sections explained the major signal processing
and statistical processing steps in the proposed system. The
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schematic of the BCI system is shown in figure 2 along with
the experiment set-up. The data inputs to the system are
EEG and movement parameter data recorded from the sub-
jects. The data is then pre-processed. It should be noted that
the pre-processing steps are applied to each trials separately
to avoid the overlap of training and test data. The signal then
undergoes a 10-fold cross-validation analysis for perfor-
mance evaluation. In each fold the data is divided into train
and test samples that are decomposed and reconstructed in
non-overlapping subbands by wavelets. The orthogonal
wavelet ‘sym5’ from the symlet family is used in this study.
If channel selection is included in the system, then the
training data is used to choose the informative channels and
applied to the test data. The predictors are then defined using
the proposed approach. The training data is used to perform
a predictor subset and later to calculate a regressor model.
The selected predictor indices and estimator model are used
to estimate the movement trajectory parameters of the test
trials. In our analysis, the constants in the equation (3) are
set to C 35,= and 10q = which is the total number of
channels used for analysis and the time lags respectively.
The performance of the algorithm is reported in terms of
correlation between estimated and recorded movement
parameters. We use Pearson’s correlation coefficient for this
calculation.

3. Results

The results obtained using the proposed estimation approach
and the related analyses are summarized in this section.

3.1. Wavelet subband-power spectra

The proposed method uses DWT for decomposing EEG data.
The objective is to break down the signal into spatially loca-
lized time-frequency components that can estimate movement
trajectory parameters. The power spectra of the subband signals
is computed and demonstrated in figure 3(b). The decom-
position into nine subbands of a single trial EEG signal
recorded from channel C3 of subject-1. The data clearly indi-
cates the orthogonal division by wavelets and shows the higher
concentration of power in low frequency region. Figure 3(c)
shows the EEG signal used for estimating the movement
parameters at an estimation interval=200ms. The spectrum
clearly shows division of low frequency signal components
which can help in linear estimation of low frequency move-
ment parameters. Further, the increase in estimation interval
reduces the overall estimator training time, as it effectively
reduces the sample size by a factor of 50. A similar pattern of
decomposition is shown by all the EEG trials in the dataset.

3.2. Channel ranking

We studied the contributions of each spatial locations on the
scalp in executing a defined movement. As mentioned in
section 2.7, we adopt widely used methods of mutual infor-
mation and cross correlation for evaluating this. Figure 4
shows the spatial distribution of mutual information in the
three different subbands used in the study. High values can be
clearly observed in the contralateral motor and midline par-
ietal regions. It should be noted that these values shows the
channels that contain most information about class labels
rather than the trajectory itself. Further we look into the
Pearson correlation coefficient value obtained in each

Figure 2. Schematic of the proposed BCI system. The various functional blocks of the system and data flow for training and test data are
shown.
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subband as shown in figure 4. This gives a measure of cor-
relation between the spatially recorded EEG and recorded
movement parameters. We can observe a lack of distinct
localization. A possible reason for this is the non-stationarity
between trials which are not considered while calculating
correlation. Hence, unlike the trial-by-trial supervised mutual

information, the bad trials will have a major impact on cor-
relation values. The results indicated are for subject 1.

3.3. Predictor subset selection

We performed the backward elimination method for subset
selection to create a best fit regressor model. As a baseline test,

Figure 3. The decomposition of single-trial EEG signal into various subbands is displayed. (a) The original and down sampled data. (b) The
spectra of original data and (c) Down sampled data. The colors indicate data from different subbands. The higher band power of low
frequency subbands can be clearly observed.

Figure 4. The distribution of metrics: mutual information and
correlation spatially for each of the subbands are indicated in the
figure. The scales are given aside. The data is for subject-1.

Figure 5. Selected predictor indices for the proposed and baseline
methods are shown here. Refer to text for details.
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we also performed regressor selection based on mutual infor-
mation and correlation. The predictors selected in these processes
are indicated in figure 5. In the figure, the x-axis represents
predictor indices, p. For our data, xl ct represents the predictor,
where, l to L to c to C1 1; 1 ; 1 ,t q= + = = with the
constants set to L C2, 10, 35.q= = = The predictors are
indexed as per their order in the predictor set, X, which is
mathematically given by, p C l C c1 1 .( ) ( )q t= - + - +
The method in which predictor is selected using mutual infor-
mation or correlation, it has been noted that the estimation error
increases as the number of predictors decreases. Hence the
number of predictors used is set at 850 to maintain estimation
performance. The backward elimination process, reduces the
predictor number from 1050 to 400 on an average across various
subjects and parameters. The proposed algorithm combining
channel and predictor selections using MI and XC are indicated
in the last two scatter plots. The number of predictors chosen is
250 on an average in both cases and it is seen that, the selected
predictors significantly overlap.

3.4. Trajectory reconstruction and correlation

The main objective of the study is to adaptively estimate the
recorded movement parameters from brain activity. The
figure 6, indicates the reconstructed trajectory using Kalman
filters with a selected subset of predictors. The time segment
selected for the plots are 50 to 150 samples of the test data for
subject 1. The x and y coordinates of speed and position are
indicated in the figure. The estimated absolute movement
speed and position are shown in figure 6. It can be observed
that there is a significant overlap between the estimated and
original parameters.

The performance metric, the Pearson correlation coeffi-
cient obtained as a function of number of predictors is given
in figure 7. The average performance over seven subjects in

the dataset is indicated in the primary axis. We also checked
the statistical significance of the proposed methods as com-
pared to using all predictors for estimation. For better visua-
lization, the plot displays p-values obtained from student’s
t-test as plog .( )- The blue line indicates log ,( )a- where

0.05.a = The results that has statistically significant differ-
ence in performance are indicated by black squares and the
others by black dash markers. For reconstruction using MLR,
the change in performance is negligible, however, the p-value
(p<0.143) indicates that the variation in performance is
statistically insignificant. In the case of Kalman filters, it can
be observed that the performance falls from 0.60 to 0.58, as
the number of predictors change from 1050 to 250. The
p-value (p<0.01) shows that the predictor selection cause a
statistically significant change in Kalman filter performance
and hence the estimation results.

3.5. MLR: predictors

The values of MLR coefficients estimated by equation (8)
indicate the contribution of each of the predictors in the
regressor model. Figure 8 indicates the coefficient values
obtained for each of the predictor indices, p. It is interesting
to note that the predictor contribution is significant in the last
subband (predictor indices 700–1050) and is almost negli-
gible in the others. The red plot indicates the MLR value for
selected predictors.

3.6. Kalman: gain, time

A major contribution of this work is that our method allows
estimation of movement parameters from a selected number
of predictors without degrading performance. Hence, we
analyze the characteristics of Kalman filters in order to justify
the need of predictor subset selection. The stability of the

Figure 6. The trajectory parameters reconstructed using proposed adaptive estimator with selected predictors.
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Figure 7. The results of the proposed methods and comparisons with the baseline methods are provided. Figures (a) and (c) displays results
using channel and prediction algorithms based on MI. Figures (b) and (d) are based on XC.

Figure 8. The linear coefficients corresponding to each of the predictors calculated using the multiple linear regressor is provided. The
coefficients re-calculated using the selected predictors using the proposed approach is also provided.
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Kalman filter model is determined by the convergence of that
gain and error matrices. In figure 9 we show the evolution of
these matrices versus the iteration. From the figure, it is
evident that the selected informative features give a stable
Kalman model, which converges quickly to give stable model
parameters. The performance of the Kalman filter can dete-
riorate due to the high number of predictors which may give
redundant, non-stationary information. As we propose this
method as an adaptive estimator, it is important to consider
the performance in terms of time for estimation. Figure 9(d)
indicates the average time taken by MATLAB R2012a and an
Intel® Core™2 Duo 3.16 GHz processor. This indicates on
an average, the proposed system estimates 2 s long single trial
data, 205 ms after its arrival as compared to the original
approach that takes 1.23 s. Thus an 83.3% speed-up is
obtained in estimation of movement parameters using the
proposed BCI system.

4. Discussion and conclusions

4.1. Low frequency nature of parameters

The estimation of movement parameters from brain activity
have been attempted by various researchers using invasive
and non-invasive methods [11–23]. A highlight in all the
experiment paradigms is the nature of movement considered,
which a multi-directional hand movement is at a normal pace.
On analyzing the speed and displacement caused by this
movement, it can be noted that, it is a low frequency, smooth
curve contaminated by motion and sensor artifacts. The
analysis methods in the literature discards the high frequency
information in recorded brain activity, by using mathematical
tools, such as linear estimators to predict the low frequency
movement parameter. In this regard, our attempt is to define
predictors from the recorded brain activity, in this case, EEG,
such that they can best estimate a low frequency movement
speed or position information.

In our proposed analysis, we chose DWT for subband
decomposition of the signal over traditional filters. Wavelets
can decompose the highly non-stationary EEG signal into
time-frequency localized data. Also, the orthogonal filter bank
structure provided by DWT, allows better localization of the

low frequency signal, as clearly observed in figure 3. The use
of DWT reduces the filter design costs in the traditional filter
bank approaches for a real time application.

4.2. Kalman and adaptive estimation

The Kalman filter was used to adaptively estimate the
movement task performed in this study. Being a widely used
tool for estimation of data, the performance of the Kalman
filter is undisputed. However, the predictors that we provide
as input to the Kalman filter can have a major influence on the
Kalman model and its stability. The predictor design which
we propose thus provides a complete description of brain
activity recorded at each sample time. The performance of the
Kalman filter using all the predictors gives the best result of
(0.60±0.07) mean correlation between recorded and esti-
mated trajectory. The proposed approach of channel and
predictor selection gives a performance of (0.57±0.08,
p<0.004) which is slightly lesser compared to the baseline
method, but offers a 76% reduction in number of predictors.
The Kalman filter properties were explained in section 3.6.
The time overhead caused by the Kalman filter is only around
27 ms after every trial using the selected set of predictors from
the proposed approach, as shown in figure 9.

4.3. Advantages of proposed predictor selection strategy

The advantages of the proposed Kalman modelling from a
selected subset of predictors are evident from the performance
achieved. The method clearly proves that to obtain a best fit
the regressor statistics should be considered and hence
backward elimination is apt for predictor selection. Incor-
porating a prior channel selection using MI or XC approaches
to this, we are able to considerably reduce the number of
predictors while maintaining the performance. This is clearly
seen in figure 7, when using the Kalman filter, a prior
selection of channels using both MI and XC correlation drops
from 0.60 to 0.57. For the slight drop in performance both
methods eliminates around 800 insignificant predictors. The
further advantages of subset selection are observed in
figure 9. The Kalman estimator characteristics clearly indi-
cates a stable model with fewer, more optimal, number of
predictors. The saving in time is shown in figure 9(d), that

Figure 9. The various performance indicators of the Kalman filter used is shown in the figure. The L2 norm differences between consecutive
samples for (a) Kalman gain, (b) priori error covariance matrix, (c) posteriori error covariance matrix, and (d) the time consumption.
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shows with a fewer number of optimal predictors the time
taken for estimation is reduced from 1.05 s to 27 ms. This is a
major highlight in the proposed algorithm, as delay needs to
be kept at a minimum for real time BCI applications. The
results obtained clearly prove that the proposed algorithm is
most suited for adaptive estimation of movement trajectory
using EEG signals only.

4.4. Linear decoding performance

The literature [36] reports possible misinterpretation of results
when using linear decoders for reconstruction of movement
kinematics. In this regard, we have included certain tests to
justify the significance of our study. First the reconstruction
using the linear decoders is tested against chance-level
models to ensure statistical significance of the results. The
original estimator model using the entire set of predictors was
applied to reconstruct shuffled test data. The shuffling and
decoding was repeated for 32 times and the average correla-
tion was reported. The chance level results obtained is an
average accuracy of (0.20±0.03) whereas the original
model provided (0.57±0.07) which is higher and statisti-
cally significantly (p<1.6e-5). This indicates that the pro-
posed reconstruction strategy effectively makes use of neural
correlates of movement kinematics and the results are not by
chance. Further we tested the reconstruction performance in
various subbands and have identified that the lower spectral
region (<3 Hz) provides statistically significant and better
performance. Our previous studies [17, 18] using wavelet
based features for classification of movement parameters also
indicated the neural correlates of movement to be in the low
frequency region, even without linear decoders. Hence, the
results reported in this paper are valid and future studies will
aim to use the proposed wavelet-based predictors on non-
linear decoder models to confirm these findings.

4.5. Limitations and future work

The linear mathematical model used in the proposed method
limits the usage of brain activity information from the higher
frequency ranges in the estimator. However, there are no
studies in the literature that confirm the involvement of high
frequency EEG for movement reconstruction. This will be an
interesting area to explore, by using nonlinear estimators to
reconstruct movement parameters from wideband EEG.

Regarding the selection procedures used, even though the
performances of the algorithms at two different stages can be
justified, the proposed method lacks a selection algorithm that
can simultaneously choose the optimal spatial, spectral and
temporal predictors from the brain activity and also that can
create the best-fit estimator model. Another disadvantage is
regarding the use of the backward elimination method, which
is not optimal as the significance of a predictor can vary
depending on its varying combination with other predictors in
the model. Novel algorithms that can address these issues
simultaneously are desired as an extension of this work in
future.

4.6. Conclusions

In this study, we used adaptive linear estimators to reconstruct
the trajectory parameters. Wavelet decomposed spatially and
temporally localized EEG signals were used as predictors for
the estimator. Our method is advantageous as we utilize the
low frequency EEG signals as predictors to estimate low
frequency movement parameter signal. The proposed method
uses a two-stage selection approach in which the spatial
selection is performed initially and a predictor selection at the
later stage. The selected predictors are used to estimate the
movement trajectory by using the Kalman filter. The higher
performance in terms of correlation, estimator properties and
time consumption are explained in detail in the study.

The performance and analysis results of our proposed
approach indicate its applicability in adaptively reconstructing
movement parameters from scalp recorded EEG. This can be
extended to real-time experiments considering the advantages
in stability of model and delay. Furthermore, the study can be
also be extended and applied in real time experiments to
estimate imagined movement trajectory from brain signals.
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