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Abstract—Technology development in wearable sensors and
biosignal processing has made it possible to detect human stress
from the physiological features. However, the intersubject differ-
ence in stress responses presents a major challenge for reliable and
accurate stress estimation. This research proposes a novel cluster-
based analysis method to measure perceived stress using physio-
logical signals, which accounts for the intersubject differences. The
physiological data are collected when human subjects undergo a
series of task-rest cycles, incurring varying levels of stress that is
indicated by an index of the State Trait Anxiety Inventory. Next,
a quantitative measurement of stress is developed by analyzing
the physiological features in two steps: 1) a k-means clustering
process to divide subjects into different categories (clusters), and
2) cluster-wise stress evaluation using the general regression neural
network. Experimental results show a significant improvement in
evaluation accuracy as compared to traditional methods without
clustering. The proposed method is useful in developing intelligent,
personalized products for human stress management.

Index Terms—Clustering, physiological signal processing, stress
evaluation.

I. INTRODUCTION

E STIMATION of event-based stress is a fundamental issue
of stress management. As known in psycho-physiological

studies, a person’s physiological features are correlated with
his/her stress levels [1]–[3]. Therefore, they can be used to con-
struct an objective measurement of the stress. Prior work in
stress measurement has been focusing on the collection and
analysis of physiological data and the identification of the cor-
relation between perceived stress and multiple physiological
features [4], [5]. However, reliable and accurate estimation of
stress levels using physiological data is challenging due to the
complex, multivariate relationship between the stress and hu-
man physiology [6], [7]. This necessitates the identification of
appropriate physiological features, and the development of reli-
able methods for predicting stress levels based on these features.

Among the many barriers to reliable stress evaluation, the in-
dividual subjects’ differences in stress response (i.e., how a per-
son’s physiology changes in response to stressful events) is one
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that has not been effectively tackled [8], [9]. A common method
to deal with this issue is to calibrate the biosignals against a set
of baseline data, where a certain stress level (typically low or ab-
sence of stress) is induced in a stress-free environment [4], [9].
However, the usage of a baseline can be tricky depending on if
the baseline is built for individual users or for a group of users.
Collecting and utilizing the baseline data for an individual user
may improve the accuracy of stress evaluation for that particular
user, but not for the other users, whereas a baseline for the entire
population may not be adequate to deal with intersubject differ-
ences. Some research introduces person-specific parameters to
deal with variations in individual stress response [9]. However,
such a strategy relies on the training of models with respect to
individual users, which hampers its generalizability. Alterna-
tively, to develop generic methods for pattern recognition, some
studies adopt a feature selection process to enhance the pre-
dictive accuracy [10]–[12]. Nonetheless, the feature selection
is usually carried out for the whole population. Therefore, they
had limited power in personalized stress evaluation.

The objective of this research is to accurately evaluate human
stress while accounting for the intersubject differences. Data
are collected in an experimental environment where subjects
underwent a series of task and rest cycles, incurring varying
levels of physical and emotional stress. This study adopts the
State-Trait Anxiety Inventory (STAI)-Form Y1 for annotating
the event-based temporary stress [13]. Next, a two-stage pro-
cedure for stress measurement is designed for data analysis.
1) A cluster analysis is carried out using a subset of data sam-
ples, so that individual subjects are assigned to one of a few
clusters. 2) Cluster-wise stress evaluation is performed using a
general regression neural network (GRNN). The novelty of this
research lies in the clustering process that assigns subjects into
subgroups, so as to exploit the inherent homogeneity of sub-
jects’ stress response within the clusters (i.e., subjects within
the same cluster are expected to share similar patterns of stress
response). Thus, the intersubject differences are automatically
accommodated, and the overall accuracy of the stress evalua-
tion is improved. The performance of cluster-based analysis is
evaluated using cross-validation methods. It is shown that the
method is effective in dealing with the intersubject differences.
To the best knowledge of the authors, this is the first attempt to
design and evaluate a cluster-based analysis method for dealing
with the intersubject difference in stress evaluation.

II. RELATED WORK

Under stressful conditions, measureable changes can be found
in human physiology, such as increased heart rate and blood
pressure, reduced skin resistance, enlarged pupil size, etc. This
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TABLE I
RELATED WORK

is the biological basis of stress measurement using physiological
signals, which is an alternative way to stress evaluation based
on subjective self-report. Along this line, many researchers de-
velop the hardware and software solutions to stress measure-
ment [1], [2], [4], [5], [14]–[16]. Hardware solutions are mainly
concerned with the development of wearable and robust sen-
sors for biodata collection. Software development focuses on
the biosignal processing, i.e., to effectively extract meaningful
patterns from the collected data. Along this line, the evaluation
of the stress from the collected signal faces many challenges,
such as the establishment of reliable “ground truth” of stress lev-
els [5], [6], and the individual differences in stress responses [5].
To examine the prevalent solutions to these challenges, the study
summarized related work in this field focusing on answers to
the following questions (see Table I).

1) What type of stress does the study address?
2) How is the stress incurred?
3) How is the stress annotated?
4) What type of physiological signals is used as the predictors

(i.e., the input feature)?
5) What is the data processing technique?
6) Does it consider the individual differences? If so, how?
As seen from the literature, while it has been widely rec-

ognized that individual difference is present in human’s stress

response, little has been done to mitigate such differences. A
few studies resort to a calibration process against the baseline
period [4], [5], [12], [15]. However, it makes the process com-
plex and unpredictable especially outside a laboratory environ-
ment. A personalization parameter is used in the classification
algorithm based on a support-vector machine [9]. However, the
effectiveness of the method is not validated by performance eval-
uation. A self-organizing map is used in a stress study to form
local clusters by preserving the topological relationships [17].
It is suggested that larger grids lead to better performance since
they account for more patterns of stress responses. However,
the validity and generalizability of the method are not examined
because only three grid sizes are tested. In summary, existing
work lacks effective mechanisms to tackle intersubject differ-
ences using a generic model for stress evaluation. Moreover, it
usually involves a complicated calibration process that hampers
its applications.

III. EXPERIMENTAL DESIGN

A. Experimental Procedure

A general experimental procedure includes three stages in
which a subject carries out the following main activities: 1) ini-
tial rest (5 min), 2) task load (5 or 20 min), and 3) recovery
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Fig. 1. Experimental procedure.

TABLE II
EQUIPMENT FOR THE EXPERIMENT

rest (15 min) (see Fig. 1). In the experiment, a participant went
through one of two types of tasks, namely, physical or cog-
nitive task. In the physical task, a subject did a squat-stand
exercise continuously for 5 min at a pace that was consid-
ered challenging to him/her. In the cognitive task, a subject
completed six computer-mediated tasks that involved different
types of cognitive workload, such as attention, calculation, and
memory. These tasks included go/no-go visual reaction time,
color reading interference (stroop), fast counting, PASAT speed
run, visual forward digit span, working memory test (n-back)
(http://cognitivefun.net/). Each task lasted for 3–4 min, such that
the total time of cognitive task was 20 min. During the task load
period, the experimenter constantly challenged the subjects to
achieve higher performance, so as to incur adequate stress.

The STAI form Y1 (state anxiety) was deployed immediately
after the rest or task load period, where the order of the question-
naire items were randomized for each stage. Finally, the STAI
form Y2 (trait anxiety) was deployed after the last Y1 form. A
total of 44 male subjects were recruited, who were healthy adults
without mental/emotional disorders, with no symptoms or his-
tory of cardiovascular or respiratory disorders. Subjects were
randomly assigned to the physical- and cognitive-task groups,
with equal number (22) in the each group. The mean age of the
subjects was 28.6 years, with a standard deviation of 7.2 years.

B. Equipment Configuration

A set of noninvasive, wireless sensors was used to collect a
subject’s physiological signals including, electrocardiography
(ECG), galvanic skin response (GSR), electroencephalography
(EEG), electromyography (EMG), and saturation of peripheral
oxygen (SpO2). A summary of the equipment configuration
is shown in Table II. The sensors were connected to a PC
via Bluetooth and data from different channels was synchro-
nized. All events related to different stages of the experimental

procedure were labeled using time stamps. Physiological fea-
tures that potentially correlate with physical/mental stress were
extracted from the raw data collected by the sensors.

IV. DATA ANALYSIS

A. Stress Indices

The subjects’ stress levels were derived from the STAI-Y1
scores. Cronbach’s alpha for the three experiment stages are
0.923 (baseline), 0.899 (task load), and 0.904 (treatment), show-
ing high internal consistency of the questionnaire items. Next,
the scores are checked for potential outliers by applying the fol-
lowing exclusion criterion. Let Sij (i = 1, 2,: : : , N ; j = 1,2,3)
denote the STAI-Y1 scores of subject i in three stages, namely,
baseline (j = 1), task load (j = 2), and treatment (j = 3); N is
the number of subjects. A record i is excluded if Si2 < Si1 and
Si2 < Si3 . This is because a subject is expected to feel more
stressful after the task load (Si2) than after the initial rest (Si1)
and recovery (Si3) periods. Three (3) cases were excluded by
applying this criterion. Next, the normalized stress indices (sij )
for subject i is computed as

sij =
Sij − min (S)

max (S) − min (S)
(1)

where max(S) and min(S) refer to the largest and smallest STAI
scores of all subjects in three stages. Thus, the stress indices are
within the range of [0, 1].

B. Feature Extraction

Prior work has shown that a person’s perceived stress is cor-
related with various physiological features. In this research, 15
features were extracted for analysis.

1) Mean and standard deviation of GSR [4], [15], [21].
2) Mean SpO2.
3) Mean and standard deviation of EMG [4], [22], where

the raw EMG data is full-wave rectified, averaged with a
time interval of 0.1 s, and filtered using a band-pass of
5–300 Hz.

4) Mean heart rate (HR) and heart rate variability (HRV)
[2], [5], [23]. First, the interbeat interval was computed
from the raw ECG data. Next, five features were extracted
using the Kubios HRV (http://kubios.uku.fi/): 1) mean HR,
2) pNN50–the portion of normal sinus intervals exceeding
50 ms, 3) LF power (the power of the low frequency
band 0.04–0.15 Hz), 4) HF power (the power of the high
frequency band 0.15–0.4 Hz), 5) LF/HF, which is the ratio
of power in the low- and high-frequency bands.

5) Mean spectral power of EEG in four bands. These are
1) δ power (1–4 Hz), 2) Θ power (4–8 Hz), 3) α power
(8–13 Hz), and 4) β power (13–20 Hz). In addition, the
ratio of Θ and α is computed (Θ /α) [1]. To cancel out
the effect of ocular artifacts in the raw EEG signal, this
research adopted the wavelet transformation method [24].

Before computing these features, the raw signals were nor-
malized against the baseline mean values of the respective fea-
tures. Next, these 15 features were computed with respect to
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Fig. 2. Sample features (GSR, EMG, HR, EEG) for a subject. Shaded areas
are time period from which the features are used for data analysis.

three experiment stages, namely: 1) the last 3 min of baseline
rest, 2) the last 3 min of the task load period, and 3) the last
5 min of recovery rest. Presumably, the first data segment char-
acterized a baseline low stress state. The second segment was
related to a high stress state, and the third segment corresponded
to a low stress state, i.e., recovery from a high stress level. For
each data segment, the signal was divided into frames of 30 s
with 50% overlap. Each frame was multiplied by a Hamming
window to minimize signal discontinuities at the end of each
frame [21].

For each subject, there were 41 frames (baseline: 11, task
load: 11, and recovery: 19). Finally, for each frame of the feature,
it was labeled with the STAI stress index based on the activity
stage it belonged to (i.e., baseline, task load, and recovery rest).
Fig. 2 illustrates some of the features used for stress estimation.
Due to broken data during recording, two subjects were excluded
for further analysis. Therefore, 39 subjects were included in
subsequent analysis —21 belonging to the physical task group,
and 18 the cognitive task group.

C. Cluster-based Analysis

The idea of cluster-based analysis originates from the obser-
vation that different physiological features have varying predic-
tive power in stress evaluation for individual subjects, and that a
few subjects may share certain similarity in their stress response.
For example, some subjects may have identical HRV change pat-
terns, while others may exhibit similar GSR change patterns. It
follows that HRV might be a good predictor for the former, and
GSR for the latter. If a single model is built using the cohort
data of all subjects, which was the strategy adopted by most
legacy methods, an implicit assumption is that all the subjects
have homogeneous stress responses. Alternatively, if a model is
built for an individual subject, the stress prediction might be su-
perior for that particular subject, but poor for the other subjects.
In addition, when individual models are used, one has to build

Fig. 3. Principle of cluster-based analysis.

many models for each and every subject. Accordingly, it would
be difficult if not impossible to select an appropriate model for
unseen datasets, thus jeopardizing its predictive power.

To alleviate such a problem, a two-stage procedure is pro-
posed in this research, where a clustering process is used to
divide subjects into a set of subgroups. The principle of the
cluster-based method is shown in Fig. 3. First, the collected fea-
ture data are divided into the training set and the testing set. The
former is used to build the model and the latter is used to test the
performance. For a training dataset, the feature data of the base-
line stage is used to do the clustering. Let the baseline feature
vector be denoted as f (i ; j ) = [f 1

(i ; j ) ; f
2
(i ; j ) ; : : : ; f

n
(i ; j ) ], where

i(∈ 1; 2; : : : ; N)) is the index of a subject, j(∈ 1; 2; : : : ; m)
is the frame index (m = 11 in this case), and n is the number of
features (n = 15). The feature center of subject i is computed
as

⇀

f
C

i =
[
f 1
i ; f 2

i ; : : : ; fn
i

]

=
[ ∑ m

j = 1 f 1
( i ; j )

m ;
∑ m

j = 1 f 2
( i ; j )

m ; : : : ;
∑ m

j = 1 f n
( i ; j )

m

]C

i
: (2)

Next, a k-means clustering is carried out so that the subjects
are assigned to a subgroup based on the feature centers of the

respective subjects (
⇀

f
C

1 ;
⇀

f
C

2 ; : : : ;
⇀

f
C

N ), i.e., the feature center is
used as the coordinate of a subject. A subject i is assigned to
one of K clusters. Assuming a set of subjects i′ ∈ (1; 2; : : : ; Nk )
belongs to the cluster k, the center of cluster k is computed as

Ck =

[∑Nk
i ′=1 f 1

i′

Nk
;

∑Nk
i ′=1 f 2

i′

Nk
; : : : ;

∑Nk
i ′=1 fn

i′

Nk

]
: (3)

In the second stage, a regression analysis is carried out using
the GRNN with respect to individual clusters based on the train-
ing dataset belonging to the task load and recovery stages. This
leads to a set of K GRNN models that minimize the cluster-wise
error.

Once the GRNN models are built for all clusters, the stress
evaluation for a new subject is carried out as follows. The testing
dataset is considered as a dataset of new subjects. The input to
the model is a dataset consisting of a set of baseline features,
and nonbaseline features. The baseline feature center is com-
puted using eq. (2). The Euclidian distances between the feature
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Fig. 4. Stress indices in three stages.

center and all K cluster centers are computed. The subject is
assigned to the cluster of minimum distance. In so doing, the
corresponding GRNN model is triggered to evaluate the stress
level of the nonbaseline features. The subject’s stress level can
be predicted using the selected GRNN model. The system per-
formance is computed as the difference between the predicated
stress level and the stress indices captured by the normalized
STAI score.

V. RESULTS

A. Perceived Stress Level

The perceived stress effectively reflects the change of stress
due to task load and recovery rest (see Fig. 4). The paired t-test
showed a stress level after the task load stage was significantly
higher than after the baseline stage (t = 3.782; p < .001) and re-
covery stage (t = 3.989; p < .001). The mean stress indices for
the baseline and recovery stages were identical with t = 0.155
and p = .877. The mean trait anxiety was examined for the
physical and cognitive task load groups. No significant differ-
ence was found in the trait anxiety (t = .809 and p = .420).
This is desirable because it ruled out the influence of long-term
stress on the subjects’ responses.

B. Sensitivity Analysis

Since the number of clusters may influence the performance
of the stress evaluation, it is necessary to compare the system
performance with respect to the cluster numbers. The cluster
number that achieved optimal overall performance is used in
the final model. Sensitivity analysis is carried out by varying
the number of clusters. Note that when the number of cluster
is “1,” it means that all training data are assigned to the same
group, so that it is equivalent to doing a GRNN over all data
frames without clustering. Moreover, the procedure is repeated
with respect to three datasets differentiated by the task type:
1) the physical task (21 subjects), 2) the cognitive task (18), and
3) both tasks (39). The population-wise performance is tested
using a leave-one-out cross validation. That is, for each training-
testing round, feature data belonging to one subject was used
for testing, and the rest was used for training.

Fig. 5. Sensitivity analysis—task type and the number of clusters.

Fig. 5 shows the accuracy of stress evaluation with respect
to the three datasets and different number of clusters. Let R be
the mean difference between the predicted stress level and the
normalized stress indices associated with the feature vectors.
The accuracy was computed as 1−R. As seen from the result,
the optimal performance was 0.852, which was achieved when
all subjects (both task groups) were included for training, and
when there were 2 clusters. The performance was reasonably
good if only 1 cluster was used. This was especially true when
data belonging to a single-task type was used, such that the
performance of 1-cluster and 2-cluster was identical. This can
be attributed to a more powerful GRNN model that enjoyed a
larger dataset for training (Note that the GRNN models were
built cluster-wise). When there were more than 3 clusters, the
performance plummeted, irrespective of the task type.

C. Effect of Clustering

Although the overall performance was improved due to the
clustering procedure, it is necessary to find out whether such
an improvement was facilitated by the homogeneity of subjects
within the clusters, which in turn contributes to better predictive
power of the cluster-wise GRNN model. Note that in the testing
stage, only one GRNN model was selected depending on which
cluster center was closest to the subject’s baseline feature center.
It was expected that the performance of the selected GRNN
model was better than the other GRNN models (referred to as
alternative models). To verify this, the accuracy of the selected
GRNN model was compared against the alternative models. In
this study, only the 2-cluster case was investigated. The testing
process was designed so that both GRNN models were used to
predict the stress level of the testing dataset.

When all data were used (both physical and cognitive tasks),
the mean accuracy of the selected model was 0.852 (std = .08)
and that of the alternative model was 0.732 (std = .11). The
paired t-test showed significant difference in the accuracy of
the selected model and alternative model (t = 29: 4; p < .001).
Moreover, the test procedure was carried out for data belong-
ing to individual task types (i.e., physical or cognitive task); it
was observed that the selected model consistently outperformed
the alternative model with p < .001. Therefore, the clustering
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Fig. 6. Performance comparison of the selected model versus alternative
model.

process indeed contributed to better system performance. The
comparative result is shown in Fig. 6.

VI. DISCUSSIONS

The proposed method was validated under conditions of both
physical and cognitive stressors. To do so, the study included
separated analysis for the physical and cognitive task conditions,
as well as the combined conditions (see Fig. 5). Due to the small
sample size, the significance of the method in the separated task
conditions was not as obvious as in the combined condition.
This is because cluster analysis improves system performance
at the expense of reducing the predictive power of individual
GRNN models, i.e., these models are built on a smaller dataset
than if all samples are assigned into the same cluster. Therefore,
one needs to ensure that sufficient samples are collected for each
cluster. In the study, it is seen that despite the reduced sample
sizes in the separated conditions, the clustering does not result
in worse performance per se.

The performance of the model is dependent on the number
of clusters. Thus, sensitivity analysis is needed to determine an
appropriate number of clusters. Based on the analysis, it was
shown that the number of clusters was typically small (in this
case 2 clusters) in order to achieve optimal performance. So,
it is advisable to test the system performance by restricting the
number of clusters to a small value. However, the current result
was based on a small dataset. For a large dataset with sufficient
samples, one may test out more cluster numbers.

One limitation of the study is the naive strategy of cluster-
ing. The baseline features used for the clustering were collected
when subjects were in a relaxed state. An alternative strategy
is to trigger certain stress change in the baseline and use the
change of physiological features to do the clustering. Never-
theless, this research proposes to use the relaxed state baseline
data for clustering because it greatly simplifies the calibration
process. In fact, it would be tedious and costly to include an
additional stress-inducing period that is difficult to be replicated
outside a laboratory. In this sense, the proposed method has
greater application potentials.

Another limitation is related to the control of task difficulty
for inducing stress. It is suspected that personal characteristics,

such as emotional intelligence affect a person’s endurance to
stressors. In this study, this is partially alleviated by controlling
the task difficulty during the experiment to suit the subjects’
potentials.

Finally, for feature extraction, this study used 30-s win-
dow, which is a bit narrow especially for computing the low-
frequency power of HRV. The choice of the time window has
considered 1) the limited length of high-quality data for all task
stages, 2) the desire to have more data points within the pe-
riod of data collection, and 3) extraction of meaningful features
for all signal channels. Despite the limitation, in case the low-
frequency HRV power is unstable and unreliable, the GRNN
model will reduce its weightage. Therefore, it will not have a
significant effect on the final result.

VII. CONCLUSION

This paper presents a stress evaluation method that employs
a novel clustering procedure to accommodate the individual
differences. Effective evaluation of the stress level is a useful
step toward computational intelligence where computers can
“understand” users in an unobtrusive way. Unlike traditional
methods that either built a single model using the cohort data
from all subjects, or constructed specific models for individ-
ual subjects, the proposed method exploits the homogeneity of
subjects in the change of their physiological features due to
stress. The effectiveness of the system is examined through the
sensitivity analysis. It is found that a small number of clusters
represented a good balance between within-cluster homogeneity
and between-cluster heterogeneity. The study conducted empir-
ical validation on the effect of clustering—the model selection
does improve the system performance. The method paves the
way toward building customized models for sensor-based better
human stress evaluation.
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