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Abstract Motor imagery-based brain-computer interface (MI-BCI) has been
proposed as a rehabilitation tool to facilitate motor recovery in stroke. How-
ever, the calibration of a BCI system is a time-consuming and fatiguing process
for stroke patients which leaves reduced time for actual therapeutic interac-
tion. Studies have shown that passive movement (PM) (i.e. the execution of a
movement by an external agency without any voluntary motions) and motor
imagery (MI) (i.e. the mental rehearsal of a movement without any activa-
tion of the muscles) induce similar EEG patterns over the motor cortex. Since
performing PM is less fatiguing for the patients, this paper investigates the
effectiveness of calibrating MI-BCIs from PM for stroke subjects in terms of
classification accuracy. For this purpose, a new adaptive algorithm called filter
bank data space adaptation (FB-DSA) is proposed. The FB-DSA algorithm
linearly transforms the band-pass filtered MI data such that the distribution
difference between the MI and PM data is minimized. The effectiveness of the
proposed algorithm is evaluated by an offline study on data collected from 16
healthy subjects and 6 stroke patients. The results show that the proposed FB-
DSA algorithm significantly improved the classification accuracies of the PM
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and MI calibrated models (p < 0.05). According to the obtained classification
accuracies, the PM calibrated models that were adapted using the proposed
FB-DSA algorithm outperformed the MI calibrated models by an average of
2.3% and 4.5% for the healthy and stroke subjects respectively. In addition,
our results suggest that the disparity between MI and PM could be stronger
in the stroke patients compared to the healthy subjects, and there would be
thus an increased need to use the proposed FB-DSA algorithm in BCI-based
stroke rehabilitation calibrated from PM.

Keywords Adaptation · Brain-computer Interface · Motor Imagery · Passive
Movement · Stroke Rehabilitation.

1 Introduction

A brain-computer interface (BCI) provides a direct communication pathway
between a human brain and an external device [1,2]. Using appropriate sen-
sors and data processing algorithms, a BCI maps patterns of brain activity
associated with a volitional thought onto signals suitable for communication
and control [3,4]. Such technology holds great promise as a basis for assisting
people with severe communication and motor disabilities. More recently, BCI
systems have been adapted to operate so as to encourage neurophysiological
activity that might promote motor recovery in conditions such as stroke [5–7].
Several studies have demonstrated that motor imagery (MI) has a positive
effect on motor rehabilitation after stroke through activation of the affected
sensorimotor networks [8–10]. Since the performance of MI is internal to the
subject, and thus not directly observable, BCI can facilitate the MI-based
stroke rehabilitation by providing direct and immediate feedback on the MI
performance.

In most of BCI systems, brain signals are measured by electroencephalo-
gram (EEG), due to its low cost and high temporal resolution [2]. However,
the EEG patterns used for discerning MI vary considerably between sessions
even for the same subject [11]. Thus, MI-BCIs typically require the record-
ing of labeled training data (acquired without giving feedback to the patient)
during a so called calibration phase at the beginning of each session. The cal-
ibration phase takes around 20-30 minutes, and is thus time-consuming and
tedious, particularly for patients who require long-term BCI therapy. Hence,
algorithms that require less calibration time is highly desirable for patients
use.

Several approaches have been proposed in the literature to remove the
calibration phase, for example, through concatenating and clustering historic
spatial filters and data from the same subject [12–14], or by creating an ensem-
ble of historic spatial filters and classifiers derived from different subjects [15].
These methods, however, require a large amount of historic data to be avail-
able. Other techniques have sought to reduce the calibration phase through
the use of co-adaptive methods or semi-supervised learning approaches [16–21].
These methods may initially have a limited performance, but it improves after
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a considerable adaptation time. Despite several studies in this issue, reducing
the calibration time has still remained a challenging issue.

Previous research studies have demonstrated that specific EEG synchro-
nization (ERS), are largely similar during passive movement (PM) and MI
[22–24]. Therefore, PM could potentially serve as a repeatable, and observable
input to produce the stereotypical EEG patterns required for calibrating a
BCI model. Since PM exercises are a part of normal stroke rehabilitation [25],
MI-based BCI rehabilitation therapy could start immediately by training the
classifier using the PM data collected in the previous physical therapy session.
The issue is that PM-induced EEG patterns may not be identical to those
produced during MI [24,26], and further, due to other inter-session variations
(e.g. electrode positioning, cognitive state etc), the use of adaptive methods
may be required to enhance the performance of a BCI system calibrated in
this way.

To address this issue, this paper proposes a new filter bank data space
adaptation (FB-DSA) algorithm to linearly transform the filter bank band-
passed MI data, such that the distribution difference between the PM and MI
data is minimized. This algorithm is a modified version of our previously pro-
posed algorithm called EEG data space adaptation [27]. The performance of
the proposed FB-DSA algorithm is evaluated on data collected from 6 stroke
and 16 healthy subjects. The experiments performed for both the stroke and
healthy subjects are based on those previously practised for MI-BCI in stroke
rehabilitation [5]. For the first time, this paper also provides evidence sup-
porting that the disparity between PM and MI is significantly stronger in the
stroke patients compared to the healthy subjects, and it would thus increase
the need to use adaptive algorithms such as the proposed FB-DSA algorithm
in BCI-based stroke rehabilitation calibrated from PM data.

2 Methodology

2.1 Filter bank common spatial patterns (FBCSP)

Recently, the FBCSP algorithm [28] was proposed that combined a filter bank
framework with the common spatial patterns (CSP) algorithm [31] to select
the most discriminative features using a mutual information-based criterion
[29]. In this paper FBCSP was used to classify the EEG data as it was the
basis of all the winning algorithms in the EEG category of the BCI competition
IV [30]. The FBCSP algorithm comprises the following steps:

1. Spectral filtering: This step uses a filter bank that decomposes the EEG
data using nine equal bandwidth filters, namely 4-8, 8-12, ..., 36-40 Hz.
These frequency ranges cover most of the manually or heuristically selected
settings used in the literature.

2. Spatial filtering: In this step, the EEG data from each frequency band are
spatially filtered using the CSP algorithm. Let xb∈Rn×s represent a single-
trial EEG data from the bth band-pass filter, where n and s denote the
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number of channels and the number of measurement samples respectively.
The CSP matrix linearly transforms xb to spatially filtered Zb as

Zb = Wb xb, (1)

where Wb∈Rn×n denotes the CSP matrix. Wb, is generally computed by
solving the eigenvalue decomposition problem:

Cb,1Wb = (Cb,1 + Cb,2) WbD, (2)

where Cb,1 and Cb,2 are respectively the averaged covariance matrices of
the band-passed EEG data of each class; D is the diagonal matrix that
contains the eigenvalues of (Cb,1 + Cb,2)−1Cb,1. A direction that has a
large variance in events of one class (high eigenvalue) has a small variance
in events of the other class (low eigenvalue). Usually, only the first and last
m rows of Wb, corresponding to the highest and lowest eigenvalues, are
used as the most discriminative filters to perform spatial filtering [33].

3. Feature extraction: The m pairs of the CSP features corresponding to the
ith trial from the bth band-pass filter are computed as [33]

fb,i = log(diag(zb,iz
T
b,i)/tr[zb,iz

T
b,i]), (3)

where fb,i ∈ R1×2m; zb,i represents the first and the last m rows of Zb;
diag(.) returns the diagonal elements of the square matrix; tr[.] returns the
sum of the diagonal elements of the square matrix; and the superscript T
denotes the transpose operator. Since the nine frequency bands are used,
the feature vector for the ith trial is formed as

Fi = [f1,i , f2,i , ... , f9,i], (4)

where Fi ∈R1×18m. In this study, m = 2 pairs of the spatial filters were
used as suggested in [28].

4. Feature selection: The last step selects 4 pairs of the features from the
feature vector F as the most discriminative features using the mutual
information-based best individual feature (MIBIF) algorithm [29]. The se-
lected features are used as the inputs to the classifier.

2.2 Filter Bank Data Space Adaptation (FB-DSA)

In this work, the set of the labeled EEG trials in the calibration session filtered
by the bth band-pass filter is denoted as D̄b = {(x̄b,i, ȳi)}N̄i=1, where x̄b,i∈X̄b ⊂
Rn×s denotes the ith single-trial EEG filtered by the bth filter, and ȳi∈Ȳ ⊂ R
is the class label of the ith single-trial EEG. In the evaluation session, the
available labeled EEG trials from the bth band-pass filter are denoted as Db =
{(xb,i,yi)}Ni=1, where xb,i∈Xb ⊂ Rn×s, and yi∈Y ⊂ R.

The dissimilarities between the calibration and evaluation sessions from the
bth band-pass filter can yield different joint distributions for the correspond-
ing evaluation session P (Xb,Y) and calibration session P (X̄b, Ȳ). However,
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changing the representation of Xb, while the representation of Y is fixed, can
change the joint distribution of the evaluation session. Following this concept,
assume g : Xb −→ Hb as a function that transforms a band-pass filtered single-
trial EEG, xb, from the evaluation space into another space hb = g(xb) ∈ Hb.
Thus, if for each band-pass filter, a transformation function g can be computed
to yield the same joint distributions for both the calibration and evaluation
sessions P (Hb,Y) = P (X̄b, Ȳ), the optimal model that classifies the calibra-
tion session will be still optimal for classifying the evaluation session.

For this purpose, a linear transformation function is proposed as

hb = VT
b xb, (5)

where Vb ∈Rn×n denotes the FB-DSA transformation matrix. The transfor-
mation matrix Vb should be computed such that the distribution difference
between the evaluation session and the calibration session filtered by the bth

band-pass filter is reduced.
Similar to [32], we assume that the differences between the calibration and

evaluation sessions can be observed in the first two moments of the single-trial
EEG (i.e. mean and covariance). Following this assumption, to simplify the
problem, we only compare the average distributions of the EEG trials between
the calibration session and the evaluation session to compute a transformation
matrix that minimizes the differences between their first two moments.

Since the single-trial EEG is band-pass filtered, it has approximately zero
mean value. Consequently, the average distribution of a group of band-pass
filtered EEG trials can be defined by a zero mean and a covariance matrix com-
puted from averaging the covariance matrices over the multiple EEG trials.
Based on the maximum entropy principle, the most prudent model for model-
ing the distribution of the single-trial EEG that is consistent with zero mean
and a covariance matrix is Gaussian [32]. Thus, the Kullback-Leibler (KL)
divergence between gaussians can be used to measure the difference between
the distributions.

The KL divergence between the distributions of two groups of band-pass
filtered EEG trials, presented as N0(0,Σ) and N1(0,Σ) (taken as reference),
has a closed form expression

KL[N0||N1] =
1

2
[tr(Σ−1Σ)− ln(

det(Σ)

det(Σ)
)− d], (6)

where Σ and Σ denote the average covariance matrices of the two groups of the
EEG trials; det and d denote the determinant function and the dimensionality
of the data respectively.

Let N(0,Σb,j) be the average distribution of the bth band-pass filtered EEG
trials belonging to the class j in the calibration session. Using the available
labeled trials from the evaluation session Db = {(xb,i,yi)}Ni=1, the average dis-
tribution of the transformed EEG trials belonging to the class j and the bth

filter is estimated as N(0,VT
b Σb,jVb), where Vb denotes the linear transforma-

tion matrix for the bth filtered data, and Σb,j denotes the average covariance
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matrix of class j in the evaluation session estimated using Db. When the class
probabilities are balanced, using the KL divergence the optimal Vb can be
computed as the solution of the minimization problem

min
Vb

Lb(Vb) = min
Vb

2∑
j=1

KL[N(0,VT
b Σb,jVb)||N(0,Σb,j)]

=min
Vb

2∑
j=1

1

2
[tr(Σb,j

−1VT
b Σb,jVb)−ln(

det(VT
b Σb,jVb)

det(Σb,j)
)−d].

(7)

To minimize (7), it is sufficient to calculate the first order derivative of the
loss function Lb(Vb) with respect to Vb, and set it to zero;

dLb

dVb
=

2∑
j=1

1

2

d

dVb
[tr(Σb,j

−1VT
b Σb,jVb)−ln(det(VT

b Σb,jVb))]. (8)

Thus, one solution for (8) is when (see [27] for more details)

V∗b =
√

2((Σb,1
−1Σb,1 + Σb,2

−1Σb,2)†)0.5, (9)

where † denotes the pseudo inverse of the matrix. V∗b is the optimal linear
transformation matrix computed for the bth filter in the FB-DSA algorithm.
Therefore, V∗b linearly transforms the EEG data of the bth filter from the
evaluation session to the corresponding calibration session, such that the dis-
tribution difference between these sessions is minimized. As expected, in the
case that the calibration and the evaluation data have similar distributions,
(i.e. the average covariance matrices of the corresponding classes are equal),
V∗b is the identity matrix.

The architecture of the proposed FB-DSA algorithm in the FBCSP frame-
work is demonstrated in Fig. 1. In the calibration phase, the FBCSP algorithm
is used to train a subject-specific model using PM or MI data. In the evaluation
phase, the new trials from each band-pass filter are optimally transformed by
their corresponding FB-DSA transformation matrix computed using a few past
EEG trials of the evaluation session (i.e. 20 trials in this study). Subsequently,
the transformed FB-DSA trials are directly applied to the corresponding CSP
filters and the classifier trained in the calibration phase. To avoid irrelevant
computation, it suffices to compute the FB-DSA transformation matrices only
for the frequency bands which have features selected for the classification.

3 Experiments

3.1 Subjects

This study recruited 18 healthy subjects and 7 hemiparetic stroke patients.
Ethics committee approval was obtained from the institution’s Domain Specific
Review Board, National Healthcare Group, Singapore. Informed consent were
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Fig. 1 Architecture of the FB-DSA algorithm in the FBCSP framework for the calibration
and evaluation phases.

obtained from all the participants prior the study enrollment. One of the stroke
patients could not commit to the whole study. Thus, the corresponding data
were excluded. The experiments performed for both the stroke and healthy
subjects were based on those previously practised for EEG-based MI-BCI in
stroke rehabilitation [5]. From among the healthy subjects, 2 subjects chose to
perform MI and PM of the left hand while the remaining 16 subjects chose to
perform on the right hand. For 4 patients, the stroke affected their left hand,
while the right hand was affected in the remaining 2 patients.

3.2 Data description

3.2.1 Dataset collected from the healthy subjects

EEG from 27 channels was collected. The subjects were instructed to minimize
physical movements and eye blinking throughout the EEG recording process.
For each subject, EEG data were collected without feedback in two measure-
ment sessions conducted on separate days. For the first day, four runs of EEG
data were collected. In the first two runs, the subjects were instructed to per-
form MI of the chosen hand and background rest condition. Subsequently, in
the next two runs, the subjects engaged in PM of the chosen hand using the
haptic knob robot [34], and background rest condition. Fig. 2 shows the exper-
imental setup to collect EEG data, as the haptic knob robot is used to move
the subject’s left hand.

The subjects were instructed to perform kinaesthetic MI of the chosen
hand during the first two runs. The subjects were also instructed to perform
mental counting during the background rest condition. In the last two runs,
the subjects were asked to relax while the movement of the chosen hand was
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Fig. 2 Experimental setup to collect EEG data from passive movement of the left hand
using the haptic knob robot [34] for calibrating the EEG-based motor imagery BCI.

performed using the haptic knob robot [34]. The instructions were on the
computer screen in each trial. As shown in Fig. 3, each trial lasted for 12 s, as
the subject was first prepared with a cue for 2 s, then an ”action” command
instructed the subject for 4 s, and finally the subject was asked to rest for
6 s. Each run comprised of 40 trials of either MI or PM, and 40 trials of
background rest condition. Considering the EEG set up time, the practice
time, and the rest time between the blocks, the session on the first day took
around an hour and 45 minutes. The EEG data from the first and second runs
were used to calibrate a subject-specific model referred to as the MI model ,
and subsequently the EEG data from the third and fourth runs were used to
calibrate a subject-specific model referred to as the PM model.

Fig. 3 Timing of each trial including performing MI/PM of the hand or background rest
tasks

In the second day of this study, three runs of the EEG data were collected
without feedback from each subject while performing MI of the chosen hand
and background rest condition. Each run again comprised of 40 trials of MI
and 40 trials of background rest condition. The session on the second day took
around an hour and a half in total. The EEG data collected from these three
runs were used to evaluate the calibrated models from the first day.
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Before calibrating the subject-specific models, 10×10-fold cross-validation
accuracies of the first two runs as well as the last two runs recorded on the
first day were calculated to find those subjects performing either MI or PM at
chance level. Using the inverse of the binomial cumulative distribution function
with 95% confidence, the accuracy on the respective action at chance level is
approximately 43% to 57%. Hence, those subjects whose PM or MI data have
10×10-fold cross validation accuracies between 43% and 57% can be excluded
as their data are not proper enough for calibrating a model. The results showed
that two subjects from the 18 aforementioned subjects performed MI and PM
at chance level. Hence, these two subjects were removed, and the remaining
16 subjects were used for this study.

3.2.2 Dataset collected from the stroke patients

Table 1 provides more clinical information about the 6 stroke patients. The
protocol used for EEG recording from the stroke subjects was very similar to
that used for the healthy subjects. The minor differences are as follows: During
the experiments, the patients performed either MI or PM of the stroke affected
hand rather than the chosen hand. In addition, in the second day of this study,
two runs of the EEG data were recorded from each subject while performing
MI of the affected hand and rest condition without feedback. Similar to the
healthy subjects, the EEG data recorded on the second day were used to
evaluate the subject-specific MI and PM models calibrated using the data
collected on the first day.

Table 1 Demographic and Clinical information for N = 6 Stroke Subjects who participated
in this study

Stroke
Gender Type Side Nature Mean Duration since FMA
M/F I/H R/L C/S age stroke (days) (Week 0)
4M 2I 2R 1C 54.0±8.9 285.7±64 33.0±16.2

M indicates Male; F, Female; I, Infarction; H, Haemorrhagic; R, Right; L, Left; C,
Cortical; S, Subcortical; FMA, Fugl-Meyer Assessment (i.e. measure of severity of motor

impairment).

Before calibrating the subject-specific models, 10×10-fold cross-validation
accuracies of the first two runs, as well as the last two runs recorded on the
first day were used to ensure that the stroke patients performed neither PM
nor MI at chance level. Consequently, the study was performed using all the
6 stroke patients.

3.3 Data processing

In this study, the FBCSP [28] algorithm was used to train the subject-specific
models. First, EEG data segments from 0.5 to 2.5 s after the onset of the
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Table 2 Classification Accuracies of the Motor Imagery Sessions for Healthy Subjects Using
Motor Imagery Calibration Models without and with Adaptation (Denoted as MIcs-No
adap., and MIcs-FBDSA) and Passive Movement Calibration Models without and with
Adaptation (Denoted as PMcs-No adap., and PMcs-FBDSA).

Healthy Subjects
Subject H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 Mean

MIcs-No adap. 59.4 51.3 75.2 54.8 94.5 52.7 48.9 63.1 64.6 58.7 76.1 82.9 68.3 77.9 75.4 75 67.44
MIcs-FBDSA 61.5 66.5 86.7 63.9 89.5 54.5 57.3 64.3 60.9 63.2 76.4 76.4 75.4 77.7 80 74.5 70.55

PMcs-No adap. 63.6 54.6 51.3 57.0 92.8 62.9 51.0 54.4 58.3 50 80.3 74.2 75.8 66.2 73.7 75.8 65.13
PMcs-FBDSA 67.9 56.9 73.8 68.3 90.4 65.4 58.2 59.3 59.5 58.2 77.3 81.8 75.9 74.5 75.5 73.6 69.78

visual cue were used for the analysis, as a range which has been demonstrated
to be effective for BCI applications [30]. Subsequent processing was carried
out as described in Steps 1 to 4, Section 2.1. It is noted that Chebyshev Type
II was used for band-pass filtering, and for each applied CSP, m = 2 pairs of
the spatial filters (i.e. 4 filters in total) were used as suggested in [28]. Finally,
the LDA classifier was employed in the classification step.

4 Results

4.1 Comparing the classification results

In this subsection, the performances of the subject-specific PM and MI calibra-
tion models in detecting MI versus the rest condition were examined. Further,
the proposed FB-DSA algorithm was used to reduce the dissimilarities be-
tween the MI and PM data. In the FB-DSA algorithm, to classify each new
trial from the evaluation session, V in (9) was computed using the immediate
past 20 trials (i.e 10 trials from each class). It should be noted that the first 20
trials of the evaluation session were only used for the adaptation, and no clas-
sification was performed on these trials. The results therefore were obtained
using the reminder of the evaluation session.

1) Healthy subjects:
Table 2 presents the classification accuracies of detecting MI versus the

rest condition for the 16 healthy subjects, using the different calibration mod-
els. The results in Table 2 show that the calibration model using MI (MIcs)
yielded, on average, higher classification accuracy (i.e. 67.44%) compared to
the calibration model using PM (PMcs) (i.e. 65.13%) when no adaptation was
applied. This result is supportive of the findings of the previous studies [24,
35], which suggest that robot-assisted PM can be used for calibrating MI-
based BCI for healthy subjects. Interestingly, in some subjects the PM models
considerably outperformed the MI models (e.g. H6 ). On the other hand, the
results for some other exhibit a deterioration of more than 8% in the classifi-
cation accuracy when the models were calibrated using PM instead of MI (e.g.
H3, H8, H10, H12 and H14 ).

Table 2 shows that the proposed FB-DSA algorithm improved the classi-
fication accuracy of the PM models by an average of 4.65%. The results also
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Table 3 Classification Accuracies of the Motor Imagery Sessions for Stroke Patients Using
Motor Imagery Calibration Models without and with Adaptation (Denoted as MIcs-No
adap., and MIcs-FBDSA) and Passive Movement Calibration Models without and with
Adaptation (Denoted as PMcs-No adap., and PMcs-FBDSA).

Stroke Patients
Patient’s Code A006 A018 A019 A024 A028 A031 Mean

MIcs-No adap. 81.9 65 64.4 57.5 85.6 90.6 74.16
MIcs-FBDSA 85.7 69.3 86.4 67.1 85.7 87.1 80.21

PMcs-No adap. 85.6 55 51.3 55.6 61.3 93.8 67.10
PMcs-FBDSA 84.3 67.9 80 59.3 87.86 92.86 78.70

show that the PM model adapted by the FB-DSA algorithm performed better
than the MI model with no adaptation by an average of 2.34%. Furthermore,
the MI models adapted by FB-DSA only slightly outperformed the PM models
adapted by FB-DSA (i.e. on average less than 0.8%).

Performing a 2-way repeated-measures ANOVA test with Model (No-adap
vs. FB-DSA) and Task (MI vs. PM) as the within subject independent vari-
ables revealed a significant main effect of Model on the classification accuracies
(F (1, 15) = 8.82, P = 0.005). Interestingly, no significant main effect was found
for Task (F (1, 15) = 0.85, P = 0.37). Moreover, the interaction between Model
and Task was also insignificant (F (1, 15) = 0.87, P = 0.37).

2) Stroke patients:

Table 3 presents the classification accuracies of detecting MI versus the
rest condition for the 6 stroke patients, obtained by the different calibration
models. Similar to the healthy subjects, the results show that the calibra-
tion model using MI (MIcs) outperformed the calibration model using PM
(PMcs) in terms of the classification accuracy. The results demonstrate that
the PM model adapted by FB-DSA outperformed the MI model by an aver-
age of 4.54%. The results also show that the MI models adapted by FB-DSA
performed on average 1.5% better than the PM models adapted by FB-DSA.

Similar to the previous section, a 2-way repeated-measures ANOVA test
with Model (No-adap vs. FB-DSA) and Task (MI vs. PM) as the within subject
independent variables was performed on the classification results obtained from
the stroke patients. Interestingly, a significant main effect of Model on the
classification accuracies (F (1, 15) = 8.82, P = 0.038) was observed. Moreover,
no significant main effect was found for Task (F (1, 15) = 2.93, P = 0.15).
The interaction between Model and Task was also insignificant (F (1, 15) =
0.75, P = 0.43).

We also performed a 3-way mixed design ANOVA with Model (No-adap vs.
FB-DSA) and Task (MI vs. PM) as the within subject independent variables
and Group (healthy vs. stroke subjects) as the between subject independent
variable. The results showed a significant main effect of Model on the clas-
sification results (F (1, 20) = 16.88, P = 0.001). Interestingly, the interaction
between Model and Group tended to be significant (F (1, 20) = 3.75, P = 0.06).
This indicates a significant larger increase in the accuracy of the stroke group
compared to the healthy group when applying adaptation. As a result, the
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big drop in the performance of PM model compared to the MI model in the
stroke patients was compensated after applying the proposed adaptation al-
gorithm. On the contrary, the main effect of Task (F (1, 20) = 3.28, P = 0.09)
,the interaction between Group and Task (F (1, 20) = 0.67, P = 0.42), and
the interaction between Task and Model (F (1, 20) = 1.45, P = 0.24) were not
significant.

3) Comparing with two existing non-adaptive algorithms:
In this part, the performance of the proposed FBDSA algorithm is com-

pared with two existing non-adaptive algorithms that are computationally as
efficient as the proposed algorithm. In the first approach, the FBCSP algo-
rithm was trained using only the first 20 trials of the test session that were
previously used only for adaptation. This calibration model is called FBCSP-
20. In the second approach, again the first 20 trials of the test session were used
for training a FBCSP model, whereas the covariance matrices for computing
CSP were estimated using the BC shrinkage algorithm [40]. This calibration
model is called FBCSP-20Shrink. BC shrinkage is a computationally efficient
algorithm to estimate covariance matrices without requiring time-consuming
cross-validation procedures. Interestingly, BC shrinkage is shown to be very
effective when the number of samples is limited [40]. To apply the BC shrink-
age algorithm, as suggested in [40], for each subject, the average of the class
covariances of the other subjects was used as the shrinkage target.

Fig. 4 shows that the proposed FBDSA algorithm trained using either
the MI or PM data outperformed the FBCSP-20 and FBCSP-20Shrink algo-
rithms. The paired t-tests on the healthy group showed that FBCSP-20 per-
formed significantly worse than MIcs-No adap (t(15)=−3.85, P =0.002), MIcs-
FBDSA (t(15) =−4.82, P <0.001), PMcs-No adap (t(15) =−6.26, P = 0.007),
and PMcs-FBDSA (t(15) = −3.14, P < 0.001). Furthermore, MIcs-FBDSA
(t(15)=−2.63, P =0.019) and PMcs-FBDSA (t(15)=−2.27, P =0.038) signifi-
cantly performed better than FBCSP-20Shrink. In the stroke group, the paired
t-test showed that FBCSP20 performed significantly worse than MIcs-FBDSA
(t(5) =−4.3, P = 0.008), and PMcs-FBDSA (t(5) =−3.29, P = 0.002). More-
over, a significant difference between FBCSP-20Shrinkage and PMcs-FBDSA
was observed (t(5)=−2.59, P =0.04), whereas the difference between FBCSP-
20Shrinkage and MIcs-FBDSA tended to be significant (t(5) = −2.39, P =
0.06).

4) Discussion on the classification results:
Our results show a potential mismatch between the collected PM data in

the calibration session and the collected MI data in the evaluation session. This
mismatch may have arisen due to differences in the EEG patterns produced
during PM and those produced during MI. Other intersession variations may
also be responsible (e.g. task involvement, attention, placement or impedance
of the electrodes etc), leading to deterioration in the BCI performance.

Our results show that for the healthy subjects the MI models on average
performed 2.31% better than the PM models (see Table 2), whereas this differ-
ence increased to 7.06% in the stroke patients. Indeed, for the stroke patients
although the PM model performed at a level better than chance, the average
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Fig. 4 Comparison between the performance of the proposed FBDSA algorithms using MI
and PM calibration models with FBCSP algorithm trained on 20 first trials of the test
session with and without the BC shrinkage regularization algorithm.

7.06% drop in the performance compared to the MI model suggests that PM
as utilized could not be an acceptable substitute for an MI calibration step.
However, when the proposed FB-DSA algorithm is applied to the PM model,
the results indicate a compelling compensatory effect.

Our patients in our informal talks confirmed that performing passive move-
ment was less mentally fatiguing for them. Thus, when no previous data are
available for a studied patient, we suggest using PM data for calibration and
the proposed FB-DSA algorithm for adaptation, resulting in a less tired patient
for the actual BCI therapeutic interaction. Furthermore, since PM exercises
are a part of normal stroke rehabilitation [25], PM data can be collected in
a previous physical therapy session. Otherwise, if there are some previously
collected MI data belonging to the same patient, our results suggest using the
available MI data for calibration along with the proposed FB-DSA for reducing
inter-session variations.

It is noted that our conclusions are limited to the data collected from only
6 stroke subjects. Thus, there is a need to further investigate our findings with
larger cohorts.

4.2 Disparity between PM and MI data in stroke and healthy subjects

The results in 4.1 motivated us to investigate whether the disparity between
the PM and MI data is stronger in the stroke subjects compared to the healthy
subjects.

1) Event-Related Spectral Perturbation:
In the first investigation, the grand mean Event-Related Spectral Pertur-

bation (ERSP) [36], time locked to the cue time, was used to compare the PM
and MI tasks for the healthy and stroke subjects. ERSP is a 2-D (frequency-by
latency) image of average changes in the spectral power (in dB) from a base-
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(a) Healthy Subjects

(b) Stroke Patients

Fig. 5 The Event-Related Spectral Perturbation (ERSP) images for the passive movement
(PM), motor imagery (MI) and their differences, for (a) the 16 healthy and (b) 6 stroke
subjects. The ERSP images were plotted at the corresponding activated motor regions (ie.
channels C3 and C4 for Right and left hand tasks respectively). The dashed lines denote
the cue time. In MI and PM ERSP images, the non-green pixels indicate the areas that the
power spectrum is significantly different from the pre-cue baseline. In PM minus MI ERSP
images, the non-green pixels indicate the areas that the power spectrum between PM and
MI is significantly different (P < 0.01).

line. Calculating an ERSP typically requires computing the power spectrum
over a sliding latency window, then correcting baseline by subtracting the
pre-stimulus power spectrum, and finally averaging across all the data trials.

Fig. 5 presents the ERSP images obtained by grand averaging the data
recorded from channel C3 for the right hand tasks and the data recorded from
channel C4 for the left hand tasks. The ERSP images were plotted using the
newtimef function in EEGLAB toolbox [38]. In the MI and PM ERSP images,
red indicates enhancement of activity (increase of power) with respect to the
pre-cue baseline (i.e. starting from 200 ms before the cue), and blue indicates
suppression of activity with respect to the pre-cue baseline. All the non-green
pixels of the MI and PM ERSP images show significant (two-tailed permuta-
tion test, P < 0.01) post-stimulus increases or decreases (see color scale) in the
spectral power compared to the averaged 200 ms prestimulus spectral power.
In the PM minus MI ERSP images, red indicates higher activity (power) in
PM compared to MI, and blue indicates higher activity in MI compared to
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PM. All the non-green pixels of the PM minus MI ERSP images show the
areas that the spectral powers are significantly different between MI and PM
(two-tailed permutation test, P < 0.01).

Fig. 5.(a) shows that both PM and MI tasks significantly increased the mu
power (i.e 8-13 Hz) in the healthy subjects. However, the increase in power in
MI is slightly greater compared to PM. This could be due to the very simple
passive movement used in this study, whereas the imagined motor movements
over the MI task were most-likely more complicated. In the same line, Fig. 5.(b)
shows that the PM and MI tasks yielded significant increase in the mu and
beta (i.e. 13-30 Hz) powers. In the stroke patients, PM yielded considerably
stronger enhancements in the mu and beta powers compared to the MI task.
Interestingly, PM also yielded an enhancement in the theta power (i.e. 4-8 Hz).

The last ERSP image in Fig. 5.(a) shows that the PM and MI signals ob-
tained from the healthy subjects were significantly different in some time/frequency
points, particularly one second after the cue. The last ERSP image in Fig. 5.(b)
reveals that the differences between PM and MI were much stronger in the
stroke patients compared to the healthy subjects (see the scale). Importantly,
the mu power was significantly different between the PM and MI data in the
stroke patients.

2) KL divergence between PM and MI data:
In the second investigation, the KL divergence between the PM and MI

data filtered by the most discriminative frequency band (i.e. subject-specific)
was calculated for each subject as given in (6). The reason behind this inves-
tigation is that in the applied FBCSP algorithm the features obtained by the
most discriminative frequency band are used for classification. As mentioned
in 2.1, the most discriminative frequency band is the one generating the fea-
ture with the highest mutual information. Indeed, unlike the ERSP images,
this method measures the disparity between the PM and MI data using all (or
a group) of channels.

Fig. 6 compares the KL divergence between the PM and MI data in the
healthy and the stroke subjects. Each star corresponds to a subject. The box-
plots of the obtained results were also depicted to ease the comparison between
the healthy and stroke subjects. In Fig. 6.a the KL divergence was obtained
using all the 27 channels, while in Fig. 6.b only 6 channels in the motor cortex
area were used to obtain the KL divergence (i.e C3, CP3, CF3, C4, CP4, CP3).
The Y-axes of Fig. 6 have been drawn in the Log scale to be more presentative.

Using all the channels, Fig. 6.a shows that the difference between the PM
and MI data is on average larger in the stroke subjects compared to the healthy
subjects. However, according to the independent samples t-test, the differ-
ence between the results of these two groups was not statistically significant
(t(20) = 1.86, p = 0.07), since there were a few healthy subjects with high
KL divergences between their PM and MI data. Indeed, the obtained KL val-
ues measured not only the inherent dissimilarities between the PM and MI
data but also other inter-session variations (e.g task involvement, electrode
impedance) that may not be negligible. Supporting this fact, our investigation
showed that in one of the healthy subjects an EEG channel became loose at
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Fig. 6 Comparing the disparity between PM and MI data in the stroke and healthy subjects
obtained by the KL divergence. To calculate the KL divergence (a) used all the channels,
and (b) used 6 channels in the motor cortex area, namely C3, CP3, CF3, C4, CP4, CF4.
Each star denotes a subject. The boxplots of the obtained results were plotted to ease the
comparison.

the middle of the PM session, and consequently caused a large KL divergence
between the PM and MI data. Thus, to reduce the effect of other inter-session
non-stationarities, in Fig. 6.b we focused on the motor cortex area, and ob-
tained the KL divergence using only six channels (i.e. C3, CP3, CF3, C4, CP4,
CP3). The results in Fig. 6.b showed that in the stroke subjects the difference
between the PM and MI data recorded over the motor cortex area was sta-
tistically stronger compared to the healthy subjects (i.e independent samples
t-test, t(20) = 2.14, p = 0.04).

3) Discussion on the disparity between PM and MI:

According to the study presented by Galán et al [39], the lack of sensory
feedback in the MI data might cause some fundamental differences between MI
and PM. To further investigate this issue, the ERSP images for centro-parietal
electrodes which are closer to the sensorimotor cortex (i.e. CP3 for the right
hand tasks and CP4 for the left hand tasks) were plotted. The ERSP images
were relatively similar to the ones in Fig. 5 confirming the available differences
between the PM and the MI data over the sensorimotor cortex. Due to the
limited space these ERSP images are not included in the paper.

According to Fig. 5, it appears that most of the interesting different activ-
ities between the PM and MI data is in the mu band. In order to find which
frequencies are more different between MI and PI, we looked at the data space
adaptation matrices (V∗b ) calculated for the different frequency bands. If the
MI and PM for a specific frequency band are similar, the V∗b matrix is close to
the identity matrix. To measure the differences between PM and MI in each
frequency band, the Frobenious norm between V∗b and the identity matrix was
calculated as ‖V∗b − I‖F , where I is the identity matrix and ‖.‖F denotes the
Frobenious norm.

Interestingly, the results showed that for all the stroke patients the mu
rhythm had the largest difference between the PM and MI data. Besides, the
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theta rhythm was observed as the second largest different frequency band in
4 out of 6 patients. Several studies reported the theta enhancement during
working memory, memory decoding and retrieval process. A recent study also
reported the theta enhancement during the initiation of movement, and linked
it to spatial exploration and self-direction learning [37]. This initial interesting
findings should be further explored using a large number of stroke patients in
future.

In the healthy subjects, mu, alpha, and the lower beta (i.e. 12 to 16 Hz)
showed the largest difference between PM and MI for 8, 4 and 2 subjects
respectively. For the remaining two subjects the 28-32 Hz band and the 36-40
Hz band presented the largest difference. Thus, our results suggest that in
most of the subjects the main discriminative frequency bands between PM
and MI were mu and theta respectively. However, since the proposed FB-DSA
adaptation is a very computationally fast algorithm, it might not be worth to
just apply the adaptation algorithm on one or two bands.

In summary, our results in Section 4.2 suggest that due to a stronger dif-
ference observed between the PM and the MI data in the stroke patients,
there might be an increased need to use adaptive algorithms such as the pro-
posed FB-DSA algorithm in BCI-based stroke rehabilitation calibrated from
PM data.

4.3 Impact of FB-DSA on the feature space

To better understand the impact of the proposed FB-DSA algorithm on the
classification accuracies of MI-BCIs calibrated using passive data, the training
features and the evaluation features before and after applying the FB-DSA
algorithm were plotted for the patient A019. Adapting the PM model of this
patient by the proposed FB-DSA algorithm resulted in the highest improve-
ment in the classification accuracy, which was 28.75% (see Table 3).

Fig. 7(a) shows the train features of the PM model extracted from the PM
data. Fig. 7(b) and Fig. 7(c) respectively show the evaluation features of the
PM model extracted from the MI data before and after applying the FB-DSA
algorithm. For ease of visualization only two features which had the highest
mutual information on the train data were plotted. Moreover, the features were
plotted after the normalization process. The blue crosses and the red squares
denote the features of the hand MI/PM and the rest class respectively. The
black line represents the LDA hyperplane obtained using the training data.
Fig. 7 shows that there were big changes between the distributions of the train-
ing features and the evaluation features before applying FB-DSA, that resulted
in the inferior classification accuracy. In contrast, the differences between the
train and the evaluation features after the proposed FB-DSA algorithm were
considerably reduced. The FB-DSA algorithm not only compensated the shift
in the feature spaces but also increased the discrimination between the two
classes of the evaluation features. Thus, the classification accuracy was sub-
stantially improved.
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(a) (a) (b)

Fig. 7 Distributions of the two best features obtained by the PM calibration model, for:
Patient A019. (a) shows the train features extracted from the PM data, subsequently (b) and
(c) show the evaluation features extracted from the MI data before and after adapting by the
proposed FB-DSA algorithm. The blue crosses and the red squares denote the features of the
hand MI/PM and the rest class respectively. The black line represents the LDA hyperplane
obtained by the train data.

4.4 Number of trials for adapting the PM model by FB-DSA

In this subsection, we examined the influence of the number of trials used for
computing the FB-DSA transformation matrices on the classification results
of the PM and MI models in BCI-based stroke rehabilitation. For this purpose,
the data from the 6 stroke patients were only used. Fig. 8 shows the average
classification accuracy of the PM and MI models adapted by the proposed
FB-DSA algorithms for the 6 stroke subjects as a function of the number of
trials used for computing V∗b in (9). Thus, to classify each new trial in the
evaluation session, V∗b was computed using a number of immediate past trials
varying from 0 to 30. It is noted that in this experiment the first 30 trials
of the evaluation sessions (i.e. 15 trials from each class) were only used for
computing the FB-DSA transformation matrices, and the classification was
performed on the remaining 210 trials of the evaluation sessions.
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Fig. 8 Influence of the number of trials used for computing FB-DSA matrices on the classi-
fication results of the stroke patients. MIcs and PMcs respectively denote motor imagery and
passive movement calibration models applied on the remaining 210 trials of the evaluation
sessions.
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Fig. 8 shows that increasing the number of trials used in the FB-DSA
algorithm up to around 20 (i.e. 10 trials from each class) improved the average
classification accuracy of both the PM and MI models. This improvement
would be due to better estimations of the covariance matrices in (9) using
more trials. In contrast, a further increase in the number of trials to 30 caused
a decrease in the average accuracy. This could be due to the fact that increasing
the number of trials reduces the influence of the recent trials in computing V∗b .
Fig. 8 also shows that when 6 trials or more were used to compute the FB-
DSA transformation matrices, the PM model adapted by FB-DSA averagely
outperformed the MI model with no adaptation.

In a BCI-based stroke rehabilitation, it would be desirable if we could pro-
vide appropriate feedback to the patient from the very beginning. Overall, our
results suggest that the BCI-based stroke rehabilitation session with appropri-
ate feedback can be started after collecting just a few trials (e.g. only 3 trials
from each class). This is achieved by a subject-specific model calibrated from
PM data that is continually adapted using the proposed FB-DSA algorithm.
As such, before collecting 20 evaluation trials (i.e. 10 trials from each class),
the PM model classifies an upcoming trial using the FB-DSA transformation
matrices computed from all the previous trials. After reaching 20 trials, to
classify each new trial, the FB-DSA transformation matrices are computed
using the immediate past 20 trials.

5 Conclusion

This paper investigated the effectiveness of calibrating EEG-based motor im-
agery BCIs using passive movement. For this purpose, a new algorithm called
FB-DSA was proposed to linearly transform the filter bank band-passed MI
data, such that the distribution difference between the MI and PM data is
minimized. The proposed algorithm was evaluated using data from 6 stroke
patients and 16 healthy subjects. The design of this study for both the stroke
and healthy subjects was based on the use of motor imagery-based BCI for
stroke rehabilitation [5]. The EEG data were collected during MI or PM of the
chosen hand versus the rest condition for the healthy subjects, and the stroke
affected hand versus the rest condition for the patients.

Our results suggest using PM data for calibration and the proposed FB-
DSA algorithm for adaptation when no previous data are available for a studied
patient. Importantly, collecting PM data for calibration leads to a less men-
tally tired patient for the actual BCI therapeutic interaction. Furthermore,
since PM exercises are a part of normal stroke rehabilitation, PM data can be
collected in a previous physical therapy session. On the other hand, if there are
some previously collected MI data belonging to the same patient, our results
suggest using the available MI data for calibration along with the proposed
FB-DSA for reducing inter-session variations. We also provided some analyti-
cal evidence suggesting that the disparity between the MI and PM data could
be significantly stronger in the stroke patients compared to the healthy sub-
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jects. Thus, there might be an increased need to use adaptation algorithms
such as the proposed FB-DSA algorithm in BCI-based stroke rehabilitation
calibrated from PM.

Overall, the results showed that a BCI-based stroke rehabilitation session
with appropriate feedback could be reliably started after collecting just a few
trials (e.g. only 3 trials from each class). This could be achieved by using a
subject-specific model calibrated from robot-assisted PM data that was con-
tinually adapted using the proposed FB-DSA algorithm.
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