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Abstract
Recently, studies have reported the use of Near Infrared Spectroscopy (NIRS) for develop-

ing Brain–Computer Interface (BCI) by applying online pattern classification of brain states

from subject-specific fNIRS signals. The purpose of the present study was to develop and

test a real-time method for subject-specific and subject-independent classification of multi-

channel fNIRS signals using support-vector machines (SVM), so as to determine its feasibil-

ity as an online neurofeedback system. Towards this goal, we used left versus right hand

movement execution and movement imagery as study paradigms in a series of experi-

ments. In the first two experiments, activations in the motor cortex during movement execu-

tion and movement imagery were used to develop subject-dependent models that obtained

high classification accuracies thereby indicating the robustness of our classification method.

In the third experiment, a generalized classifier-model was developed from the first two

experimental data, which was then applied for subject-independent neurofeedback training.

Application of this method in new participants showed mean classification accuracy of 63%

for movement imagery tasks and 80% for movement execution tasks. These results, and

their corresponding offline analysis reported in this study demonstrate that SVM based real-

time subject-independent classification of fNIRS signals is feasible. This method has impor-

tant applications in the field of hemodynamic BCIs, and neuro-rehabilitation where patients

can be trained to learn spatio-temporal patterns of healthy brain activity.
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Introduction
In contrast to the classical method of presenting stimuli and studying evoked brain responses,
BCI and neurofeedback work by altering the neural activity first, and then observing the effect
of this altered activity on the subjects’ behavior [1,2]. This allows the dissection of the func-
tional anatomy of the brain. Furthermore, the ability to learn to volitionally regulate activity
from a circumscribed brain area has potential for applications towards rehabilitation. Since
most of the evoked responses in the brain are in the form of spatio-temporal patterns of activity
(electrical or hemodynamic), a system capable of successfully classifying these patterns is an
indispensable tool for rehabilitation [2]. Such a system has been successfully developed for
fMRI based BCI using real-time Support Vector Machine (SVM) based classification algo-
rithms [3], and an earlier study has also demonstrated the feasibility of implementing machine
learning algorithms in classifying single trial activations using multi-channel fNIRS [4]. Fur-
thermore, feasibility and potential effectiveness of an fNIRS based real-time neurofeedback sys-
tem on performance of kinesthetic motor imagery has also been reported recently [5]. In this
study participants performed motor imagery of finger movements with feedback from relevant
cortical signals and irrelevant sham signals. The study showed that true neurofeedback induced
significantly greater activation of the contra lateral pre-motor cortex and greater self-assess-
ment scores for kinesthetic motor imagery compared with sham feedback. These results illus-
trate the efficacy of using both fNIRS signals for neurofeedback and machine-learning
algorithms for implementing single-trial classifications from such signals. In the present study,
we aimed at combining these two approaches so as to develop a real-time SVM based neuro-
feedback system based on multi-channel fNIRS signals.

Our first objective was the development of a real-time SVM based pattern classification and
neurofeedback system. For our study, we used fNIRS signals from the motor cortex while sub-
jects were performing overt and covert hand movements (movement execution (ME) and
movement imagery (MI), respectively). We trained the classifier on patterns evoked during ME
and tested them on those evoked during MI, and vice versa, establishing the robustness of the
classifier on both modalities. Finally, we determined if a pattern-classifier modeled on a group
of subjects could be used to classify activation patterns in a new subject. We trained the gener-
alized, subject-independent classifier on movement execution data of four participants and
tested it on both movement imagery and execution in new, untrained participants. The main
purpose was to establish that the activation patterns from different subjects can be successfully
utilized to generate a group classifier that can then identify similar patterns in new subjects.
The most significant application of this technique is toward neurofeedback based neuro-reha-
bilitation, where such a ‘generalized’ classifier can be trained on spatio-temporal activation pat-
terns of healthy subjects, and then used to help train patients to ‘modulate’ their activity to
represent healthy activation patterns.

Methods

Experiment Protocol
To analyze brain activations during bilateral hand movement execution (ME) and imagery
(MI), the experimental protocol was designed to consist of five conditions, namely movement
execution of left and right hand, motor imagery of left and right hand, and rest condition. The
participants were asked to perform repetitive hand movements similar to clenching and
unclenching an imaginary ball at a frequency of ~1 Hz during motor execution. During move-
ment imagery, participants were asked to imagine similar movements, without actually moving
their hands. No physical movement was observed in any subject during the imagery tasks.
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Participants were asked to participate in five runs of one experiment, each of which consisted
of six task blocks separated by seven rest blocks (Fig 1A). Some participants, however, did not
complete all five runs. One participant, S11 performed both Experiments 1 and 2. A break of
about 5–10 minutes was given between runs. In Fig 1A, Left and Right refers to left and right
hand’s movement for both execution and imagery tasks. Each participant was seated in front of
the screen that displayed the visual cues. As per the protocol, the cues for each block were as
follows: a blue screen with a black dot for "Rest", a red screen with a Right arrow, for "Task-
Right" and green screen with Left arrow, for "Task-Left". An activation-level meter (hereafter
called thermometer as it is depicted graphically as a thermometer) with baseline level indicated
at its middle, appeared on center of the screen during the training runs. For test runs, neuro-
feedback was given as the thermometer grades. The dynamic range of the thermometer was 20
units or levels.

Our study comprises three different experiment paradigms as shown in Table 1 and the
details are given in this section. In all the experiments, the initial one or two runs were used for
training the system. No feedback was provided during training runs, and the thermometer
grade remained at the baseline. Following this, the subjects were instructed to perform the test
runs with neurofeedback. Feedback was provided as increase or decrease in thermometer grade
during correct and incorrect classification respectively.

Experiment 1. The main objective of this study was to implement real-time subject-
dependent classification of bilateral hand movement using a movement execution trained BCI.
The system was validated on bilateral motor execution and imagination data, to provide real-
time classification results and spatial activation patterns for further analysis. In the experiment,
the classifiers were adapted as per Eq (9) for the following test runs. Run 3 tested the classifier
on ME for each subject. Runs 4 and 5 were used to test classification of MI based on ME mod-
els, and the subjects were asked to imagine the movements. In all the test runs, the subjects
were provided a visual feedback based on the classification output.

Experiment 2. The objective of this study was to perform a corollary to Experiment 1, i.e.,
to implement real-time subject-dependent classification and feedback of left versus right hand
motor imagery, based on a classifier built using covert hand movement data. In the MI runs, 1
to 4, the subjects (S21, S22, S23, S11) were instructed to imagine the movement they had prac-
ticed. The first run was used for training the classifier. For Runs 2 to 4, the classifier was
updated after each Run, as per Eq (9). The performance of subjects performing MI was tested
using the classifier and a neurofeedback was provided. Run 5 was used to test classification of
ME based on MI models (with the classifier modeled based on the last two MI runs) and the
subjects were asked to perform ME.

Experiment 3. The objective was to demonstrate the feasibility of a Subject-Independent
Classifier (SIC) built from the ensemble data of all participants from Experiment 1, performing
hand movement execution. At the beginning of this experiment, a practice session was pro-
vided where the subjects (S31, S32, S33, S34) were asked to perform hand clenching actions.
During the experiment, in test runs 2, 3 and 4, the subjects were asked to perform MI of the
practiced movements without moving their hands. In the ME run 5, the subjects were asked to
execute the movement. Real-time classifications of overt and covert movements from new sub-
jects were performed using the SIC and neurofeedback was provided in all the runs.

Feature Extraction and Selection
The study aims to use multi-channel temporal information of changes in concentration levels
of blood oxy hemoglobin (HbO) to classify volitional overt and covert hand movements. The
smaller levels of concentration changes and lesser discrimination between movement classes
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Fig 1. Overview of the real-time neuro-feedback binary classification system. A) Experiment protocol and timeline for the experiment: Runs 1–5
are separated by 5–10 minutes rest periods. The sequence of blocks with their durations for each Run is shown under Run 1. B) Arrangement of
optodes and the headmount. The optodes are placed over the motor area and arranged in 4x4 checkerboard topography. The red and blue circles
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offered by HbR, limits its use for further processing. The discriminative features from fNIRS
recordings are extracted from the time averages of changes in HbO concentration from the var-
ious channels located over the motor cortex. The real-time classification of signal features and
estimation of neurofeedback are performed at every unit time (1 second). Hence, for an Nt

-channel arrangement, the features extracted at kth second of a trial from nth channel is given
by,

f nðkÞ ¼
X

i21 to fs

DHbOn
i ðkÞ ð1Þ

where fs is the sampling frequency and n = 1 to Nt. The feature set at k
th instant is given by,

FðkÞ ¼ ff 1ðkÞ; f 2ðkÞ; f 3ðkÞ; . . . . . . ; f Nt ðkÞg ð2Þ

A feature selection technique based on mutual information [6,7] selects N< Nt features
from Eq (2). This technique effectively chooses the channels that provide optimal discriminat-
ing information for the task performed by the participant. For an Nt—dimensional feature set
F, the mutual information based technique selects, S� F, an N-dimensional subset that maxi-
mizes the mutual information, I(F;ω), where ω represents each class i 2 {1,2}. Mutual informa-
tion is given by,

IðF;oÞ ¼ HðoÞ �HðojFÞ; o 2 fo1;o2g ð3Þ

HðojFÞ ¼ �
X

i¼f1; 2g
pðoijFÞ log2 pðoijFÞ ð4Þ

where, H(ω) denotes the class entropy and H(ω|F) gives the conditional entropy. The condi-
tional probability p(ω|F) is estimated using Parzen window method. The mutual information
for all the Nt features are calculated and the best N features are selected to obtain,

SðkÞ ¼ ff nðkÞg; n 2 selected N features ð5Þ

The value of N is set to 12 in this work, and it is ensured that equal number of features are
selected from both left and right hemispheres. The performance of the system may vary
depending on N, however, characterization of the effect of number of features on classification
accuracy is beyond the scope of this work and hence would not be considered in this

indicate emitters and detectors respectively. The numbers 1–48 indicate the recorded channels. C) The architecture of the designed system indicating
its various functional units. The feedback generated by BCI is displayed to the subject as indicated. For details refer to text. D) Sample time course of
activations during motor execution. The pre-processed data from Experiment 1, Subject S11, Run 3 is shown. Channel 13 and 36 are from PMC in left
and right hemispheres. The contralateral activations of HbO and dip in HbR can be clearly identified from the plots.

doi:10.1371/journal.pone.0159959.g001

Table 1. Overview of experimental design for various experiments.

Run 1 Run 2 Run 3 Run 4 Run 5

Experiment 1 MEa ME ME MIb MI

Experiment 2 MI MI MI MI ME

Experiment 3 ME MI MI MI ME

aME stands for Motor execution
bMI stands for Motor Imagery. Italicized runs represent the ones used to train the classifier.

doi:10.1371/journal.pone.0159959.t001
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manuscript. The feature set S(k) for every kth instant is fed as input to the classifier for real-
time classification and to calculate neurofeedback.

Support Vector Machines (SVM)
SVM is a supervised learning technique that creates a boundary between two classes of data
based on a set of available training samples [8]. It designs a decision function that optimally
separates the two classes in the training data. In this study we use a linear-SVM to separate left
versus right hand movements. For real time classification, we consider the features obtained at
each instant k as a separate training data sample. The data sample at kth instant is the feature
vector denoted by S(k) or Sk. The SVM-classifier determines a weight vectorW, that discrimi-
nates a class against the other by the projectionW'S and linear discriminant rule,

o
2 oi W 0Sk � b

2 oi W 0Sk < b

(

where b is a bias. This vector is determined by minimizing the cost function,

JðWÞ ¼ 1

2
kWk2 ð7Þ

subject to the constraint,

Yk ðW 0:Sk � bÞ � b; k ¼ 1 to K ð8Þ
where Yk is the class label corresponding to Sk, that is a sample from the training data set {S1,
S2,. . ...,SK} and K is the number of training data samples. The SVM classifier thus modeled is
used to classify or to determine the label of incoming data samples.

1.3 Adapting Classifier and Feature selector
For neurofeedback training applications, the BCI is designed to provide feedback information
regarding the quality of the performed task to the user in real time. Considering the non-statio-
narity of the neural signals there is a need to adaptively update the classifier and feature selector
in the system [4,9].

In the subject-dependent classifier experiments, the initial run is used to select the most
informative features and model the SVM classifier that optimally discriminates the binary class
data. This is used to classify the data samples of Run 2 in real time. As given in (9), from the 3rd

Run onwards, the classifier is re-modeled using the data from two previous runs.

fN;WgðrÞ ¼
(
CðSðr�1ÞÞ; r ¼ 2

Cð½Sðr�1Þ; Sðr�2Þ�Þ; r > 2

)
ð9Þ

where, r is the run number, S(r) is the data set collected during Run r and C denotes the feature
selection and classifier modeling functions. Moreover, a bias cancellation is performed from
Run 2 onwards that subtracts the average of SVM output during the Rest block from the fol-
lowing Task block. The real-time system thus adopts a between-runs adaptive strategy of re-
training classifiers after each run and within-run adaptive bias correction of SVM outputs.

Participants
The data were recorded from 11 healthy participants (both male and female, aged 21–35). All
participants signed a written informed consent. The study was approved by the Institutional

(6)
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Review Board, Faculty of Medicine of the University of Tuebingen, Germany. Each participant
was compensated monetarily for participation in the experiment.

Data Acquisition
FNIRS signals were acquired using a Shimadzu FOIRE-3000 imaging system operating at a
sampling rate of 7.69Hz, using wavelengths of 780nm and 830nm from laser sources. Emitters
and detectors were separated by 25mm, and were placed on top of the participant’s head using
a semi-flexible head mount. Sixteen sources and detectors were arranged in two 4-by-4 check-
erboard topographies, as shown in Fig 1B centered on C3 and C4 of the International 10–20
System. This arrangement covered most of the primary motor, pre-motor and somatosensory
cortices.

Real-Time fNIRS-BCI System Schematic
The architecture of the real-time system designed is shown in Fig 1C. FNIRS signals are
received online in the BCI-processing computer from the FOIRE-3000 equipment. The BCI-
processing system consists of a feature extractor, a feature selector and a classifier. The data are
fed into the processing system in real-time. As indicated in Section 1.1, we extract the relevant
features from the recorded fNIRS data. The data from training runs are used to select the infor-
mative features and to model the classifier as explained in Section 1.3. For the test runs, after
the movement task stimulus onset, a bias correction is performed and the extracted features
are classified in real-time using the SVMmodel created. The classified output is generated at
every second so as to provide feedback in real time. This output is presented to the participant
in the form of a graphical thermometer in which a correct classification would lead to a unit
rise in the thermometer, and incorrect classifications would lead to a unit fall in the thermome-
ter reading. The thermometer reading remains at 0 (middle) during “Rest” period and returns
to this position at the end of every movement task.

Offline Data Analysis
The preprocessing steps used to improve the Signal-to-Noise ratio and derive optimal informa-
tion from recorded fNIRS data were as follows: the data was baseline corrected followed by
pre-coloring using a hemodynamic response function-low pass filter; the global trends were
removed using Wavelet-Minimum Description Length technique. A sample time course of
activation of pre-processed fNIRS recording is shown in Fig 1D, which plots the HbO and HbR
signals from channels 13 and 36 (corresponding to primary motor cortex (BA4) in left and
right hemispheres respectively) from Subject S11, Experiment 1, Run 2 From the figure, dis-
tinct changes can be seen in the contralateral activity of oxy- and deoxy-hemoglobin concen-
trations. These changes were utilized for feature extraction and modeling of the SVM-based
classifier.

To ensure stationarity of the training data used to create classifiers, 5- fold cross-validation
analysis was performed. The training data was randomly split into five subsets. In each cross-
validation fold, data from four subsets were used to select features and model classifier that was
used to classify the remaining test subset. The process was repeated to test all the subsets and
an average performance over all the folds was calculated. The low values of training classifica-
tion accuracy’s standard deviations indicated the low variance of the training dataset used (not
shown).

fNIRS signals were also analyzed to determine statistically significant spatial activations by a
univariate approach using SPM 5 fNIRS toolbox [10]. The spatial plots of mutual information
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obtained from Eq (4) and the SVM outputs obtained from Eq (8) are also reported among the
various results.

Results
The evaluation results of the real time fNIRS based neurofeedback system for classifying left
versus right hand overt and covert movements are presented in this section. Subsection 3.1
indicates the real time classification performance of the system and the system parameters
identified by offline analyses on the data, followed by 3.2 explaining the subject independent
classifier, its parameters and the results obtained. Subsection 3.3 reports the results indicating
homologous activations during overt and covert movements using spatial activation maps. The
practical significance of each of the results is also discussed.

Real-Time Classification
The motor performance of subjects is evaluated in real-time by online feature extraction and
SVM classification of bilateral motor tasks and the percentage classification accuracies are
reported. Fig 2 summarizes the performance of the proposed real-time classification system for
overt movement execution and imagery with neurofeedback. The results indicated are percent-
age classification accuracies attained by subjects in each of the runs for various tasks indicated
using MI (motor imagery) and ME (motor execution) labels. To comply with experimental
guidelines, subjects were allowed to discontinue the experiment if they experienced fatigue.

The Experiments 1 and 2 used subject-dependent classifier models for bilateral MI and ME
classification. In Experiment 1, the average classification accuracy over four subjects obtained
for runs 3 and 4 are 80% (ME) and 72% (MI) respectively, where the task performed is indi-
cated within brackets. Not all subjects were able to complete the five runs due to fatigue. In
Experiment 2, for all subjects the accuracy falls after the first run and improves afterwards. On
an average, the classification accuracies are reported as 69% (MI), 41% (MI), 51% (MI) and
73% (ME) for runs 2, 3, 4 and 5 respectively. The last run (run 5) used the classifier trained on
MI for online classification of bilateral ME. A general trend seen in the results is a dip in perfor-
mance after the first run, followed by gradual rise. Although the paradigm we use is insufficient
to prove the effect of neurofeedback training and its learning effect in subjects, the performance
trend obtained indicates subject's capability to identify and enhance motor control strategy
after each run. Longer experiment sessions might reveal more information on such a learning
curve. The simple adaptive strategies of re-training classifier and bias correction seem to work
efficiently in this real-time system.

Classification parameters. The intermediate results in the online system, namely, the data
used for modeling the classifiers, the classifier models created, and the feature selection pro-
ceedings were evaluated. The results are shown in Figs 3 and 4. The objectives were: (1) to dem-
onstrate offline classification accuracies, (2) to obtain various parameters of the SVM classifier
used and identify how they contribute to the classification performance, (3) to illustrate how
mutual information based feature selection helps extract the optimal information and (4) to
show the temporal averages over runs demonstrating class-dependent hemodynamic activity.

The results for analyses (1)-(4) in experiments 1 and 2 are illustrated in the following sub-
sections. Fig 3 and Fig 5 represent Experiment 1, and Fig 4 and Fig 6 indicate results of Experi-
ment 2 respectively.

Fig 3A indicates the cross-validation accuracies for offline classification of ME data in
Experiment 1 used to create SVMmodels. The average accuracies are 82.06±1.31% and 85.70
±1.59% respectively (classifier modeling using Run 1 was not performed for all the subjects).
As seen, the standard deviation for each subject indicated in the curves is less than 2%. This
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indicates a uniform performance in all folds of cross validation and so, the entire data are used
to create classifiers. To demonstrate the various characteristics of the system, data from Subject
S11 is used as an example. Fig 3C indicates the SVM output obtained in the real-time classifica-
tion of data for all the runs. The curves clearly indicate the advantage of using bias correction
for real-time classification. In all the runs, the SVM output gradually increases and reaches its
peak value after 3 to 5 seconds from the onset of the movement cue. This can be identified as
an effect of hemodynamic delay. However, in this experiment this delay is not taken into

Fig 2. Real-time classification performance for experiments 1 and 2. A and B) The percentage
classification accuracies for online binary (right v/s left motor tasks) classification for 7 subjects for the
Experiment 1 (A) and Experiment 2(B) are shown. The motor tasks involved are right and left Motor Execution
(ME) and Motor Imagery (MI). Note: Subject S11 was common between both experiments 1 and 2. C)
Comparison of mean classification accuracies of motor imagery and execution when classifier was trained on
either motor imagery or motor execution.

doi:10.1371/journal.pone.0159959.g002
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account by the classifier as it provides real-time output right from the start of movement onset.
Fig 3D displays the spatial distribution of mutual information obtained based on oxy-hemoglo-
bin data. The channels with higher mutual information are indicated by white dots and the fea-
tures from these channels are selected for further classification. The channels providing highest
mutual information of bilateral movement are obtained from the primary motor cortex of the
brain. Fig 3B illustrates the receiver operating characteristics (ROC) curves of the various clas-
sifiers used. The classifier operation points (indicated by the black asterisk) are at high True

Fig 3. Classifier parameters for Experiment 1. A) The offline 5-by-5 cross-validation classification accuracies in percentage. The x-
axis indicates the runs that contribute to the dataset, which is later used to generate the online classifier model. The error bars
represent standard deviations. B) ROC curves of the classifiers used in the different runs during online classification. The operating
point is indicated by an asterisk (*). C) The SVM outputs obtained from the online classification. The uncorrected and bias-corrected
values are represented using thin and thick lines respectively. The class of data is indicated as +1 for right hand and -1 for left hand
blocks. D) The spatial distribution of mutual information for each of the training dataset. The white dots represent selected channels
based on high mutual information.

doi:10.1371/journal.pone.0159959.g003
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Positive Rate (TPR)—low False Positive Rate (FPR) regions, which indicate good classification
performance.

The cross-validation accuracies obtained from classifier-training data for various runs of
Experiment 2 are shown in Fig 4A. The offline classification results reported are for MI classifi-
cation. The mean over subjects for classifier models 1 to 4 are obtained as 84.11 ± 2.69%,

Fig 4. Classifier parameters for Experiment 2. A) The offline 5-by-5 cross-validation classification
accuracies in percentage. The x-axis indicates the runs that contribute to the dataset, which is later used to
generate the online classifier model. The error bars represent standard deviations. B) ROC curves of the
classifiers used in the different runs during online classification. The operating point is indicated by an
asterisk (*). C) The SVM outputs obtained from the online classification. The uncorrected and bias-corrected
values are represented using thin and thick lines respectively. The class of data is indicated as +1 for right
hand and -1 for left hand blocks. D) The spatial distribution of mutual information for each of the training
dataset. The white dots represent selected channels based on high mutual information.

doi:10.1371/journal.pone.0159959.g004
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73.75 ± 2.47%, 74.17 ± 2.11% and 77.29 ± 2.21% respectively. The data recorded from subject
S11 is used for further analyses and the results are reported. The SVM output obtained for
every sample-classification in real-time for all the four runs are reported in Fig 4C. Fig 4D dis-
plays the mutual information distribution in the recorded channels. Comparing the activation
maps, it can be noted that in all runs, except run 3, activations are observed over the pre-motor
and motor areas. However, it can be noted that the patterns are as not localized as during ME.
The ROC curves, obtained from each classifier, are shown in Fig 4B. The classifier used in run
2 generates a good ROC with operating point in high TPR–low FPR region providing an accu-
racy of 78% in real-time classification. But the ROC curve for Run 3 indicates a bad classifier
design. This is reflected in the low classification accuracy (37%) obtained using this classifier
(Fig 4B, brown curve). The classifier ROC improves later for runs 4 and 5 with better trend and
operating points yielding better accuracy (64.44% in both runs).

Fig 5. Average time series of activations in Subject S11 during Experiment 1.Runs 2, 3, 4 indicate activation levels given by concentration changes of
HbO and HbR averaged over trials and selected channels. The channel selection is based on mutual information. The discriminative contralateral activations
during both classes of movement can be noted.

doi:10.1371/journal.pone.0159959.g005
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Fig 6. Average time series of activations in Subject S11 during Experiment 2. Runs 2–5 indicate activation levels given by concentration changes of
HbO and HbR averaged over trials and selected channels. The channel selection is based on highest mutual information between left and right blocks. Note:
Y-axis labels are different for different runs.

doi:10.1371/journal.pone.0159959.g006
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Fig 5 (Experiment 1) and 6 (Experiment 2) explain the temporal changes in hemodynamic
activity (HbO and HbR) averaged over selected channels in both hemispheres. The data are
averaged over all the trials in each run and the upper and lower limits of the data are displayed
along with their mean. The discriminating temporal activity in terms of contralateral activa-
tions can be seen in the curves. For example, in Fig 5, Run 3, for right hand ME, HbO levels
show activations only in the left hemisphere. Similarly, in Run 3, HbO levels in right hemi-
sphere rises as a result of activation during left hand movement. In Fig 6, the plots of Runs 2 to
4 and Run 5 correspond to MI and ME task respectively. It can be noted that, the levels of HbO
concentration changes and the discrimination capabilities between MI classes are lesser when
compared to ME data.

Subject-Independent Classification
The major focus of Experiment 3 was to construct a subject-independent classifier (SIC) trained
on multi-subject ME data, which could be used as a generalized classifier for MI and ME in
real-time from new subjects. The ME data from Runs 1 to 3 of Experiment 1 was used to train
an SVM subject-independent classifier. 5-fold cross-validation is performed to identify non-
stationarity in data and a test accuracy of 68.22±3.25% was obtained. Due to the low variation
in each of the cross-validation folds, the entire data were used to construct a subject-indepen-
dent classifier model with a training accuracy of 68%. The features selected by the system are
mentioned in Section 3.2.3. The real-time classification accuracy values obtained are displayed
in Fig 7A. Out of four subjects, the performance of S34 was poor for MI classification which
brought down the average accuracy. The subject reported difficulty imagining movements as
they were tired and distracted. The mean classification accuracies for runs 2 to 5 were 64%
(MI), 67% (MI), 57% (MI) and 80% (ME) respectively. The results prove the applicability of
the proposed subject-independent pattern classifier for real-time neurofeedback movement
classifications.

SIC System parameters. The detailed analysis of the subject-independent classifier gener-
ated in our study to classify MI and ME data is reported in this section and the data from Sub-
ject, S32 is used. Fig 7B shows the SVM outputs generated in four experimental runs. The
advantage of using bias correction is evident from the plots. The spatial distribution of mutual
information for the data used to train the classifier is shown in Fig 7C. Even though slightly
shifted towards right hemisphere, the channels in the motor area are found to report high
mutual information (indicated by white dots) and are hence selected for classification. The
ROC curves for the classifiers used in all the four runs are given in Fig 7D. Runs 2, 3 and 5 indi-
cate good ROC and selection of operating points, yielding real time classification accuracies of
72%, 72% and 88% respectively. Run 4 fails to perform well due to the bad ROC and hence
could give only 58% classification accuracy. The temporal HbO activity during MI and ME for
the data collected in Experiment 3 are reported in Fig 8. The results are similar to previous
experiments. The level of HbO concentration change is less for MI compared to ME, and the
activation curves for both right hand and left hand MI overlap in most cases, providing mini-
mum discrimination.

Discussion
The real-time neurofeedback system using our signal processing strategy offers the following
advantages: (1) the system identifies the optimal discriminative features based on mutual infor-
mation and applies these for classifier modeling, (2) the classifier adapts by itself after each run,
making use of the data collected in the previous run, and (3) the bias correction within runs
compensates for the dc shift in the feature space to provide better classification performance.
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The intermediate results of feature selection and classification and were reported in the previ-
ous section. The channels chosen using mutual information based feature selection are found
to lie over the motor cortex in most of the cases. The bias correction that provides an intra-run

Fig 7. Subject-independent classification results and parameters. A) Online classification accuracies for each run. B) The SVM outputs obtained from
the online classification. The uncorrected and bias-corrected values are represented using thin and thick lines resp. The class of data is indicated as +1 for
right hand -1 for left hand blocks. C) The spatial distribution of mutual information for the ensemble data training set. The white dots indicate channels with
high mutual information and hence selected. D) ROC curves of the classifiers used in the different runs of online classification. The operating point is
indicated by an asterisk (*).

doi:10.1371/journal.pone.0159959.g007
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Fig 8. Average time series activations in Subject S32 during Experiment 3. Runs 2–5 indicate activation levels given by concentration changes of HbO
and HbR averaged over trials and selected channels. The channel selection is based on highest mutual information between left and right blocks. Note: Y-
axis labels are different for left and right panels for better visualization of differences.

doi:10.1371/journal.pone.0159959.g008
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classifier adaptation clearly results in better classification accuracies. The performance of the
binary classifiers used in various runs is demonstrated using ROC curves, with the operating
point defining the threshold at which the system uses the classifier model. The runs with good
classification accuracies generate almost ideal ROC curves, with their operating point in the
high TPR-low FPR region. Each of the parameters are inter-related, and together, they define
the real-time system.

The change in levels of HbO and HbR during ME and MI have been reported in earlier
studies [4,11]. In our study, the time averages over the selected channels in both hemispheres
are shown in Figs 5, 6 and 8. ME/MI is accompanied with activations in the contralateral hemi-
sphere that reflect as a rise in HbO and a dip in HbR levels. For ME, we demonstrate a distinct
representation of hemodynamic activity in various hemispheres for different runs. For MI, the
discrimination is not as good as ME, due to lower levels of activation. The time series of the
hemodynamic activity in these selected features is shown. Figs 9, 10 and 11 show the activation
maps as heat-maps along with the channels used for feature selection. Interestingly, when

Fig 9. Experiment 1: Thresholded t-statistics maps. The statistically significant activations (p<0.001)
during bilateral ME and MI for different runs are as shown. Abbreviations of the major areas activated in the
contralateral hemisphere are written within each panel. The major areas activated include PMC: Pre-Motor
Cortex, M1: Primary Motor Cortex, SMA: Supplementary Motor Area. MI activated superior temporal gyrus (in
addition to others) in the final run.

doi:10.1371/journal.pone.0159959.g009
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contrasted with ME, the MI runs had activations that were more anterior and apical, localizing
around the SMA. An earlier study comparing fMRI-BOLD activations between MI and ME in
a similar task reports similar activations, with ME leading to larger activations in the M1 (pri-
mary motor cortex) and MI leading to higher activations in the SMA that localize towards the
apical portion of the brain [12]. Although it appears that our results provide supporting evi-
dence to this report, our interpretation cannot be conclusive due to the technical difficulties of

Fig 10. Experiment 2: Thresholded t-statistics maps. The statistically significant activations during
bilateral MI and ME for different runs are as shown. Abbreviations of the major areas activated in the
contralateral hemisphere are written within each panel. MI activates somatosensory cortex and temperopolar
areas (TOA) in addition to Primary Motor Cortex (M1), Supplementary Motor Area (SMA) and Pre-Motor
Cortex (PMC). For the MI runs the activations are for p<0.05 and for ME the activations are for p<0.001.

doi:10.1371/journal.pone.0159959.g010
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proper co-registration of fNIRS optodes with the corresponding structural MRI of each
subject.

Furthermore, the study is expected to bring us a step closer to assist stroke-patient rehabili-
tation using the subject-independent classifier with real-time neurofeedback. The study in
healthy subjects can potentially be applied to patients with more optimizations. Also, the sub-
ject-independent motor activation patterns from healthy subjects can be used to train patients

Fig 11. Experiment 3: Thresholded t-statistics maps. The statistically significant (p<0.001) activations
during bilateral ME and MI for different runs are as shown. Abbreviations of the major areas activated in the
contralateral hemisphere are written within each panel. In addition to Pre-Motor Cortex (PMC),
Supplementary Motor Area (SMA) and Primary Motor Cortex (M1), primary somatosensory cortex (S1) was
also activated during motor imagery runs as shown.

doi:10.1371/journal.pone.0159959.g011
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with motor disabilities to imitate and later even generate similar patterns. Studies testing the
feasibility of using BCIs for stroke rehabilitation found statistically and clinically significant
gains in motor control and functional tasks in response to motor learning combined with func-
tional electric stimulation (FES); [13,14]. Though these studies were quite promising, normal
motor control and function were not completely attained, and not all subjects had significant
improvement. Current theories in motor learning and instrumental conditioning of the brain
responses propose a novel approach of closed-loop BCI for effective recovery of movement
[15], by conditioning spatio-temporal patterns of the brain responses associated with the
desired movement, concurrently with the afferent sensory input induced by peripheral stimula-
tion of the muscles of the limbs that produces movement. A hypothesis that can be tested with
real-time subject-independent classification and feedback is that: by training patients to pro-
duce normal brain activity, one may be able to influence brain plasticity that results in normal
brain function and motor behavior. In the case of motor function, this strategy is supported by
evidence that practicing movements that are as close to normal as possible might help to
improve motor function [16], by guiding newly sprouting axons to the appropriate cortical
regions [17]. The development of a subject-independent classifier based BCI is thus an impor-
tant step towards successful stroke rehabilitation.

The results obtained in our experiments suggest the applicability of our technique for neu-
rofeedback experiments. However, the system is still open to modifications in areas such as
robustness, usability etc. The subject-independent classifier model, even though its perfor-
mance is as good as subject-dependent classifiers, can still be optimized by incorporating head
size, shape and activation pattern information from the individual subjects involved. The
usability indicates the preparation time for the data acquisition and the extent to which subject
can wear the equipment. Currently, it takes a long time for setting up the head cap, as it
involves managing the obstructing hair from the optical path. Most of the subjects reported dis-
comfort after wearing the cap for over 45 minutes, and pointed this out as a reason for failing
to do well in the motor task. These are limitations in the current study and we intend to look
into further possibilities to address them in the future. Furthermore, future studies should look
at comparing the brain and behavioral changes induced by neurofeedback training with sub-
ject-independent classification and subject-dependent classification in a controlled manner so
that the advantages and disadvantages of the methods are identified. Here, we present a prelim-
inary step to extract optimal features in a motor activity and apply it on a simple adaptive clas-
sification system to provide better binary classifications. Concluding the subject's capability to
regulate his own brain activity using neurofeedback is thus beyond the scope of this study.

Conclusions
In conclusion, this study primarily focuses on real-time binary classification of left versus right
hand movement execution and imagery using a SVM based classifier. A subject-independent
pattern classifier generated from movement execution data using the feature extraction and
selection strategy discussed above was used in real-time classification of MI and ME. The neu-
ronal activity correlates between MI and ME were explored and utilized to create a generic clas-
sifier. The performance of the system in terms of bilateral movement classification accuracies
obtained in various sessions of the different subjects are reported. The classifier parameters
obtained in each of the experiments conducted, indicating robust and accurate performance,
are separately discussed. The data are analyzed offline to identify the spatial and temporal acti-
vations and the results were also demonstrated. The results are promising, and we hope to
overcome and address the various drawbacks of the current system, and to develop a real-time
BCI system for clinical rehabilitation purposes.
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